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Abstract— Adoption of machine learning (ML)-enabled
cyber-physical systems (CPS) are becoming prevalent in various
sectors of modern society such as transportation, industrial,
and power grids. Recent studies in deep reinforcement learning
(DRL) have demonstrated its benefits in a large variety of data-
driven decisions and control applications. As reliance on ML-
enabled systems grows, it is imperative to study the performance
of these systems under malicious state and actuator attacks.
Traditional control systems employ resilient/fault-tolerant con-
trollers that counter these attacks by correcting the system via
error observations. However, in some applications, a resilient
controller may not be sufficient to avoid a catastrophic failure.
Ideally, a robust approach is more useful in these scenarios
where a system is inherently robust (by design) to adversarial
attacks. While robust control has a long history of development,
robust ML is an emerging research area that has already
demonstrated its relevance and urgency. However, the majority
of robust ML research has focused on perception tasks and not
on decision and control tasks, although the ML (specifically
RL) models used for control applications are equally vulnerable
to adversarial attacks. In this paper, we show that a well-
performing DRL agent that is initially susceptible to action
space perturbations (e.g. actuator attacks) can be robustified
against similar perturbations through adversarial training.

I. INTRODUCTION

Data-driven and learning-based methods are increasingly
being applied to cyber-physical systems (CPS) with ubiqui-
tous sensing and advancements in data analytics algorithms.
Recent studies have demonstrated the feasibility of deep
reinforcement learning (DRL) paradigms being applied on
CPS as a controller [1], [2], [3]. The success of these
RL paradigms are mainly attributed to the advent of deep
neural networks (DNN) that act as expressive decision-
making policies. Consequently, adversarial attacks on CPS
are inevitable as studies reveal the vulnerability of DNN
to adversarial attacks, hence compromising the reliability
of RL-based controllers. Success of adversarial attacks in
breaking DNNs questions their validity, especially in life-
and safety-critical applications such as self-driving cars [4].
The threat caused by attacks on DNNs was first detected
while white-box attacks (i.e. attacks that are crafted based
on a prior knowledge about the model architecture, hyper-
parameters, etc.) were being studied [5], [6], [7], [8], [9].
Since then, it has also been shown that transfer attacks
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(i.e. attacks that were crafted for one DNN architecture and
mounted on a different DNN architecture) are capable of
breaking DNNs [10].

Researchers have proposed different methods to de-
fend against adversarial attacks. The most popular method
amongst them is adversarial training, where the DNN is
trained with an adversarially perturbed dataset [9], [11],
[12]. A more stable adversarial training decouples the
min-max problem in the robust optimization problem and
solves the problem using Danskin’s theorem [13]. This
requires finding the worst case perturbation at each training
epoch and updating the model parameters using the dataset
which has been augmented by the corresponding worst case
attacks. Several methods such as the fast gradient sign
method (FGSM) [6], Carlini-Wagner (CW) [5], projected
gradient descent (PGD) [11], tradeoff-inspired Adversarial
defense via surrogate-loss minimization (TRADES) [14],
and Stochastic Saddle-point Dynamical System (SSDS) [12]
approach are a few such examples which were proposed to
find the worst case attack.

In contrast to the defense schemes proposed for learning-
based methods, other methods rooted in classical control
theory have also been developed to counter adversarial
perturbations applied on classical controllers [15], [16]. In
control theory, the notions of robust control and resilient con-
trol have been extensively studied. While robust controllers
attempt to remain stable and perform well under various
(bounded) uncertainties [17], resilient controllers try to bring
back the system to a gracefully degraded operating condition
after an adversarial attack [18]. However, similar notions of
robustness and resilience have not been studied well for RL-
based controllers, except a few recent works [19], [20].

In this study, we investigate the possibility of developing
DRL-based controllers that are robust against adversarial
perturbations (within specific attack budgets) to the action
space (e.g., actuators). Specifically, we develop an algorithm
that trains a robust DRL agent via action space adversar-
ial training based on our previous work on gradient-based
optimization on action space attacks (MAS-attacks) [21].
We would also like to highlight that developing a resilient
architecture that is able to recover from adversarial perturba-
tions may not be tractable as DRL algorithms are inherently
trajectory-driven. This is because these complex nonlinear
models tend to diverge significantly when they encounter an
undesirable trajectory.



