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Abstract

Expression neutralization is the process of synthetically
altering an image of a face so as to remove any facial ex-
pression from it without changing the face’s identity. Facial
expression neutralization could have a variety of applica-
tions, particularly in the realms of facial recognition, in ac-
tion unit analysis, or even improving the quality of identi-
fication pictures for various types of documents. Our pro-
posed model, StoicNet, combines the robust encoding ca-
pacity of variational autoencoders, the generative power of
generative adversarial networks, and the enhancing capa-
bilities of super resolution networks with a learned encod-
ing transformation to achieve compelling expression neu-
tralization, while preserving the identity of the input face.
Objective experiments demonstrate that StoicNet success-
fully generates realistic, identity-preserved faces with neu-
tral expressions, regardless of the emotion or expression in-
tensity of the input face.

1. Introduction

Expression neutralization is the process of synthetically
altering an image of a face so as to remove any emotion
from it. When done properly the identity of the face should
not change, only the expression. This requires some intu-
ition about how faces differ, whether dynamically through
the display of emotion or in more fixed ways that constitute
one’s static facial features.

Algorithmically analyzing faces is an immense chal-
lenge due to the fact that human faces vary drastically in
appearance from one person to the next. Problems like fa-
cial recognition and emotion analysis are made significantly
harder by the fact that our appearance can vary as a function
of both identity and facial expression. These tasks would
likely be much easier if one could always be provided a
neutral version of faces to work with. Unfortunately, a spe-
cific individual’s neutral face is not always available, so the

next best option is to generate one using facial expression
neutralization. In addition to helping with facial recognition
or expression analysis, expression neutralization could also
be used for the generation of identification documents like
government issued licenses or missing person photos.

StoicNet tackles this problem by providing a means of
neutralizing any facial expression through a learned trans-
formation. The model combines the robust encoding ca-
pacity of the VAE, the generative power of GANs, and the
enhancing capabilities of super resolution networks with a
simple learned encoding transformation. This enables it to
achieve compelling expression neutralization. It is also fast
enough to be practical as a preprocessing step for other ap-
plications.

2. Related Work

Face alteration methods go as far back as the mid-2000’s
pre-deep learning techniques, when computer graphic re-
searchers began investigating the notion of face transfers.
Face transfer involves techniques for mapping pose and ex-
pressions obtained from one individual to the underlying 3D
model of another [23] and applying the known textures on
the modified face structure. These models require the use
of three-dimensional (3D) facial meshes which can be very
expensive to obtain and manipulate, especially when the ex-
pression adjustment is required for only one or a small num-
ber of facial images. A whole slew of related techniques
ensued in the following years and a summary of these can
be found in [25]. Such models proved useful in aiding face
recognition, irrespective of facial expressions [7].

A related problem [20] involves a single-sample face
recognition system in which selected source and transfer
images are projected into a feature space via locality pre-
serving projection (LPP). The learned transfer projection
matrix is then applied to training samples to transfer the
macro characteristics learned. These characteristics in-
volved facial expressions and pose. Specifically, the tech-
nique was used to transfer smiles to neutral faces, and face
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recognition was accomplished in the embedding space us-
ing nearest neighbor classification. Although the recogni-
tion was accomplished via nearest classes being preserved,
the resulting images were very blurry not visually appeal-
ing. Many other works built off this but focused more on the
face recognition aspect, rather than the face altering compo-
nent of the work.

With the advent of deep learning methods and large pub-
licly available training datasets, face altering techniques are
currently dominated by the use of VAEs and GANs. Face
style transfer is one of the earlier techniques for face alter-
ing. More specifically, some problems in face alteration can
also be formulated as an instance of style transfer where
attributes of a face such as hair style, facial expression,
beard/no-beard can be transferred from one image to an-
other. Zhu et al. [27] apply CycleGANSs for image-to-image
translation task and achieved good performance, especially
in their image generation task.

