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Abstract

We present a randomized parallel algorithm, in
the Exclusive-Read Exclusive-Write (EREW) PRAM
model, that computes a Maximal Independent Set
(MIS) in O(log n) time and using O(m log2 n) work,
with high probability. Thus, MIS ∈ RNC1. This time
complexity is optimal and it improves on the celebrated
O(log2 n) time algorithms of Luby [STOC’85] and Alon,
Babai, and Itai [JALG’86], which had remained the
state of the art for the past 35 years.

1 Introduction

MIS. The Maximal Independent Set (MIS) problem is
one of the classic graph problems studied in parallel
algorithms. Given an undirected graph, the objective
is to select a subset S of vertices such that no two
vertices v, u ∈ S are adjacent (independence) and no
vertex w /∈ S can be added to S without violating
the independence condition (maximality). The problem
admits a trivial sequential algorithm: start with S = ∅,
examine the vertices one by one and add to S if possible.

PRAM. We work with the Parallel Random Access
Machine (PRAM) model, which is the parallel analogue
of the sequential RAM model. In this model, a (poly-
nomially bounded) number of RAM model processors
can write to and read from some shared memory. With
regard to the conflicts caused by potential simultaneous
read/write accesses to to the same memory cell, there
are four variants to the model. The weakest variant
is Exclusive-Read Exclusive-Write (EREW), in which
every memory cell can be read or written by only one
processor at a time (i.e., the algorithm should ensure
no simultaneous read or writes). The strongest vari-
ant is Concurrent-Read Concurrent-Write (CRCW), for
which multiple simultaneous writes to (and reads from)
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the same memory location are allowed. There are also
intermediate models CREW and ERCW, defined as the
name suggests. In the variants with concurrent writes,
the model comes with a prescribed resolution scheme,
e.g., an arbitrary write might take effect. As an anal-
ogy, EREW algorithms can be seen as Boolean circuits
of bounded fan-in and fan-out, while the other variants,
when turned to a circuit, would need unbounded fan-in
and/or fan-out. See Section 1.4 for more on the PRAM
variants.

Similar to most of the prior work on MIS, in this
paper, our focus will be on the weakest, and arguably
cleanest and most realistic, variant EREW. We also
briefly comment on some prior work in the stronger
CRCW variant.

1.1 State of the Art The MIS problem was first
pointed out by Valiant in 1982 [Val82] as an interesting
problem for parallel computation (in contrast with its
trivial sequential solution). It is known that computing
the lexicographically-first MIS, i.e., computing the MIS
resulting from the aforementioned centralized process
when we examine the vertices in a fixed given order,
is P-complete [Coo85, GHR+95]. Hence, the focus in
parallel algorithms has been on computing an arbitrary
MIS.

Wigderson and Karp [KW84] gave the first poly-
logarithmic time parallel algorithm for MIS: they pre-
sented an O(log3 n)-time randomized parallel algorithm
in the EREW model, as well as an O(log4 n)-time
deterministic EREW PRAM algorithm. Shortly af-
ter, Luby [Lub85] and independently Alon, Babai, and
Itai [ABI86] presented their celebrated randomized MIS
algorithm which compute an MIS in O(log2 n) time in
EREW PRAM. This algorithm has been covered in
many classes and textbooks on randomized or parallel
algorithms. They also explained how to derandomize
this to an O(log2 n)-time deterministic algorithm (with
polynomially more processors).

These two papers also observe that a modified
version of these algorithms runs in O(log n) time in
the more powerful CRCW variant of PRAM. This
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modified algorithm assumes that up to n processors
can simultaneously read the same register, and more
crucially, up to n processors can write to the same
register simultaneously (in which case an arbitrary write
takes place).

Since the work of Luby [Lub85] and Alon, Babai,
Itai [ABI86], the question of obtaining an algorithm
with faster than O(log2 n) time in the weaker EREW
variant (or even in the intermediate CREW and ERCW
variants) remained open. It was also asked explicitly by
Luby [Lub85,Lub86] whether one can “find a faster MIS
algorithm”.

1.2 Our Contribution In this paper, we settle the
randomized part of the time-complexity by presenting a
randomized EREW PRAM algorithm for MIS with the
optimal O(log n) time complexity:

Theorem 1.1. There is a randomized EREW PRAM
algorithm that, for any n-node m-edge graph, computes
an MIS in O(log n) time and using O(m log2 n) work,
with high probability.

We note that even “reading” or “informing” all
the neighbors of a single node with polynomially large
degree requires Ω(log n) time on an EREW PRAM:
Concretely, computing a logical OR of the (up to n−1)
neighbors, to see if any of them is in the MIS, requires
Ω(log n) time, even for a CREW PRAM [CDR86].
Moreover, informing the (up to n − 1) neighbors of
whether this node is the MIS or not (or any other
similar information, such as the identifier of the node
or any decision taken with regard to the node) requires
making Θ(n) copies of the content of a single memory
cell which also requires Ω(log n) time on an EREW
PRAM [BKK94]. Hence, the O(log n) complexity of
Theorem 1.1 appears1 to be the best possible, for an
EREW PRAM.

We are also hopeful that the randomized result
provided in Theorem 1.1 might pave the way for a
deterministic O(log n)-time EREW PRAM algorithm,
which would prove that MIS ∈ NC1.

1.3 Our Method in a Nutshell Next, we briefly
recall Luby’s algorithm [Lub85] and provide some intu-
ition for why this algorithm, and many others, face a
significant barrier when trying to achieve a time com-
plexity below Θ(log2 n) on an EREW PRAM. Then, we
present ideas for how to break this barrier and achieve
an O(log n) time complexity.

1A formal proof would have to deal with more nuanced details
of the EREW PRAM model, similar to [BKK94].

The Ω(log2 n) Barrier For Luby’s Algorithm.
Luby’s algorithm involves Θ(log n) iterations, where
each iteration has two steps: in the first step, each node
draws a random number in [0, 1] and the node joins
the MIS if its number is strictly smaller than that of
all of its neighbors. In the second step, we perform a
clean up by removing all nodes that joined the MIS and
their neighbors. In the EREW PRAM model (or even
in CREW), one node needs to determine whether the
minimum of the numbers of the neighbors is less than
its own or not. As the number of neighbors can be up to
n− 1, this requires Ω(log n) time on an EREW PRAM.
In fact, even computing the OR of say

√
n numbers —

which is a special case of computing the minimum in just
binary numbers — requires Ω(log n) time in the (more
powerful) CREW PRAM model, by a result of Cook et
al. [CDR86]. This explains the overall Θ(log2 n) com-
plexity of Luby’s algorithm on an EREW PRAM.

