One Engine to Fuzz ’em All: Generic Language
Processor Testing with Semantic Validation

Yongheng Chen'*, Rui Zhong*, Hong Hu, Hangfan Zhang, Yupeng Yang?, Dinghao Wu and Wenke Lee!
fGeorgia Institute of Technology, Pennsylvania State University, 'UESTC

Abstract— Language processors, such as compilers and inter-
preters, are indispensable in building modern software. Errors
in language processors can lead to severe consequences, like
incorrect functionalities or even malicious attacks. However, it
is not trivial to automatically test language processors to find
bugs. Existing testing methods (or fuzzers) either fail to generate
high-quality (i.e., semantically correct) test cases, or only support
limited programming languages.

In this paper, we propose POLYGLOT, a generic fuzzing
framework that generates high-quality test cases for exploring
processors of different programming languages. To achieve the
generic applicability, POLYGLOT neutralizes the difference in
syntax and semantics of programming languages with a uniform
intermediate representation (IR). To improve the language va-
lidity, POLYGLOT performs constrained mutation and semantic
validation to preserve syntactic correctness and fix semantic
errors. We have applied POLYGLOT on 21 popular language
processors of 9 programming languages, and identified 173 new
bugs, 113 of which are fixed with 18 CVEs assigned. Our
experiments show that POLYGLOT can support a wide range of
programming languages, and outperforms existing fuzzers with
up to 30x improvement in code coverage.

I. INTRODUCTION

Language processors [70], such as compilers and interpreters,
are indispensable for building modern software. They translate
programs written in high-level languages to low-level machine
code that can be understood and executed by hardware. The
correctness of language processors guarantees the consistency
between the semantics of the source program and the compiled
target code. Buggy language processors can translate even
correct programs to malfunctional codes, which might lead
to security holes. For example, miscompilation of memory-
safe programs produces memory-unsafe binaries [14, 15];
vulnerabilities in interpreters enable attackers to achieve denial-
of-service (DoS), sandbox escape, or remote code execution
(RCE) [6, 53, 57]. Even worse, these defects affect all translated
programs, including other translated language processors [59].

However, it is nontrivial for traditional software testing
techniques to automatically detect bugs in language processors,
as the processors pose strict requirements on their inputs
regarding the syntactic and semantic validity. Any error in the
program can terminate the execution of the language processor
and hinder the tester from reaching deep translation logic.

Recent works on software testing, such as grey-box fuzzing,
try to meet these requirements to effectively test language
processors [17, 26, 38, 48, 76, 77]. Originally, structure-
unaware mutation [38, 76, 77] can hardly generate syntax-

+ The two lead authors contributed equally to this work.

correct test cases; advanced fuzzers [42, 44] adopt higher-
level mutation in the abstract syntax tree (AST) or the
intermediate representation (IR) to preserve the input structures.
Alternatively, generation-based fuzzers leverage a precise model
to describe the input structure [1, 2, 51], and thus can produce
syntax-correct test cases from scratch. To further improve the
semantic correctness, recent fuzzers adopt highly specialized
analyses for specific languages [53, 74, 78].

However, a fuzzer will lose its generic applicability when
it is highly customized for one specific language. Users
cannot easily utilize the specialized fuzzer to test a different
programming language, but have to develop another one
from scratch. Considering the complexity of language-specific
fuzzers (e.g., CSmith [74] consists of 80k lines of code)
and the large number of programming languages (over 700
currently [3]), it is impractical to implement a specific fuzzer for
each language. This puts current fuzzers in a dilemma: pursuing
high semantic validity sacrifices their generic applicability,
while retaining generic applicability cannot guarantee the
quality of test cases.

In this paper, we propose POLYGLOT, a fuzzing framework
that can generate semantically valid test cases to exten-
sively test processors of different programming languages.
To achieve generic applicability, we design a uniform IR
to neutralize the difference in the syntax and semantics of
programming languages. Given the BNF (Backus—Naur form)
grammar [66] of a language, POLYGLOT can generate a
frontend that translates source programs into this IR. At
the same time, users can provide semantic annotations to
describe the specific semantics about the scopes and types
of definitions of the language. The definitions include the
defined variables, functions, and composite types. In this
paper, we use variables and definitions interchangeably. These
annotations will produce semantic properties in IR during
translation. For example, the BNF grammar of functions in C
is <func := ret-type func-name arg-list func-body>. We
can give annotations such as "func defines a new function" and
"func-body creates a new scope”. In this way, the language
differences of programming languages are unified in the IR.

To achieve high language validity, we develop two tech-
niques, the constrained mutation and the semantic validation,
for test case generation. The constrained mutation retains the
grammar structure of the mutated test cases, which helps
preserve their syntactic correctness. Further, it tries to maintain
the semantic correctness of the unmutated part of the test case.
For example, it avoids mutating the statement "int x = 1;" in

a C program in case that the rest of the program uses x, which
otherwise introduces the error of using undefined variables.
Since the syntactic correctness of a test case is preserved, and
the semantic correctness of the unmutated part is still valid,
the only thing left is to fix the potential semantic errors in
the mutated part. The mutated part could introduce semantic
errors because it might bring in invalid variables. To fix the
errors, we replace these invalid variables according to the rules
of scopes and types. For example, our mutation may insert
a statement "unknownVar + 1;" into the mutated program P
which only defines two variables, num of type integer and arr
of type array. We should replace unknownVar with num because
addition by 1 requires the variable to have an integer type. Our
semantic validation utilizes the semantic properties of IR to
collect type and scope information of variables in the test case
and integrates them in the symbol tables. These symbol tables
describe the types, scopes and the names of every variable.
The semantic validation then utilizes them to replace invalid
variables with valid ones in the mutated code, which greatly
improves the semantic correctness (up to 6.4x improvement
in our evaluation §VIII-C).

We implement POLYGLOT with 7,016 lines of C++ and
Python codes, which focus on IR generation, constrained mu-
tation and semantic validation. POLYGLOT currently supports
9 programming languages and we can easily adopt it to others.

We evaluate POLYGLOT on 21 popular compilers and inter-
preters of 9 different programming languages and successfully
find 173 new bugs. At the time of paper writing, 113 of the bugs
have been fixed with 18 CVEs assigned. Our experiments show
that POLYGLOT is more effective in generating high-quality
test cases (up to 100x improvement in language validity),
exploring program states (up to 30x more new paths) and
detecting vulnerabilities (8 x more unique bugs) than state-of-
the-art general-purpose fuzzers, including the mutation-based
fuzzer AFL, the hybrid fuzzer QSYM and the grammar fuzzer
Nautilus. We also compare POLYGLOT with language-specific
testing tools CSmith for C and DIE for JavaScript, and the
results show that POLYGLOT can explore more program states.

In summary, this paper makes the following contributions:

« We propose a generic framework that can produce high-

quality inputs to test different language processors.

« We implement the prototype, POLYGLOT, of our system

to effectively test language processors.

« We evaluate POLYGLOT on 21 language processors of 9

programming languages and identify 173 new bugs.

We have released the source code of POLYGLOT'.

II. PROBLEM

In this section, we first briefly describe how language
processors handle input programs, and how syntax errors and
semantic errors terminate this process. Next, we illustrate the
challenges and limitations of existing fuzzers in testing lan-
guage processors. Then, we summarize the common semantic
errors in test cases generated by fuzzing tools. Finally, we
present our insights to solve this problem.

Thttps://github.com/s3team/Polyglot

Language Processors

= Frontend Backend =]
—>{ Syntax parsing }—>{ Semantic actions }—>g;36"
* * LéCVm-Ievel

High-level

source code Semantics error

Syntax error machine code

Fig. 1: Workflow of language processors. Given a high-level source-
code program, a language processor checks it for syntactic and
semantic errors. If none, the processor translates the program into
low-level machine code.

struct S { int d; } s;

int a, c;

int main() {

short *e, b[3] = {1, 2, 0};
e 5

+ e b // missing ’;’

+ e H // mismatch type

+ e = res; // undef var

9 do{c += *(e++);} while(*e); for(let idx=0; idx<100; idx++)

10 int res = c; 10 opt(arr);

11 return res; 11 + for(let idx=0; idx<100; idx++)

2} opt(arr2); // undef var

(a) An example C program

function opt(x){return x[1];}
let arr = [1, 2];

if(arr[0]) {let arr2=[1, 2]};
// 1ig is a wrong keyword
ig(arr[0]) {let arr2=[1, 2]1};
arr[1] += "1234";

® N U AW —
+

O X N R W —

12 +
(b) An example JavaScript program
Fig. 2: Running examples. Fig. 2a shows a program written in C, a
statically typed programming language. If we replace line 5 with one
of line 6-8, we get different errors as stated in the comments. Similarly,

Fig.2b shows a program written in JavaScript, a dynamically typed
language, which allows more type conversion.

