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Abstract—We study network coding gaps for the problem of
makespan minimization of multiple unicasts. In this problem
distinct packets at different nodes in a network need to be
delivered to a destination specific to each packet, as fast as
possible. The network coding gap specifies how much coding
packets together in a network can help compared to the more
natural approach of routing.

While makespan minimization using routing has been in-
tensely studied for the multiple unicasts problem, no bounds on
network coding gaps for this problem are known. We develop
new techniques which allow us to upper bound the network
coding gap for the makespan of k£ unicasts, proving this gap
is at most polylogarithmic in k. Complementing this result, we
show there exist instances of k£ unicasts for which this coding
gap is polylogarithmic in k. Our results also hold for average
completion time, and more generally any /, norm of completion
times.
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I. INTRODUCTION

In this paper we study the natural mathematical ab-
straction of what is arguably the most common network
communication problem: multiple unicasts. In this problem,
distinct packets of different size are at different nodes in
a network, and each packet needs to be delivered to a
specific destination as fast as possible. That is, minimizing
the makespan, or the time until all packets are delivered.

All known multiple-unicast solutions employ (fractional)
routing (also known as store-and-forward protocols), i.e.,
network nodes potentially subdivide packets and route (sub-
)packets to their destination via store and forward operations,
while limited by edge capacities. The problem of makespan
minimization of routing has been widely studied over the
years. A long line of work [1-9], starting with the seminal
work of Leighton, Maggs, and Rao [8], studies makespan
minimization for routing along fixed paths. The study of
makespan minimization for routing (with the freedom to
pick paths along which to route) resulted in approximately-
optimal routing, first for asymptotically-large packet sizes
[10], and then for all packet sizes [3].

It seems obvious at first that routing packets, as though
they were physical commodities, is the only way to solve
network communication problems, such as multiple unicasts.

OThis paper’s full version is available at https://arxiv.org/abs/1905.02805.

Surprisingly, however, results discovered in the 2000s [11]
suggest that information need not flow through a network
like a physical commodity. For example, nodes might not
just forward information, but instead send out XORs of re-
ceived packets. Multiple such XORs or linear combinations
can then be recombined at destinations to reconstruct any
desired packets. An instructive example is to look at the
XOR C & M of two s-bit packets, C' and M. While it is
also s bits long, one can use it to reconstruct either all s
bits of C or all s bits of M, as long as the other packet
is given. Such network coding operations are tremendously
useful for network communication problems, but they do not
have a physical equivalent. Indeed, the C'® M packet would
correspond to some s ounces of a magic “café latte” liquid
with the property that one can extract either s ounces of milk
or s ounces of coffee from it, as long as one has enough
of the other liquid already. Over the last two decades, many
results demonstrating gaps between the power of network
coding and routing have been published (e.g., [11-18]).
Attempts to build a comprehensive theory explaining what
is or is not achievable by going beyond routing have given
rise to an entire research area called network information
theory.

The question asked in this paper is:

“How much faster than routing can network coding
be for any multiple-unicast instance?”

In other words, what is the (multiplicative) network coding
gap for makespan of multiple unicasts. Surprisingly, no
general makespan coding gap bounds were known prior
to this work. This is in spite of the vast amount of effort
invested in understanding routing strategies for this problem,
and ample evidence of the benefits of network coding.

This question was studied in depth for the special case
of asymptotically-large packet sizes, otherwise known as
throughput maximization (e.g., [12—15, 19-24]). Here, the
maximum throughput of a multiple-unicast instance can be
defined as sup,,_,., w/C(w), where C'(w) is the makespan
of the fastest protocol for the instance after increasing all
packet sizes by a factor of w (see the full version). In the
throughput setting, no instances are known where coding
offers any advantage over routing, and this is famously
conjectured to be the case for all instances [13, 19]. This
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conjecture, if true, has been proven to have surprising
connections to various lower bounds [21, 25, 26]. Moreover,
by the work Afshani et al. [25], a throughput coding gap
of o(log k) for all multiple-unicast instances with k unicast
pairs (k-unicast instances, for short) would imply explicit
super-linear circuit lower bounds—a major breakthrough in
complexity theory. Such a result is currently out of reach,
as the best known upper bound on throughput coding gaps
is O(log k), which follows easily from the same bound on
multicommodity flow/sparsest cut gaps [27, 28].

In this work we prove makespan coding gaps for the
general problem of arbitrary packet sizes. In particular, we
show that this gap is at most O(log” k) for any k-unicast
instance (for the most interesting case of similar-sized packet
sizes). We note that any coding gap upper bound for this
more general setting immediately implies the same bound
in the throughput setting (see the full version), making our
general bound only quadratically larger than the best known
bound for the special case of throughput. Complementing
our results, we prove that there exist k-unicast instances
where the network coding gap is Q(log® k) for some constant
c>0.

To achieve our results we develop novel techniques that
might be of independent interest. The need for such new
tools is due to makespan minimization for general packet
sizes needing to take both source-sink distances as well
as congestion issues into account. This is in contrast with
the throughput setting, where bounds must only account
for congestion, since asymptotically-large packet sizes make
distance considerations inconsequential. For our more gen-
eral problem, we must therefore develop approaches that are
both congestion- and distance-aware. One such approach is
given by a new combinatorial object we introduce, dubbed
the moving cut, which allows us to provide a universally
optimal characterization of the coding makespan. That is,
it allows us to obtain tight bounds (up to polylog terms)
on the makespan of any given multiple-unicast instance.
We note that moving cuts can be seen as generalization
of prior approaches that were (implicitly) used to prove
unconditional lower bounds in distributed computing on
specially crafted networks ([29, 30]); the fact they provide
a characterization on all networks and instances is novel.
This underlies our main result—a polylogarithmic upper
bound on the makespan coding gap for any multiple-unicast
instance.

A. Preliminaries

In this section we define the completion-time communica-
tion model. We defer the, slightly more general, information-
theoretic formalization to the full version.