A somewhat related task is that of targeted face aging
where the authors pay particular emphasis on preserving
the identity of the source image in the resulting aged ver-
sion of the face. To this end, Wang et al. [24] implemented
an identity-preserved conditional GAN which functioned as
the face generator, and an age classifier forced the face gen-
eration at the target age. Also, along similar lines, Antipov
et al. [3] proposed an aging mechanism which also applies
a conditional GAN and used a local manifold adaptation
(LMA) technique to for identity preservation. In a more re-
cent work, the same authors included an additional module
that solved an LBFGS optimization problem for each image
at inference time [2], as an improvement over the LMA, but
this was not very efficient.

3. Method
3.1. Model Design

StoicNet is at its core a VAE-GAN. An image z is fed
into the encoder network, which applies several strided
convolution layers to encode it into Gaussian distributions,
represented as two vectors containing each latent feature’s
mean p and standard deviation o. These distributions are
then each sampled using the reparameterization technique
to get the latent vector representation z.

The encoding is then passed through the neutralizer,
which contains a single dense perceptron layer. This cre-
ates the neutral encoding z,,. This encoding is then given as
the input to the decoder, which uses a series of fractionally-
strided transposed convolution layers to convert the encod-
ing back into the image space, producing the initial gener-
ated image ;.

This initial image is of relatively low quality thanks to
VAE’s tendency to produce blurry images. To remedy this,
the low quality image is cleaned up using the enhancer net-

work to produce the final higher quality output x;. The
enhancer’s architecture is based on that of super-resolution
networks, featuring multiple residual blocks and skip con-
nections. This helps to fill in finer face details that may
have been blurry in the initial VAE output. To further im-
prove image clarity, outputs are post-processed with a sim-
ple sharpening filter.

During the training process described in the next section,
a discriminator network is also used. The discriminator is
trained along with the previous networks, attempting to dif-
ferentiate between real and generated imagery. Its archi-
tecture is roughly the same as the encoder except with ad-
ditional fully connected layers ending with a single output
value representing a “’realness” rating.

3.2. Training

StoicNet’s loss function is a combination of several
smaller loss functions. All of these require balancing to
achieve the desired output. This is done with the set of
weights W. The complete loss function is summarized in
equation 1.

L= Wlek:l + WTLT'(:‘Cl + (1 - Wg)L'r'eCQ + Wngan (1)

This function will be broken down in the following sub-
sections. Note that the neutralization is trained last, com-
pletely separately from the other networks, and is thus not
considered in the equation above. No neutralization is per-
formed during the VAE and Enhancer training stages. They
are simply trying to recreate the input images. The com-
plete StoicNet training diagram for these stages is shown in
Figure 1.

3.2.1 VAE Loss

The VAE’s encoder and decoder have separate loss func-
tions. Both are primarily composed of the reconstruction
loss. This is calculated using mean squared error (MSE)
between the pixel values of the real input image and the low
quality generated image.

Lyeer = /|l = Dec(Bne(a))|[3 @)

LDec = WrLrecl (3)

For the encoder, the loss function also includes the KLL
divergence of the encoding ¢(z|z) from the prior p(z), a
normal distribution with mean 0 and standard deviation 1.
It’s weight, Wy, is slowly ramped up from O to its full value
during the first several epochs of training.

Ly = Drr(q(z]2)||p(2)) )
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Figure 1. StoicNet Data Flow Diagram

LEnc = Wk‘lLkl + Wr'Lrecl (5)

Wiy, is roughly equivalent to the hyperparameter S used
in [9]. This is increased to encourage the encoder to produce
efficient disentangled encodings. Achieving thorough dis-
entanglement between the elements of the encoding is cru-
cial for the task of neutralization as it is imperative that emo-
tions are encoded separately from identity. If that doesn’t
happen then altering how much somebody is smiling could
also alter their hair color, making identity preserving neu-
tralization on the encoding utterly impossible.

3.2.2 Discriminator Loss

The discriminator is formulated for use as a LSGAN [19],
with its output using a linear activation instead of a sig-
moid. This provides smoother training by helping to avoid
the vanishing gradient when the discriminator becomes too
accurate. This is immensely helpful due to the fact that the
discriminator should ideally be as accurate as possible in
order to provide the best guidance for the generator.