A. Language Processors

Language processors convert programs written in high-
level languages into low-level machine codes. For example,
compilers translate the whole program into machine codes,
while interpreters translate one statement at a time.

Language processors check the input program for both
syntactic and semantic errors. Any error can terminate the
execution of processors. We show the workflow of language
processors in Fig. I. The frontend checks for syntax errors at the
early stage of processing. Afterward, the backend checks for
semantic errors, which cannot be detected by the parser. Only
semantically correct programs can be successfully processed.

We show a C program in Fig.2a and a JavaScript program
in Fig. 2b. If we add the statements that start with "+", we
introduce errors in the program. For example, line 6 in Fig. 2a
and line 6 in Fig. 2b introduce syntax errors, and the parser
detects these errors and bails out. Line 7-8 in Fig. 2a and line
11-12 in Fig. 2b contain semantic errors which will be caught
by the backend optimizer or translator.

B. Limitations of Current Fuzzers

Fuzzing is a well-received technique of discovering bugs
and vulnerabilities in software [7, 17, 77]. However, current
fuzzers have limitations in testing language processors. General-
purpose mutation-based fuzzers [30, 38, 76, 77] are unaware of
input structures and randomly flip the bits or bytes of the inputs,
so they can hardly generate syntax-correct inputs. Recent works
adopt higher level mutation in AST or IR to guarantee the
syntactic correctness [44, 63]. Alternatively, generation-based
fuzzers [1, 51] utilize a model or grammar to generate structural
inputs effectively. These fuzzers have shown their advantages in

passing the syntactic checks over random bitflip mutation-based
fuzzers. Yet they ignore the semantic correctness of generated
test cases and fail to find deep bugs in the optimization or
execution code of language processors. We did a quick test
to understand how semantic correctness helps fuzzers reach
deeper logic: compiling the code in Fig. 2a with "-O3" covers
56,725 branches in gcc-10, while those invalid variants starting
with "+" only trigger less than 27,000 branches as they are
rejected during or right after the parsing.

Researchers try to specialize their fuzzers for higher semantic
correctness [42, 53, 74, 78]. CSmith [74] performs heavy
analyses to generate valid C programs without undefined
behaviors. JavaScript fuzzers [42, 53] consider the types of
expressions to avoid semantic errors in generated test cases.
Squirrel [78] tackles the data dependency of SQL to generate
valid queries to test DBMSs. Unfortunately, these approaches
are highly specialized for one programming language. Users
need to put huge development efforts to adopt them on new pro-
gramming languages, which is time-consuming and impractical
considering the large number of real-world languages [3].

Recent language-based fuzzers [22, 44] try to generate
correct test cases for different languages. LangFuzz [44]
replaces every variable in the mutated code randomly while
Nautilus [22] uses a small set of predefined variable names and
relies on feedback guidance to improve semantic correctness.
However, these strategies are only effective in testing languages
which allow more implicit type conversion, such as JavaScript
and PHP.

C. Common Semantic Errors

We manually investigate 1,500 invalid test cases generated
by existing language fuzzers [22, 51, 53] and summarize four
common types of semantic errors. Two of them are related
to the scope of variables and functions, and the rest two are
related to the types of variables and expressions. These errors
violate the common rules of types and scopes on definitions
and are language-independent.

Undefined Variables or Functions. Variables or functions
should be defined before they can be used. Otherwise, the
behaviors of the program can be undefined or illegitimate. For
example, line 8 of Fig. 2a uses an undefined variable res and
C compilers refuse to compile the code.

Out-of-scope Variables or Functions. In a program, variables
or functions have their scopes, which determine their visibility.
We cannot use an out-of-scope invisible variable or function.
For example, arr is visible at line 10 of Fig. 2b, while arr2 is
not since its scope is within the if statement at line 4.

Undefined Types. Many programming languages allow users
to define custom types, such as class in JavaScript and
struct in C. Like variables, such types should be defined
before their instances can be used.

Unmatched Types. Usually, assigning a value to a variable
of incompatible type or comparing incompatible types intro-
duces semantic errors. In some cases, programming languages
allow type conversions, which convert mismatched types to

compatible ones explicitly or implicitly. For example, e of type
pointer of short and s of type S are not compatible in C,
so line 7 of Fig. 2a introduces an error. Line 7 of Fig.2b is
correct because in JavaScript numbers can convert to strings.

D. Our Approach

The goal of this paper is to build a generic fuzzing framework
that generates semantically correct inputs to test different
language processors. We achieve the goal in two steps. First,
we neutralize the difference in syntax and semantics of
programming languages by embedding them into a uniform IR,
so we can perform uniform mutation or analysis regardless of
the underlying languages. Second, we constrain our mutation to
generate new test cases, which might contain semantic errors,
and then we perform semantic validation to fix these errors.

Neutralizing Difference in Programming Languages. Dif-
ferent programming languages have unique syntax and seman-
tics. To neutralize their differences, we design a new inter-
mediate representation to map the language-specific features,
both syntactic and semantic, into a uniform format. Given the
BNF grammar of a language, we can generate a frontend to
translate a source program into an IR program. The IR program
consists of a list of IR statements or IRs as we call them in this
paper. This IR program keeps the syntactic structures of source
programs so we can easily translate it back into the original
source. Regarding semantics, we design a simple annotation
format for users to describe the scopes and types of a language.
These descriptions will be encoded into the semantic properties
of the IR and guide our system to fix semantic errors. After
the language-specific grammar and semantics are captured by
the IR, we can perform mutation or analyses regardless of the
underlying language.

Improving Language Validity. We improve the language
validity with constrained mutation and semantic validation.
Our constrained mutation tries to preserve two aspects of the
program: the syntactic correctness of the whole program, and
the semantic correctness of the unmutated part. First, we mutate
the IRs based on their IR types that reflect the underlying
grammar structures. This preserves the syntactic correctness of
the test case. For example, we replace an IF statement (in the
form of IR) with another IF statement instead of a function call
expression. Second, we only mutate IRs with local effects to
preserve the semantic validity of the unmutated code. Such IRs
contain no definitions or create new local scopes. For example,
in Fig. 2b, line 7 has local effects because it only uses the
variable arr and contains no new definition. Without line 7, the
rest of the program is still valid. Therefore, assuming the initial
test case is correct, a mutated variant produced by constrained
mutation only has potential semantic errors in the mutated
part, which might use invalid variables. To fix these errors in
a systematic way, our semantic validation first utilizes IR’s
semantic properties to collect type and scope information of the
mutated test case. We integrate the collected information into
the symbol tables, which contain the types, scopes and names
of every definition. These symbol tables guide POLYGLOT
to replace the invalid use of variables properly. Afterward,

t POLYGLOT
Mutated
program

Constrained
Mutation

Validation

! 1

b

- Frontend
Grammar W Sk ronten

[Semantic : ﬁ Generation

A:= 2l | C Pl

! 1

H 1

]
1

1

Semantic]

'

annotatior 1

-]
C:=y]

Validated | _ _ _ 1
|, program |

|
i
|

Fuzzing Engine f———+%

——————

4
IR program

Generate

Source
Program
IR translator

Interesting test cases

Fig. 3: Overview of POLYGLOT. POLYGLOT aims to discover bugs
that crash language processors. POLYGLOT accepts the BNF grammar,
semantic annotations, and seeds from users as input. First, the frontend
generator generates an IR translator that converts a source program
to an IR program. Second, the constrained mutator mutates the IR
program to get new ones, which might contain semantic errors. Next,
the semantic validator fixes the semantic errors. Finally, the fuzzer
runs validated programs to detect bugs.

the validated test cases should be correct and are helpful for
thoroughly fuzzing language processors.