We remark that another variant of the algo-
rithm [Lub85, ABI86] works in O(log n) iterations of a
slightly different process: per iteration, we mark each
node v, which has degree dv, with probability 1/(2dv),
and we then add a marked node v to MIS if and only
if no neighbor with higher degree (and ID, if there is
a tie on degrees) is marked. The clean up step is as
before. This variant also faces the same Θ(log2 n) com-
plexity barrier as each step of checking whether any of
the Θ(n) neighbors is marked or not is exactly comput-
ing the Boolean OR of up to Θ(n) variables, which,
as discussed, needs Ω(log n) time even on a CREW
PRAM [CDR86].

A High-Level Intuition of Our Approach: One of
the logarithmic factors in the O(log2 n) complexity of
Luby’s algorithm comes from the degrees: Scanning d
neighbors, and concretely computing a function such as
minimum or logical OR of their values, costs O(log d)
time. To circumvent this overhead, we devise an algo-
rithm where, effectively and in a very informal sense,
each iteration works on a constant-degree subgraph,
which was determined before the iteration. But for this,
each iterations has to do much more preparation work
for each of the future iterations.

Our parallel algorithm builds on the distributed al-
gorithm of Ghaffari [Gha16]. This distributed algorithm
also has O(log n) iterations, similar to Luby’s, and faith-
fully implementing it would also lead to an O(log2 n)
EREW PRAM algorithm, for the same reasons. How-
ever, with some modifications that we describe, we can
ensure that the behavior of the algorithm is “smooth”
in the following sense: the probability of each node v
attempting to join the MIS changes by only a constant
factor from each iteration to the next. Hence, in itera-
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tion t, we have a prediction of the attempt probabilities
of any future iteration t′ ≥ t, where the prediction is
sharp up to a 2O(t′−t) factor. This prediction allows us
to gradually narrow down the set of relevant neighbors,
as we get closer and closer to iteration t′.

Concretely, at the very beginning of the algorithm,
we prepare a set of relevant neighbors for each future
iteration. We show that these sets of relevant neighbors
can be refined gradually over time to make them smaller
and smaller, in the following sense: in each iteration
t, the sets of any future iteration t′ ≥ t + 1 have
size 2O(t′−t). This intuitive description ignores some
technical aspects. Once we arrive at iteration t′, the
set size is constant. Moreover, this size guarantee is
such that we can maintain it as t gets closer to t′. For
instance, once time proceeds from iteration t to iteration
t + (t′ − t)/2, we have time proportional to (t′ − t)/2
iterations to refine the set of 2O(t′−t) relevant neighbors.
Notice that, as a very simple example, computing the
OR of 2O(t′−t) values can be easily done in O(t′ − t)
time, i.e., in at most (t′ − t)/2 iterations by setting the
length of each iteration a large enough constant time.

Turning the above intuitive description to a formal
algorithm relies on several properties of the (modified)
algorithm and its analysis. There also a number of im-
plementation issues to make the algorithm suitable for
an EREW PRAM. These are deferred to the technical
section.

Finally, we note that our work is in part inspired by
the ideas that were used by Ghaffari and Uitto [GU19]
to provide a Õ(

√
log n)-round algorithm in the Mas-

sively Parallel Computation (MPC) model with sub-
linear memory per machine. In particular, they parti-
tioned the O(log n) rounds of the distributed algorithm
into Õ(

√
log n) phases, and showed that each phase can

be performed in O(1) rounds of the MPC model, by
gathering a certain Õ(

√
log n)-hop topology, which fits

in the memory of one machine because one can effec-

tively reduce the degrees in one phase to 2Õ(
√

log n). Al-
though details would have to be checked, we think that
one could probably extend their method to the EREW
PRAM model, but the resulting time complexity would
be O(log1.5 n

√
log log n), which is far higher than our

optimal O(log n) bound. In our algorithm, we have to
perform preparation work for each of the future itera-
tions separately, all at the same time (with dependencies
between them), and we make sure that once we arrive
at any given iteration, each node has to examine only
constant many neighbors.

1.4 Variants of PRAM and Other Related
Work There is an abundance of literature on compar-
ing the power of PRAM variants. For instance, it is

well-known that a CRCW PRAM can be an Ω(log n)
factor faster than an EREW PRAM for some prob-
lems. See [Fic93] for a survey of such comparisons, and
the textbook of Jaja [JaJ92] for more details on model
variants. We also note that, while EREW is clearly a
weaker model, there are also extensive discussions in
the literature to indicate that EREW algorithms are
“more practical”, in the sense that they can be adapted
to other more realistic models–see, e.g., the discussions
in [CHL01, Section 1].

Perhaps because of this, there has been extensive
work on PRAM algorithms with exclusive write, and
especially EREW PRAM algorithms, for various prob-
lems, even though faster CRCW PRAM algorithms were
known. Below, we briefly review the developments for
another classic graph problem, connectivity.

It was long known, see e.g. [AS87, CV86], that
in the CRCW model, one can solve both the con-
nectivity problem, i.e., identifying connected compo-
nents in an undirected graph, and its close rela-
tive minimum spanning tree in O(log n) time, deter-
ministically. In contrast, when requiring the writes
to be exclusive, the best known algorithm needed
O(log2 n) time [CLC82, HCS79] and this remained the
state of the art for a while until the first break-
through of Johnson and Metaxas [JM91, JM92], with
an O(log1.5 n) time complexity for both problems. A
work of Nisan, Szemeredi, and Wigderson [NSW92] im-
plied another algorithm with the same time complex-
ity. Shortly after, Karger, Nisan, and Parnas [KNP92]
gave a randomized EREW algorithm for connectivity
with O(log n log log n) time complexity. Chong and
Lam [CL95] provided2 a deterministic EREW PRAM
algorithm with the same O(log n log log n) complexity
for connectivity. This was later extended to an MST
algorithm by Chong [Cho96]. Finally, Chong, Han, and
Lam [CHL01] settled the problem by providing O(log n)
time deterministic EREW algorithms for the connectiv-
ity and minimum spanning tree problems.

2 Our Algorithm

In this section, we present our algorithm that proves
Theorem 1.1. We first describe a vanilla version of the
algorithm, which is a modified variant of the distributed
algorithm of Ghaffari [Gha16], with some additional
smoothness properties that we will leverage in our
parallel algorithm. We then intuitively discuss some key
ideas in our parallel algorithm. After that, we proceed

2This O(logn log logn)-time EREW algorithm later led to
an O(logn log logn)-space algorithm by Trifonov [Tri05], si-
multaneous with Regingold’s O(logn)-space connectivity break-
through [Rei05].
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to presenting the outline of our parallel algorithm,
which, roughly speaking, runs this smoothed distributed
algorithm, by predicting and gradually preparing for
each future round. We then finish by discussing how we
implement this algorithm in O(log n) time on an EREW
PRAM, and its analysis.

