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Abstract— Adoption of machine learning (ML)-enabled
cyber-physical systems (CPS) are becoming prevalent in various
sectors of modern society such as transportation, industrial,
and power grids. Recent studies in deep reinforcement learning
(DRL) have demonstrated its benefits in a large variety of data-
driven decisions and control applications. As reliance on ML-
enabled systems grows, it is imperative to study the performance
of these systems under malicious state and actuator attacks.
Traditional control systems employ resilient/fault-tolerant con-
trollers that counter these attacks by correcting the system via
error observations. However, in some applications, a resilient
controller may not be sufficient to avoid a catastrophic failure.
Ideally, a robust approach is more useful in these scenarios
where a system is inherently robust (by design) to adversarial
attacks. While robust control has a long history of development,
robust ML is an emerging research area that has already
demonstrated its relevance and urgency. However, the majority
of robust ML research has focused on perception tasks and not
on decision and control tasks, although the ML (specifically
RL) models used for control applications are equally vulnerable
to adversarial attacks. In this paper, we show that a well-
performing DRL agent that is initially susceptible to action
space perturbations (e.g. actuator attacks) can be robustified
against similar perturbations through adversarial training.

I. INTRODUCTION

Data-driven and learning-based methods are increasingly
being applied to cyber-physical systems (CPS) with ubiqui-
tous sensing and advancements in data analytics algorithms.
Recent studies have demonstrated the feasibility of deep
reinforcement learning (DRL) paradigms being applied on
CPS as a controller [1], [2], [3]. The success of these
RL paradigms are mainly attributed to the advent of deep
neural networks (DNN) that act as expressive decision-
making policies. Consequently, adversarial attacks on CPS
are inevitable as studies reveal the vulnerability of DNN
to adversarial attacks, hence compromising the reliability
of RL-based controllers. Success of adversarial attacks in
breaking DNNs questions their validity, especially in life-
and safety-critical applications such as self-driving cars [4].
The threat caused by attacks on DNNs was first detected
while white-box attacks (i.e. attacks that are crafted based
on a prior knowledge about the model architecture, hyper-
parameters, etc.) were being studied [5], [6], [7], [8], [9].
Since then, it has also been shown that transfer attacks
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(i.e. attacks that were crafted for one DNN architecture and
mounted on a different DNN architecture) are capable of
breaking DNNs [10].

Researchers have proposed different methods to de-
fend against adversarial attacks. The most popular method
amongst them is adversarial training, where the DNN is
trained with an adversarially perturbed dataset [9], [11],
[12]. A more stable adversarial training decouples the
min-max problem in the robust optimization problem and
solves the problem using Danskin’s theorem [13]. This
requires finding the worst case perturbation at each training
epoch and updating the model parameters using the dataset
which has been augmented by the corresponding worst case
attacks. Several methods such as the fast gradient sign
method (FGSM) [6], Carlini-Wagner (CW) [5], projected
gradient descent (PGD) [11], tradeoff-inspired Adversarial
defense via surrogate-loss minimization (TRADES) [14],
and Stochastic Saddle-point Dynamical System (SSDS) [12]
approach are a few such examples which were proposed to
find the worst case attack.

In contrast to the defense schemes proposed for learning-
based methods, other methods rooted in classical control
theory have also been developed to counter adversarial
perturbations applied on classical controllers [15], [16]. In
control theory, the notions of robust control and resilient con-
trol have been extensively studied. While robust controllers
attempt to remain stable and perform well under various
(bounded) uncertainties [17], resilient controllers try to bring
back the system to a gracefully degraded operating condition
after an adversarial attack [18]. However, similar notions of
robustness and resilience have not been studied well for RL-
based controllers, except a few recent works [19], [20].