II. RELATED WORKS

While the robustification of DRL agents under state space
attacks and mitigation of actuator attacks in CPS have been
studied in both control and ML literature, robustification of
DRL agents against actuator attacks have been relatively less
studied. In this section, we divide our literature review into
control-theory based defense schemes, adversarial attack and
defense on DNN, and robustification DRL agents.

A. Control-Theory Based Defense

Methods to mitigate or improve resiliency of classic
controllers against actuation attacks have been extensively
studied. For example, authors of [15] proposed a distributed
attack compensator which has the capability to recover
agents that are under attacks by estimating the nominal
behaviors of the individual agent in a multi-agent setting.
On the other hand, numerous studies have also developed
theoretical bounds on a system’s ability to recover from
adversarial perturbations and designed corresponding solu-
tions such as decoupling state estimates from control [16]
and [22] combining a filter, perturbation compensator, and
performance controller to re-stabilize a system. Additionally,
it has been shown that actuation attacks may go undetected
if the attacks are deployed at a higher frequency than sensor
sampling frequencies [23], but these attacks can be mitigated
with controllers with multi-rate formulations [24].

B. Adversarial Attacks and Defenses

After [8] exposed the vulnerabilities of DNNs to adversar-
ial attacks, a defense strategy was proposed by [7], which de-
fines a regularization term in the classifier. Concurrently, [6]
introduced Fast Gradient Sign Method (FGSM) which was
used by [9] to craft a defense strategy against iterative FGSM
attacks. Departing from the notion of white-box attacks, [10]
showed the vulnerability of DNNs to transfer attacks in
which no prior knowledge about the model architecture is
needed. Before adversarial training was popularized as a
defense method [11], [25], [6], researchers proposed sev-
eral other defense approaches including defining a network
robustness metric [26] and using de-noising auto-encoders
to form Deep Constructive Networks [27]. After adversarial
training gained popularity, [28] proposed defensive distilla-
tion as another powerful method for defense, although [5]
devised multiple loss functions to produce attacks that could
break this defense mechanism. Since DRL algorithms em-
ploy the use of DNNs as policy functions, those models are
also found vulnerable to the attacks described above [29].

C. Robust Deep Reinforcement Learning

In the context of training a DRL agent to be robust against
state space attacks where the input to the DRL agent is
perturbed, [30] and [31] demonstrated that a DRL agent
that is robust to parameter and environmental variations can
be obtained by adversarially training the agent.. In another
study, [20] proposed a meta-learning framework where a
meta-RL agent has access to two sub-policies. The meta-
agent learns to switch between a policy that maximizes
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Fig. 1. Robustifying DRL agent by perturbing the original agent’s action.
The perturbation is generated by a white-box adversary, where the adversary
has access to the agent’s network architecture and parameters.

reward during nominal conditions and another policy that
mitigates and copes with adversarially perturbed states by
observing advantage estimates of both policies during de-
ployment. [32] used a different robustifying scheme by for-
mulating a zero-sum min-max optimization problem where
the DRL agent is trained in the presence of another DRL
agent that adversarially perturbs the system. Similarly, [19]
demonstrated that DRL agents can be robustified against
disturbance forces by training the agent with some noise
perturbation in a min-max formulation.

III. METHODOLOGY

We provide a brief overview of DRL algorithms, followed
by discussion of robust learning from a robust optimization
standpoint. Finally, we formulate the robust RL methodology
by combining the RL and robust learning formulation.

A. Reinforcement Learning

In RL, the goal of an agent is to maximize its cumulative
future rewards. A typical setup involves an agent interacting
with an environment for a finite number of steps, or until a
termination condition is met. Upon termination of an episode,
the environment resets to an initial state for the agent and
repeats the process again. At each step in the environment
t € T, the agent receives a state s; € S and reward r; € R,
then selects an action a; € A(s) from the agent’s policy
7. T denotes the finite number of steps for an environment,
S denotes all possible states for an environment, R denotes
the cumulative reward for one episode, and A(s) denotes
all possible actions conditioned upon the state. Every state
observation is quantified with a reward value indicating how
valuable that state is for the agent. Specifically, given a finite
number of time steps 7', the agent’s goal is to learn an
optimal policy which maximizes the cumulative discounted
rewards Gy:

T

Gy = ZR =i+ + Ve o T e (D

t=0

where gamma ~ € [0,1). A ~y-value of 0 makes the agent
nearsighted (prefer short-horizon rewards), while a value of
1 makes the agent farsighted (prefer long horizon rewards).
Since being in a specific state is a direct result of previous
state and action, the agent’s policy will evolve over time
to refine the understanding of good and bad trajectories
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Fig. 2. The goal of the agent is to land at the goal. Annotated directional
arrows indicate thrust direction of the lunar lander

T (sequence of state-action combination). Ultimately, the
goal is to optimize the agent’s policy 7*(a|s) such that the
mapping between state and action is optimal.