2.1 Warm Up: A Vanilla Version of the Algo-
rithm

We start with an empty set S ⊆ V of vertices,
which will gradually grow and eventually become
the desired maximal independent set, while always
remaining an independent set. Each node v starts
with a probability parameter p0(v) = 2−dlog ∆e.
Then, the algorithm has O(log n) identical itera-
tions, where per iteration t ≥ 1, each node v does
as follows:

- If node v is in the set S, set pt+1(v) =
1. If node v has a neighbor in the set S,
set pt+1(v) = pt/2. Otherwise, if dt(v) =∑

u∈N(v) pt(u) ≥ 10, set pt+1(v) = pt/2, and

if dt(v) < 10, set pt+1(v) = min{2pt, 1/2}.

- If dt(v) < 10, then node v attempts to join
the set S by marking itself with probability
pt(v). Nodes in S also mark themselves (de-
terministically). If v /∈ S is marked and has no
marked neighbor in this iteration, then v joins
S and also informs its neighbors that they have
a neighbor in the set S.

Next, we provide a proof sketch to show that this
algorithm computes an MIS in O(log n) iterations, with
high probability. The intention is to show the key
properties used in the analysis; some lower-order details
are omitted here but provided later in the analysis for
the actual algorithm.

Theorem 2.1. After O(log n) iterations, the set S
computed in the above algorithm is a maximal indepen-
dent set, with high probability.

Proof. [Proof Sketch] Fix an arbitrary node v. We
argue that within T = C log n iterations, where C is
a sufficiently large constant, there are at least 0.01T
iterations which are good for v, in the following sense:
either v is in S or has a neighbor in S already or
in this iteration, either (I) node v has a constant
probability of joining the set S, or (II) there is a
constant probability that a neighbor of v joins the
set S. The guarantee for the existence of these good
rounds is deterministic. Moreover, these probabilities
are based only on the randomness used in that iteration,

and importantly independent of what happened in
the previous iterations. Therefore, within 0.01T good
iterations, the probability of node v not having joined
the set S or having a neighbor in S is at most 1/n2.
Recall that v was an arbitrarily chosen node. Thus,
by union bound, we conclude that within O(log n)
iterations, with probability at least 1− 1/n, each node
is either in S or has a neighbor in S. Therefore, set S
is an MIS, with high probability.

What remains is to prove that each node v has at
least 0.01T good iterations. Consider each iteration t in
which v is not already in S or adjacent to S. We call
this iteration heavy for v if dt(v) =

∑
u∈N(v) pt(u) ≥ 5.

In such an iteration, there are two possibilities: (A) At
least 1

10dt(v) of this summation comes from neighbors
u that are not neighboring a node in S and have
dt(u) < 10. (B) Strictly greater than 9

10dt(v) of this
summation comes from neighbors u that either have a
neighbor in S or have dt(u) ≥ 10. We can see that case
(A) is a good iteration for node v as in such an iteration,
there is a constant probability that a neighbor of v gets
marked, has no marked or S neighbor, and thus joins S.
If we have at least 0.01T heavy iterations in case (A),
we have 0.01T good iterations for v and thus, we are
done. So, let us assume otherwise.

In any heavy iteration that is in case (B), we
will have the summation dt(v) change as dt+1(v) ≤
9
10dt(v)/2 + 2 1

10dt(v) ≤ 2
3dt(v). This is because neigh-

bors u that are adjacent to S or have dt(u) ≥ 10 set
pt+1(u) = pt(u)/2. Thus, in any heavy iteration that
is not a good iteration, we have dt+1(v) ≤ (2/3)dt(v).
We start with d0(v) ≤ 1. We have at most 0.01T heavy
iterations that are good for v, during each of which we
have dt+1(v) ≤ 2dt(v). Every two times of decrease by
a 2/3 factor are equivalent to a decrease by a factor
of 4/9 < 1/2, which cancels the effect of one 2 factor
increase. Hence, at most 0.03T iterations can be itera-
tions where dt(v) ≥ 10. Thus, out of T iterations, in at
least 0.95T iterations, we have dt(v) < 10.

Now, in any iteration which dt(v) < 10, node v
sets pt+1 = min{2pt(v), 1/2}. In all other iterations,
pt is decreased by a 2 factor. Hence, we can conclude
that there are at least 0.95T − 0.05T = 0.9T in which
pt(v) = 1/2. Moreover, out of these at most 0.05T are
iterations in which dt(v) ≥ 10. Hence, there are greater
than 0.8T � 0.01T iterations in which pt(v) = 1/2
and dt(v) < 10. Any such iteration is good for v as v
has a constant probability of joining set S in each such
iteration. We conclude that v has at least 0.01T good
iterations.

2.2 An Intuitive Discussion of the Parallel Al-
gorithm Naively implementing the vanilla version of
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the algorithm would require O(log2 n) time in EREW
PRAM. This is because, we have O(log n) iterations
and implementing each iteration may require O(log n)
time, e.g., even computing dt(v) =

∑
u∈N(v) pt(u) might

require summing up to Θ(n) numbers, which needs
Θ(log n) time in EREW PRAM. To reach our desired
O(log n) time complexity, we will “simulate” a version
of this algorithm, where we will leverage some smooth-
ness properties of it to ensure that, implementing each
iteration requires only O(1) time in EREW PRAM. Let
us intuitively discuss a few key ideas.

Predictions, using Smoothness of Probabilities.
For any node u, so long as u is not in the set S, the
value pt(v) changes in a smooth manner throughout the
iterations: per iteration, it either increases or decreases
by a 2 factor, or stays the same at pt = 1/2. Because
of this, we can have some predictions into the future,
in the following format: if in iteration t node v has
dt(v) ≥ 10 · 2|t

′−t|, we can conclude that in future
iteration t′ ≥ t, we will have dt′(v) ≥ 10. Thus, we know
that the update in iteration t′ will be pt′+1(v) = pt′(v)/2
and that node v will not join set S in iteration t′.