III. OVERVIEW OF POLYGLOT

Fig. 3 shows an overview of POLYGLOT. Given the BNF
grammar, semantic annotations and initial test cases of the
targeted programming language, POLYGLOT aims to find inputs
that trigger crashes in the language processor. First, the frontend
generator generates an IR translator using the BNF grammar
and the semantic annotations (§IV). Then, for each round of
fuzzing, we pick one input from the corpus. The IR translator
lifts this input into an IR program. Next, the constrained mutator
mutates the IR program to produce new syntax-correct ones,
which might contain semantic errors (§V). Afterward, the
semantic validator tries to fix the semantic errors in the new IR
programs (§VI). Finally, the IR program is converted back to
the form of source code and fed into the fuzzing engine. If the
test case triggers a crash, we successfully find a bug. Otherwise,
we save the test case to the corpus for further mutation if it
triggers a new execution path.

IV. FRONTEND GENERATION

To achieve generic applicability, our frontend generation
generates a translator that transforms a source program into
an IR program. This lowers the level of mutation and analysis
from language-specific source code to a uniform IR.

In Fig. 4, we show the IR (Fig. 4a) of a simple C program
to demonstrate how the BNF grammar (Fig. 4b) and semantic
annotations (Fig. 4c) help construct the IR statements. Each
symbol in the BNF grammar generates IRs of a unique type
(e.g., symbol <func-def> generates ir9 of type FuncDef). The
original source code is stored in the op or val of the IRs (e.g.,
the val of ir2 stores the name main). We predefine semantic
properties about types and scopes of variables for users to use.
The generated IRs will carry these properties as described in
the annotations (e.g., ir9 has property FunctionDefinition).
Users can easily use the BNF grammar and semantic anno-
tations to describe the specific syntax and semantics of a
programming language.

A. Intermediate Representation

Our IR is in a uniform format and captures the syntax and
semantics of the source program. It includes an order, a type,
an operator, no more than two operands, a value, and a list
of semantic properties. The IR order and the type correspond
to the statement order in source code and the symbol in the
BNF grammar respectively. The IR operator and the IR value
store the original source code. All the IRs are connected by
the IR operands, which are also IRs. These parts carry the
syntactic structures, while the semantic properties describe the
semantics of the source program, as discussed below.

Syntactic Structures. Syntactic structures keep all the gram-
mar information of the source program. As we see earlier,
some IRs store a small piece of the source code (e.g., a function
name is stored in an IR of type FuncName). Also, the IRs are
connected in a directed way that forms a tree view of the
source program. If we perform inorder traversal on the IR
program, we can reconstruct the original source program.

Semantic Properties. Semantic properties capture the se-
mantics about the scopes and types of definitions. They tell
us which IRs belong to variable definitions. Additionally, for
scopes, they tell which IRs create new scopes so that we can
decide the visibility of the variables within the scopes. For
types, they describe the predefined and user-defined types in a
language and their type conversion rules. They also describe
the expected operand types and the output type of operators,
which perform mathematical, relational, or logical operations
and produce a result.

For example, ir9 in Fig. 4a has the semantic property
FunctionDefinition, indicating that it relates to a function
definition. Line 14-15 in Fig. 4c describe the inference rule
for the operator "+", which accepts two operands of type long
and outputs a result of type long. Assuming number literals
are of type long, we know 11 + 12 produces a result of long.

B. Generating IR Translator

To generate a translator, users should provide the BNF
grammar, which describes the unique syntax, and semantic
annotations, which capture the specific semantics of a language.
The language information of these two files is embedded
into the syntactic structures and semantic properties of IR
respectively. First, the frontend generator treats every different
symbol in the grammar as a different object. Then it analyzes
the semantic annotations to decide which symbols should have
what semantic properties. Finally, it generates for each object
unique parsing and translation methods, which parse the source
code and generate IRs with required semantic properties. These
generated methods composite an IR translator.

V. CONSTRAINED MUTATION

As the first step towards language validity, we apply two
rules to constrain our mutation on an initially correct test case
to preserve its syntactic correctness (§V-A) and the semantic
correctness of its unmutated part (§V-B). The former is the
base for semantic correctness, and the latter makes it possible

1 //IR<type, left, right, op, val | <program> ::= 1 { "Commentl": "Scopes and composite types",
2 // [, semantic_property]> 2 (<global-def> | <func-def>)* 2 "func-def":["FunctionDefinition"],

3 ir@<Type, NIL, NIL, NIL, "int"> 3 ... 3 "func-name": ["FunctionName"],

4 irl<RetType, ir®, NIL, NIL, NIL > 4 4 "func-body": ["FunctionBody", "NewScope"],
5 ir2<FuncName, NIL, NIL, NIL, "main", 5 <func-def> ::= 5

6 [FunctionName]> 6 (<ret-type> <func-name> 6 "Comment2": "Types and conversion rules",
7 ir3<Literal, NIL, NIL, NIL, 12 > 7 "(" <func-arg>? ")" <func-body>) 7 "BasicType": ["int", "short", "..."],

g8 ird<Literal, NIL, NIL, NIL, 23 > 8 8 "ConversionRule": [

9 irS5<BinaryExpr, ir3, ir4, RN NIL > 9 <ret-type> ::= <type> 9 {"short": ["int", "..."]}

10 ir6<RetStmt, ir5, NIL, "return ;", NIL > 10 10 1,

11 ir7<FuncBody, ir6, NIL, "{ 1, NIL, 11 <type> ::= 11

12 [FunctionBody, NewScope]> 12 ("int" | "short" | ...) 12 "Comment3": "Type inference rules",

13 ir8<NIL, irl, ir2, "o, NIL > 13 13 "TypeInference":{

14 ir9<FuncDef, ir8, ir7, NIL, NIL, 14 <binary-expr> ::= 14 "+": { "left": "long", "right": "long",
15 [FunctionDefinition]> 15 <literal> "+" <literal> 15 "output":"long"} }

16 irl®<Program, ir9, NIL, NIL, NIL > 16 16 }

(b) Part of the
C programs.

(a) IR program for "int main() { return 12+23;}".
The format of IR is shown in the comments at the top.

(¢) Part of semantic annotations for the grammar
in Fig.4b. It is in JSON format.

BNF grammar for

Fig. 4: An example IR program with its corresponding BNF grammar and semantic annotations. The IRs in Fig. 4a are in a uniform
format. The number suffix of the IR is the IR order. The IR types have corresponding symbols in the BNF grammar in Fig. 4b. left and
right are the two operands. As func-def has four components and the IR can have no more than two operands, ir8 is an intermediate IR
for func-def and does not have a type. The semantic annotations in Fig. 4c describe what semantic properties the symbols in the BNF should
have, which will be reflected in the semantic_property in IRs. We predefine properties about types and scopes for users to use.

to gain language validity by fixing the semantic errors in the
mutated part.

A. Rule 1: Type-Based Mutation

This rule performs three different mutation strategies based
on the IR types. Insertion inserts a new IR (e.g., IRs from
another program) to the IR program. This includes inserting an
IR that represents an element to a list and inserting an IR to
where it is optional but currently absent. Deletion performs the
opposite operation of insertion. For example, in C, a statement
block is a list of statements, and we can insert a statement
to the block. Also, we can delete an optional ELSE statement
after an IF statement. Replacement replaces an IR with a new
one of the same type. For example, we can replace an addition
expression with a division expression as they are both of type
EXPRESSION.

Since the IR type reflects the grammar structures of un-
derlying source codes, this rule helps preserve the syntactic
correctness of the mutated test cases.

B. Rule 2: Local Mutation

This rule requires us to only mutate IRs with local effects.
Changes in these IRs will not invalidate the semantic correct-
ness of the rest of the program. POLYGLOT handles two types
of IRs with local effects as follows.

IRs that Contain No New Definitions. These IRs do not
define any variables, functions, or types, so the rest of the
program will not use anything defined by them. Even if these
IRs get deleted, the rest of the program will not be affected.
For example, line 7 in Fig. 2b only uses the variable arr and
does not define anything. If we delete this line, the program
can still be executed.

IRs that Create Scopes. These IRs can contain new defini-
tions, but these definitions are only visible within the scope
created by the IRs. For example, the for statement at line
9 of Fig. 2b creates a new scope. idx is defined and only
valid within this new local scope. Therefore, mutating the for
statement as a whole will not affect the rest of the program.