There are two known methods to optimize a policy, namely
action-value and policy gradients. Action-value methods op-
timize the action value for each state-action pair Q7 (s, a)
as shown in Eq. 2. Examples of action-value methods
include Deep Q-Network (DQN) [33] and DoubleDQN
(DDQN) [34].

Q7 (s¢,0a¢) = mELXE[GHSt,at] 2

Policy gradient methods optimize a policy parameterized by
theta 0, 7y (a|s), where 6 is directly optimized to maximize
the expected reward function J(9):

JO) = d"(s:) Y molas|s)Q (se,ar)  (3)

st€S at€A

d™(s;) denotes the stationary distribution of Markov
chain [35] for my. Examples of policy gradient methods
include Trust Region Policy Optimization (TRPO) [36] and
Proximal Policy Optimization (PPO) [37].

B. Robust Optimization Classical Formulation

The robust optimization problem can be defined as [11]:

RO = min E(z,y)~D Igleaé( L(w,x + 4, y)} )

where x € R™ is the dataset under a data distribution D with
set of labels, y. The loss function (e.g. cross-entropy loss)
with additive perturbations ¢ € B is denoted by L(w, 2+, y)
with w € R"™ as the model parameters (decision variables).
Here the saddle point problem is looked at as a composition
of an inner maximization and an outer minimization, where
the inner maximization tries to find a specific perturbation
for each data point x such that the overall loss is maximized.
In parallel, the outer minimization aims to achieve the model
parameters which minimize the corresponding adversarial
loss.

The next step is to define the attack model.We introduce a
specific perturbation § € B for each data point x, where
B is the set of allowed perturbations (B € R™). This
set acts as a normalization for the perturbation power. For
example, [, ball around x is a popular way to define the

perturbation budget [6]. There are several attack methods
to find the corresponding adversary ¢ for each data point
z (i.e. FGSM, PGD, etc.). In this paper, we use PGD for
finding the adversaries [11] which uses « as the step-size,
and can be formulated as:

Tpt1 = o + o sgn(VyL(w, z,y)) ®)

0

For training a neural network, Stochastic Gradient Descent
method is used for solving the outer minimization problem at
the maximizer point of the inner problem. This approach is
valid as Danskin’s theorem proves that the gradients at the
inner maximizer act as a valid descent direction for outer
loss minimization [13].

C. Robust Reinforcement Learning Agents

To achieve a robust DRL agent, the robust optimization
is formulated as a DRL problem. In this paper, we focused
on white-box attacks in action-space. As such, the robust
optimization problem can be written as:

RO = max E(s,q0) min R(s¢,at + 0y) (6)

where (s,a) € R are state and action pairs. The reward
function with additive perturbations §; € B is denoted by
R(st,as + ;) where (s, a) are updated based on the policy
(mg(a|s)) in each iteration, with # as the model parameters.
Note that this formulation is different from the classical
RO formulation (Eq. 4) in which model parameters are an
explicit input to the loss function, whereas in RL the reward
function is not an explicit function of model parameters.
The attack formulation in RL is based on our previous
work with MAS-attack [21]. MAS-attacks are derived from
white-box attacks in action space, where the perturbations J;
for each (s;, a;) are computed based on complete knowledge
of the policy of the agent, 7y (See Fig. 1). Each perturbation
d¢ is bounded by B € R, by projecting the perturbations
back into B. As MAS-attack uses PGD to iteratively find the
perturbations, we can formulate the attack as:

ap+1 = ar —a Vo, D (7

where k is the iteration number, « is the step size and D is
the action distribution obtained from the agent’s policy my.
Here, we note that while the robust optimization formulation
was formulated using the reward function, in reality, the
reward function is unknown to the DRL agent or the virtual
adversary. Hence, the reward function is approximated by the
reward-maximizing action distribution D for gradient com-
putations [21]. After obtaining the adversarial perturbations
and adding it to the nominal actions, we train the DRL agent
using standard policy gradient methods, which solves the
outer maximization problem in the formulation above. An-
other distinction we would like to note is that while a k-step
PGD is usually used to compute the adversarial attacks, with
k being fixed, we do not adhere to that procedure. Instead,
we define a tolerance e and keep iterating through the PGD



process until the adversarial actions saturate. This ensures
that the computed adversarial action actually corresponds
to bad action rather than being approximated by a fixed k-
number of gradient steps. The adversarial training algorithm
to robustify the DRL agent is shown in Alg. 1.