Sparse Estimates, via Sampling. The above
smoothness indicates that when dt(v) is fairly large, the
update of pt′(v) is clear for quite some time. We will
discuss later how we make use of this property. On the
flip side, what if dt(v) =

∑
u∈N(v) pt(u) is small? Com-

puting the actual value dt(v) still requires computing a
summation over all neighbors u ∈ N(v), which might
be up to Θ(n) many neighbors and would necessitate
Θ(log n) time in EREW PRAM, per iteration. Fortu-
nately, we do not need the precise value and having a
“good estimation” of dt(v) suffices. If we sample each
node u with probability pt(u), the number of sampled
neighbors is an unbiased estimator of dt(v) and has the
additional nice property that when dt(v) is small, the
size of this sampled set is also likely to be small: in
particular, the expected size of the sampled set is dt(v)
and since the samplings are independent, informally, the
probability of the set size being much higher than this
expectation decays exponentially as a function of the
expectation.

Fixing the Randomness. To leverage the sparse
sampling-based estimations mentioned above, we fix the
randomness of sampling and marking, as follows. At
the beginning of the whole execution, each node v ∈ V
samples for each iteration t ∈ [T ], where T = C log n,
a random number rt(v) ∈ [0, 1] uniformly at random3,
and all independent of each other. We will interpret

3A number with O(logn) bits of precision suffices, as the value
pt(v) remains polynomially bounded.

these by comparing with p-values, e.g., if rt(v) ≤ pt(v),
then node v is marked in iteration t. We fix all these
random values rt(v), for all nodes and all iterations, at
the beginning of the execution, and from there on we
deal with a deterministic procedure.

Predicting and Refining the Set of Relevant
Neighbors. In order to have iterations that can be
implemented in O(1) time in EREW PRAM, we would
like to have the property that when we arrive at some
iteration t′, a node needs to check only constant many
(relevant) neighbors for whether they are marked or not.
For this, we will build a set that contains all potentially
relevant neighbors, and as we get closer and closer in
time to iteration t′, we gradually refine this set by
removing some of its vertices. The ultimate guarantee of
the refinement is that in iteration t′, the set of relevant
neighbors for that iteration will have size O(1). But we
achieve that by maintaining a more general guarantee:
in each earlier iteration t ≤ t′, the set of neighbors
relevant for iteration t′ will have size 2O(t′−t).

We build these sets of relevant neighbors as follows:
For each iteration t′ ∈ [T ], each node v creates a set
Nt′(v), which is a set of potentially relevant neighbors.
At the very beginning of the algorithm, we include
in Nt′(v) any neighbor u of v such that rt′(u) ≤
2t

′
p0(u). Notice that this definitely includes any node

u that would be marked in iteration t′ according to
the rule rt′(u) ≤ pt′(u), because we have pt′(u) ≤
2t

′
p0(u)–unless u is already in the set S. Moreover,

the probability of a neighbor u being included in Nt′(v)
is min{1, 2t′p0(u)}. When we build N ′t(v) according to
this rule, we have two possibilities:

(I) We have E[|Nt′(v)|] ≤ 10K · 23t′ , in which
case we know that Pr[|Nt′(v)| ≥ 10K · 23t′ ] ≤
exp(−KΘ(23t′)). Here, K is a sufficiently large
constant.

(II) Otherwise, we have E[|Nt′(v)|] ≥ 10K · 23t′ , which
implies that

dt′(v) =
∑

u∈N(v)

pt′(u) ≥
∑

u∈N(v)

p0(u)2−t
′

≥
∑

u∈N(v)

2−2t′ min{1, p0(u)2t
′
}

= 2−2t′E[|Nt′(v)|]

≥ 10K · 2t
′
.

Hence, for all iteration t′′ ∈ [0, 2t′], we have dt(v) ≥
10. In this case, it is clear that in any such t′′, node
v will not join the set S and moreover it will set
pt′′(v) = pt′′−1(v)/2. To handle this case (II), we
do not need to know the exact set Nt′(v); it suffices
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to detect that |Nt′(v)| ≥ 10K · 23t′ which indicates
that, with probability 1−exp(−KΘ(23t′)), we have
E[|Nt′(v)|] ≥ 10K · 23t′ . We will later see how
the analysis deals with the small exp(−KΘ(23t′))
probably that this indication was wrong and we
actually had E[|Nt′(v)|] < 10K · 23t′ .

As time proceeds, we refine the sets Nt′(v) of po-
tentially relevant neighbors. Generally, in any iteration
t, we can look to any future iteration t′ ≥ t + 1 and re-
fine Nt′(v) by including in it only neighbors u for which
rt′(u) ≤ 2(t′−t)pt(u). Again, with a similar argument as
above, we see that: either (I) |Nt′(v)| ≥ 10K · 23(t′−t),
or (II) we detect that |Nt′(v)| ≥ 10K · 23(t′−t) which in-
dicates that, with probability 1 − exp(−KΘ(23(t′−t))),
we have E[|Nt′(v)|] ≥ 10 ·23(t′−t). The former would in-
dicate that the desired invariant about the size of Nt′(v)
is preserved. On the other hand, if the latter happens,
it would imply that we can already predict the behavior
of v for all iterations t′′ ∈ [t, t′ + (t′ − t)]: in any such
iteration t′′, node v will not join the set S and moreover
it will set pt′′+1(v) = pt′′(v)/2. We later see in the anal-
ysis how to take care of the small failure probability, in
this inference.

Informing Neighbors in Time. When a node v joins
the independent set S in some iteration t, it should
inform its neighbors so that they do not join S in the
future iterations. Doing this immediately can require
O(log n) time in EREW PRAM, as v might have up to
Θ(n) neighbors. But we can pace down this process. For
any future iteration t′ ≥ t + 1, all the neighbors u that
might attempt to join the independent set S are in the
relevant neighbors set Nt′(v). Moreover, because of the
item discussed above, we know that |Nt′(v)| ≤ 2O(t′−t),
as otherwise we would have inferred that dt(v) ≥ 10
and v would not have joined S in iteration t. We have
time proportional to t′ − t iterations to inform those
neighbors in Nt′(v). This is sufficient to inform the at
most 2O(t′−t) neighbors of v in set Nt′(v).

One subtlety is that we need to perform this pro-
cedure for all iterations t′ ≥ t + 1, which might be
up to Θ(log n) values of t′. Doing this simultaneously
for all these iterations would require the information
to spread and be written in Θ(log n) registers, and
that would need Θ(log log n) time in EREW PRAM,
for one iteration t. However, fortunately, we do not
need to inform all future iterations at the same time.
We can slightly delay informing the iterations that are
further into the future. We will use a simple structure,
which we call binary push tree, for spreading this in-
formation in a manner that guarantees to start inform-
ing neighbors of each iteration t′ ≥ t + 1 by iteration
t+ log(t′ − t). After that, there would still remain time

equal to (t′−t)− log(t′−t) ≥ (t′−t)/2 iterations, which
is sufficient to spread this information to all the 2O(t′−t)

neighbors in Nt′(v).