With these two rules, our constrained mutation produces
syntax-correct test cases. These test cases might contain
semantic errors. According to local mutation, the semantic
errors are introduced by the mutated part, which might use
invalid variables from other test cases. Next, we will fix all
these errors to get a semantically correct test case.

VI. SEMANTIC VALIDATION

As the second step towards language validity, we perform
semantic validation to fix the semantic errors in the mutated
part of the test case. We do so by replacing the invalid
variables with the valid ones. To figure out the proper variables
for replacement, we first need to know the scopes of the
variables, which tell us the available variables to use. This
avoids using undefined or out-of-scope variables. Further, we
need to know the types of these variables so that we can use
them appropriately, which avoids using variables of undefined
or unmatched types.

Therefore, our semantic validation relies on two components:
type system that collects type information of variables (§VI-A)
and scope system that collects scope information (§VI-B). We
then integrate all the information into the symbol tables, which
contain the types, scopes, and names of every definition in
the test case. With the symbol tables, the semantic validation
generates correct expressions to replace the invalid ones and
produces a semantically correct test case (§VI-C).

A. Type System

In programming languages, types include predefined ones
such as int in C, and user-defined ones such as class in
JavaScript [8]. We call the former basic types and the latter
composite types. Basic types are limited so they can be
completely described with semantic annotations, but composite
types cannot as they are specific to test cases. To collect
precise type information, we need to handle both basic types
and composite types. Therefore, POLYGLOT utilizes the type
system to construct composite types on demand and infer types
of variables or expressions.

1 struct S {int d; } s; Type map Scope Tree

2 :.mt a, ¢; TID Type Global Scope Symbol Table
3 int mainQ) { : Name TID OID
4 short *e, b[3] = {1, 2, 0}; 1 Line: 1-16 . a ¢
5 e = b; a 1 2
6 // Originally: do{ c += *(e++); } while(%*e); 2 short = 1 2
4 /* Replaced by: if(x >= y){ . Symbol Table Structure body o B 3
8 struct X z; 3 short Na(;ne T|1D 01”3 ID:2 Line: 1

o x+=y; } 7/ 4 Type:struct

10 if(FIXME >= FIXME){ Name: S Function body Symbol Table

11 //struct X z;

12 FIXME += FIXME;

3} 5
14 int res = c;

15 return res;

16 }
(a) A mutated program that needs to be validated

Member: int d

Type: function
Name: main
Arg: None

Return type: int. Name TID OID ID:4 | Line: 10-13

(b) The type map, scope tree and its the symbol tables of the program in Fig. 5a

ID:3 | Line:3-16 | Name TID OID
e 3 4
b 3 4

Symbol Table IF statement res 1 14

Fig.5: A mutated variant of Fig. 2a and its semantic information collected by the semantic validator. The mutated program is generated
by replacing the DO-WHILE statement (line 6) with IF statement (line 10-13) in Fig. 5a. Every invalid variable in the mutated part is replaced
with a FIXME. Line 11 is removed because it uses a composite type (struct X) without a detailed definition. As shown in Fig. 5b, the type
map contains the types used in the program. The program has four different scopes created by different symbols. Each scope has a symbol
table with the information of definitions within the scope. TID in the symbol table refers to the TID in the type map. 0ID corresponds to the
statement order in the IR program and we currently use line number for easy demonstration.

Type Map. As the collected type information will be used
frequently, we maintain them in a type map for easy and fast
access. The key of the map is a unique id for the type, and
the value is the structure of the type. This map stores all the
basic types of a language and the composite types used in
the current test case. For example, Fig. 5a and Fig. 5b show
a mutated program and its type map. We can see that type
id 5 refers to a function type whose name is main and return
type is int. As composite types are specific to a test case, we
remove them from the map each time we finish processing a
test case to avoid using types defined in other programs.

Composite Type Construction. Currently, the type system
supports the construction of three composite types: structures,
functions, and pointers. These types consist of several com-
ponents. For example, a function consists of a function name,
function arguments, and return value.

To construct a composite type, the type system walks through
the IR program to find IRs related to composite type definitions
by checking their semantic properties. When it finds one, it
searches for the required components for this definition. Then
type system creates a new type with the collected components
and stores it in the type map.

Type Inference. The type system infers the types of variables
so that we know how to use them correctly. We handle both the
variable definition and variable use. For a variable definition,
we check whether it has an explicit type. If so, the type system
searches the name of the type in the type map. Then it returns
the corresponding type id when the names match. Otherwise,
we infer the type of a variable from its assigned expression,
which will be discussed in the next paragraph. For example, in
C, "int y;" explicitly states that the variable y is of type int.
In JavaScript, "let z = 1.0;" does not state a type for z,
but we can infer from expression 1.0 that z is of floating-point
number type. For variable use, we just look for the variable
name in the symbol tables (§VI-B), which contains the type
information of variables, and return its type.

To infer the type of an expression, we first check whether

it consists of a simple variable or literal. If it is a variable,
it must be a variable use, which has been handled above. If
it is a literal, we return its type as described in the semantic
annotations. For an expression with operands and operator, we
first recursively infer the types of the operands as they are also
expressions. As discussed in §IV-A, the semantic properties
describe the expected operand types and the output type of the
operator. If the inferred operand types can match or convert to
the expected types, we return the corresponding result type.
Our type inference has limitations in dynamically typed
programming languages, where the types might be undecidable
statically. For example, the type of x in line 1 of Fig. 2b
is not determined because JavaScript can call the function
with arguments of any type. If we simply skip the variables
whose types cannot be inferred, we might miss useful variables.
Therefore, we define a special type called AnyType for these
variables. Variables of AnyType can be used as variables
of any specific type. Using AnyType might introduce some
type mismatching, but it can improve the effectiveness of
PoLYGLOT in dynamically typed programming languages.

B. Scope System

A program can have different scopes that decide the visibility
of variables within them. The scope system partitions the
program into different scopes so that variables automatically
gain their visibility according to the scope they are inside.
Afterward, we integrate the type information collected by the
type system and the scope information into symbol tables. The
symbol tables contain all the necessary information of variables
for fixing the semantic errors.

Partitioning IR Program With A Scope Tree. A program
has a global scope where variables are visible across the
program. Other scopes should be inside existing ones. This
forms directed relations between scopes: variables in the
outer scope are visible to the inner scope, but not vice versa.
Therefore, we build a directed scope tree to describe such
relations. In the scope tree, the global scope is the root node,
and other scopes are the child nodes of the scopes that they

are inside. As the semantic properties of IR tell which IRs
create new scopes, we create a new node of scope when we
find such an IR. We assign each node a unique id and label
the IR, along with their children IRs (i.e., their operands), with
this id to indicate that they belong to this scope. In this way,
we partition the IR program into different scopes in the tree.
A variable is visible to a node if the variable is in any node
along the path from the root node to the given node.

Fig. 5b shows the constructed scope tree of Fig. 5a. "Line"
means the IRs translated from these lines belong to the scope
or the children of the scope. Scope 1 is the global scope, which
is the root node. Scope 2 and 3 are created by the structure
body of S and function body of main respectively and they are
child nodes of scope 1. Variables in scope 1 and 3 are visible
to scope 4 as they are in the same path.

Symbol Table. We integrate the collected information of types
and scopes by building symbol tables which contain the names,
scopes, defined orders, and types of variables. They describe
what variables (names) are available at any program location
(scopes and defined orders) and how they can be used (types).

Fig. 5b shows symbol tables of each scope for Fig. 5a.
Variables s, a, c and function main are defined in scope 1, the
global scope, and d is defined in scope 2 which is the scope for
structure body. There is no definition in the IF statement so its
symbol table is empty. TID is the type id of the variable, which
corresponds to the TID in the type map. OID is the defined
order of variables and we currently use the line number as 0ID
for easy demonstration. A variable is visible at a given location
(i.e., line number) if its scope is the ancestor node of the scope
of the location and if it is defined before the location.

C. Validation

With the symbol tables, we can fix the semantic errors in the
mutated test case. We call this process validation. We replace
every invalid variable with the special string FIXME to indicate
that this is an error to be fixed, as shown in Fig. 5a.

