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Abstract—As with many problems solved by deep neural
networks, existing solutions rarely explain, precisely, the impor-
tant factors responsible for the predictions made by the model.
This work looks to investigate how different spatial regions
and landmark points change in position over time, to better
explain the underlying factors responsible for various facial
emotion expressions. By pinpointing the specific regions or points
responsible for the classification of a particular facial expression,
we gain better insight into the dynamics of the face when
displaying that emotion. To accomplish this, we examine two
spatiotemporal representations of moving faces, while expressing
different emotions. The representations are then presented to
a convolutional neural network for emotion classification. Class
activation maps are used in highlighting the regions of interest
and the results are qualitatively compared with the well known
facial action units, using the facial action coding system. The
model was originally trained and tested on the CK+ dataset
for emotion classification, and then generalized to the SAMM
dataset. In so doing, we successfully present an interpretable
technique for understanding the dynamics that occur during
convolutional-based prediction tasks on sequences of face data.

I. INTRODUCTION

In interacting with faces, although a significant amount of
information can be conveyed by static faces, it is possible that
some information can be better transmitted via dynamic faces.
This is also a more realistic depiction of how we interact and
interpret information from faces. Some useful applications of
modeling dynamic instead of static faces include analyzing
spontaneous facial expressions [1], automatically detecting
pain via facial dynamics [2], recognizing delighted versus
frustrated smiles [3], etc.

In this work, we explore how the temporal patterns on
the face can provide additional insight in to the underlying
dynamics of the facial behavior when expressing emotion.
To accomplish this, we train 2 different temporal image
representations using the CK+ dataset. The CK+ dataset [4]
provides image sequences extracted from videos along with
the represented emotion class. A total of 7 emotions were
classified. The model trained and tested on CK+ was applied
on the SAMM dataset [5], to demonstrate that it was did not
overfit on the CK+ dataset. SAMM also contained 7 emotions
recorded over multiple sequences.

The first temporal face image representation is referred to
as the stacked convolutional network (SCN), while the other
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Fig. 1: (a) An example of a subject portraying the emotion
of surprise with the activations for the temporal convolutional
netowork on the image shown. The activations vary from white
→ yellow → red, where the more red the landmark, the
more activated it is. The model correctly predicted that the
expression being demonstrated by the subject was surprise.

which uses extracted facial landmarks, is referred to as the
temporal convolutional network (TCN). The common network
used in training both representations are inspired from the
VGG-16 [6] architecture. When tested on the CK+ dataset,
both these models give accuracies of over 95%, although only
the results obtained using facial landmarks match up closer
with the state-of-the-art results on the benchmark datasets.
To better understand what landmarks the models “believe”
are important for prediction, class activation maps [7] were
computed on test samples, after successfully training the
models. Figure 1 shows one such instance depicting the highly
activated regions obtained from the TCN model. The image
shows the the importance of the various facial landmarks, in
classifying the surprise emotion.

Specifically, in this work we are interested in classifying
sequences of face images by the emotions they display and
using class activation maps (CAMs), we can explore the facial
dynamics that best explain the classification.



II. BACKGROUND

Although a great deal of work has been done in the field
of facial expression recognition, not as much work has been
done using the dynamism of the faces for this work. This is
probably due to the fact that one can predict facial expressions
to a large extent using single images. In this work though, we
are interested in evaluating facial expression recognition in
moving faces.