2.3 Our Parallel Algorithm Here, we present the
higher-level aspects of our parallel algorithm. The
low-level implementation details for EREW PRAM are
discussed in the next subsection.

At the beginning, for each v and each iteration
t′ ∈ [C log n], we draw a uniform random value rt′(v) ∈
[0, 1], independent of all the others4. Throughout the
iterations, for any future iteration t′, we maintain a
set Nt′(v) of relevant neighbors of node v who might
attempt to join the independent set S in iteration t′. At
the beginning, we include in Nt′(v) any neighbor u of v
such that rt′(u) ≤ 2t

′
p0(u). If |Nt′(v)| ≥ 10K23t′ , we

then declare that node v is overloaded in all iterations
t′′ ∈ [2t′]. In this case, we do not maintain Nt′′(v)
anymore. Here, K is a sufficiently large constant, which
will only affect the constant in the length of an iteration.

The algorithm performs two types of tasks, in each
iteration: (I) marking/sampling nodes and updat-
ing their probabilities, (II) refining the neighbor-
hood sets for the future iterations. We next discuss
these two procedures:

Algorithm Part I, Marking and Probability
Updates. Iteration t performs the marking and
probability updates as follows:

- If rt(v) ≤ pt(v), then v is marked, and
otherwise it is not marked. In particular, any
node v ∈ S has pt(v) = 1 and is thus marked.

- If v ∈ S, we keep pt+1(v) = 1. If v has
a neighbor in S, it was declared overloaded
for iteration t, or it has a marked neighbor
in Nt(v), then regardless of whether v was
marked or not, we set pt+1(v) = pt(v)/2.
Otherwise, we set pt+1(v) = min{2pt(v), 1/2}.

- If we have all the following conditions satisfied,
then v joins the independent set S: (A) v
is marked, (B) it is not already in S and
(C) it does not have a neighbor in S, (D)
it was not previously declared overloaded for
iteration t, and most crucially (E) it does not
have a marked neighbor in Nt(v). If all of these
hold, then v joins S, and it it will inform any
neighbor u′ ∈ Nt′(v) for any future iteration
t′ ≥ t + 1. Moreover, it will set pt′(v) = 1 for
all future iterations t′ ≥ t + 1.

4As mentioned before, O(logn) bits of precision suffice.
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Algorithm Part II, Neighborhood Set Re-
finement. Once we have finishing performing
these updates for iteration t, we also refine the rel-
evant neighborhood sets Nt(v) of the future iter-
ations t′, as follows: At the time of iteration t,
we include neighbor u in Nt′(v) only if rt′(u) ≤
2(t′−t)pt(u). Notice that, if u /∈ Nt′(v), we know
that u would not be marked in iteration t′, because
then rt′(u) > 2(t′−t)pt(u) ≥ pt′(u). The algorithm
works to maintain the invariant that, in each iter-
ation t, for each future iteration t′ ≥ t+ 1, we have
|Nt′(v)| ≤ 10K23(t′−t). This will not be performed
immediately in the time of one iteration and relies
on lower level implementation in EREW PRAM,
as will be discussed in the next subsection. If after
finishing the updates of some iteration t, we real-
ize that this invariant is broken for Nt′(v) of some
future iteration t′, we then declare that node v is
overloaded in all iterations t′′ ∈ [t, t′ + (t′ − t)]. In
this case, we do not maintain Nt′′(v) anymore. Re-
call from the description in Part I that in this case,
in iteration t′′, node v does not join set S and it
will set pt′′+1(v) = pt′′(v)/2.

2.4 Implementation Details Here, we present the
implementation details of the above algorithm, and in
particular we show that we can implement each iteration
in O(1) time in the EREW PRAM model, and we
perform at most O(m log n) work overall.

2.4.1 Pushing Information to the Relevant
Neighbors of Future Iterations Creating Multi-
ple Copies for Different Future Iterations. Con-
sider an iteration t and a node v. After performing this
iteration, we may learn that its probability pt(v) should
increase by a 2 factor (or remain at 1/2) or decrease
by a 2 factor. Moreover, node v might have joined the
independent set S in this iteration. These information
about v, which can be described in O(1) bits, should
be sent to all neighbors u that might attempt to enter
the independent set S in the future. Concretely, for any
future iteration t′ ≥ t + 1, any node u ∈ Nt′(v) should
be informed. For this, we need to create many copies
of the information, one for each iteration t′ ≥ t + 1. As
discussed above, a flexibility in the problem is that we
have more time to inform later iterations.

We create a binary push tree: in iteration t, one
processor creates the first copy of the information, then
in iteration t + 1, we have two processors each of
which creates a new copy (one of them by reading the
first copy, generated in the previous iteration), and in
general, in iteration t + i, we have i processors that
create 2i new copies. We use the kth copy used to

start informing the neighbors in Nt+k(v). Hence, for
any future iteration t′ ≥ t + 1, the process of informing
Nt′(k) will start by iteration t + log(t′ − t). Finally,
observe that we perform at most O(log n) work, in
this binary push tree, for a fixed iteration t informing
the future iterations. Hence, overall all nodes v and
iterations t, we perform at most O(n log2 n) work.

Pushing the Information to the Neighbors in
Future Iterations. Now that we have the copies for
different future iterations t′ ready, we have to send
the information to the relevant neighbors Nt′(v). We
can now treat each t′ separately. For each iteration t′,
we spread the information to the 2O(t′−t) neighbors in
Nt′(v), by iteration t+log(t′−t)+(t′−t)/10. Notice that
here we use the invariant that |Nt′(v)| ≤ 10K23(t′−t),
which allows us to spread the information in time
log(|Nt′(v)|) ≤ (logK) + 3(t′− t) + 4 in EREW PRAM,
which is less than (t′−t)/10 iterations. Here, we assume
that we have fixed the length of each iteration to be a
large enough constant time, e.g., greater than logK+40.
We have |Nt′(v)| = 10K23(t′−t) because otherwise, node
v would have been declared overloaded for iteration t
and we would have already known to set pt+1(v) =
pt(v)/2, without v attempting to join the independent
set S in iteration t. As such, if |Nt′(v)| > 10K23(t′−t),
we do not need to deliver the update to the neighbors in
Nt′(v) and any such neighbor (that does not hear about
an increase of pt(v) in iteration t) can safely assume
that (I) node v did not join S in iteration t and (II) the
probability update of v in iteration t was a decrease as
pt+1(v) = pt(v)/2.