Specifically, we first remove any IRs that use user-defined
types in the mutated part in case we cannot find the definition
of these types. Then, for each FIXME in the mutated code, we
replace it with a correct expression. We generate the expressions
with the variables in the symbol tables according to their types
and scopes. For example, in Fig. 5a, the original for statement
is replaced by an if statement during mutation (line 6-10).
The if statement contains a user-defined structure without
definition (line 8), so we remove line 8. Finally, we replace
the FIXMEs with generated expressions.

Generating Valid Expressions. POLYGLOT generates four
types of expressions: a simple variable, a function call, an
element indexed from an array, and a member accessed from
a structure. In Fig. 5a, "a", "mainQ", "b[1]", "s.d" are all
examples of generated expressions.

First, POLYGLOT infers the type of expressions containing
FIXME and tries to figure out what type of expressions should
be used for replacement. It adopts a bottom-up approach: it
assigns AnyType to each FIXME, and converts AnyType to a more

specific type when it goes up and encounters concrete operators.

TABLE I: Line of codes of different components of POLYGLOT,
which sum up to 7,016 lines. As we build our fuzzer on AFL, we
only calculate the code that we add into AFL, which is 285 lines in
the fuzzer component.

Module Language LOC
Frontend Generator C++ 367

Python 1,473
Constrained Mutator C++ 1,273
Semantic Validator C++ 3,313
Fuzzer C++ 285
Others C++/Bash 305
Total C++/Python/Bash 7,016

For example, we want to fix the two FIXMEs in the expression
"FIXME >= FIXME" in line 10 of Fig. 5a. We assign AnyType to
both of them. Then we go up the expression and encounter
the operator ">=", which accepts numeric types as operands,
such as int and short, and outputs a result of type bool. As
the operands are FIXME of AnyType, which can be used as any
other specific type, we convert the type of FIXME to numeric
types. Now POLYGLOT needs to generate two expressions of
numeric types to replace the two FIXMES.

Second, POLYGLOT checks the symbol tables to collect all
the available variables. It walks through the symbol tables of
all the visible scopes in scope tree, from the global scope to the
scope of the expression with FIXME, and collect the variables
defined before the to-be-validated expression.

Third, we enumerate the possible expressions we can
generate from these variables and categorize them by types.
For example, from the definition s in line 1 in Fig. 5a, we can
generate the expressions s and s.d. They are of different types
so they belong to different categories.

Finally, POLYGLOT randomly picks some expressions of the
required type to replace FIXMEs. If every FIXME of a test case
can be replaced by a proper expression, the validation succeeds.
The validated test case should be semantically correct and we
feed it to the fuzzer for execution. If the validation fails (e.g.,
there is no definition for a specific type), we treat the test case
as semantically invalid and discard it.

One possible solution to fix FIXME >= FIXME at line 11 in
Fig.5a is "b[1] >= s.d ", where we replace the FIXMEs with
"b[1]" of type short and "s.d" of type int. short and int
are of different numeric types, but short can be converted to
int. Therefore, b[1] and s.d can be compared by >= though
they are of different types.

VII. IMPLEMENTATION

We implement POLYGLOT with 7,016 lines of code. Table I
shows the breakdown.

Frontend Generation. We extend the IR format proposed in
[78] by adding semantic properties. Users provide semantic
annotations to help generate these properties. The frontend
generator generates a parsing and a translation method from
code templates written in C++ for each symbol in the BNF
grammar. Then we use Bison [11] and Flex [9] to generate a
parser with the parsing methods. The parser and the translation
methods are compiled together to be an IR translator.

Scope Tree Construction. The scope system maintains a
stack of scopes to construct the scope tree. The scope in the
stack top indicates the current scope. First, it generates the
global scope as the root and pushes it in the stack. Next, it
walks through IRs in the IR program, labeling each IR with
the id of the scope in the stack top. Meanwhile, it checks the
semantic properties of the IR. If the scope system meets an IR
that creates a new scope, it creates one. It sets the new scope
as the child node of the scope at the stack top and pushes
it to the stack. After the children of the IR are recursively

processed, the scope system pops the scope out of the stack.
In this way, we construct the scope tree and partition the IRs.

Builtin Variables and Functions. To improve the diversity
of the generated expressions, POLYGLOT allows users to
optionally add predefined builtin variables and functions of
the tested programming language. These builtin variables and
functions are written in the source format and added along with
the initial seed corpus. POLYGLOT then analyzes these test
cases and collects them as definitions. These definitions will
be added into the symbol table of the global scope of every
generated test case and thus used for expression generation.

Complex Expression Generation. To introduce more code
structures in the test cases, we allow semantic validation to
generate complex expressions. Since we have the symbol tables
and the inference rule of operators, we can chain simple
expressions with operators. For example, with the symbol
tables in Fig. 5b, we can generate complex expressions such as
(a + b[1]) » c, which is chaining three simple expressions
(a, b[1], c) with three operators (+, (), »). We first randomly
pick an operator and then recursively generate expressions of
the types of its operands. Afterward, we simply concatenate
them to get a complex expression.

Fuzzer. We build POLYGLOT on top of AFL 2.56b. We keep
the fork-server mechanism and the queue schedule algorithm
of AFL and replace its test case generation module with
PoLYGLOT’s. POLYGLOT also makes use of AFL’s QEMU
mode, which can test binary without instrumentation. Since
many programming languages are bootstrapping, which means
their language processors are written in themselves, it is difficult
or time-consuming to instrument these processors. Using AFL
QEMU mode can greatly save time and effort.

User Inputs for Adoption. To apply POLYGLOT to a
programming language, users need to provide: the BNF
grammar, the semantic annotations and the initial corpus of test
cases. The BNF grammars of most programming languages are
available from either the official documents of the languages
or open-source repositories [12]. The semantic annotations
should describe symbols that relate to definitions, symbols
that create new scopes, basic types of the languages, and the
inference rules of operators. We provide a template of semantic
annotations in JSON format so users can easily adjust them
according to their needs. Users are free to choose the corpus
that fits the tested processor. In our case, it took one of our
authors 2-3 hours to collect the amentioned inputs for one
language and 3-5 hours to refine them to fit in POLYGLOT.

TABLE II: 21 compliers and interpreters of 9 programming
languages tested by POLYGLOT. # refers to the TIOBE index, a
measurement of the popularity for programming languages [20], and -
means that language is not within top 50. * in Version means the git
commit hash. #Bug shows the number of reported bugs, confirmed
bugs and fixed bugs from left to right.

Language Target Version LOC(K) #Bug
I C GCC 10.0 5,956 6/5/1
Clang 11.0.0 1,578 24/3/2

4 Cet G++ 10.0 5,956 4/412
Clang++ 11.0.0 1,578 6/0/0

V8 8.2.0 811 3/3/2

JSCore 2274 497 1/1/1

ChakraCore 1.12.0 690 9/4/0

Hermes 0.5.0 620 1/1/1

7 JavaScript mujs 9f3el41* 15 1/1/1
njs 0.4.3 78 4/4/0

JerryScript 2.4.0 173 5/5/4

DukTape 2.5.0 238 1/1/1

QuickJs 32d72d4* 89 1/111

3 R R 4.0.2 851 4/4/4
pqR 5¢6058e* 845 3/1/0

9 PHP php 8.0.0 1,269 35/27/22
10 SQL SQLite 3.32 304 27/27/27
41 Lua lua 5.4.0 31 12/12/12
luajit 2.1 88 2/2/2

- Solidity solc 0.6.3 192 16/16/16
- Pascal freepascal 3.3.1 405 8/8/8
Sum 9 21 173/136/113

VIII. EVALUATION

Our evaluation aims to answer the following questions:

o Can POLYGLOT generally apply to different real-world
programming languages and identify new bugs in their
language processors? (§VIII-B)

o Can semantic validation improve POLYGLOT’s fuzzing
effectiveness? (§VIII-C)

e Can POLYGLOT outperform state-of-the-art fuzzers?
(§VIII-D)

A. Evaluation Setup

Benchmark. To evaluate the genericity of POLYGLOT, we
test 21 popular processors of nine programming languages
according to their popularity [20] and variety in domains (e.g.,
Solidity for smart contracts, R for statistical computation,
SQL for data management). We show the target list in Table II.
To understand the contributions of our semantic validation,
we perform an in-depth evaluation on the representative
processors of four popular languages (two statically typed
and two dynamically typed): Clang of C, solc of Solidity,
ChakraCore of JavaScript and php of PHP. We also use these
four processors to conduct the detailed evaluation to compare
PoLYGLOT with five state-of-the-art fuzzers, including three
generic ones (the mutation-based AFL, the hybrid QSYM, the
grammar-based Nautilus) and two language-specific ones
(CSmith of C and DIE of JavaScript).