There are several different approaches to dynamic facial
expression recognition, varying from classifications using sim-
ple multi-layer perceptrons [8] to complicated deep neural
networks. Many of such solutions involve splitting the videos
into frames and passing them to a convolutional neural net-
work [9] one frame at a time. Others, pass the extracted
frames to a recurrent model, after extracting features from
a convolutional neural network [10]–[13]. Other works detect
facial action units and process them to detect emotions [14],
[15]. The work of Fuzail Khan [8] utilises a simple multi-
layer perceptron with landmarks to classify the emotions in
images, however, the landmarks considered are just the four
fiducial features - the eyebrows, the eyes, the nose and the
lips. While videos can be broken into frames, this loses the
temporal aspect of the video. The entire temporal history of the
landmarks can be quite useful for many face-based prediction
tasks including emotion classification and techniques that use
only frame based processing lose this history. In his work,
Shivam Gupta [16] used a support vector machine to classify
emotions based on landmarks. While classifying the emotion,
the landmarks are not used individually but rather the center
of gravity of the collection is computed. Then the location
of the center of gravity is used to classify the image into
the appropriate emotion. This approach although unique runs
the risk of losing out on the information contained in the
individual locations of the landmarks.

Minaee et al. [17] used stacked images with a CNN to
show the regions in the image that were most activated during
classification.The TCN model utilised by He et al. [18] used
the location of facial landmarks to detect emotions. He et al.
extracted the landmarks over video frames and then computed
the differences in landmark locations. Since facial landmarks
are nothing but points in the video frame, they simply subtract
the location of one landmark from it’s location in the next
frame and used this as the input to training the network.
While a useful approach, it has the possibility of aggregating
the location of landmarks, thus neglecting the history of the
landmarks.

Though not directly related to emotion recognition in mov-
ing faces, other techniques for detecting facial features include
the work by [19] who use independent components analysis
(ICA) is to learn the appearance and shape of the facial
features; work by [20] that present a comprehensive survey
on facial feature points detection; another work on feature
detection by [21]

The proposed work involves recognizing the expressed emo-
tion on the face, using moving landmark points. Although the

Fig. 2: The varying number of frames among all the videos
available in the CK+ dataset.

positions of the landmarks on a static image can successfully
aid in detecting facial expression, tracking those landmarks
over a period of time (in dynamic faces) has not being
investigated in as much detail. Some of the more common
techniques such as the use of LSTM and LSTM combined
with CNNs have been investigated, hence, in this paper, we
explore some novel approaches to recognize facial expressions
in moving faces. Although these techniques are not novel in
pattern recognition in general, they have not been explored in
general facial analysis. In this work, we explore a couple of
interpretable methods for

III. DATA

A. CK+ dataset

The CK+ dataset is primarily used for training both, the
SCN and the TCN. The CK+ dataset provides four sets of
information - the frames containing the face image, the corre-
sponding landmarks file for the frames, the FACS encodings
for the frames and the emotion label. The dataset was created
by asking subjects to portray various emotions. The subjects
were required to go from a neutral expression to the extreme of
their given emotion in a span of one minute. In total, 593 such
videos were recorded. The videos were split into frames which
were made available as the dataset. The number of frames for
each video was not constant and this variation is shown in
Figure 2, which depicts the number of videos for different
frame counts. All of the 593 did not however have labels and
only 327 emotion sequences were available for training and
testing; the remaining 266 sequences did not readily translate
into the standard emotion prototypes, and could therefore not
be readily labeled. The CK+ dataset provided image sequences
for seven emotions: anger, contempt, disgust, fear, happy, sad
and surprise.

B. SAMM dataset

The SAMM dataset consists of videos for micro and macro
emotions, although for this work, we only use the macro
expression labels in our extended testing. Similar to the
CK+ dataset, the SAMM dataset provides image sequences
of subjects which are extracted from videos. The difference
being that these videos were recorded to portray spontaneous



Sr. No. Class Count

1 Anger 39

2 Contempt 12

3 Disgust 46

4 Fear 20

5 Happy 62

6 Sad 21

7 Surprise 69

TABLE I: Table showing the different number of video sam-
ples available for each emotion after filtering.

expressions, hence each sequence did not restrict the subject
to a single emotion. The dataset however does provide an-
notations which indicate the exact frame where the emotion
started (onset), the frame the expression peaked (apex), the
frame where the emotion went back to normal (offset) and
what the emotion being depicted is. The dataset also provides
the action units that were observed to have ben elicited by
the subjects. In total, the SAMM dataset provided 343 macro
emotion videos with labels.