A multiple-unicast instance M (G,S) is defined
over a communication network, represented by a connected
undirected graph G = (V, E) with capacity ¢, € Z>, for
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each edge e. The k £ |S| sessions of M are denoted by
S = {(si,ti,d;)}%_,. Each session consists of source node
S;, which wants to transmit a packet to the sink ¢;, consisting
of d; € Z>, sub-packets. Without loss of generality we
assume that a uniform sub-packetization is used; i.e., all
sub-packets have the same size (think of sub-packets as
the underlying data type, e.g., field elements or bits). For
brevity, we refer to an instance with k sessions as a k-unicast
instance.

A protocol for a multiple-unicast instance is conducted
over finitely-many synchronous time steps. Initially, each
source s; knows its packet, consisting of d; sub-packets.
At any time step, the protocol instructs each node v to send
a different packet along each of its edges e. The packet
contents are computed with some predetermined function
of packets received in prior rounds by v or originating
at v. Network coding protocols are unrestricted protocols,
allowing each node to send out any function of the packets
it has received so far. On the other hand, routing protocols
are a restricted, only allowing a node to forward sub-packets
which it has received so far or that originate at this node.

We say a protocol for multiple-unicast instance has com-
pletion times (Ty,Ts,...,Ty) if for each i € [k], after
T; time steps of the protocol the sink ¢; can determine
the d;-sized packet of its source s;. The complexity of a
protocol is determined by functions C : RE; — Rxq of
its completion times. For example, a protocol with comple-
tion times (71,75, ...,Ty) has makespan max;cy 1; and
average completion time (3, Ti)/k. Minimizing these
measures is a special case of minimizing weighted ¢, norms
of completion time, namely minimizing (3_;¢ ;) wi -TPY\/p
for some @ € R¥ and p € Rx.

Since coding protocols subsume routing ones, for any
function C of completion times, and for any multiple-
unicast instance, the fastest routing protocol is no faster than
the fastest coding protocol. Completion-time coding gaps
characterize how much faster the latter is.

i€

Definition L.1. (Completion-time coding gaps) For any
function C : Rio — R>0 of completion times, the network
coding gap for C for a k-unicast instance M = (G,S) is
the ratio of the smallest C-value of any routing protocol for
M and the smallest C-value of any network coding protocol
Sfor M.

We note that the multiple-unicast instance problem can
be further generalized, so that each edge has both capacity
and delay, corresponding to the amount of time needed
to traverse the edge. This more general problem can be
captured by replacing each edge e with a path with unit
delays of total length proportional to e’s delay. As we show,
despite path length being crucially important in character-
izing completion times for multiple-unicast instances, this
transformation does not affect the worst-case coding gaps,
which are independent of the network size (including after
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this transformation). We therefore consider only unit-time
delays in this paper, without loss of generality.

B. Our Contributions

In this work we show that completion-time coding gaps of
multiple unicasts are vastly different from their throughput
counterparts, which are conjectured to be trivial (i.e., equal
to one). For example, while the throughput coding gap is
always one for instances with k& = 2 sessions [31], for
makespan it is easy to derive instances with £ = 2 sessions
and coding gap of 4/3 (based on the well-known butterfly
network example in network coding theory). Having ob-
served that makespan coding gaps can in fact be nontrivial,
we proceed to study the potential asymptotic growth of
such coding gaps as the network parameters grow. We show
that the makespan coding gap of multiple unicasts with k&
sessions and packet sizes {d;};c[y] is polylogarithmic in the
problem parameters, k and ), d;/ min; d;, but independent
of the network size, n. The positive part of this result is
given by the following theorem.

Theorem 1.2. The network coding gap for makespan
of any k-unicast instance is at most

O <log(kz) - log (Z d;/ rniin dl>> .

For similarly-sized packets, this bound simplifies to
O(log2 k). For different-sized packets, our proofs and ideas
in [32] imply a coding gap of O(logk - log(nk)). More-
over, our proofs are constructive, yielding for any k-unicast
instance M a routing protocol which is at most O(logk -
log(>", d;/ min; d;)) and O(logk - log(nk)) times slower
than the fastest protocol (of any kind) for M. We note
that our upper bounds imply the same upper bounds for
throughput (see the full version). Our bounds thus also
nearly match the best coding gap of O(logk) known for
this special case of makespan minimization.

On the other hand, we prove that a polylogarithmic gap as
in Theorem .2 is necessary, by providing an infinite family
of multiple-unicast instances with unit-sized packets (d; = 1
for all ¢ € [k]) exhibiting a polylogarithmic makespan coding
gap (see the full version for a proof).

Theorem 1.3. There exists an absolute constant ¢ >
0 and an infinite family of k-unicast instances whose
makespan coding gap is at least Q(log® k).

Building on our results for makespan we obtain similar
results to Theorems 1.2 and 1.3 for average completion time
and more generally for any weighted £,, norm of completion
times (see the full version).

C. Techniques

Here we outline the challenges faced and key ideas needed
to obtain our results, focusing on makespan.
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1) Upper Bounding the Coding Gap: As we wish to
bound the ratio between the best makespan of any routing
protocol and any coding protocol, we need both upper and
lower bounds for these best makespans. As it turns out,
upper bounding the best makespan is somewhat easier. The
major technical challenge, and our main contribution, is in
deriving lower bounds on the optimal makespan of any given
multiple-unicast instance. Most notably, we formalize a
technique we refer to as the moving cut. Essentially the same
technique was used to prove that distributed verification is
hard on one particular graph that was designed specifically
with this technique in mind [29, 30, 33]. Strikingly, we show
that the moving cut technique gives an almost-tight charac-
terization (up to polylog factors) of the coding makespan
for every multiple-unicast instance (i.e., it gives universally
optimal bounds).

We start by considering several prospective techniques
to prove that no protocol can solve an instance in fewer
than 7' rounds, and build our way up to the moving cut.
For any multiple-unicast instance, max;¢(y) dist(s;,;), the
maximum distance between any source-sink pair, clearly
lower bounds the coding makespan. However, this lower
bound can be arbitrarily bad since it does not take edge
congestion into account; for example, if all source-sink paths
pass through one common edge. Similarly, any approach that
looks at sparsest cuts in a graph is also bound to fail since
it does not take the source-sink distances into account.