In this study, we investigate the possibility of developing
DRL-based controllers that are robust against adversarial
perturbations (within specific attack budgets) to the action
space (e.g., actuators). Specifically, we develop an algorithm
that trains a robust DRL agent via action space adversar-
ial training based on our previous work on gradient-based
optimization on action space attacks (MAS-attacks) [21].
We would also like to highlight that developing a resilient
architecture that is able to recover from adversarial perturba-
tions may not be tractable as DRL algorithms are inherently
trajectory-driven. This is because these complex nonlinear
models tend to diverge significantly when they encounter an
undesirable trajectory.



II. RELATED WORKS

While the robustification of DRL agents under state space
attacks and mitigation of actuator attacks in CPS have been
studied in both control and ML literature, robustification of
DRL agents against actuator attacks have been relatively less
studied. In this section, we divide our literature review into
control-theory based defense schemes, adversarial attack and
defense on DNN, and robustification DRL agents.

A. Control-Theory Based Defense

Methods to mitigate or improve resiliency of classic
controllers against actuation attacks have been extensively
studied. For example, authors of [15] proposed a distributed
attack compensator which has the capability to recover
agents that are under attacks by estimating the nominal
behaviors of the individual agent in a multi-agent setting.
On the other hand, numerous studies have also developed
theoretical bounds on a system’s ability to recover from
adversarial perturbations and designed corresponding solu-
tions such as decoupling state estimates from control [16]
and [22] combining a filter, perturbation compensator, and
performance controller to re-stabilize a system. Additionally,
it has been shown that actuation attacks may go undetected
if the attacks are deployed at a higher frequency than sensor
sampling frequencies [23], but these attacks can be mitigated
with controllers with multi-rate formulations [24].

B. Adversarial Attacks and Defenses

After [8] exposed the vulnerabilities of DNNs to adversar-
ial attacks, a defense strategy was proposed by [7], which de-
fines a regularization term in the classifier. Concurrently, [6]
introduced Fast Gradient Sign Method (FGSM) which was
used by [9] to craft a defense strategy against iterative FGSM
attacks. Departing from the notion of white-box attacks, [10]
showed the vulnerability of DNNs to transfer attacks in
which no prior knowledge about the model architecture is
needed. Before adversarial training was popularized as a
defense method [11], [25], [6], researchers proposed sev-
eral other defense approaches including defining a network
robustness metric [26] and using de-noising auto-encoders
to form Deep Constructive Networks [27]. After adversarial
training gained popularity, [28] proposed defensive distilla-
tion as another powerful method for defense, although [5]
devised multiple loss functions to produce attacks that could
break this defense mechanism. Since DRL algorithms em-
ploy the use of DNNs as policy functions, those models are
also found vulnerable to the attacks described above [29].

C. Robust Deep Reinforcement Learning

In the context of training a DRL agent to be robust against
state space attacks where the input to the DRL agent is
perturbed, [30] and [31] demonstrated that a DRL agent
that is robust to parameter and environmental variations can
be obtained by adversarially training the agent.. In another
study, [20] proposed a meta-learning framework where a
meta-RL agent has access to two sub-policies. The meta-
agent learns to switch between a policy that maximizes
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Fig. 1. Robustifying DRL agent by perturbing the original agent’s action.
The perturbation is generated by a white-box adversary, where the adversary
has access to the agent’s network architecture and parameters.

reward during nominal conditions and another policy that
mitigates and copes with adversarially perturbed states by
observing advantage estimates of both policies during de-
ployment. [32] used a different robustifying scheme by for-
mulating a zero-sum min-max optimization problem where
the DRL agent is trained in the presence of another DRL
agent that adversarially perturbs the system. Similarly, [19]
demonstrated that DRL agents can be robustified against
disturbance forces by training the agent with some noise
perturbation in a min-max formulation.

III. METHODOLOGY

We provide a brief overview of DRL algorithms, followed
by discussion of robust learning from a robust optimization
standpoint. Finally, we formulate the robust RL methodology
by combining the RL and robust learning formulation.