Finally, observe that in the above push process, for
each node v, each current iteration t, and each future
iteration t′, we perform work at most proportional to
the degree of v in the base graph, i.e., we inform at
most all the neighbors of v. Hence, overall, we perform
at most O(m log2 n) work.

2.4.2 Pulling Information from the Relevant
Neighbors of the Previous Iterations We have to
regularly update the sets Nt′(v) of relevant neighbors
in the future iterations t′. For each fixed t′, we perform
this update in exponentially spaced apart times, that
is, a new update starts when we reach iteration t′ − 2i

for some i ≥ 0. We call this level i of the update for
iteration t′. Notice that we go from level O(log logn)
to level 0. Of course, pushing and pulling the updates
takes time, and the result does not arrive immediately.
For our algorithm, it suffices to ensure that, by each
previous iteration t′ − 2i, we have updated Nt′(v) in
a way that it incorporates all the probability updates
of neighbors up to iteration s = t′ − 2 · 2i. This
way, if after having incorporated these updates, we
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have |Nt′(v)| > 10K23(s−t′) = 10K26·2i

, then we can
declare iteration t′ overloaded, as well as all iterations
in [t′ − 2i, t′ + (s− t′)].

Updates of Level i. Inductively, we can assume that
before iteration t = t′ − 2 · 2i, we have finished the
level i + 1 update for Nt′(v) which means we have
incorporated all the updates up to iteration t′ − 4 · 2i.
At this point, either the set Nt′(v) has size at most

10K212·2i

or we have declared v overloaded for iteration
t′ and thus do not need to maintain Nt′(v) anymore.
In the former case, we now should perform the level
i update and incorporate all the updates of iterations
[t′ − 4 · 2i, t′ − 2 · 2i].

First, we wait for iteration t′ − 2 · 2i + i so that
all the updates of iterations [t′ − 4 · 2i, t′ − 2 · 2i] by
any of the neighbors have been pushed forward and
prepared as a separate copy for the update of Nt′(v),
as discussed in the previous subsubsection. Then, for
each node u ∈ Nt′(v), starting in iteration t′− 2 · 2i + i,
we use O(2i) processors who aggregate the number of
probability increase or decreases in the probability of
node u, during the iterations [t′ − 4 · 2i, t′ − 2 · 2i].
Since these are O(2i) numbers and already have been
prepared for us in allocated registers, thanks to the push
operation discussed above, this is possible in i iterations.

Second, we have to examine each node u ∈ Nt′(v)
to see whether it should be included in Nt′(v), according
to the refinement rule for t = t′ − 2 · 2i, which means
we include only those neighbors for which rt(u) ≤
2t

′−tpt(u). This can be performed separately for each
of the neighbors. This way, we can determine which
nodes should be removed from Nt′(v), in O(1) time.

Then, we use 2i/3 iterations to filter the neighbors
that should be removed and reduce the size of Nt′(v).
Since the set Nt′(v) that we work with has size only

10K212·2i

, we can perform this operation of removing
the vertices in 2i/3 iterations (each having O(1) time in
EREW PRAM). At the end, by iteration t′ − 2 · 2i +
i+ 2i/3, we have kept only relevant neighbors, with the

guarantee that (I) either Nt′(v) ≤ 10K26·2i

or (II) node
v is declared as overloaded for iteration t′. In the latter
case, we also declare v overloaded for all iterations in
[t′ − 2i, t′ + 2 · 2i], and this can be done using i extra
iterations. Hence, by t′ − 2 · 2i + i + 2i/3 + i ≤ t′ − 2i,
we are done with processing the refinement of the set
Nt′(v) in a way that incorporates all the updates of the
neighbors in iterations [t′ − 4 · 2i, t′ − 2 · 2i].

Finally, observe that in the above pull process, for
each node v and each future iteration t′, we perform
work at most proportional to the degree of v in the base
graph for each iteration in the level. Hence, over all
nodes, all future iterations and all current iterations,

this is at most O(m log2 n) work.

2.5 Analysis Proof Outline. For the analysis, we
focus on one node v and trace the changes in pt(v) as
well as dt(v) =

∑
u∈N(v) dt(u). We argue that, except

for a very small fraction of the iterations, all of the
changes should be as we expect from the vanilla version
of the algorithm. Thus, we can argue, similar to how we
did for the vanilla version of the algorithm, that each
node v will have a constant fraction of iterations that are
good for it. Again, we call an iteration good for a node
if there is a constant probability5 that this nodes joins
or has a neighbor join the independent set S (unless
already that has happened in the previous iterations).
Since we have T = C log n iterations, with a desirably
large constant C, having a constant fraction that are
good implies that v is in S or has a neighbor in S, with
high probability, and a union bound over all nodes v
completes the proof.

To formalize this outline, we next define some types
of iterations in which the changes are not according
to what we expect, and we bound the number of such
iterations.

Definition 1 — Iterations Wrongly Declared as
Overloaded. Consider an iteration t and a future
iteration t′ ≥ t+1. Recall that if |Nt′(v)| ≥ 10K23(t′−t),
we declare node v overloaded in iteration t′, and in fact
all iterations t′′ ∈ [t, t′ + (t′ − t)]. This is because, we
estimate that we must have dt(v) ≥ 1023(t′−t) which
would indicate that dt′′(v) ≥ 10. We emphasize that
here dt(v) =

∑
u∈N(v) pt(u), where the summation is

over all the neighbors. If in fact dt(v) ≤ 1023(t′−t)

and still we got |Nt′(v)| ≥ 10K23(t′−t), we say that
we wrongly declared each iterations t′′ ∈ [t, t′ + (t′ − t)]
overloaded for node v.

Next, we show that the probability of each iteration
being wrongly declared overloaded for node v, is at most
some constant ε, which can be made desirably small by
making the constant K large enough, and that overall,
with high probability, there are at most εT iterations
that are wrongly declared overloaded. Much of our
analysis will rely on this second statement, which we
prove first:

Lemma 2.1. The number of iterations that are wrongly
declared overloaded for a node v is at most εT , w.h.p.
Here, ε > 0 is a constant that can be made desirably
small by making the constant K large enough6.

5Throughout the analysis, we prioritize simplicity and read-
ability, and thus we make no attempt at optimizing the constants.
We think that a more careful (but also more tedious) analysis
should be able to provide much smaller constants.