Attempting to interpolate between both bounds, one can
try to extend this idea by noting that a graph that is “close”
(in the sense of few deleted edges) to another graph with
large source-sink distances must have large makespan for
routing protocols. For simplicity, we focus on instances
where all capacities and demands are one, i.e., ¢, = 1 for
every edge e and d; = 1 for all 4, which we refer to as simple
instances. The following simple lemma illustrates such an
approach.

Lemma I4. Let M = (G,S) be a simple k-unicast
instance. Suppose that after deleting some edges F' C E, any
sink is at distance at least T from its source; i.e., Vi € [k]
we have distq\ (i, t;) > T. Then any routing protocol for
M has makespan at least min {T, k/|F|}.

Proof: For any sets of flow paths between all sinks
and source, either (1) all source-sink flow paths contain at
least one edge from F', incurring a congestion of k/|F| on
at least one of these |F'| edges, or (2) there is a path not
containing any edge from F', hence having a hop-length of
at least 7T'. Either way, any routing protocol must take at
least min{7, k/|F'|} to route along these paths. [ |

Perhaps surprisingly, the above bound does not apply to
general (i.e., coding) protocols. Consider the instance in
Figure 1. There, removing the single edge {S, T} increases
the distance between any source-sink pair to 5, implying
any routing protocol’s makespan is at least 5 on this in-
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stance. However, there exists a network coding protocol with
makespan 3: Each source s; sends its input to its neighbor
S and all sinks t; for ¢ # j along the direct 3-hop path
s; ———t;. Node S computes the XOR of all inputs, passes
this XOR to T' who, in turn, passes this XOR to all sinks
t;, allowing each sink ¢; to recover its source s;’s packets
by canceling all other terms in the XOR.

Figure 1: A family of instances with k = 5 pairs of terminals
and makespan coding gap of 5/3. Thick edges represent paths
of 3 hops, while thin (black and blue) edges represent single
edges. In other words, each of the k sources s; has a path
of 3 hops (in black and bold) connecting it to every sink ¢;
for all j # i. Moreover, all sources s; neighbor a node S,
which also neighbors node 7', which neighbors all sinks ;.

One can still recover a valid general (i.e., coding) lower
bound by an appropriate strengthening of Lemma 1.4: one
has to require that all sources be far from all sinks in
the edge-deleted graph. This contrast serves as a good
mental model for the differences between coding and routing
protocols.

Lemma L5. Let M = (G,S) be a simple k-unicast
instance. Suppose that after deleting some edges F' C E, any
sink is at distance at least T from any source; i.e., Vi, j € [k]
we have distc)(8i,t) > T. Then any (network coding)
protocol for M has makespan at least min {T, k/|F|}.

Proof: We can assume all sources can share information
among themselves for free (e.g., via a common controlling
entity) since this makes the multiple-unicast instance strictly
easier to solve; similarly, suppose that the sinks can also
share information. Suppose that some coding protocol has
makespan 7" < T'. Then all information shared between the
sources and the sinks has to pass through some edge in F' at
some point during the protocol. However, these edges can
pass a total of |F| - T" packets of information, which has
to be sufficient for the total of k source packets. Therefore,
|F|-T" > k, which can be rewritten as 7" > k/|F|. The
makespan is therefore at least 77 > min{T, k/|F|}. [ |

Unfortunately, Lemma 1.5 is not always tight and it
is instructive to understand when this happens. One key
example is the previously-mentioned instance studied in
the influential distributed computing papers [29, 30, 33]
(described in Figure 2), where congestion and dilation both
play key roles. Informally, this network was constructed
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precisely to give an Q(y/n) makespan lower bound (leading
to the pervasive Q(\/ﬁ + D) lower bound for many global
problems in distributed computing [29]). The intuitive way
to explain the Q(,/n) lower bound is to say that one either
has to communicate along a path of length /n or all
information needs to shortcut significant distance over the
tree, which forces all information to pass through near the
top of the tree, implying congestion of Q(y/n). Lemma 1.5,
however, can at best certify a lower bound of Q(n'/*) for
this instance. That is, this lemma’s (coding) makespan lower
bound can be polynomially far from the optimal coding
protocol’s makespan.

Figure 2: The hard instance for distributed graph problems
[29, 30, 33], as appears in [34]. The multiple-unicast in-
stance has ©(n) nodes and is composed of \/n disjoint paths
of length \/n and a perfectly balanced binary tree with \/n
leaves. The i*" node on every path is connected to the 7"
leaf in the tree. There are \/n sessions with s;,t; being
the first and last node on the i*" path. All capacities and
demands are one. The graph’s diameter is ©(logn), but its
coding makespan is Q(y/7).

A more sophisticated argument is needed to certify the
Q(+/n) lower bound for this specific instance. The aforemen-
tioned papers [29, 30, 33] prove their results by implicitly
using the technique we formalize as our moving cut in the
following definition and lemma (proven in Section II-A).

Definition 1.6. (Moving cut) Let G = (V,E) be a com-
munication network with capacities ¢ : E — Z>1 and let
{(si,t;) | i € [k]} be source-sink pairs. A moving cut is
an assignment { : E — Z>1 of positive integer lengths
to edges of G. We say the moving cut has capacity C, if
Yecp Celle —1) = C, and distance T, if all sinks and
sources are at distance at least T with respect to {; i.e.,
Vi, j € [k] we have dy(s;,t;) > T.

Lemma L.7. Let M = (G, S) be a unicast instance which
admits a moving cut £ of capacity strictly less than Zie[k] d;
and distance T. Then any (coding) protocol for M has
makespan at least T.
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Lemma 1.7 can be seen as a natural generalization of
Lemma .5, which can be equivalently restated in the fol-
lowing way: “Suppose that after increasing each edge e’s
length from one to (., € {1,T+1}, we have that (1)
YoecrCelle — 1) < Zle di, and (2) disty(s;,t;) > T.
Then any (coding) protocol M has makespan at least T”.
Dropping the restriction on ¢, recovers Lemma 1.7.