A. Reinforcement Learning

In RL, the goal of an agent is to maximize its cumulative
future rewards. A typical setup involves an agent interacting
with an environment for a finite number of steps, or until a
termination condition is met. Upon termination of an episode,
the environment resets to an initial state for the agent and
repeats the process again. At each step in the environment
t ∈ T , the agent receives a state st ∈ S and reward rt ∈ R,
then selects an action at ∈ A(s) from the agent’s policy
π. T denotes the finite number of steps for an environment,
S denotes all possible states for an environment, R denotes
the cumulative reward for one episode, and A(s) denotes
all possible actions conditioned upon the state. Every state
observation is quantified with a reward value indicating how
valuable that state is for the agent. Specifically, given a finite
number of time steps T , the agent’s goal is to learn an
optimal policy which maximizes the cumulative discounted
rewards Gt:

Gt =
T∑
t=0

R = rt + γrt+1 + γ2rt+2 + · · ·+ γT−1rt (1)

where gamma γ ∈ [0, 1). A γ-value of 0 makes the agent
nearsighted (prefer short-horizon rewards), while a value of
1 makes the agent farsighted (prefer long horizon rewards).
Since being in a specific state is a direct result of previous
state and action, the agent’s policy will evolve over time
to refine the understanding of good and bad trajectories
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Fig. 2. The goal of the agent is to land at the goal. Annotated directional
arrows indicate thrust direction of the lunar lander

τ (sequence of state-action combination). Ultimately, the
goal is to optimize the agent’s policy π∗(a|s) such that the
mapping between state and action is optimal.

There are two known methods to optimize a policy, namely
action-value and policy gradients. Action-value methods op-
timize the action value for each state-action pair Qπ(s, a)
as shown in Eq. 2. Examples of action-value methods
include Deep Q-Network (DQN) [33] and DoubleDQN
(DDQN) [34].

Qπ(st, at) = max
π

E
[
Gt|st, at

]
(2)

Policy gradient methods optimize a policy parameterized by
theta θ, πθ(a|s), where θ is directly optimized to maximize
the expected reward function J(θ):

J(θ) =
∑
st∈S

dπ(st)
∑
at∈A

πθ(at|st)Qπ(st, at) (3)

dπ(st) denotes the stationary distribution of Markov
chain [35] for πθ. Examples of policy gradient methods
include Trust Region Policy Optimization (TRPO) [36] and
Proximal Policy Optimization (PPO) [37].

B. Robust Optimization Classical Formulation

The robust optimization problem can be defined as [11]:

RO := min
w

E(x,y)∼D

[
max
δ∈B

L(w, x+ δ, y)
]

(4)

where x ∈ Rm is the dataset under a data distribution D with
set of labels, y. The loss function (e.g. cross-entropy loss)
with additive perturbations δ ∈ B is denoted by L(w, x+δ, y)
with w ∈ Rn as the model parameters (decision variables).
Here the saddle point problem is looked at as a composition
of an inner maximization and an outer minimization, where
the inner maximization tries to find a specific perturbation
for each data point x such that the overall loss is maximized.
In parallel, the outer minimization aims to achieve the model
parameters which minimize the corresponding adversarial
loss.

The next step is to define the attack model.We introduce a
specific perturbation δ ∈ B for each data point x, where
B is the set of allowed perturbations (B ∈ Rm). This
set acts as a normalization for the perturbation power. For
example, l∞ ball around x is a popular way to define the

perturbation budget [6]. There are several attack methods
to find the corresponding adversary δ for each data point
x (i.e. FGSM, PGD, etc.). In this paper, we use PGD for
finding the adversaries [11] which uses α as the step-size,
and can be formulated as:

xk+1 = xk + α sgn(∇xL(w, x, y))︸ ︷︷ ︸
δ

(5)

For training a neural network, Stochastic Gradient Descent
method is used for solving the outer minimization problem at
the maximizer point of the inner problem. This approach is
valid as Danskin’s theorem proves that the gradients at the
inner maximizer act as a valid descent direction for outer
loss minimization [13].