6We note that it suffices if K grows linearly in log 1/ε, and
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Proof. Consider a future iteration t′ and the related set
Nt′(v) of relevant neighbors. Recall that we process
Nt′(v) in levels, starting from level O(log log n) and
ending in level 0, where level i considers the size of
the set according to probabilities pt(u) of neighbors
u ∈ N(v) at time t = t′ − 2 · 2i. Then, we declare

v overloaded if |Nt′(v)| ≥ 10K26·2i

. If that happens,
all iterations t′′ ∈ [t′ − 2i, t′ + 2 · 2i] are declared
overloaded. These iterations were wrongly declared
overloaded if in iteration t, we had dt(v) ≤ 1026·2i

and still the sampled set Nt′(v) had size greater than

10K26·2i

. If that happened, we wrongly declared some
y = 3 · 2i iterations overloaded. Since different nodes
are sampled independently for inclusion in Nt′(v), by
Chernoff bound, the probability of that event is at most
exp(−Θ(K26(2i)))� ε

102−y.
For each t′ ∈ [0, T ], let Xt′ be the total number of

iterations that are wrongly declared overloaded because
of examining |Nt′(v)| in different levels. Define X =∑

t′∈[T ] Xt′ . Notice that E[X ′t] ≤
∑

y≥1
ε
10y2−y ≤ ε/5.

Hence, E[X] ≤ ε
5T . We next argue that X is also

well-concentrated around this mean, and with high
probability, we have X ≤ εT .

Notice that for each t′ ∈ [0, T ], we have Pr[X ′t ≥
z] ≤

∑
y≥z

ε
102−y ≤ 2ε

102−z. Moreover, X =
∑

t′∈[T ] Xt′

is a summation of independent random variables Xt′ ,
since the randomness used for different sets Nt′ is
independent. Furthermore, these random variables have
an exponentially decaying tail as described by Pr[X ′t ≥
z] ≤ ε

52−z. To formalize the above concentration claim,
we use a basic stochastic domination argument, see e.g.,
[Doe18, Section 1.8]. For each t′ ∈ [0, T ], define a new
random variable Yt′ as follows. First, toss a coin with
tail probability 4ε

10 and if it comes out head, set Yt′ = 0.
If the coin is head, then set Yt′ equal to a geometric
random variable with parameter 1/2. The coins of
different variables Yt′ are independent. For any z ≥ 1,
we have Pr[Yt′ = z] = 4ε

102−z. This also implies that for
any z ≥ 1, we have Pr[Yt′ ≥ z] ≥ 4ε

102−z > Pr[Xt′ ≥ z].
Hence, the random variable Yt′ stochastically dominates
the random variable Xt′ , and the random variable Y =∑

t′ Yt′ stochastically dominates the random variable
X =

∑
t′ Xt′ .

Now, let us examine Y =
∑

t′∈T Yt. Among
these T random variables, each had a tail coin (i.e.,
thus allowing the variable to assume non-zero values)
independently with probability 4ε

10 . Hence, by Chernoff
bound, the number of the tails is at most 5εT/10,
with probability at least 1 − exp(−εT/10) ≤ 1 − 1/10.

that making K larger increases only the constant in the time-
length of an iteration (which should grow proportional to logK),
in terms of EREW model time.

The inequality holds as we set the constant C in the
definition T = C log n large enough, e.g., C ≥ 200/ε.
Thus, with high probability, Y is a summation of
at most 5ε

10T geometric random variables, each with
parameter 1/2. Hence, by applying the variant of
Chernoff bound for summation of geometric random
variables [Doe18, Theorem 1.10.32], we have Pr[Y ≥
εT ] ≤ exp(−εT/10) ≤ 1/n10. That is, with high
probability, we have Y ≤ εT . Since Y stochastically
dominates X, we conclude that the number X of
wrongly declared overloaded iterations is at most εT ,
with high probability.

Lemma 2.2. The probability of each given iteration t′

being wrongly declared overloaded for v is at most ε.

Proof. Iteration t′ might be wrongly declared over-
loaded when considering the size of Nt′(v) in each
previous iteration t ≤ t′. But the probability
of this wrong declaration in iteration t is at most
exp(−Θ(K)23(t′−t))� ε

102−(t′−t). Even a union bound
over these upper bounds for iterations t ≤ t′, which are
decaying as geometric series as t′ − t increases, is suffi-
cient to conclude that the overall probability of wrongly
declaring t′ overloaded is at most ε.

Definition 2 — Heavy, Light, and Good Iter-
ations. We say iteration t is heavy for node v if
dt(v) ≥ 10. If dt(v) ≤ 0.01, we call this a light iteration
for v. Notice that when the summation is in (0.1, 10),
the iteration is neither light nor heavy.

We call iteration t good for node v if (I) this is
not a heavy iteration for v, it has not been wrongly
declared overloaded, and we have pt(v) > 0.01, or (II)
if this is not a light iteration for v, it has not been
wrongly declared overloaded, and in the summation
dt(v) =

∑
u∈N(v) pt(u), at least 0.01dt(v) is contributed

by neighbors u for which this is not a heavy iteration,
do not have a neighbor in S, and who were not wrongly
declared overloaded.

We next see that in each of these the two kinds
of good iterations, there is a constant probability of v
joining or having a neighbor join S.

Lemma 2.3. In each type (I) good iteration, node v has
a constant probability of joining the independent set S.

Proof. The probability that v is marked in this iteration
is at least 0.01. Independent of that, the probability
that no neighbor v is marked is at least

∏
u∈N(v)(1 −

pt(u)) ≥ 4−
∑

u∈N(v)(1−pt(u) = 4−10. Hence, v joins the
independent set S with a constant probability.
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Lemma 2.4. In each type (II) good iteration, there is a
constant probability that a neighbor of node v joins the
independent set S.

Proof. First, let us ignore that we are in an itera-
tion that is not wrongly declared overloaded, as being
wrongly declared overloaded has probability at most ε,
by Lemma 2.2, which can be made arbitrarily small.
Scan the set U of neighbors u that have dt−1(u) ≤ 10
and are not adjacent to S one by one, until we find one
that is marked. We succeed to find one marked neigh-
bor with probability at least 1 −

∏
u∈U (1 − pt(u)) ≥

1− e−
∑

u∈U pt(u) ≥ 1− e−0.5 > 0.4 Now, since the event
that v is wrongly declared overloaded has probability at
most ε, the probability that we find a marked neighbor
even conditioned on that the iteration is not wrongly
declared overloaded is at least 0.4 − ε ≥ 0.3. Once we
have found the first such marked neighbor u ∈ U , the
probability that no neighbor of u is marked is at least∏

w∈N(u)(1 − pt(w)) ≥ 4−
∑

w∈N(u)pt(w) ≥ 4−10 = 2−20.
Hence, the probability that node v has one of its neigh-
bors join S in this iteration is at least 0.3 · 2−20, which
is a constant7.