As such, the loss function for the discriminator Lg;s is
simply the MSE between the true realness labels and the
discriminator’s predicted labels.

(D(x) —1)? + D(d(e(x)))* + D(E(d(e(x))))?

3
(6)
where, for shorthand, D(-) is the discriminator, E(-) is the
Enhancer, d(-) is the decoder, and e(-) is the encoder.

This is calculated for both the real images and both the
high and low quality generated images. Both outputs are
used to prevent the enhancer from becoming stuck in a cy-
cle. When the discriminator is not given the VAE’s un-
enhanced outputs, the enhancer will slowly learn improve-
ments on the original blurry images. However, it reaches a
point where the discriminator has mostly forgotten the orig-
inal blurry faces. At that point it becomes advantageous
to simply let the original low quality image pass through
the skip connections relatively unimpeded, starting the cy-
cle over again. By giving the discriminator the blurry unen-

Lpis =

hanced images, the enhancer is prevented from falling into
this lazy cycle.

3.2.3 Enhancer Loss

The enhancer is trained in two stages. For the first stage it
acts purely as an extension of the VAE’s decoder, using the
same kind of reconstruction loss on its own output image.

Lenn = \/H:,C — Enh(Dec(Enc(x)))||3 (7

The second stage involves two changes. First, the en-
hancer’s reconstruction loss is tweaked to be based on the
low quality image Dec(Enc(x)) instead of the input x.
This is done to make the enhancer act as a standalone mod-
ule instead of an extension of the decoder.

Lyeco = \/||Dec(Enc(x)) — Enh(Dec(Enc(x)))||3 (8)

The second change is the addition of the GAN’s adver-
sarial loss from the discriminator. This is balanced against
the reconstruction loss using the GAN loss weight, .
This can be thought of as balancing content and style, with
content being the identity of the face and style being the
image clarity.

Lgan = (Dis(Enh(Dec(Enc(z)))) — 1)? )

Lenn = (]- - Wg)L’l"862 + Wngan (10)

During stage 2, the loss functions for the Encoder and
Decoder are kept the same, and the neutralizer is still not
used. This changes during the third and final stage.

3.2.4 Neutralizer Loss

The final stage of StoicNet’s training involves freezing the
now-trained encoder, decoder, and enhancer networks and
training the neutralizer network. Up until this point the en-
coding vector z was being sent directly to the decoder with-
out modification. To achieve expression neutralization that
encoding must be altered in such a way as to only change

203



Input Reconstruction  Neutralized

Enhanced Sharpened True Neutral

Figure 2. Depiction of the results at each stage of StoicNet’s execution. The first reconstruction is the result of decoding without the
neutralizer being applied. Neutralized and enhanced images are the low quality and high quality outputs. Input and True Neutral images

(©Jeffrey Cohn.

the elements that encode emotion and not those that encode
identity. Rather than figuring out this alteration manually,
StoicNet learns the transformation.

To learn neutralization, two input images are used, .
containing an expressive face, and x,, containing the same
individual but with a neutral face. Both are encoded to pro-
duce their respective encodings. The neutralizer network is
then given the expressive encoding Enc(z.) and the output
is compared against the neutral encoding Ntr(Enc(zy,))
using MSE. This gives the following loss function for the
neutralizer:

Lytr = /|| Enc(a,) = Ner(Enc(z)|3 (1)

Thanks to the efficient and disentangled encoding en-
forced by the Lj; (see equation 4 above), learning neu-
tralization is quite straightforward. Once the neutralizer is
trained, the model is complete. For actual use the VAE can
be more precise by not sampling the encoding from distri-
butions. Instead z is simply taken from p directly.