C. Robust Reinforcement Learning Agents

To achieve a robust DRL agent, the robust optimization
is formulated as a DRL problem. In this paper, we focused
on white-box attacks in action-space. As such, the robust
optimization problem can be written as:

RO := max
θ

E(s,a)

[
min
δ∈B

R(st, at + δt)
]

(6)

where (s, a) ∈ R are state and action pairs. The reward
function with additive perturbations δt ∈ B is denoted by
R(st, at + δt) where (s, a) are updated based on the policy
(πθ(a|s)) in each iteration, with θ as the model parameters.
Note that this formulation is different from the classical
RO formulation (Eq. 4) in which model parameters are an
explicit input to the loss function, whereas in RL the reward
function is not an explicit function of model parameters.

The attack formulation in RL is based on our previous
work with MAS-attack [21]. MAS-attacks are derived from
white-box attacks in action space, where the perturbations δt
for each (st, at) are computed based on complete knowledge
of the policy of the agent, πθ (See Fig. 1). Each perturbation
δt is bounded by B ∈ R, by projecting the perturbations
back into B. As MAS-attack uses PGD to iteratively find the
perturbations, we can formulate the attack as:

ak+1 = ak − α ∇akD (7)

where k is the iteration number, α is the step size and D is
the action distribution obtained from the agent’s policy πθ.
Here, we note that while the robust optimization formulation
was formulated using the reward function, in reality, the
reward function is unknown to the DRL agent or the virtual
adversary. Hence, the reward function is approximated by the
reward-maximizing action distribution D for gradient com-
putations [21]. After obtaining the adversarial perturbations
and adding it to the nominal actions, we train the DRL agent
using standard policy gradient methods, which solves the
outer maximization problem in the formulation above. An-
other distinction we would like to note is that while a k-step
PGD is usually used to compute the adversarial attacks, with
k being fixed, we do not adhere to that procedure. Instead,
we define a tolerance ε and keep iterating through the PGD



processuntiltheadversarialactionssaturate.Thisensures
thatthecomputedadversarialactionactuallycorresponds
tobadactionratherthanbeingapproximatedbyafixedk-
numberofgradientsteps.Theadversarialtrainingalgorithm
torobustifytheDRLagentisshowninAlg.1.

Algorithm1:MAS-AdversarialTraining

Input:episodesN,episodiclimitT,stepsizeα,
convergencecriteria,budgetB

Initializestates,policyπθ
forn∈{1,...,N}do
fort∈Tdo
GetactiondistributionDfromπθ(st)
SampleatfromD
ak=at
Sampleak+1 fromD
whileak+1−ak≥ do
ak+1=ak−α∇akD

end

δ̂t=PB(ak+1−at)
ât=at+δ̂t
Stepthroughenvironmentwithât

end
ifTimetoupdatethen
Updateagent’spolicyπθ

end
end

IV.EXPERIMENTS

A.EnvironmentSetup

Experiments wereconductedin OpenAIgym’sLunar
Landerenvironment[38],wherethegoalistolandthelander
safely while minimizingthrusterusage.Thestatespace
oftheenvironmentconsistofeightcontinuousvalues:x-y
coordinatesofthelander,velocityinx-ycomponents,angle
andangularvelocityofthelander,andabooleancontact
variableforleft-rightlanderlegs(e.g.1forcontact,0for
nocontact).Theactionspaceavailablearetwocontinuous
vectors[-1,1].Firstvectorcontrolstheup-downengine,
wherevalueswithin[-1,0]turnsofftheenginewhilevalues
within(0,1]mapsto50%-100%ofenginepower.Second
vectorcontrolsleft-rightengines,where[-1,-0.5]and[0.5,1]
controlsleftandrightenginerespectively.

Forthisenvironment,theagent’sgoalisto maximize
reward.Givenanarbitrarystartingpoint(asseeninFig.2),
theRLagenthastolandonthelandingpadwithoutcrashing.
Theagentreceivespositiverewards(e.g
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Fig.3. TrainingplotsonrobustlytrainedDRLagentswithMAS-attacks
(1and2projection).Sevenagentswastrainedforeachprojectionmethod.
Eachrewardsareaveragedacrossallagents,followedbyamovingaverage.