IV. METHOD

A. Pre-processing

The information provided in both the datasets were not
readily usable out of the box. One of the major issues with
the CK+ dataset was that the number of frames for the
videos are not all the same. This would not bode well with
any model being developed since the models require a fixed
input size. Based on the distribution of frames per video, we
standarised all videos to 20 frames. It was also noted that while
downsampling would not cause much of an issue, upsampling
might introduce redundancies into the model. Hence all videos
with less than 10 frames were dropped from consideration.
Table I gives a final count of the number of videos that were
eventually used for training.
The CK+ dataset and the SAMM dataset videos were provided
with the same classes of emotions. For this research however,
we decided that ’contempt’ would not be considered because
there was only a small number of instances in the databases.
Neither of the datasets provided data points for a neutral
emotion. Although all videos went from neutral to some other
expression, none of them stayed neutral through the duration
of the video. Since the video frames were provided in the
datasets it was easy to extract the neutral frames to create a
new class.

To create neutral data points for training, 50 videos were
selected at random from the CK+ dataset and 5 videos (image
sequence for expressions) were selected from the SAMM
dataset. The first frame from each one of those were chosen
and replicated 20 times. These replications were stored in a
folder of its own, similar to all the other video frames given

by CK+ dataset. Their corresponding labels were also created
in files that adhered the folder structure of CK+ dataset.

The SAMM dataset was constructed using a camera which
recorded 200 frames per second, resulting in a large number
of frames for small video segments. To avoid any additional
computational expenses, for each of the emotions required,
20 frames were subsampled based on the apex and onset.
For each emotion, 5 videos were selected at random and 20
frames were extracted.

Fig. 3: A skeleton of a face showing the 68 facial landmark
locations as provided by OpenFace. Image from [22].

The SCN takes image frames as its input and both datasets
used in this study provide gray-scale images. Hence the input
representation to this stacked model did not require much pre-
processing. The TCN however takes as input facial landmarks.
Although the CK+ dataset came with pre-generated landmarks,
because the source-code for their landmarks generation was
not provide), we regenerated our own version using the toolkit,
OpenFace [22], to maintain consistency between the two
datasets. Figure 3 shows the 68 landmarks points on the face
as provided by OpenFace. An additional step that was also
done here prior to storing the data was to normalize the facial
landmark location with respect to the size of the image. This
ensured uniformity in the data. For the SAMM dataset, facial
landmarks were only generated for the subsampled frames.

Figure 4 shows a schematic diagram of how the input image
is transformed and fed into the TCN model.

B. Input representations

1) Stacked Convolutional Model (SCN): The first model
is the stacked convolutional model. This model, unlike other
video emotion classification models does not use any form of
recurrent layers. The input is a set of 20 frames that are stacked
together. The image dimension was restricted to 224 × 224.
The work done by Minaee et al. [17] is similar to this model in
the sense that they also used stacked images as input and did
not use any recurrent model for classification. The underlying
convolutional network is inspired by VGG-16. This model
consists of four blocks, the first three blocks are similar, having
two mini-blocks of convolutional layers followed by a batch



Fig. 4: The temporal convolutional model which primarily takes in as input a metrix containing facial landmarks.

normalization layer. The two mini-blocks are then followed by
a max-pooling layer. All activations in these three blocks use
ReLU. All convolutional layers in the first, second and third
blocks comprise of 64, 128 and 256 filters respectively. All
of these filters are {3× 3}. The max pooling filters are sized
{2×2} and have a stride of 2. The fourth block consists of two
fully connected layers. The first one has 256 nodes and again
uses ReLU for activation. The second fully connected layer
has 7 nodes corresponding to the 7 classes and uses Softmax
loss. In total, there are 5,647,943 parameters that are trainable.