4. Experiments and Results
4.1. Datasets
4.1.1 Cohn-Kanade

The Extended Cohn-Kanade (CK+) dataset provides 593
sequences of 123 different actors transitioning from neu-
tral faces to expressive faces of various emotions[14][18].
This makes is particularly well suited for learning identity-
preserving expression neutralization. These sequences are
preprocessed by using OpenCV to crop in a square around
each faces. Since the majority of the dataset consists of
black and white images, those that are provided in color are
also converted to grayscale.

For the first two stages of training, images are used in-
dividually. For training neutralization, the images are used
in pairs combining every image with the first image of the
sequence it is taken from. This provides pairings of neutral
and expressive images of varying intensity from the same
person.

It was found that the CK+ dataset alone was not well
suited for training a generative model due to the small num-
ber of different people provided, especially with such con-
sistent positioning and lighting. For this reason a second
dataset was added.

4.1.2 Labeled Faces in the Wild

The Labeled Faces in the Wild dataset features 13233
images of 5749 different people collected from the
web[12][17]. A variation of the dataset in which the faces
are all aligned using image funneling was chosen for use
in the training of StoicNet[11]. Similar to the CK+ dataset,
the images are preprocessed by converting to grayscale and
cropping around the faces.

These are used to augment the CK+ imagery during the
first two training stages in order to prevent simple memo-
rization. The greater number of identities and wider variety
of angles and lighting force the VAE to learn a more robust
feature-based encoding. The LFW imagery is not used in
the third stage of training since the images are not labeled
by emotion.

4.2. Results & Evaluation

As shown in Figure 2, StoicNet is able to effectively re-
construct, neutralize, and enhance facial imagery. Figure 3
further demonstrates that StoicNet is robust enough to work
on a variety of emotions for both male and female subjects.

Objective analysis is done in two ways to evaluate the
two key functions of StoicNet, neutralization and identity
preservation. Unless otherwise noted, a split of the dataset
not used for training was used for these analyses, consisting
of 6424 images.

4.2.1 Neutralization Analysis

For evaluating neutralization, images are analyzed using the
Facial Action Unit Coding System (FACS), which describes
the atomic facial movements known as action units (AU)
that can combine to make any facial expression[8]. Com-
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Figure 3. Neutralization of various expressions in both male and female faces. Top rows are the input images and the bottom rows are the
enhanced output images (no sharpening applied). Neutral faces are kept as such, while expressive faces are effectively neutralized. Input

images (©Jeffrey Cohn.

’ Image \ All \ Top 25% \ Top 10%
Expressive Input 4.31 9.22 11.44
StoicNet Neutralized | 2.10 2.32 2.45
True Neutral 1.42 1.82 1.92

Table 1. Average emotion intensities in expressive, StoicNet neu-
tralized, and true neutral images. Includes breakdown of results
for subsets of the most expressive input imagery.

bined they allow a thorough analysis of the facial expression
an individual is making.

To determine the magnitude of action units, images are
fed through OpenFace[4][5]. The action unit magnitudes
for each image are summed together to serve as an approx-
imation of the total expressiveness of that face. These sums
are then averaged across all samples to produce the aver-
age emotion intensity of the inputs, neutralizations, and true
neutral images.

[\

As shown in Table 1, the images produced by StoicNet
are far more neutral than the inputs. Note that even the
ground truth neutral images are not completely absent of
perceived facial movement. This is largely due to the great
variety of resting faces that people have, and the fact that
some individual’s resting faces can still appear somewhat
emotive. It should also be noted that the inputs are made
up of a range of expression intensities, from neutral to full
emotion intensity. For this reason, a breakdown is included
in the table to show the results on the top 25% (1606 sam-
ples) and the top 10% (642 samples) most expressive sam-
ples.

4.2.2 Identity Analysis

To objectively evaluate StoicNet’s ability to preserve iden-
tity in the neutralized face, facial recognition is done with
OpenFace[1]. The evaluation samples were used to gener-
ate 6424 sets of three pairs of images with the expressive
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Figure 4. Examples of poor output quality and identity preservation. Leftmost input image (©)Jeffrey Cohn.

| Pair | Identity Distance |
Positive 0.192
StoicNet Neutralized 0.660
Negative 1.493

Table 2. Average identity encoding distance compared to input im-
age

input face. The ”positive” pair is with the same individual’s
real neutral face, the “neutralized” pair with StoicNet’s gen-
erated neutral face and the “negative” pair with a different
person’s face. These three pairs are given to OpenFace and
the distances in identities of each pair are compared. Table 2
shows the average results of this comparison. As shown, the
average distance for the generated images is closer to the av-
erage positive distance than the average negative distance.