Strikingly, the moving cut technique allows us not only to
prove tight bounds (up to polylog factors) for the instance
of Figure 2—it allows us to get such tight bounds for
every multiple-unicast instance. In order to upper bound the
makespan coding gap, we therefore relate such a moving cut
with the optimal routing makespan, as follows.

To characterize the optimal routing makespan, we study
hop-bounded multicommodity flow, which is an LP re-
laxation of routing protocols of makespan T'. First, we
show that a fractional LP solution of high value to this
LP implies a routing with makespan O(T'). Conversely, if
the optimal value of this LP is low, then by strong LP
duality this LP’s dual has a low-valued solution, which we
use to derive a moving cut and lower bound the coding
makespan. Unfortunately, the dual LP only gives us bounds
on (average) distance between source-sink pairs (s;,t;),
and not between all sources s; and sinks t; (including
j # 1), as needed for moving cuts. For this conversion to
work, we prove a generalization of the main theorem of
Arora, Rao and Vazirani [35] to general metrics, of possible
independent interest. (See Section II-C.) This allows us to
show that a low-valued dual solution implies a moving cut
certifying that no coding protocol has makespan less than
T/O(logk - log(>", d;/ min; d;)). As the above rules out
low-valued optimal solutions to the LP for T'= T*-O(log k-
log(}",; di/ min; d;)) with T the optimal coding makespan,
the LP must have high optimal value, implying a routing
protocol with makespan O(T"), and thus our claimed upper
bound on the makespan coding gap.

2) Lower Bounding the Coding Gap: To complement
our polylogarithmic upper bound on the makespan gap,
we construct a family of multiple-unicast instances M that
exhibit a polylogarithmic makespan coding gap. We achieve
this by amplifying the gap via graph products, a powerful
technique that was also used in prior work to construct
extremal throughput network coding examples [36-38]. Here
we outline this approach, as well as the additional challenges
faced when trying to use this approach for makespan.

We use a graph product introduced by Braverman et
al. [38] (with some crucial modifications). Braverman et
al. [38] use their graph product to prove a conditional
throughput coding gap similar to the one of Theorem 1.3,
conditioned on the (unknown) existence of a multiple-
unicast instance I with non-trivial throughput coding gap.
The graph product of [38] takes instances I, [ and intu-
itively replaces each edge of I; with a source-sink pair of a
different copy of I5. More precisely, multiple copies of I;
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and I are created and interconnected. Edges of a copy of
I, are replaced by the same session of different copies of
I; similarly, sessions of a copy of I replace the same edge
in different copies of I;. This product allows for coding
protocols in I; and I to compose in a straightforward
way to form a fast coding protocol in the product instance.
The challenge is in proving impossibility results for routing
protocols, which requires more care in the definition of the
product graph.

To address this challenge, copies of instances are in-
terconnected along a high-girth bipartite graph to prevent
unexpectedly short paths from forming after the intercon-
nection. For example, to prove a throughput routing im-
possibility result, Braverman et al. [38] compute a dual
of the multicommodity flow LP (analogous to our LP, but
without any hop restriction) to certify a limit on the routing
performance. In the throughput setting, a direct tensoring
of dual LP solutions of I; and I» gives a satisfactory dual
solution of the product instance. In more detail, a dual LP
solution in I assigns a positive length ¢;(e) to each edge
in I; each edge of the product instance corresponds to
two edges e; € I; and es € I, and the direct tensoring
li((e1,e2)) = Lr,(e1) - £1,(e2) provides a feasible dual
solution with an adequate objective value. To avoid creating
edges in the product distance of zero ¢, -length, they contract
edges assigned length zero in the dual LP of either instance.
Unfortunately for us, such contraction is out of the question
when studying makespan gaps, as such contractions would
shorten the hop length of paths, possibly creating short paths
with no analogues in the original instance.

Worse yet, any approach that uses the dual of our 7-hop-
bounded LP is bound to fail in the makespan setting. To
see why, suppose we are given two instances I1, I, both of
which have routing makespan at least 7" and expect that the
product instance I, to have routing makespan at least T2
by some construction of a feasible dual LP solution. Such a
claim cannot be directly argued since a source-sink path in
the product instance that traverses, say, 7'—1 different copies
of I, along a path of hop-length 7'+ 1 in I5 could carry an
arbitrary large capacity! This is since the hop-bounded LP
solution on I only takes short paths, of hop-length at most
T, into account. Since there is no direct way to compose
the dual LP solutions, we are forced to use a different style
of analysis from the one of [38], which in turn forces our
construction to become considerably more complicated.

To bound the routing makespan in the product instance we
rely on Lemma [.4: We keep a list of edges F' along with
each instance and ensure that (i) all source-sink distances
in the F'-deleted instance are large and that (ii) the ratio
of the number of sessions k& to |F'| is large. We achieve
property (i) by interconnecting along a high-girth graph and
treating the replacements of edges in F' in a special way
(hence deviating from the construction of [38]). Property
(ii) is ensured by making the inner instance I, significantly
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larger than the outer instance 7, thus requiring many copies
of I; and resulting in a large number of sessions in the
product graph. To allow for this asymmetric graph product,
we need an infinite number of base cases with non-trivial
makespan coding gap for our recursive constructions (rather
than a single base instance, as in the work of Braverman
et al. [38]). This infinite family is fortunately obtained by
appropriately generalizing the instance of Figure 1.

The main challenge in our approach becomes controlling
the size of the product instance. To achieve this, we affix to
each instance a relatively complicated set of parameters (e.g.,
coding makespan, number of edges, number of sessions,
etc.) and study how these parameters change upon applying
the graph product. Choosing the right set of parameters is
key—they allow us to properly quantify the size escalation.
In particular, we show that the coding gap grows doubly-
exponentially and the size of the instances grow triply-
exponentially, yielding the desired polylogarithmic coding

gap.
D. Related Work

This work ties in to many widely-studied questions. We
outline some of the most relevant here.