Seed Corpus and BNF Grammar. We collect seed corpus
from the official GitHub repository of each language processor.
Additionally, we collected 71 and 2,598 builtin functions or
variables for JavaScript and PHP respectively from [13]
and [18] using a crawler script. We feed the same seeds to

https://github.com/gcc-mirror/gcc
https://github.com/llvm/llvm-project
https://github.com/gcc-mirror/gcc
https://github.com/llvm/llvm-project
https://chromium.googlesource.com/v8/v8
https://github.com/WebKit/webkit
https://github.com/microsoft/ChakraCore
https://github.com/facebook/hermes
https://github.com/ccxvii/mujs
https://github.com/nginx/njs
https://github.com/jerryscript-project/jerryscript
https://github.com/svaarala/duktape
https://github.com/ldarren/QuickJS
https://www.r-project.org/
https://github.com/radfordneal/pqR
https://github.com/php/php-src
https://www.sqlite.org/index.html
https://github.com/lua/lua
http://luajit.org/
https://github.com/ethereum/solidity
https://github.com/graemeg/freepascal

1 struct S { int d; } s;

2 int a, c;

3 int mainQ {

short *e, b[3] = {1, 2, 0};

1 struct S { int d; } s;
2 int a, c;

3 int mainQ {

4 short *e, b[3] = {1, 2, 0}; 4

5 for (a = 0; a < 39; a++) 5 for (a = 0; a < 39; a++)
6 e = b; 6 e = b;

7 switch (c){ 7 if(c = 7){

8 while(--a){ 8 do{

9 do{ 9 do{

10 case 7: 10 c += *(e++);
11 Cc += *(e++); 11 }

12 } 12 while (*e);

13 while (*e); 13 }

14 } 14 while(--a);

15 3 15 }

16 int d = 3; 16 int d = 3;

17 return 0; 17 return 0;

18} 18}

(a) PoC for case study 1 (b) Logically equivalent program

Fig. 6: PoC and its logically equivalent program for Case Study
1. The code in line 7 to 15 should not be executed because the value
of ¢ is 0. However, the development branch of Clang crashes when
compiling the PoC with "-O3".

AFL, QSYM, DIE and POLYGLOT as initial corpus. Nautilus
and CSmith do not require seed inputs. The BNF grammar

POLYGLOT uses is collected and adjusted from ANTLR [12].

The official release of Nautilus only supports the grammars
of JavaScript and PHP, so we further provide the grammars
of C and Solidity to Nautilus.

Environment Setup. We perform our evaluation on a machine
with an AMD EPYC 7352 24-Core processor (2.3GHz), 256GB
RAMs, and an Ubuntu 16.04 operating system. We adopt edge
coverage as the feedback and use AFL-LLVM mode [77]

or AFL-QEMU mode to instrument the tested applications.

We enlarge the bitmap to 1024K-bytes to mitigate path
collisions [35]. Each tested target is compiled with the default
configuration and with debug assertion on. We additionally
patch ChakraCore to ignore out-of-memory errors, which can be
easily triggered by valid test cases, like large-array allocations
or recursive function calls, to avoid lots of fake crashes and
false invalid test cases in language correctness. For new bug
detection, due to the limited computation resource, we tested
the 21 targets for different duration, summing up to a total
period of about three months. For other evaluations, we run
each fuzzing instance (one fuzzer + one target) for 24h and
repeat this process five times. Each fuzzing instance is run
separately in a docker with 1 CPU and 10G RAM. We perform
Mann-Whitney U test [67] to calculate the P-values for the
experiments and provide the result in Table I'V.

B. Generic Applicability and Identified Bugs

To evaluate the generic applicability of POLYGLOT, we
applied it on 21 representative processors of 9 programming
languages to see whether POLYGLOT can thoroughly test them
and detect bugs. We only use about 450 lines of BNF grammar
and 200 lines of semantic annotations on average for each of the
9 programming languages. As also mentioned in §VII, it only
took one of our authors about 5-8 hours to apply POLYGLOT
on each of the tested programming language.

Identified Bugs. As shown in Table II, POLYGLOT has
successfully identified 173 bugs in the 21 tested processors

1 function handler(key, value) {
2 new Uint32Array(this[8] = handler);

3 return 1.8457939563e-314;

4} //1.8457939563e-314 is the floating point
5 //representation of Oxdeadbeef

6 JSON.parse("[1, 2, 3, 4]", handler);

Fig. 7: PoC that hijacks control flow in njs. njs crashes with RIP
hitting 0xdeadbeef. The bug is assigned with CVE-2020-24349.

1 <?php

2 $a = 'x’;

3 str_replace($a ,
4 7>

array () , $GLOBALS);

Fig. 8: PoC that triggers an invalid memory write in PHP
interpreter. This kind of bug does not involve dangerous functions
and can be used to escape PHP sandboxes.

of 9 programming languages, including 30 from C, 10 from
C++, 26 from JavaScript, 35 from PHP, 16 from Solidity,
27 from SQL, 14 from LUA, 7 from R and 8 from Pascal. The
complete and detailed information of the bugs can be found in
Table V in Appendix. All the bugs have been reported to and
acknowledged by the corresponding developers. At the time
of paper writing, 113 bugs have been fixed and 18 CVEs are
assigned. Most of these bugs exist in the deep logic of the
language processors and are only triggerable by semantically
correct test cases. In the following case studies, we discuss
some of the representative bugs to understand how POLYGLOT
can find these bugs and what security consequences they cause.

Case Study 1: Triggering Deep Bugs in Clang. POLYGLOT
identifies a bug in the loop strength reduction optimization of
Clang. Fig. 6a shows the Proof-of-Concept (PoC), and Fig. 6b
shows its logically equivalent program for understanding the
semantics of the PoC easily. Fig. 11 in Appendix shows
the process of how POLYGLOT turns the benign motivating
example (Fig. 2a) into the bug triggering PoC. After each
round of mutation, all the definitions are intact, and new code
structures are introduced. Each round of validation produces a
semantically correct test case. With new code structures and
semantic correctness, the mutated test case keeps discovering
new execution paths, which encourages POLYGLOT to keep
mutating it. And we get the bug triggering PoC after 3 rounds
of mutation and validation. The PoC might look uncommon
to programmers, but its syntax and semantics are legitimate
in C. Therefore, the PoC shows that POLYGLOT can generate
high-quality inputs to trigger deep bugs in language processors.

Case Study 2: Control Flow Hijacking in njs. POLYGLOT
identified many exploitable bugs, including the one shown
in Fig. 7, which leads to control flow hijacking in njs. In
JavaScript, when JSON parses a string, it accepts a handler
to transform the parsed values. In the PoC, JSON.parse first
parses the string "[1, 2, 3, 4]" into an array of four integer
elements, which is denoted by arr. Then, the handler at line
1 runs on each of the four elements and replaces them with
1.8457939563e-314. It also modifies arr, which is referred by
this in line 2. Assigning a new element of type function to
arr changes the underlying memory layout of arr. After the
handler processes the first element, the memory layout of arr

TABLE III: Distribution of bugs found by evaluated fuzzers. We
perform the evaluation for 24 hours and repeat it five times. We report
the bugs that appear at least once. "-" means the fuzzers are not
applicable to the target. POLYGLOT-st refers to POLYGLOT-syntax.

%

Type 3 3

SF: segmentation fault 5 (j e

AF: assertion failure = = E ﬁ

UAF: use-after-free S o|d E 3| & H
Target SBOF: stack buffer overflow & & | < <& = |0 &
clang AF in parser X X|v X X|Xx -
clang AF in parser X X| X v X|Xx -
clang AF in code generation vV XX X XX -
clang SF in optimization vV XX X X|X -
ChakraCore SF in JIT compilation vV X| X X X|- X
ChakraCore AF in JIT compilation vV XX X X|- X
php UAF in string index vV XX X X|- -
php SF in setlocale vV VX X X|- -
php SF in zend API vV VI|X X V|- -
php SBOF in header callback vV XX X Xi- -
solc SBOF in recursive struct vV XX X X|- -

has changed. However, it is undetected by njs and causes a type
confusion. njs still uses the old layout and mistakenly treats the
first processed element, which is a user-controllable number,
as a function pointer. njs then calls that function and control
flow hijacking happens. If an attacker controls the JavaScript
code, he can utilize this bug to achieve RCE.