Definition 3 — Wrong Moves. Consider an iteration
t that is not good for v. First, suppose that this is not
a light iteration for v. We call this iteration a wrong
up-move for v if dt+1(v) > 0.6dt(v). On the other
hand, suppose that this is a light iteration for v. We
call this iteration a wrong down-move for v if node v
has at least one marked neighbor in Nt(v) and thus sets
pt+1(v) = pt(v)/2. We next see that the probability of
each wrong move is also fairly small.

Lemma 2.5. For any iteration that is not good for v
and which is not light for v, the probability of a wrong
up-move for v is at most 0.01.

Proof. Consider v and the set U of its neighbors for
which this iteration is heavy, they have a neighbor in S,
or they were wrongly declared overloaded. Notice that
since iteration t is not good for v, in the summation
dt(v) =

∑
u∈N(v) pt(u), at least 0.99dt(v) is contributed

by neighbors u ∈ U . Consider a neighbor w ∈ U .
Node w increases its probability if it was not declared
overloaded in iteration t, it does not have a neighbor
in S, and no neighbor of w is marked. Since this
iteration is heavy for w, in the latter case, we have
dt(w) ≥ 10. In that case, the probability that no

7As noted before, this analysis prioritizes simplicity and does
not attempt to optimize the constants. We think that a more
careful (but also more tedious) analysis should be able to provide
significantly better constants.

neighbor of w is marked is at most
∏

w′∈N(w)(1 −
pt(w

′)) ≤ e−
∑

w′∈N(w) pw ≤ e−10. Thus, over all
neighbors in U , we expect at most a e−10 fraction of
the summation

∑
w∈U pt(w) to increase (by a 2 factor

at most). By Markov’s inequality, the probability that
more than 0.01 of

∑
w∈U pt(w) increases is less than

0.01. The contribution to the summation that comes
from neighbors in N(v) \ U is at most 0.01dt(v) and
that can grow by at most a 2 factor. All the rest of
the contribution in U decrease by a 2 factor. Hence,
we can conclude that with probability at least 0.99, we
can bound dt+1(v) ≤ 2×0.02dt(v)+dt(v)/2 < 0.6dt(v).

Lemma 2.6. For any iteration that is not good for v
and is light for v, the probability of a wrong down-move
for v is at most 0.02.

Proof. Recall that this is a wrong down-move for v if,
(I) although this is a light iteration for v and we have
dt(v) ≤ 0.01, at least one neighbor of v is marked and
thus we set pt+1(v) = pt(v)/2, or (II) this iteration is
declared overloaded for v. The probability of the former
is at most

∑
u∈N(v) pt(u) ≤ 0.01, by a simple union

bound. The probability of the latter is at most ε� 0.01.
Hence, the overall probability of a wrong down-move is
at most 0.02.

We use these two lemmas to conclude that, overall,
the number of wrong up or down moves is at most 0.03T ,
with high probability. Notice that wrong moves deal
only with iterations that are not good. In particular,
when bounding the number of wrong moves, we have
not revealed the randomness used in good iterations.

Lemma 2.7. In the course of T = C log n iterations, we
have at most 0.03T wrong moves for node v, with high
probability. Moreover, this guarantee holds independent
of the randomness used by v and its neighbors in the
good iterations.

Proof. Follows from the Chernoff bound since the ran-
domness of iterations that are not declared overloaded
are independent, and at most εT iterations are wrongly
declared overloaded.

Wrap Up of the Analysis. Having all these lemmas,
we are now ready to wrap up the proof and show that
any node v, unless it has already joined the independent
set S or has a neighbor in S, with have at least 0.05T
good iterations rounds, with high probability.

Lemma 2.8. After T iterations, the computed set S is
a maximal independent set, with high probability.
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Proof. Fix a node v. We show that within T iterations,
with probability at least 1− 1/n2, node v is either in S
or has a neighbor in S. The lemma then follows from a
union bound over all vertices.

We know that, with high probability, we have at
most 0.03T wrong moves for v, and at most εT iterations
that are wrongly declared overloaded for v. Having this,
we use an argument similar to the vanilla version and
conclude that we have at least 0.03T good iterations.

Suppose not. First, consider all iterations that are
not light for v. By definition of a wrong move-up,
each such iteration is either good, a wrong up-move
or, it implies that dt+1(v) ≤ 0.6dt(v). Among these
not-light iterations, at most 0.03T are (type II) good
iterations, at most 0.03T are wrong up-moves, and at
most εT < 0.01T are wrongly declared overloaded. So,
among the not-light iterations, with the exception of
less than 0.07T iterations, the rest lead to a 0.6 factor
decrease in dt(v). We start with d0(v) = 1, and every
two iterations of decrease by 0.6 factor cancels the effect
of one increase iteration (at most a 2 factor increase).
Hence, we cannot have more than 0.24T iterations that
are not light for v.

Now consider the light iterations for v. With the
exception of at most 0.03T wrong down-moves, at most
εT < 0.01T iterations that are wrongly declared over-
loaded for v, and at most 0.03T good iterations, all other
light iterations make v set pt+1(v) = min{2pt(v), 1/2}.
Hence, we have less than 0.07T light iterations dur-
ing which pt(v) decreases. We start with pt(v) =
2−dlog ∆e, and every 2-factor increase cancels a 2-factor
decrease. In not-light iterations, pt(v) may decrease,
but each time by a 2-factor, and we only have at most
0.24T not-light iterations. Thus, there are at most
2(0.24 + 0.07)T + log ∆ ≤ 0.63T light iterations where
pt < 1/2 or v is wrongly declared overloaded.

Since the number of not-light iterations is at most
0.24T and the number of light iterations where pt(v) <
1/2 or v is declared overloaded is at most 0.63T , at least
0.03T iterations remain, which are not heavy and not
wrongly declared overloaded, and where pt(v) = 1/2.
These are good iterations for v, of type (I). Hence, we
have at least 0.03T good iterations for v.

The above argument for the number of good iter-
ations does not reveal anything about the randomness
of good iterations (in our accounting, we always admit-
ted good iterations to behave opposite to our argument,
and thus the argument holds even if the randomness for
those iterations is fixed in an adversarial manner). In
each good iteration, there is a constant probability of
having v join S or have a neighbor join S. Therefore,
after 0.03T good iterations, with probability 1 − 1/n2,
node v is either in S or has a neighbor in S.
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