Routing multiple unicasts.: Minimizing the makespan
of multiple unicasts using routing has been widely studied.
When packets must be routed along fixed paths, two imme-
diate lower bounds on the makespan emerge: dilation, the
maximum length of a path, and congestion, the maximum
number of paths crossing any single edge. A seminal result
of Leighton et al. [8] proves one can route along such fixed
paths in O(congestion+dilation) rounds, making the result
optimal up to constants. Follow ups include works improving
the constants in the above bound [2, 9], computing such
protocols [7], simplifying the original proof [1], routing
in distributed models [5, 39], and so on. When one has
the freedom to choose paths, Bertsimas and Gamarnik [10]
gave near-optimal routing solutions for asymptotically-large
packet sizes, later extended to all packet sizes by Srinivasan
and Teo [3]. The power of routing for multiple unicasts is
therefore by now well understood.

Network coding gains.: The utility of network coding
became apparent after Ahlswede et al. [11] proved it can
increase the (single multicast) throughput of a communica-
tion network. Following their seminal work, there emerged a
vast literature displaying the advantages of network coding
over routing for various measures of efficiency in numer-
ous communication models, including for example energy
usage in wireless networks [40—42], delay minimization in
repeated single unicast[43, 44], and makespan in gossip
protocols [16—18]. The throughput of a single multicast (i.e.,
one single node sending to some set of nodes), arguably the
simplest non-trivial communication task, was also studied in
great detail (e.g., [11, 45, 46]). In particular, Agarwal and
Charikar [46] showed that the throughput coding gap for
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a single multicast equals the integrality gap of natural min-
weight Steiner tree relaxations, for which non-trivial bounds
were known (see, e.g., [47, 48]). While the throughput cod-
ing gap for a single multicast is now fairly well understood,
the case of multiple senders seems to be beyond the reach
of current approaches.

Throughput gaps for multiple unicasts.: The routing
throughput for multiple unicasts is captured by multicom-
modity max-flow, while the coding throughput is clearly
upper bounded by the sparsest cut. Known multicommodity
flow-cut gap bounds therefore imply the throughput cod-
ing gap for k unicasts is at most O(logk) [27, 28], and
less for special families of instances [49-53]. In 2004,
Li and Li [13] and Harvey et al. [19] independently put
forward the multiple-unicast conjecture, which asserts that
the throughput coding gap is trivial (i.e., it is one). This
conjecture was proven true for numerous classes of instances
[20, 21, 31]. More interestingly, a positive resolution of this
conjecture has been shown to imply unconditional lower
bounds in external memory algorithm complexity [21, 26],
computation in the cell-probe model [21], and (recently) an
Q(nlogn) circuit size lower bound for multiplication of n-
bit integers [25] (matching an even more recent breakthrough
algorithmic result for this fundamental problem [54]). Given
this last implication, it is perhaps not surprising that despite
attempts by many prominent researchers [12, 15, 22, 23],
the conjecture remains open and has established itself as
a notoriously hard open problem. Indeed, even improving
the O(log k) upper bound on throughput coding gaps seems
challenging, and would imply unconditional super-linear
circuit size lower bounds, by the work of Afshani et al. [25].
Improving our upper bound on makespan coding gaps to
o(log k) would directly imply a similar improvement for
throughput coding gaps, together with these far-reaching
implications.

II. UPPER BOUNDING THE CODING GAP

In this section we prove Theorem 1.2, upper bounding the
makespan network coding gap. Given a multiple-unicast in-
stance M we thus want to upper bound its routing makespan
and lower bound its coding makespan. To characterize these
quantities we start with a natural hop-bounded multicom-
modity flow LP, CONCURRENTFLOW o(T"), which serves
as a “relaxation” of routing protocols of makespan at most
T. The LP, given in Figure 3, requires sending a flow of
magnitude z-d; between each source-sink pair (s;, t;), with
the additional constraints that (1) the combined congestion
of any edge e is at most 7" - ¢, where c. is the capacity
of the edge (as only c. packets can use this edge during
any of the 7" time steps of a routing protocol), and (2) the
flow is composed of only short paths, of at most 7" hops.
Specifically, for each i € [k], we only route flow from s; to ¢;
along paths in P;(T) £ {p : s;~t; | |[p| < T, p is simple},
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the set of simple paths of hop-length at most 7' connecting
s; and t; in G.

Primal: CONCURRENTFLOW v (T')

maximize z
subject to:
Vi€ [kl Y ep, ) filp) =2 2 d;

Ve € E: Zpae filp) <T-ce
Vi e [k],p:  fi(p) >0

Dual: CUT (7))

minimize T - _p cele
subject to:
Vi € [k],p € Pi(T): Zeepée > hy;
Dicpn dihi =1
Vee E: {.>0
Vielkl: h; >0

Figure 3: The concurrent flow LP relaxation and its dual.

A routing protocol solving M in T rounds yields a
solution to CONCURRENTFLOW ,((1) of value z 1,
almost by definition.! A partial converse is also true; a
feasible solution to CONCURRENTFLOW x(7T") of value at
least (1) implies a routing protocol for M in time O(T).
This can be proven using standard LP rounding [3] and
O(congestion + dilation) path routing [8]. (See the full
version of the paper).

Proposition IL1. Ler z, {fi(p) | i € [k],p € P:(T)} be a
feasible solution for CONCURRENTFLOW v (T"). Then there
exists an integral routing protocol with makespan O(T/z).

Complementing the above, we show that a low optimal LP
value for CONCURRENTFLOW 5 (7") implies that no coding
protocol can solve the instance in much less than 7' time.

Lemma 2. If the optimal value of
CONCURRENTFLOW \((T) is at most z* < 1/10,
then the coding makespan for M is at least

T/(C - log(k) - log (>, d;/ min; d;)) for some constant
¢ >0

Before outlining our approach for proving Lemma I1.2, we
show why this lemma together with Proposition II.1 implies
our claimed upper bound for the makespan network coding
gap.

Theorem 1.2. The network coding gap for makespan of any
k-unicast instance is at most

0 <log(k) -log (Z d;/ min di> ) .