Case Study 3: Bypassing PHP Sandbox. The PHP bugs
found by POLYGLOT can be used to escape PHP sand-
boxes. PHP sandboxes usually disable dangerous functions
like "shell_exec" to prevent users from executing arbitrary
commands. The PoCs of our PHP bugs do not involve these
functions. Therefore, they are allowed to run in PHP sandboxes
such as [16, 19], causing memory corruption and leading to
sandbox escape [4, 5, 10].

We show the PoC of one of our bugs in Fig. 8, which only
uses a commonly-used and benign function str_replace. It
triggers an out-of-boundary memory write and crashes the
interpreter. With a well-crafted exploiting script, attackers
can modify the benign function pointers to dangerous ones.
For example, we overwrite the function pointer of echo to
shell_exec. Then calling echo("1s"), which should simply
print the string "1s", becomes shell_exec("1s"). In this way,
attackers can escape the sandbox and produce more severe
damages. Actually, the security team of Google also considers
bugs in PHP interpreter as highly security-related [7]. Therefore,
our bugs in PHP interpreters, though not assigned with CVEs,
can lead to severe security consequences.

C. Contributions of Semantic Correctness

To understand the contributions of semantic correctness in
fuzzing language processors, we perform unit tests by compar-
ing POLYGLOT and POLYGLOT-syntax which is POLYGLOT
without semantic validation. We compare them in three different
metrics: the number of unique bugs, language validity, and
edge coverage. We evaluate the number of unique bugs as it
can better reflect bug finding capabilities of the fuzzers than
the number of unique crashes [48]. For language correctness,

10

mmm Correct Bl Semantic error Syntax error [Unsupported

-
o
S

@
S

rate (%)
rate (%)
g

IS
S

N
5

0

K X oo

. ~0° “G\o\"’ o
o

(a) Clang of C

Qs*"\ o p o o¢

6 Ny X ©
R 7 o™ QO\‘,G\“ H@o* e R S
W oo W

(b) ChakraCore of JavaScript

100

80

rate (%)
rate (%)
3

IS
S

N
o

o

& o€

Ao~ NSRS o M2
o \;o\‘!(’\o LA ‘\v\“\b &

(d) solc of Solidity

. P b & of
@ o7 EANRCE
=

W

(c) php of PHP

Fig.9: Rate of language correctness of inputs generated by evalu-
ated fuzzers for 24h. "Correct" means the inputs can be successfully
executed or compiled by the language processors. "Syntax error"
means the inputs contain syntactic errors. "Semantic error" means
the inputs are valid syntactically but not semantically. "Unsupported"
mean the fuzzer is not applicable to the target.

we consider a test case as semantically correct as long as it
can be compiled (for compilers) or executed (for interpreters)
without aborting errors. For example, if a C program uses an
uninitialized variable, GCC might still successfully compile
the program, so we treat it as a correct test case. This method
will treat some semantically incorrect test cases as correct
ones (e.g., inputs containing undefined behaviors). We plan to
mitigate this problem in future work. We should notice that
PoLYGLOT-syntax without IR mutation is basically AFL, and
we leave the comparison in the next section (§VIII-D).

Unique Bugs. We manually map each crash found by each
fuzzer in 24 hours to its corresponding bug, and show the result
in Table III. POLYGLOT-syntax finds only two bugs in PHP,
which are covered by the nine bugs POLYGLOT finds in the
four targets. We check the PoCs of the two PHP bugs and find
the bugs are triggered by a single function call to a specific
built-in function. While POLYGLOT generates such function
calls in correct test cases, POLYGLOT-syntax generates them
in incorrect ones. These function calls happen to be at the
beginning of the PoCs of POLYGLOT-syntax. Since the PHP
interpreter parses and executes one statement per time, the
bugs are triggered before the interpreter detects errors in later
statements. This shows that both POLYGLOT and POLYGLOT-
syntax can identify bugs triggerable by simple statements in
the PHP interpreter. However, only POLYGLOT detects deeper
bugs in optimization in Clang and ChakraCore because those
bugs can only be triggered by semantically correct test cases.

Language Validity. We show the details of language correct-
ness in Fig.9. Compared with POLYGLOT-syntaz, POLYGLOT
improves the language validity by 50% to 642%: 642% in
Clang, 88% in ChakraCore, 54% in php, and 50% in solc.
The result shows the semantic validation greatly improves

--#- POLYGLOT AFL -#- NAUTILUS - DIE
-4- POLYGLOT-syntax --- QSYM -*- Csmith
60 >
- /'/' 24 "’_’,w
X 48 o 2 3 -
- > ~ o g
n Lo 018 S o
0 36 o " 0 > P
o v P -} s R Co g
° rs > B), e o —
2 ¥] e v
3 A = - 3 3:‘ PSSR el T Tl b
9 1 S A a—a—a—d—d T 9 P2 e
2) OO a—pmeerny B S SR S P
A . 7 o ek — A= A
o ':_:_4_,4__;-«!—-’-"""""" , A - A
0 4 8 12 16 20 0 4 8 12 16 20
(a) Clang of C (b) ChakraCore of JavaScript
70 —
> ——
—~ 7 ad —-~12 fo—e-
X 56 Lo® 2 X Pt
0 -~ o s " el S
@ 42 s T 4 [5 Proes 2
o > e o » TS
5 - po 4 g =g
0 28 A] { ¥
2 a7 z i/
] o . I S S IR 4 - pm ko= ==
2 1] L e kA= 20 ki
’l'f:'r——*"“""""'*_*_"— - fe
e o o
= —

4 8 12 16 20

(d) solc of Solidity

0 4 8 12 16 20

(c) php of PHP

0

Fig. 10: Edge coverage found by evaluated fuzzers for 24h. We
repeat the experiments 5 times. The solid dot lines represent the mean
of the result and the shadow around lines are confidence intervals for
five runs.

the semantic correctness of the test cases. The difference
in the degree of improvement results from the complexity
and the accuracy of the BNF grammar of the language. In
PoLYGLOT, C and JavaScript have 364 and 462 lines of
BNF grammar, while PHP and Solidity have 802 and 745
respectively. Also, the BNF grammar is a superset of the real
grammar the processor accepts. The mutator generates more
test cases that cannot be validated due to lower accuracy in the
grammar of PHP and Solidity. For example, we can use a
combination of the keywords {"pure", "view", "payable"}
to describe a function in Solidity as long as the same
keyword does not appear twice. However, in BNF it is
described as (pure|view|payable)* and then "pure pure" is
legal according to the grammar. Such errors will be treated as
semantic errors and cannot be fixed by POLYGLOT currently.

Code Coverage. POLYGLOT identifies 51%, 39%, 23%,
31% more edge paths than POLYGLOT-syntax in Clang,
ChakraCore, php, and solc respectively. We show the trend
of edge coverage in 24h in Fig. 10. The increase is higher in
Clang and ChakraCore than the rest two because Clang and
ChakraCore perform heavy optimization (e.g., ChakraCore has
JIT compilation). With more semantically correct test cases,
POLYGLOT can reach deeper logic to explore the optimization
and compilation code. As shown in Table VI in Appendix,
POLYGLOT-syntax executes about 2x as fast as POLYGLOT,
but it still achieves lower coverage. This result shows the
semantically correct test cases generated by POLYGLOT are
more effective in exploring the deep program states.

Overall, POLYGLOT outperforms POLYGLOT-syntax in the
number of unique bugs, language validity, and code coverage.
As they use the same mutation strategies, they generate test
cases with similar code structures. Under this condition, higher
language validity further improves the fuzzing performance
in various dimensions, showing the importance of semantic
correctness in testing deep logic.