TABLEI

SUMMARYSTATISTICSOFAGENT’SREWARDS

1

Environment Nominal Adversarial

Agent Nominal Robust Nominal Robust

Reward 2.21±0.74 2.21±0.54 0.74±1.33 2.39±0.47

2

Environment Nominal Adversarial

Agent Nominal Robust Nominal Robust

Reward 2.21±0.74 1.74±0.63 0.60±1.10 2.00±0.61

B.DeepReinforcementLearningTrainingandParameters

Forthisexperiment,wetrainedaPPOagentwithan
Actor-Criticarchitecture[39].Inthisarchitecture,boththe
actorandthecriticsharethesamenetworkofmulti-layer
perceptrons madeupofdenselayers.Theactorhasan
additionaldenselayerwhichoutputsthepolicyintheform
ofaGaussianmodelandthecriticestimatesthevalueof
theactionchosenbytheactor.Toencourageexploration,
anentropytermisalsoaddedtothelossfunctionwhich
consistsoftheactor’slossandthecritic’sloss.Theloss
functionisthenjointlyoptimizedusingAdamoptimizer.

V.RESULTSANDDISCUSSION

Weconductedtwodifferentexperimentstostudythe
differenceinrobustifyingDRLagentsbyusing 1and2
projectionmethodswith MAS-attackbudgetof1andstep
sizeof3withinAlgorithm1.

A.ConvergenceofRobustAgent

Inthissection,weanalyzedtheconvergenceplots(Fig.3)
oftherobustagentempirically.Therobustagentwastrained
with 1and2perturbationsateverystepfor15000episodes.
Foreachprojectionmethod,wetrainedsevenDRLagents
withthesamenetworkarchitectureandparametersacross
differentseeds.After15000episodes,trainingrewardsare
averagedacrosssevenagents,followedbyamovingwindow
of100episodestoobtainresultsshowninFig.3.Agents
trained with 1convergedfastertoahigherrewardat
approximately4500episodesascomparedtotrainingwith
2,whichstabilizedaround9000episodes.Thisrevealsthat
itisslightlyhardertorobustifytheagentagainst2as
comparedto 1dueto 2attacksbeingmoredistributed
alongactiondimensionscomparedto1.
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Fig.4. Acomparisonofrewarddistributionsbetweenanominallytrainedagentandadversariallytrainedagentforboth 1and2MASattacks. We
observethatthedistributionofrewardsforanominalagentshiftstotheleftandhavelongtailsintheregionswithnegativerewardswhensubjectedto
attacks.Incomparison,thedistributionsofrewardsremainsimilarwhentherobustlytrainedagentsaresubjectedtoattacks.

B.PerformanceComparison

WecomparetheperformanceoftherobustlytrainedDRL
agentsagainstthenominallytrainedDRLagent.Specifically,
wetestedbothDRLagentsundertwoenvironmentsettings;
nominalandadversarialenvironment.Anominalenviron-
mentdenotesscenarioswheretheagentisnotattacked,while
theagentisattackedinadversarialenvironments.Fig.4
showsahistogramofallfourpossiblescenariosforeach
projectionattack.Forbothprojectionattacks,thenominal
agenttestedinthenominalenvironmentisidentical.The
otherthreescenariosshowslightlydifferentresultsdue
todifferentprojectionattacks. Wesummarizethereward
distributionofeachscenarioinTableI.Rewardswithinthe
rangeof2.5to3.0aresuccessfullandingexperiments,where
theDRLagentlearnstolandonthelandingpadandshutsoff
it’sengines.Rewardsbetween1.0to2.5areDRLagentsthat
landssuccessfullybutcontinuouslylosesrewardsasitfails
toturnofftheengine.Rewardsbelow1.0areexperiments
wherethelunarlandercrashedorflewoutofframe.
1)Nominalenvironment:Innominalenvironments,the

