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Abstract—The paradigm of quantum computation has led to
the development of new algorithms as well variations on existing
algorithms. In particular, novel cryptographic techniques hased
upon quantum computation are of great interest. Many classical
encryption techniques naturally translate into the quantum
paradigm because of their well-structured factorizations and the
fact that they can be phased in the form of unitary operators. In
this work, we demonstrate a quantum approach to data
encryption and decryption based upon the McEliece cryptosystem
using Reed-Muller codes. This example is of particular interest
given that post-quantum analyses have highlighted this system as
being robust against quantum attacks. Finally, in anticipation of
quantum computation operating over binary fields, we discuss
alternative operator factorizations for the proposed cryptosy stem.
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L INTRODUCTION

Post-quantum computational techniques are those that
anticipate the development of practical quantum computers.
Along these lines, cryptography is an area where several
quantum algorithms have been proposed having the potential to
challenge classical cryptographic methodologies. In the era of
post-quantum cryptography there appear to be two basic areas
of focus [1,2]. First, it is important to characterize which existing
cryptosystems would be powerful enough to withstand quantum
attacks. Second, the development of novel quantum-based
cryptographic algorithms must also be considered. This work
reviews and addresses, in part, both of these areas.

II.  BACKGROUND

In anticipation of the post-quantum era, various analyses
have led to a shortlist of cryptosystems that have the potential to
withstand quantum attacks [2]. One of these candidates is the
MecEliece public key cryptosystem which originally was derived
using the theory of error control codes [3,4]. Specifically, a
k X n generator matrix & from a system that can correct up to t
errors for which an efficient decoding scheme exists is chosen.
A k xk nonsingular random matrix R and an nXxn
permutation matrix P are then chosen to form the matrix

G = RGP (1)
This leads to the cryptosystem parameters
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Public Key: (&,t)
Private Key: (R, G, P) 2)
Encryption of a 1 x k bit message vector i using the public
key is accomplished via the prescription
c=uG+v 3)

where v is random binary error vector containing at most ¢ ones.
The encryption process 1s illustrated in Figure 1. Determining g
from ¢ is known to be an NP hard problem.

E(G,v)

Fig. 1. McEliece encryption using (1) and (3).

The decryption process uses the private key to compute

é=cp )

Then, assuming an efficient decoding aigorithm exists for
the code generated by G, jt is decoded from ¢. Finally, the
original message can be recovered

p=fRrR? )

While this system 1s considered to be computationally secure,

practical classical objections to the system reside mainly in the

size of the key. However, in the post-quantum era, the large key

size is precisely what leads to the system being considered to be
quantum resistant [4], [5].

The idea of applying linear code-based encryption schemes
1s regularly revisited [7]-[9]. If the McEliece cryptosystem is a
worthwhile candidate for post-quantum techniques, the question
arises as to which generator matrices with efficient decoding
algorithms can be used for the construction of quantum resistant
systems. Prior to quantum computation coming into the picture,
Goppa codes were originally suggested as the McEliece
cryptosystem generator. However, in response to more recent
cryptanalyses, other families of codes have been proposed [4,5].
Reed Muller codes have appeared as one of these candidates,



and 1t 1s this family that we wish to explore [6]. However, our
goal is not to address their classical implementation. Instead, we
wish to consider the development of novel quantum-based
cryptographic algorithms. As a stepping stone toward this goal,
we will focus on the implementation of an efficient quantum
Reed Muller decoder for the McEliece system.

III.  QUANTUM REED MULLER CODES

Much groundwork for quantum Reed Muller codes has been
established. In this section, we will discuss applying Reed
Muller codes as the basis for a quantum-based decoder (QD)
(see Figure 1) as well as a quantum-based encoder (QE) for the
MecEliece system. Decoding of these codes is usually presented
by transforming typical parity check rules into operations
involving universal quantum gates [10], [11].
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Fig. 2. McEliece decryption using (4) and (5).