2) Temporal Convolution Network (TCN): The TCN looks
to capture the temporal aspects of emotion classification
without the use of complex recurrent networks. The input
to this model, just like with the SCN, is a set of 20 frames
with the difference being that it takes only the facial landmark
locations instead of the actual images. Since each frame has 68
landmarks, each consisting on an x− and a y− coordinate, the
input to the TCN model is of dimension {68×20×2}. Unlike
SCN, the TCN model consists of three blocks. The first block
is similar to the first block of the SCN with the difference
being that the first convolutional layer has 64 {3 × 3} filters
and the second has 128 {2×2} filters. The max pooling layer
has a pool size of {3 × 3} with a stride of 2. The second
block is just one of the mini-block mentioned in the SCN.
The final block has two fully connected layer. The first one
has 64 hidden units and the second one has 7 hidden units.
All the layers that use activations make use of ReLU except
for the last one which uses the Softmax loss as well. In total,
the TCN model learns on 330,119 parameters.

V. EXPERIMENTS AND RESULTS

A. Classification

The models were successfully implemented using the
stochastic gradient descent optimiser, and we found that the
best results were obtained when the learning rate was set
to 1e-3 and a rate decay of 1e-4. To prevent stagnation
during training, we had to set the right momentum to avoid
plateauing. For the SCN model, the momentum was set at 0.7
while for the TCN model at 0.3.

To prevent the model from overfitting, 6-fold cross vali-
dation was performed where 15% of the CK+ dataset was

held out for validation each time. The SCN model yielded an
accuracy of 95.67% while the TCN model yielded 99.57%.

Figure 5 shows the confusion matrix obtained on testing
with the validation set of CK+ dataset. Since the TCN model
gives better results and is a more novel approach, the figures
for the SCN model are omitted.

Fig. 5: The confusion matrix obtained when tested on the CK+
dataset with the TCN model.

Table II shows the results obtained by the two models
on the CK+ dataset. While there were situations where the
SCN model outperformed TCN, the latter is overall the better
performing model.

Emotion
Precision Recall f1-score

TCN SCN TCN SCN TCN SCN

Anger 0.95 1.00 1.00 0.92 0.98 0.96

Disgust 1.00 1.00 1.00 0.93 1.00 0.97

Fear 1.00 1.00 1.00 0.90 1.00 0.95

Happy 1.00 0.98 1.00 0.98 1.00 0.98

Sad 0.91 1.00 0.95 0.92 0.93 0.96

Surprise 1.00 0.88 1.00 0.98 1.00 0.93

Neutral 1.00 0.93 0.92 0.98 0.96 0.95

TABLE II: The classification report obtained on CK+ dataset
run on both, the stacked convolutional network (SCN) and the
temporal convolutional network (TCN).



Model
CK+ SAMM

Accuracy(%) TP F1-score

FAN 99.7 - -

DeepEmotion 99.3 - -

DeepConv [23] 92.8 - -

TimeConvNets 97.9 - -

Baseline MEGC [24] - 22 0.06

SCN 95.7 30 0.16

TCN 99.6 41 0.33

TABLE III: Comparison of SCN and TCN with other models
for the two datasets used.

Table III shows how well these two models fare with
respect to other models reported in the literature. The
numbers in bold are the best performers withing statistical
significance. It is important to note the simplicity of the TCN
model and the small computational cost it incurs by taking
in just landmarks instead of entire images. Compared to all
other models that use the CK+ dataset, the TCN model proves
to be the simplest with best results.At the time of writing
this report, there are few other research works published on
the SAMM dataset. The only other one which does is the
work of He et al. who set the baseline performance for the
SAMM dataset. Their work produced 22 true positives for
the 343 macro emotion videos, which the two models built
in this project overshoot by a significant margin. The TCN
model gets more than five times the F1-score that the baseline
advocates.