ISuch a protocol must send d; packets along paths of length at most T'
between each source-sink pair (s;,¢;), and it can send at most c. packets
through each edge e during any of the 7" rounds, or at most c. - 1" packets
overall.
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Proof: Fix a multiple-unicast instance M. Let 7™ be
the minimum makespan for any coding protocol for M. Let
T=(C+1)-T*(log(k)-log(>_, d;/ min; d;)) for C as in
Lemma II.2. Then, the LP CONCURRENTFLOW ¢ (7T") must
have optimal value at least z* > 1/10, else by Lemma I1.2
and our choice of T, any coding protocol has makespan at
least T'/O(log(k)-log (>, d;/ min; d;)) > T*, contradicting
the definition of 7. But then, by Proposition II.1, there
exists a routing protocol with makespan O(T'/z*) = O(T™* -
log(k) - log (>, d;/ min; d;). The theorem follows. [ |

The remainder of the section is dedicated to proving
Lemma II.2. That is, proving that a low optimal value for
the LP CONCURRENTFLOW 5 (7T") implies a lower bound
on the makespan of any coding protocol for M. To this
end, we take a low-valued LP solution to the dual LP
Cut\(T) (implied by strong LP duality) and use it to
obtain an information-theoretic certificate of impossibility,
which we refer to as a moving cut. Section II-A introduces a
framework to prove such certificates of impossibility, which
we show completely characterizes any instance’s makespan
(up to polylog terms). We then explain how to transform
a low-value dual LP solution to such a moving cut in
Section II-B. For this transformation, we prove a lemma
reminiscent of Arora et al. [35, Theorem 1] for general
metrics, in Section II-C.

A. Moving Cuts: Characterizing Makespan

In this section we prove that moving cuts characterize
the makespan of a multiple unicast instance. For ease of
reference, we re-state the definition of moving cuts.

Definition L.6. (Moving cut) Let G = (V,E) be a com-
munication network with capacities ¢ : E — Z>1 and let
{(ss,t;) | © € [K]} be source-sink pairs. A moving cut is
an assignment { : E — 7> of positive integer lengths
to edges of G. We say the moving cut has capacity C, if
Y ecp Celle —1) = C, and distance T, if all sinks and
sources are at distance at least T with respect to {; i.e.,
Vi, j € [k] we have d(s;,tj) > T.

We start by proving Lemma 1.7, whereby moving cuts
with small capacity and large distance imply makespan
lower bounds.

Lemma L.7. Let M = (G, S) be a unicast instance which
admits a moving cut £ of capacity strictly less than Zie[k] d;
and distance T. Then any (coding) protocol for M has
makespan at least T'.

Proof: We will show via simulation that a protocol

solving M in at most 7 — 1 rounds would be able to
k . .

compress » ., d; random bits to a strictly smaller number
of bits, thereby leading to a contradiction. Our simulation
proceeds as follows. We have two players, Alice and Bob,
who control different subsets of nodes. In particular, if we
denote by A, £ {v € V | min; dist,(s;,v) < r} the set of
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nodes at distance at most r from any source, then during any
round r € {0,1,...,T —1} all nodes in A, are “spectated”
by Alice. By spectated we mean that Alice gets to see all
of these nodes’ private inputs and received transmissions
during the first r rounds. Similarly, Bob, at time r, spectates
B 2V \ A,. Consequently, if at round r a node u € V
spectated by Alice sends a packet to a node v € V, then
Bob will see the contents of that packet if and only if Bob
spectates the node v at round r + 1. That is, this happens
only if u € A, and v € B,y; =V \ A,4;. Put otherwise,
Bob can receive a packet from Alice along edge e during
times r € [min; diste(s;, u), min; dist,(s;, v) —1]. Therefore,
the number of rounds transfer can happen along edge e is at
most min; disty(s;, v) —min; disty(s;, u) —1 < £.—1. Hence,
the maximum number of bits transferred from Alice to Bob
via e is c.(¢. — 1). Summing up over all edges, we see that
the maximum number of bits Bob can ever recelve during
the simulation is at most ZeeE ce(le—1) < ZZ 1 d;. Now,
suppose Alice has some Z -1 d; random bits. By simulating
this protocol with each source s; having (a different) d; of
these bits, we find that if all sinks receive their packet in
T rounds, then Bob (who spectates all ¢; at time T' — 1, as

min; distg(s;, ;) > T for all j) learns all Z 1 d; random
bits while receiving less than Zle d; bits from Alice—a
contradiction. [ |

Lemma 1.7 suggests the following recipe for proving
makespan lower bounds: Prove a lower bound on the
makespan of some sub-instance M’ = (G, S") with S’ C S
induced by indices I C [k] using Lemma L.7. As any
protocol solving M solves M’, a lower bound on the
makespan of M’ implies a lower bound on the makespan
of M. So, to prove makespan lower bounds for M, identify
a moving cut for some sub-instance of M. If this moving
cut has capacity less than the sum of demands of the sub-
instance and distance at least T, then the entire instance, M,
has makespan at least 7.

By the above discussion, the worst distance of a (low
capacity) moving cut over any sub-instance serves as a
lower bound on the makespan of any instance. The following
lemma, whose proof is deferred to the end of Section II-B,
asserts that in fact, the highest distance of a moving cut over
any sub-instance is equal (up to polylog terms) to the best
routing makespan of M. Consequently, by Theorem 1.2, the
strongest lower bound obtained using moving cuts is equal
up to polylog terms to the optimal (coding) makespan for

M.

Lemma IL3. If a k-unicast instance M has no routing
protocol with makespan T, then there exists a set of sessions
I C [k] with a moving cut of capacity strictly less than
> ic1 di and distance at least T/O(log k- (}_, d;/ min; d;))

with respect to the unicast sub-instance induced by I.

We now turn to leveraging moving cuts to prove makespan
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lower bounds. Specifically, Lemma II.2.