A. RM{(I,m) Quntum Decoder (OD) Implementation

As long as the binary codewords ¢ can be encoded as qubits
that are input to QD in Figure 1, we propose an efficient decoder
mplementation that will not require directly referring to the
parity check space [17]. First order Reed Muller codes RM(1,m)
have codeword lengths n = 2™ and are known to be decodable
using to the Hadamard transform. The generator matrix for such
a code 1s quite straightforward. For example,

11111111
G=00001111
000110011
001 010101

is an example of a generator matrix for an RM(1,3) code.
Notice that the columns for a 1** order RM code count in binary
from O to 2% with the top rows equal to all ones. Obviously,
the generator matrix for the McEliece cryptosystem requires a
very large value of m.

Given an n-bit binary codeword row vector

c= (CO! Cisty Cn—l)

define

Fe) = (=1)°

where the new vector is formed using element-by-element
exponentiation yielding the rule

0-1
1- -1
for each component of the codeword ¢.

Next, let

1m 1
= N [1 _1]
be a 2x2 Hadamard matrix. This operator is unitary

HH=I
which implies that it can be used for quantum computational
operations [21]. Tt is, in fact, a valid circuit element typically
applied to single qubit systems in quantum computation. For
example,

1
H|0)=V,—§(|0)+I1))
and
1
HI1)=\/—§(|0)—I1))

represent the action of H on single qubits states |0} and |1).
To extend operators to work with multiple qubit systems, tensor
products of qubit states must be constructed using the Kronecker
product. Specifically, the Kronecker product of an mxn matrix
A and a pxq matrix B is defined as

a; B a,B a;, B
AGR = a2_1B az_zB azlﬂB
a..B a,,B A B

Quantum computation builds up qubit spaces using this
operation. This tensor product construction along with the time
evolution of quantum systems is effectively what enables a
quantum computer to act as a highly parallel processor.

The operator iteratively defined by

H‘rn = m71®H
(where H,, 1s the Kronecker product of ‘m’ Hadamard
matrices) 1s highly relevant to the quantum implementation of a
Reed Muller decoder. For the RM(1,m) code, calculating the
Hadamard transform of a codeword

H(c) = F(o)H,, (©)

1s equivalent to correlating a codeword with each column of
H,,. Furthermore, and most importantly for this work, up to a
reordering of the codewords and a multiplicative constant, it is
also true that

Farmct,m) = | ™

when F(c) is applied to every codeword in RM(1,m). Under
these circumstances, the Hadamard transform of all RM(1,m)
codewords reduces to

HRM(L,m) = FRMLm)H, = | 7 | 9)



(up to a multiplicative constant) where 1, is the Kronecker
product of 222 identity matrices. Efficient maximum hikelihood
decoding of an R(l.m) codewerd ¢ to the message ¢ can be
pedarmed by anabvzing M (£). Specifically, the component of
H () with the greatest magnitude can directly related back to
the to the message .

An  equivalent quantum-based decoder  immediatehy
follows from this obeervation. If m Figure 2, £ is presented (o
QI in the form of qubils, (7 then tells us that F(¢) can be
generated via the Hadamard transform 1t then follows from (8)
that the message i can be recovered, One issue with this
approach 18 that (8) involves negatmg the identity. Further
research of this approach will wwvolve infegrating the unitary

operator
10
#i= [u _1J
in order to mtegrate the negation operation. For this work,
we simply consider hall the set of codewords so that (8) reduces

(4]

FAM(Ln))H,, =1, (e

where ﬁf(l. i) refers to the reduced code. Table I provides a
list of parameters that casily extend to any number bits,

TAELED FARAME TERSFOR JIUANTUM 801 DECODING

The above identity can be used to mathematically
charactenze its schematic representation

HlghaH ger = (HEH g8 g0}

Furthermore, tensor products of qubite are abbreviated using
the following notation

. ¥ @ qal = |q1Ge)

leading to the more compact circuit description

Hlg, X0 H gy = (HEH) g

Taking =uccessive Kronecker products to build up the
Hadamard decoder natural by follows, Figure 3 shows a quantum
circiit for BEM(1.43 The M operations m this fgure depicts
quantum measurements in order to determing the decoded bit
stream, Finally, Figure 4 shows that a message 0110 has been
recovered when QD & presented with the associated binary
codeword,