Algorithm 1: MAS-Adversarial Training

Input: episodes N, episodic limit T', step size a,
convergence criteria e, budget B

Initialize state s, policy g
forne{l,..,N} do

fort €T do

Get action distribution D from mg(s¢)

Sample a; from D

ap = at

Sample ag4q from D

while Ap41 — Ak > € do
| g4+l = A — @ Vak_D

end

0p = PB(ij-l — az)

ar = a; + 0t

Step through environment with a;

end
if Time to update then
| Update agent’s policy my
end
end

IV. EXPERIMENTS

A. Environment Setup

Experiments were conducted in OpenAl gym’s Lunar
Lander environment [38], where the goal is to land the lander
safely while minimizing thruster usage. The state space
of the environment consist of eight continuous values: x-y
coordinates of the lander, velocity in x-y components, angle
and angular velocity of the lander, and a boolean contact
variable for left-right lander legs (e.g. 1 for contact, O for
no contact). The action space available are two continuous
vectors [-1,1]. First vector controls the up-down engine,
where values within [-1,0] turns off the engine while values
within (0,1] maps to 50% - 100% of engine power. Second
vector controls left-right engines, where [-1,-0.5] and [0.5,1]
controls left and right engine respectively.

For this environment, the agent’s goal is to maximize
reward. Given an arbitrary starting point (as seen in Fig. 2),
the RL agent has to land on the landing pad without crashing.
The agent receives positive rewards (e.g. between 100 to
140) for landing. The agent will incur negative rewards if the
lander moves away from the landing pad. Each successive
landing leg contact gives 10 rewards each. Firing the up-
down engine cost -0.3 rewards each step. The episode is
terminated if the lander crashes or is at rest, which gives
-100 and 100 rewards respectively.
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Fig. 3. Training plots on robustly trained DRL agents with MAS-attacks

(£1 and £2 projection). Seven agents was trained for each projection method.
Each rewards are averaged across all agents, followed by a moving average.

TABLE I
SUMMARY STATISTICS OF AGENT’ S REWARDS
Environment Nominal Adversarial
0 Agent Nominal Robust Nominal Robust
Reward 2214074 221+054 074+133 2.39+047
Environment Nominal Adversarial
9 Agent Nominal Robust Nominal Robust
Reward 2214074 1.74+063 060+1.10 2.00+0.61

B. Deep Reinforcement Learning Training and Parameters

For this experiment, we trained a PPO agent with an
Actor-Critic architecture [39]. In this architecture, both the
actor and the critic share the same network of multi-layer
perceptrons made up of dense layers. The actor has an
additional dense layer which outputs the policy in the form
of a Gaussian model and the critic estimates the value of
the action chosen by the actor. To encourage exploration,
an entropy term is also added to the loss function which
consists of the actor’s loss and the critic’s loss. The loss
function is then jointly optimized using Adam optimizer.

V. RESULTS AND DISCUSSION

We conducted two different experiments to study the
difference in robustifying DRL agents by using £1 and £2
projection methods with MAS-attack budget of 1 and step
size of 3 within Algorithm 1.

A. Convergence of Robust Agent

In this section, we analyzed the convergence plots (Fig. 3)
of the robust agent empirically. The robust agent was trained
with £1 and £2 perturbations at every step for 15000 episodes.
For each projection method, we trained seven DRL agents
with the same network architecture and parameters across
different seeds. After 15000 episodes, training rewards are
averaged across seven agents, followed by a moving window
of 100 episodes to obtain results shown in Fig. 3. Agents
trained with £1 converged faster to a higher reward at
approximately 4500 episodes as compared to training with
£2, which stabilized around 9000 episodes. This reveals that
it is slightly harder to robustify the agent against £2 as
compared to £1 due to £2 attacks being more distributed
along action dimensions compared to £1.
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Fig. 4. A comparison of reward distributions between a nominally trained agent and adversarially trained agent for both £1 and £2 MAS attacks. We
observe that the distribution of rewards for a nominal agent shifts to the left and have long tails in the regions with negative rewards when subjected to
attacks. In comparison, the distributions of rewards remain similar when the robustly trained agents are subjected to attacks.