B. From Dual Solution to Moving Cut

Proposition II.1 shows that high objective value for the
primal LP, CONCURRENTFLOW \((T) implies an upper
bound on the routing time for the given instance. In this
section we prove the “converse”, Lemma I1.2, whereby low
objective value of the primal LP implies a lower bound on
the coding time for the given instance.

Our approach will be to prove that a low objective value
of the primal LP —implying a feasible dual LP solution of
low value—yields a moving cut for some sub-instance. This,
by Lemma 1.7, implies a lower bound on protocols for this
sub-instance, and thus for the entire instance, from which
we obtain Lemma I1.2. We turn to converting a low-valued
dual LP solution to such a desired moving cut.

By definition, a low-value feasible solution to the dual
LP, CuT(T'), assigns non-negative lengths £ : £ — Rxg
such that (1) the c-weighted sum of /-lengths is small, i.e.,
Y eck Cle = O(1/T), as well as (2) if h; is the ¢-length of
the T-hop-bounded ¢-shortest path between s; and ¢;, then
Zle[k] d; - h; > 1. Property (1) implies that appropriately
scaling the lengths ¢ yields a moving cut given by lengths
? of bounded capacity, e cel.. For this moving cut to be
effective to lower bound the makespan of some sub-instance
using Lemma 1.7, the cut must have high distance w.r.t. this
sub-instance. As a first step to this end, we use Property
(2) to identify a subset of source-sink pairs /I C [k] with
pairwise (-distance at least Q(T'). Claim 1.4, proven in the
full version, using a “continuous” bucketing argument, does
just this. The claim introduces a loss factor ag,, that we
use throughout this section.

Claim I1.4. Given sequences hi,..., hi,di,...,di € R>g
with Zie[k] d; - h;y > 1 there exists a non-empty subset

I g [k] Vgﬂ’l miniej hz Z m for agap S
ie[k] di )}
[17 0] (log mineng @i ) |

Scaling up the ¢ lengths yields a sub-instance induced
by pairs I C [k] and moving cut with bounded capacity
and with (-distance between every source and its sink of at
least Q(T), i.e., d; i(si,ti) > Q( ) for all ¢ € I. However,
Lemma 1.7 requires /-distance Q(T") between any source and
sink, i.e., dj(s;,t5) > Q(T) for all i, € I. To find a subset
of source- smk pairs with such distance guarantees, we rely
on the following metric decomposition lemma, whose proof
is deferred to Section II-C.

Lemma IL5. Let (X, d) be a metric space. Given n. pairs
{(si,t:) Yien) of points in X with at most k distinct points
(ie., i ti)}H < k) and pairwise distances at least
d(s;,t;) > T, there exists a subset of indices I C [n] of
size |I| > § such that d(s;,t;) > mfor all i,j € I.
Moreover, such a set can be computed in polynomial time.
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We are now ready to construct the moving cut.

Lemma 6. If the optimal value of
CONCURRENTFLOW A((T") is at most z* < 1/10, then
there exists I C [k] and a moving cut l of capacity strictly
less than 3, ;d; and distance at least T/O(agaplogk)
with respect to the unicast sub-instance induced by I (i,

M= (G, S) where S = {(si,ti, d; )}161)

Proof: By strong duality, the dual LP CUT¢(T") has a
feasible solution {h;, £, | i € [k],e € E} to CUT\(T') with
objective value T' Zee g Cele = 2*. Fix such a solution. Let
I C [k] be 2 subset of indices as guaranteed by Claim I1.4.
Define £, 2 1+ [£.-T - > ierdi] for all e € E and note
that Z € Z>1. By definition of ¢ and Ty . chle =z, we
get a bound on the capacity of l:

ZCP(Z -1) <ZCP€ -T- Zd

e€eE ze]

:z*~2di< Zd <= Zd

el 'LEI

We now show that d;(s;,t;) > T/ag.p for all i € I.
Consider any simple path p between s;~+t;. Denote by 1 (p)
and £(p) the length with respect to £ and /, respectively. It
is sufficient to show that £(p) > T/agap. If p & Pi(T),
i.e., the hop-length of p (denoted by |p|) is more than 7.
Then £(p) > |p| > T > T/agap, since /. > 1 Ve € E.
Conversely, if p € P;(T), then by our choice of I as in
Claim 1.4 and the definition of h;, we have that ¢(p) >
h; > m, hence

T-Ycrdi — T/a
= gap-
Qgap Zie[ i

Up) = tp)-T-Y di =

icl

Finally, we choose a subset I C I st dy(si,t;) >
T/O(agap logk) for all 4,5 € I. By Lemma IL.5 applied to
the graphic metric defined by £ and each pair (s, ;) repeated
d; times, there exists a multiset of indices I C I C [k]
such that dj(s;,t;) > T'/O(agap logk) for all i,j € I and
such that \I | > Z d; /9. Therefore, taking each pair (s;, ;)
indexed by I at least once, we find a subset of sessions
I C [k] such that Dicidi > 9216 W di >, e (le—1)
and d;(s;,t;) > T/O(agaplogk) for all i,5 € I. In other
words, £ is a moving cut of capacity strictly less than
> icidi and distance T'/O(agap log k) with respect to the
sub-instance induced by I. |

Combining Lemma I1.6 with Lemma 1.7, we obtain this
section’s main result, Lemma I1.2.

Lemma 2. If
CONCURRENTFLOW((T) is at most z* < 1/10,
then the coding makespan for M is at least
T/(C - log(k) - log (>, d;/ min; d;)) for some constant
C>0.

value

of

the optimal
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Remark 1.: We note that the log k£ term in Lemma I1.2’s
bound is due to the log k term in the bound of Lemma II.5.
For many topologies, including genus-bounded and minor-
free networks, this log & term can be replaced by a constant
(see Section II-C), implying smaller makespan gaps for such
networks.

Remark 2.: Lemma II.3, which states that a lower
bound on routing makespan implies the existence of a
moving cut of high distance with respect to some sub-
instance, follows by Lemma II.6 and Proposition II.1, as
follows. By Proposition II.1, M having no routing protocol
with makespan 7" implies that for some constant ¢ > 0, the
LP CONCURRENTFLOW p4(c-T') has objective value at most
1/10. Lemma I1.6 then implies the existence of the moving
cut claimed by Lemma II.3.