nominalagent’sperformanceisidenticalacrossboth1and
2plotsinFig.4whichisexpected,astheagentisnot
attacked.Asaresult,theagenthasameanrewardof2.21±
0.74.Thisindicatesthenominalagentsuccessfullylandsand
turnsoffitsengine.
Next, weevaluateboththerobustagenttrained with
1and 2projectionattacksinthenominalenvironment.
Therewardsfortherobustagentin 1and2are2.21±
0.54and1.74±0.63respectively. Wehypothesizethatthe
natureof 2craftedattacksare moreevenlydistributed
acrossactiondimension,henceitishardertotrainandtest
against2attackswhereelse1distributeattacksintoone
dimension.Theseresultsarecounterintuitivetothenotion
ofrobustifyingaDRLagent,wheretheexpectedresultsof
arobustagentshouldbehigherthanthenominalagentin
thenominalenvironment.Interestingly,thesamebehavior
hasbeenobservedwhenrobustifyingDNNusedforimage
classificationasdemonstratedin[11].
2)Adversarialenvironment:Intheadversarialenviron-

ment,thenominalagent’sperformanceinboth 1and 2
projectionattacksdroppedsignificantlyasanticipated.The

nominallytrainedagent’spolicywastrainedinenvironments
withnoperturbations.Therewardsforboth 1and 2
projectionattacksare0.74±1.33and0.60±1.10respectively.
Hence,bothprojectionattackssuccessfullyminimizedthe
nominalagent’sreward.Inboth 1and 2attacks, we
observedahighfrequencyofrewardsobtainedwithinthe
rangeof1.0and1.5,whichcorrespondstoscenarioswhere
thelanderlandedbutfailedtoturnoffitsengine.
Fortherobustagent,theperformanceofboth 1and2
trainedagentincreasedwhencomparedtothenominally
testedrobustagentcounterpart.Therewardsfor1and2
trainedagentsare2.39±0.47and2.00±0.61respectively.
Similartocounter-intuitiveobservationsmadeearlier,we
notethattheexpectedresultsshouldbeadecreaseinrewards
comparedtotherobustagentinthenominalenvironment.
Thesecounterintuitiveresultsrevealanimportantchar-
acteristicofadversarialtrainingdefenseschemes. Wecan
expectthatanagentthathasbeenadversariallytrainedwill
performwellwhentestedinanadversarialenvironment,but
atthecostofaslightlyreducedperformancewhentestedin
nominalsituations.
Althoughitisnotadirectcomparison,itisinterestingto

notethattherobustagenttrainedwith1projectedattacksin
theadversarialenvironmentoutperformsthenominalagentin
thenominalenvironment.Thisislikelybecausethenominal
agentcanonlyexploreandmaximizeitsrewardwithfamiliar
trajectoriesseenduringtraining.Fortherobust1agent,the
agent’spolicyexploredmanymoretrajectorieswiththehelp
ofadversarialperturbations.Therefore,ithaslikelyfound
othertrajectorieswithmuchhigherrewardsthatthenominal
agentdidnotexplore.

VI.CONCLUSIONS

DeepRLbasedcontrollersareincreasinglypopularas
theydemonstrateapotentialforcontrollingcomplexCPS.
Adversarialattacksonthesecontrollersareemerging,which
requiresthesecontrollerstoberobustifiedagainsttheseat-
tacks.Inthiswork,weformulatetheproblemofrobustifying
aDRLagentasarobustoptimizationproblem.Weadversar-
iallytrainedaDRLagentthatissubjectedtoactionspace
perturbationsanddemonstratethatitstillperformsrobustly



in the presence of actuator perturbations. In some cases, it
even improved the performance of the agent in the absence of
attacks. Hence, we show that it is beneficial to adversarially
train a DRL agent. Future direction includes extending this
work to different attack models and experimenting with
transferability of attacks and defense results.
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