Based on this data, the threshold distance for being con-
sidered a match for facial verification is 0.842. Of the 6424
samples used for evaluation, the distance between the an-
chor and the generated sample was better than this threshold
and therefore considered a match 75.6% of the time. Fur-
thermore, for 1:2 facial recognition, the distance between
the anchor and generated image was less than the distance
between the anchor and the random negative 94.4% of the
time.

4.2.3 Biases and Shortcomings

Both of the datasets used for training suffer from an over
representation of younger Caucasians, and this bias is
clearly visible in the outputs of StoicNet, with outputs being
of considerably worse quality for inputs containing older or
non-Caucasian individuals. A sample of the lesser image
quality is shown in Figure 4.

Furthermore, both datasets featured relatively few indi-
viduals with glasses, so StoicNet tends to ignore them. This
effect is magnified by the blurry VAE output, which would
likely make thin-framed glasses disappear even if the data
contained more glasses-wearing individuals.

5. Conclusion and Future Work

It has been shown to be advantageous to use a deep con-
volutional feature distance instead of pixel distance for re-
construction loss. This is also referred to as perceptual
loss[13]. Perceptual loss is calculated by comparing the
distances between latent features of the input and output
images at certain layers within pre-trained networks like
VGG19 or Alexnet. While this provides a richer metric
for reconstruction loss, it can be computationally expensive
compared to pixel-based distances.

By encouraging disentangled encodings, StoicNet en-
codes the identities of faces separately from their emotion.
Using an learned neutralization transformation in this latent
encoding space, it can eliminate the expression of emotion
without disrupting the identity of the individual being de-
picted. By including an enhancer network to clean up the
initially blurry images, StoicNet is able to produce higher
quality outputs than a standalone VAE. Together, these en-
able it to effectively perform facial expression neutraliza-
tion.

StoicNet’s design is not inherently constrained to the
task of neutralizing faces and can easily generalize to other
applications. With a different dataset the model could eas-
ily be used for other transformations such as the removal
of glasses or facial hair. Like StoicNet, these could also be
immensely beneficial for tasks like facial recognition or the
generation of enhanced images for identification cards.

6. Background for StoicNet
6.1. Variational Auto-Encoders

The Variational Auto-Encoder (VAE) is an improvement
on the auto-encoder model that encodes inputs into a set
of distributions rather than directly into discrete values[15].
By encoding into distributions, the VAE is forced to learn
a more continuous latent encoding space. This is crucial
when later altering the encodings as it helps to ensure that
novel values in the latent space decode into viable points in
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the image space. VAEs can be used for image data quite
effectively by implementing them with convolutional layers
instead of fully connected layers.

A VAE is composed of two separate networks, an en-
coder and a decoder. The encoder takes an input image
and outputs two vectors, one representing the means (1) and
one representing the standard deviations (o) for each latent
feature. These distributions are then sampled to create the
latent feature vector z. This sampling is done using a repa-
rameterization trick to allow the gradient to pass through the
sampling operation:

z=pu+0Oc¢, (12)

where € ~ N (0, I).

The z vector is then fed into the decoder to transform the
data back into image space. The bottleneck of the encoding
forces the VAE to learn an efficient encoding of the data

VAEs typically use a two part loss function. The first
component is how well it recreates the input image, referred
to as the reconstruction loss. The second component is the
KL Divergence of the latent distributions compared to the
normal distribution (V (0, 1)). This component prevents the
VAE from encoding the data into points that are spread far
apart with little variation, which would defeat the purpose
of encoding into distributions in the first place.