B Cwrtume Circnit gor Orarsum Decoder (000
fmplementation
Cruantum circuits are schematic representations of quantum
operations on qubits. The identity

(ARENWCERD) = (ACYB(ED)

{where the matrix multiplication is well-defined for matrices
ABCDY s of great importance i understanding how to build
up poltiple qubbit circuits. For exarmple, the H operation applied
to two distinct qubits (g, and |g. )15 depicted m the foliowing
quantum circuit

|‘Tu)_

|Q1}_

m | k=m=1 | n=2" | & qubits, m # codewords, 2™ a3 g =1 g ul
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=

Fig 4 Input codeward decoded to memaga 0110

O Cuanium-baved Encoder (QF) for Reed Midier Codes

Quantum  gates for quanten  circuits  are  generally
implemented usmg the typical universal set of umitary
transformations necessary for quantum computation | 21]. Such
calculations necessanity involve complex fields given the nature
of guantum calculations. This implies, more often than not,
computations must be *comced” nto an answer that reflects the
mathematics of a specific problem



We would suggest that a worthy pursuit would be to insulate
the quantum programmer from this final step. One possible
solution might be to create a computational environment that
reflects a binary field so that computations involving binary
numbers could readily be phrased on a quantum computer.
Excellent work along these lines has already been established
[12-14]. We project that this will gradually become the norm for
quantum programming. If this is the case, then Reed Muller
codes could be constructed from fundamental quantum
operations involving tensor products involving finite fields. In
anticipation of this result, we point out how to generate such
codes in a vector space over binary numbers [17].

Consider the following definitions
_Mn 1
b= [0 1

such that
P, = P®P - @P mod 2

Is the Kronecker product of P with itself m times taken mod
2. This type of calculation is quite common within quantum
computation when operators are unitary. Over the binary field,
it should be clear that

p=pr
PPT =1 mod?2

Making P an excellent candidate gate operation for quantum
computation over binary fields. Under these circumstances,
Reed Muller codes can be generated from B,,. Specifically, a
generator matrix for a code with minimum distance d,,,;,, can be
constructed by extracting all rows from £, having a Hamming
weight wy = d,,..,, [18]. In terms of a quantum circuit, this
amounts to extracting the appropriate qubits after the tensor
product B, mod 2 has been applied.

In addition, in anticipation of quantum computation
operating over binary fields, we also briefly point out that
interesting wavelet packet formulations of Reed Muller codes
can be generated via various ‘perfect shuffle’ factorizations.
Many such factorizations have been proposed in the literature
since the inception of quantum computation [15-20]. We briefly
present one that 1s useful for encoding and decoding Reed
Muller codes based upon tensor products over finite fields. For
the i scale in a wavelet packet decomposition, letting §°
represent a perfect shuffle, the decomposition T, can be
formulated as

Tn = Bn®p
where
@, = @D @b

Y =1, @S,

10

IV. CONCLUSIONS

In the era of post-quantum cryptography, it is important to (1)
characterize cryptosystems powerful enough to withstand
quantum attacks and (i) consider novel approaches to quantum-
based cryptography. The McEliece system is considered to have
the potential to withstand quantum attacks. In light of (i), it is
natural to pursue whether or not there exists a novel approach
where this system can be implemented completely on a quantum
computer. The random and permutation matrices within the
system, in principal, could be integrated. Given the results of this
work, efficient encoding and decoding using a linear code-based
encryption scheme appears to be plausible as well. Specifically,
we have applied quantum-based Reed Muller codes to
demonstrate feasibility. An efficient decoding approach has
been introduced involving RM(1,m). Furthermore, if extensions
to finite field quantum computations can be realized, we have
introduced efficient encoding process for this family of codes as
well. The field of quantum computation appears to be in a state
similar to when analog computers were eclipsed by digital
computers. One possible key to this transition may be to define
and generate unitary systems that are useful over finite fields.
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