B. Performance Comparison

We compare the performance of the robustly trained DRL
agents against the nominally trained DRL agent. Specifically,
we tested both DRL agents under two environment settings;
nominal and adversarial environment. A nominal environ-
ment denotes scenarios where the agent is not attacked, while
the agent is attacked in adversarial environments. Fig. 4
shows a histogram of all four possible scenarios for each
projection attack. For both projection attacks, the nominal
agent tested in the nominal environment is identical. The
other three scenarios show slightly different results due
to different projection attacks. We summarize the reward
distribution of each scenario in Table I. Rewards within the
range of 2.5 to 3.0 are successful landing experiments, where
the DRL agent learns to land on the landing pad and shuts off
it’s engines. Rewards between 1.0 to 2.5 are DRL agents that
lands successfully but continuously loses rewards as it fails
to turn off the engine. Rewards below 1.0 are experiments
where the lunar lander crashed or flew out of frame.

1) Nominal environment: In nominal environments, the
nominal agent’s performance is identical across both £1 and
£2 plots in Fig. 4 which is expected, as the agent is not
attacked. As a result, the agent has a mean reward of 2.21 4
0.74. This indicates the nominal agent successfully lands and
turns off its engine.

Next, we evaluate both the robust agent trained with
£1 and £2 projection attacks in the nominal environment.
The rewards for the robust agent in 1 and ¢2 are 2.21 &
0.54 and 1.74 + 0.63 respectively. We hypothesize that the
nature of ¢2 crafted attacks are more evenly distributed
across action dimension, hence it is harder to train and test
against £2 attacks where else f1 distribute attacks into one
dimension. These results are counterintuitive to the notion
of robustifying a DRL agent, where the expected results of
a robust agent should be higher than the nominal agent in
the nominal environment. Interestingly, the same behavior
has been observed when robustifying DNN used for image
classification as demonstrated in [11].

2) Adversarial environment: In the adversarial environ-
ment, the nominal agent’s performance in both £1 and £2
projection attacks dropped significantly as anticipated. The

nominally trained agent’s policy was trained in environments
with no perturbations. The rewards for both /1 and £2
projection attacks are 0.74+1.33 and 0.60+1.10 respectively.
Hence, both projection attacks successfully minimized the
nominal agent’s reward. In both 1 and #2 attacks, we
observed a high frequency of rewards obtained within the
range of 1.0 and 1.5, which corresponds to scenarios where
the lander landed but failed to turn off its engine.

For the robust agent, the performance of both £1 and £2
trained agent increased when compared to the nominally
tested robust agent counterpart. The rewards for /1 and £2
trained agents are 2.39 4 0.47 and 2.00 £ 0.61 respectively.
Similar to counter-intuitive observations made earlier, we
note that the expected results should be a decrease in rewards
compared to the robust agent in the nominal environment.
These counter intuitive results reveal an important char-
acteristic of adversarial training defense schemes. We can
expect that an agent that has been adversarially trained will
perform well when tested in an adversarial environment, but
at the cost of a slightly reduced performance when tested in
nominal situations.

Although it is not a direct comparison, it is interesting to
note that the robust agent trained with £1 projected attacks in
the adversarial environment outperforms the nominal agent in
the nominal environment. This is likely because the nominal
agent can only explore and maximize its reward with familiar
trajectories seen during training. For the robust £1 agent, the
agent’s policy explored many more trajectories with the help
of adversarial perturbations. Therefore, it has likely found
other trajectories with much higher rewards that the nominal
agent did not explore.

VI. CONCLUSIONS

Deep RL based controllers are increasingly popular as
they demonstrate a potential for controlling complex CPS.
Adversarial attacks on these controllers are emerging, which
requires these controllers to be robustified against these at-
tacks. In this work, we formulate the problem of robustifying
a DRL agent as a robust optimization problem. We adversar-
ially trained a DRL agent that is subjected to action space
perturbations and demonstrate that it still performs robustly



in the presence of actuator perturbations. In some cases, it
even improved the performance of the agent in the absence of
attacks. Hence, we show that it is beneficial to adversarially
train a DRL agent. Future direction includes extending this
work to different attack models and experimenting with
transferability of attacks and defense results.
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