Work has been done to play with the ratio of weights
between these two components by adding a S multiplier to
the KL Divergence [9]. Increasing 3 has been shown to
improve the efficiency of the encoding, promoting disen-
tangling of the encoded features. This disentangling means
that features of the input space are encoded separately in the
latent vector. For example, the first index of the latent vec-
tor might encode the color of something, the second might
encode the shape, and the third might encode size. Without
disentangling the distinctions of which elements correspond
to which features might not be so clear. It has also been
shown that there are benefits to providing a warm-up period
to slowly ramp up (8 during the beginning of training to al-
low the VAE time to start creating more accurate encodings
before being penalized too harshly [22].

One of the primary advantages of a VAE over a tradi-
tional auto-encoder is the ingrained ability to sample from
the latent distributions. Whereas a traditional auto-encoder
might map features to any range of values within the la-
tent space, the KL-Divergence loss of the VAE encourages
a denser encoding. This makes image manipulation much
easier, as it allows for smoother interpolation within the la-
tent space [10].

6.2. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a model
that pits a generator network against a discriminator net-
work, with the generator attempting to create synthetic im-

ages and the discriminator trying to distinguish whether im-
ages are real or synthetic. When being applied to images
it is standard for both of these two networks to utilize con-
volutional layers, leading to the title of being a Deep Con-
volutional Generative Adversarial Network (DCGAN)[21].
All of the approaches discussed here are variations on DC-
GAN:S.

Compared to VAEs, GANSs are usually able to produce
much sharper imagery. This is because while standard
VAEs work with explicit loss functions, a GAN’s discrim-
inator is able to provide a more robust, learned loss func-
tion for the generator. This is much better for highly multi-
modal data like faces as it avoids the blurriness that results
from the tendency to average the data when using explicit
loss functions.

GANs aren’t inherently designed for the manipulation
of imagery. To achieve this, conditions are often injected
into the input data, creating what is known as a condi-
tional GAN. These conditions can be injected as part of the
encoding[2] or as additional layers of the input image[24].
However, when dealing with manipulation of data, it is im-
portant to include some form of reconstruction loss to en-
sure that the output is in some way related to the input.
For example, while GANSs can create realistic face images,
they usually generate a person rather than a specific person.
However, it has been shown that by augmenting the gen-
erator’s discriminator-based loss function with an identity
preservation rating, one can produce highly compelling age
alterations to specific target individuals [24][2].

6.3. Hybrid Models

Drawing inspiration from a multitude of different mod-
els, many have explored the idea of using hybrid ap-
proaches. One such hybrid is to incorporate architecture
similar to those used in super resolution networks[6][27].
By incorporating residual blocks and skip connections into
the decoder, it is possible to greatly reduce the blurry out-
puts that standard VAEs are notorious for. Inspired by the
results of the multi-stage VAE proposed by Cai et al.[6],
StoicNet adopts a similar multi-stage architecture.

Another hybrid approach is to combine convolutional
VAEs and DCGAN:Ss into one single model[16][26]. With
these VAE-GAN models the decoder of the VAE doubles
as the generator of the GAN. StoicNet expands upon the
multi-stage VAE architecture by also including a discrimi-
nator during training in order to provide adversarial loss for
its image enhancing.

Acknowledgments

This material is based upon work partially supported by
the National Science Foundation under Grant No. 1846076.

207



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

(14]

[15]

Brandon Amos, Bartosz Ludwiczuk, and Mahadev Satya-
narayanan. Openface: A general-purpose face recognition
library with mobile applications. Technical report, CMU-
CS-16-118, CMU School of Computer Science, 2016.
Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay.
Face aging with conditional generative adversarial networks.
CoRR, abs/1702.01983, 2017.

Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay.
Boosting cross-age face verification via generative age nor-
malization. In IJCB 2017, International Joint Conference
on Biometrics, October 1-4, 2017, Denver, Colorado, USA,
Denver, ETATS-UNIS, 10 2017.

T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L. Morency. Open-
face 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE
International Conference on Automatic Face Gesture Recog-
nition (FG 2018), pages 5966, 2018.