B. Model Interpretation

Obtaining good accuracy from the models was not the end
goal of this work. The primary aim of this project was to
develop interpretable models for convolution-based prediction
tasks on temporal face data. In order to interpret the models,
we employed the use of class activation maps, to better
understand what spatiotemporal locations in the input images
were responsible for the classification results, for both SCN
and TCN.

Figure 6 is the result of plotting the class activation map for
a highly scoring prediction of happy on an emotive face. As
can be observed from the image, the heat map did not provide
any insights into the workings of the SCN, on why this test
sample scored so highly, being correctly classified as happy.

Figure 7 shows these some activation results from TCN,
where the input image is 68×20 representing the 68 landmark
points on the face, over 20 frames.

Post-processing had to be done in order to visualise the
activations from TCN. Because the resulting activation values
were high, they were normalised to lie in the range [0,255].
And since the main focus of interest is in the change in

Fig. 6: Class activation map for the happy emotion from the
stacked convolution network (SCN). Red indicates areas of
high activation. No information can be gleaned from this.

activations over each time frame, the difference between
successive frames was computed. Finally, low activations that
were not much different from each other (difference in the
range of [-75,75]) were dropped to 0 to improve visualisation.
The resulting activation maps along with the apex image
for the specific emotion are shown in Figure 7 below. To
fully interprete the results and compare with emotion-inducing
action units, one would obtain the facial locations of the highly
activated landmarks from Figure 3 and compare how these to
the expected action units related to the emotion (listed in the
left captions of Figure 7.

For example, the activation map for anger Figure 7 (g) and
(h) demonstrate that several landmarks are involved with the
anger emotion and this is depicted on the heat map image.
The landmarks also correlate with many of the associated AU
regions of interest as listed for the emotion. Similarly, when
we look at the neutral expression, the heat map image shows
little activity on the face compared to the other images.

The last row is a failure case where the activation map does
not correspond to the expected action unit regions involved in
sadness. The TCN model correctly predicted the emotions in
every case shown here.

VI. CONCLUSIONS

This work presents two convolutional models and analysed
them from an interpretability stand point. While traditional
convolutional models for facial emotion recognition rely
heavily on images as input to the deep networks, this work
shows that it might not be necessary as coarse landmark
points could still effectively allow for accurate predictions
and can also be readily interpreted due to its simplicity.

While this work is in no way complete, it serves as a good
first step into a new avenue in analysing human facial dynam-
ics. It is possible that coarse facial landmarks such as has been
used in this work have been underrated in the literature and
there are definitely steps that can be taken to make the system
built in this work, especially it interpretability, more robust and
yield better results on more generic datasets. A logical next
step would be to expand the model to more diverse face-based



(a) Happiness/joy - AU6 + AU12 - Cheek Raiser, Lip Corner Puller (b) Emotion displayed: Happy

(c) Surprise - AU1 + AU2 + AU5 + AU26 - Inner Brow Raiser, Outer
Brow (d) Emotion displayed: Surprise

(e) Neutral - No motion (f) Emotion displayed: Neutral

(g) Anger - AU4 + AU5 + AU7 + AU23 - Brow Lowerer, Upper Lid
Raiser, Lid Tightener, Lip Tightener (h) Emotion displayed: Anger

(i) Disgust - AU9 + AU15 + AU16 - Nose Wrinkler, Lip Corner
Depressor, Lower Lip Depressor (j) Emotion displayed: Disgust

(k) Sadness - AU1 + AU4 + AU15 - Inner Brow Raiser, Brow
Lowerer, Lip Corner Depressor (l) Emotion displayed: Sadness

Fig. 7: L: Class Activation Maps for landmarks over the frames of the video. R: CAM on the face.



prediction problems to determine if we can better explain the
underlying face-based kinesics such as in the communication
of pain, stress, boredom, etc; in the study of neuropsychiatric
disorders from the face, and other related problems.
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