C. From Pairwise to All-Pairs Distances

This section is dedicated to a discussion and proof of the
following Lemma that seems potentially useful beyond the
scope of this paper.

Lemma IL5. Let (X,d) be a metric space. Given n pairs
{(ss,ti) Yie) of points in X with at most k distinct points
(e, |U;{(si;t:)}| < k) and pairwise distances at least
d(s;,t;) 2 T, there exists a subset of indices I C [n] of
size |I| > § such that d(s;,t;) > ﬁfor all i,j € I
Moreover, such a set can be computed in polynomial time.

We note that the above lemma is similar to the main
Theorem of Arora et al. [35]. Our result holds for general
metrics with a factor of O(log k) in the distance loss, while
their holds for /3 metrics with a factor of O(y/logk). The
results are incomparable and both are tight. (The tightness
of Lemma IL.5 can be shown to be tight for graph metrics,
for example in graph metrics of constant-degree expanders.)

To prove Lemma II.5 we rely on padded decomposi-
tions [55]. To define these, we introduce some section-
specific notation. Let (X, dist) be a metric space. Let the
(weak) diameter of a set of points U C X be denoted by
diam(U) £ max, yey dist(z,y). We say a partition P =
{X1,Xo,..., X} of X is A-bounded if diam(X;) < A
for all 7. Next, for U C X and a partition P as above,
we denote by U C P the event that there exists a part
X, € P containing U 1in its entirety; i.e., U C X;. Let
B(z,p) £ {y € X | dist(z,y) < p} denote the ball of
radius p > 0 around z € X.

Definition IL7. Let (X, dist) be a metric space. We say that
a distribution P over A-bounded partitions of X is (8, A)-
padded if, for some universal constant 9, it holds that for
every x € X and 0 < v <,

Lr[B(z,vA) € P] < B

In words, each part of the partition has diameter at most
A and the probability of any point x in the metric being
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at distance less than yA from a different part than its own
part is at most 3+y. Such decompositions were presented, for
example, by Gupta et al. [55].

Lemma IL8 ([55]). Any metric (X, dist) on k points admits
a (B, A)-padded decomposition, for any A > 0 and some
B = O(logk). Such a decomposition can be computed in
polynomial time.

We are now ready to prove Lemma IL.5.

Proof of Lemma 11.5: First note that we can focus on
the metric space induced by the k distinct points. Let P be
a A-bounded -padded decomposition with A =T —1 and
B = O(log k). We first note that for all ¢ € [k], s; and ¢; are
contained in different parts since the diameter of each part
X; is at most A = T — 1 and dist(s;, t;) > T. Furthermore,
letting v = % we have that Pr[B(s;,7A) C P] > 1. Let
I' C [n] be the subset of indices ¢ with B(s;,yA) C P.
Then we have Pr[i € I'] >  for all i € [n].

Flip a fair and independent coin for each part in P. Let
U C X be the set of points in parts whose coin came out
heads, and V' C X be the analogous set for tails. Then for
each i € I’ we have that Pr[s; € U and t; € V] = 1. Let
I C I’ be the subset of indices ¢ with s; € U and t; € V,
giving Pri € I] =Prli e I']-Prlie I |ieI']= 1.
§ Vi € [n]. We also have that dist(s;, ;) > p = T3t for
all 4,5 € I, since B(s;,p) C U for all i € I C I’ and
{tj}jer N U = 0. Therefore, this random process yields a
subset of indices I C [n] such that dist(s;,t;) > TT_Bl for
all i,j € I, of expected size at least E[|I[] > >, Prli €
I > §. As n — E[|I|] is a non-negative random variable,
Markov’s inequality implies that with constant probability
n—|I| <% (n—E[I]]) < 8. The lemma follows. m
Remark: The O(logk) term in Lemma IL5’s bound is
precisely the smallest possible § for which (5, A)-padded
decompositions of the metric exist. For many graphic met-
rics, such as those of minor-excluded, bounded-genus, and
bounded-doubling-dimension networks, padded decomposi-
tions with smaller 5 exist [50, 55, 56]. This improves the
bounds of Lemma II.5 and thus Lemma I1.2 by (logk)/8,
implying the same improvement for our makespan coding
gaps for such networks.

W=

III. CONCLUSIONS AND OPEN QUESTIONS

In this paper we study completion-time coding gaps;
i.e., the ratio for a given multiple-unicast instance, of the
fastest routing protocol’s completion time to the fastest
coding protocol’s completion time. We provide a strong
characterization of these gaps in the worst case, showing
they can be polylogarithmic in the problem parameters, but
no greater. The paper raises a few exciting questions and
research directions.

Probably the most natural question is to close our upper
and lower bounds. We show that the network coding gap is
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polylogarithmic, but what polylog? Another question, moti-
vated by the super-constant speedups we prove coding can
achieve over routing for this basic communication problem,
is whether there exist efficient algorithms to compute the
fastest coding protocol, mirroring results known for the
fastest routing protocols for multiple unicasts [7, 8], and for
the highest-throughput coding protocols for multicast [57].
Another natural question is extending this study of network
coding gaps for completion times to other widely-studied
communication problems, such as multiple multicasts.

Implications to other fields.: As discussed in Section [
and Section I-D, the conjectured non-existence of throughput
coding gaps for multiple unicast has been used to prove
(conditional) lower bounds in many seemingly-unrelated
problems. It would be interesting to see whether our upper
and lower bounds on the coding gap for multiple unicasts’
completion times can be used to prove unconditional lower
bounds for other models of computation. We already have
reason to believe as much; using techniques developed in
this paper, combined with many other ideas, the authors
have obtained the first non-trivial universal lower bounds
in distributed computation (see details in the full version).
It would be interesting to see what other implications this
work might have to other areas of Theory. Perhaps most
exciting would be to investigate whether completion-time
coding gaps imply new results in circuit complexity for
depth-bounded circuits.
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