T. Baltrusaitis, M. Mahmoud, and P. Robinson. Cross-dataset
learning and person-specific normalisation for automatic ac-
tion unit detection. In 2015 11th IEEE International Confer-
ence and Workshops on Automatic Face and Gesture Recog-
nition (FG), volume 06, pages 1-6, 2015.

Lei Cai, Hongyang Gao, and Shuiwang Ji. Multi-stage vari-
ational auto-encoders for coarse-to-fine image generation.
CoRR, abs/1705.07202, 2017.

Baptiste Chu, Sami Romdhani, and Liming Chen. 3d-aided
face recognition robust to expression and pose variations.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2014.

P Ekman and W Friesen. Facial Action Coding System: A
Technique for the Measurement of Facial Movement. Con-
sulting Psychologists Press, Palo Alto, 1978.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew M Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. /CLR, 2017.
Xianxu Hou, LinLin Shen, Ke Sun, and Guoping Qiu.
Deep feature consistent variational autoencoder. CoRR,
abs/1610.00291, 2016.

Gary B. Huang, Vidit Jain, and Erik Learned-Miller. Unsu-
pervised joint alignment of complex images. In /ICCV, 2007.
Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environ-
ments. Technical Report 07-49, University of Massachusetts,
Ambherst, October 2007.

Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Percep-
tual losses for real-time style transfer and super-resolution.
CoRR, abs/1603.08155, 2016.

T. Kanade, J. F. Cohn, and Yingli Tian. Comprehensive
database for facial expression analysis. In Proceedings
Fourth IEEE International Conference on Automatic Face
and Gesture Recognition (FG’00), pages 46-53, Grenoble,
France, 2000.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes, 2013.

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

208

Anders Boesen Lindbo Larsen, Sgren Kaae Sgnderby, and
Ole Winther. Autoencoding beyond pixels using a learned
similarity metric. CoRR, abs/1512.09300, 2015.

Gary B. Huang Erik Learned-Miller. Labeled faces in
the wild: Updates and new reporting procedures. Techni-
cal Report UM-CS-2014-003, University of Massachusetts,
Ambherst, May 2014.

Patrick Lucey, Jeffrey F. Cohn, Takeo Kanade, Jason M.
Saragih, Zara Ambadar, and lain A. Matthews. The extended
cohn-kanade dataset (ck+): A complete expression dataset
for action unit and emotion-specified expression. In Proceed-
ings of the Third International Workshop on CVPR for Hu-
man Communicative Behavior Analysis (CVPR4HB 2010),
pages 94-101, San Francisco, USA, 2010.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau,
and Zhen Wang. Multi-class generative adversarial networks
with the L2 loss function. CoRR, abs/1611.04076, 2016.

Jie Pan, Xuesong Wang, and Yuhu Cheng. Single-sample
face recognition based on lpp feature transfer. IEEE Access,
4:1-1, 01 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-
vised representation learning with deep convolutional gen-
erative adversarial networks. In Yoshua Bengio and Yann
LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings, 2016.

Casper Sgnderby, Tapani Raiko, Lars Maalge, Sgren
Sgnderby, and Ole Winther. How to train deep variational
autoencoders and probabilistic ladder networks. ICML, 02
2016.

Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan
Popovic. Face transfer with multilinear models. ACM Trans.
Graph., 24(3):426-433, 2005.

Zongwei Wang, Xu Tang, Weixin Luo, and Shenghua Gao.
Face aging with identity-preserved conditional generative
adversarial networks. CVPR, pages 7939-7947, 06 2018.
Fei Yang, Jue Wang, Eli Shechtman, Lubomir D. Bourdev,
and Dimitris N. Metaxas. Expression flow for 3d-aware face
component transfer. ACM Trans. Graph., 30(4):60, 2011.
Zhifei Zhang, Yang Song, and Hairong Qi. Age pro-
gression/regression by conditional adversarial autoencoder.
CoRR, abs/1702.08423, 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. CoRR, abs/1703.10593,
2017.