11

TABLE 1V: P-values of POLYGLOT v.s. other fuzzers. We use
Mann-Whitney U test to calculate the P-values. P-values less than 0.05
mean statistical significance. The result of nearly all the experiments is
statistically significant except for the language correctness compared
with CSmith and DIE.

v.s. Fuzzer Target Coverage Correctness Bugs
Clang 0.00596 0.00545 0.00198
ChakraCore 0.00609 0.00583 0.00198
FOWTELOIS 0.00609 0.00609 0.00520
solc 0.00609 0.00596 0.00198
Clang 0.00596 0.00545 0.00279
AFL ChakraCore 0.00609 0.00583 0.00325
php 0.00609 0.00609 0.00325
solc 0.00609 0.00596 0.00198
Clang 0.00609 0.00485 0.00325
Qs ChakraCore 0.00609 0.00609 0.00325
php 0.00609 0.00609 0.00325
solc 0.00609 0.00596 0.00198
Clang 0.00609 0.00558 0.00198
Nautilus ChakraCore 0.00609 0.00609 0.00198
php 0.00609 0.00609 0.00485
solc 0.00609 0.00558 0.00198
CSmith Clang 0.00609 0.998 0.00198
DIE ChakraCore 0.00596 0.996 0.00198

D. Comparison with State-of-the-art Fuzzers

We also compare POLYGLOT with five state-of-the-art
fuzzers to further understand its strengths and weaknesses
in testing language processors, including the mutation-based
fuzzer AFL, the hybrid fuzzer QSYM, the grammar-based fuzzer
Nautilus, and two language-specific fuzzers CSmith and DIE.

Unique Bugs. POLYGLOT successfully identifies nine bugs in
the four targets in 24 hours: two in Clang, two in ChakraCore,
four in php and one in solc, as shown in Table III. AFL and
QSYM only identify one bug in clang respectively. Nautilus
detects one in the php interpreter, which is also covered by
POLYGLOT. CSmith and DIE find no bugs in 24 hours. The
bugs found by AFL and QSYM exist in the parser of Clang. We
check the PoCs and find them invalid in syntax: the bugs are
triggered by some unprintable characters. POLYGLOT does not
find such bugs because its goal is to find deeper bugs with valid
test cases. In fact, it does find bugs in the optimization logic
of Clang such as the one in Case Study 1 (Fig. 6a), proving
its effectiveness in finding deep bugs.

Language Validity. Compared with the three general-purpose
fuzzers (AFL, QSYM, and Nautilus), POLYGLOT improves the
language validity by 34% to 10,000%, as shown in Fig. 9.
Compared with the language-specific fuzzers, POLYGLOT gets
53% and 83% as much as that of CSmith and DIE respectively.
We investigate the result and find the reasons as follows.
AFL and QSYM do not aim to improve the language validity
as POLYGLOT does. Nautilus uses a small number of fixed
variable names and relies on name collision to generate correct
input, which turns out to be less effective. CSmith and DIE
perform much heavier and more specialized analyses than
POLYGLOT in one specific language and thus achieve higher
validity in that language.

Code Coverage against General-purpose Fuzzers. As
shown in Fig. 10, POLYGLOT identifies 230% to 3,064% more

new edges than the three compared general-purpose fuzzers:
up to 442% more in Clang, 542% more in php, 1,543% more
in ChakraCore, and 3,064% more in solc. If we look at
the execution speed of AFL, QSYM, and Nautilus (Table VI
in Appendix), we can see that they all execute faster than
POLYGLOT. There are several reasons that might lead to
the performance gap. First, POLYGLOT puts more effort in
analyzing mutated test cases and fixing semantic errors so its
test case generation takes more time. Second, test cases of
higher semantic correctness lead to longer processing time,
because language errors cause the execution to bail out early.
As we see earlier, the test cases POLYGLOT generates have
a higher rate of language correctness and thus lead to slower
execution. However, POLYGLOT still achieves much higher
coverage, showing that POLYGLOT can generate high-quality
test cases to effectively explore program states with a reasonable
loss in efficiency of test case generation.

Code Coverage against Language-specific Fuzzers. As
shown in Fig. 10, POLYGLOT finds 863% more edges than
CSmith in Clang and 46% more than DIE in ChakraCore. We
should notice that CSmith and DIE actually have higher rate
of language validity (Fig. 9). We analyze the results and find
the following reasons. First, both CSmith and DIE execute
more slowly than POLYGLOT (Table VI in Appendix). This
is because CSmith and DIE adopt heavier and more complex
analyses than POLYGLOT (e.g., CSmith has 80k lines of code).
Also, as discussed before, higher language validity may lead to
slower execution. Second, CSmith generates test cases randomly
without utilizing guidance, so it might generate similar test
cases to keep exploring the same program logic. To confirm our
speculation, we perform extra evaluations by comparing CSmith
and POLYGLOT in the same conditions: we disable the feed-
back guidance of POLYGLOT, which is denoted by POLYGLOT-
nofeedback, as CSmith has no guidance; we randomly collect
5,000 test cases generated by POLYGLOT-nofeedback and
CSmith to eliminate the effect of different execution speeds.
We measure the language validity and code coverage in Clang
and repeat the process five times. POLYGLOT-no feedback
gets 63.8% of language validity, while CSmith keeps its 100%
correctness. 5,000 test cases of POLYGLOT-no feedback and
CSmith identify 672 and 1809 edges respectively. The results
show our assumption that higher language validity helps explore
more program states is still valid, but there are other aspects
that also affect the code coverage of fuzzing (e.g., feedback
guidance, execution speed, code structures of test cases).

Overall, POLYGLOT outperforms the three compared general-
purpose fuzzers in the evaluated metrics and also outperforms
the language-specific testing tools in the number of bugs and
edge coverage. The fuzzing effectiveness of POLYGLOT comes
from both its constrained mutation and semantic validation.
The mutation introduces various new code structures, while
the validation further improves the quality of the test cases.
Considering its generic applicability, we believe POLYGLOT
can save huge development efforts from developers and boost
the testing of language processors.

12

IX. DISCUSSION

We present several limitations of the current implementation
of POLYGLOT and discuss their possible solutions.

Limitation of Scope/Type System. POLYGLOT relies on
static analysis to collect type and scope information. Therefore,
the scope system of POLYGLOT only handles lexical scopes but
not dymanic scopes [69], and the information collected by type
system on dynamically-typed programming languages might
be imprecise as those types can only determined at run time.
To overcome this problem, we can utilize dymanic execution to
collect runtime information of the seed inputs before fuzzing
to assist the analysis of POLYGLOT. Also, as POLYGLOT tries
to be general, its scope and type system currently focus on
common features shared by popular languages. To support some
language-specific features, such as the ownership in Rust [68],
we need to specialize POLYGLOT case by case. This is not
our goal, but we believe that users can easily encode the extra
semantic information in the IR with semantic annotations and
extend the type and scope system according to their needs.

Inconsistent Grammar. POLYGLOT accepts a BNF grammar
as input and generates test cases that follow the grammar.
However, it still generates syntactically incorrect test cases as
shown in Fig.9, because a BNF grammar is usually a superset of
the real grammar that language processors accept. For example,
in C we can use "(int|long|void)+ identifier" to describe
the grammar of variable definitions, where "+" means one
or more. The "+" is intended for types like long int and
short int, but invalid types like long void and void int are
also valid according to the BNF grammar, which introduces
incorrect test cases. To address this problem, we plan to adopt
techniques that infer accurate grammar in runtime [40, 41].
Alternatively, we can try machine learning techniques to infer
the accurate input grammar from test cases [37, 50, 72].
Supporting More Semantics. POLYGLOT improves language
validity by ensuring that we use definitions of correct scopes
and types. We plan to support more common semantics to
further improve semantic correctness. For example, we use
a variable only after it is initialized, which can reduce the
frequency of undefined behaviors in programming languages
such as C and Pascal. Also, we can extend our symbol tables
to allow variable shadowing, which allows variables of the
same name to exist in different scopes. Furthermore, instead
of only using the type from variable definitions, we can track
when their types change with newly assigned values.

More Relaxed Mutation. POLYGLOT restricts its mutation to
preserve language correctness. However, this restriction limits
the possible definitions and code structures because we hardly
mutate IRs with definitions. We plan to relax the constraints
in the following ways. First, we can generate and insert new
definitions into the test cases. This can enrich the possible
definitions of the test cases and bring more code structures.
Second, we can perform test case minimization to remove
definitions that are not used in the program. This also increases
the possibility of mutation. For example, an IR might not be
mutable because it contains a definition. If the definition is

not used and removed during minimization, the IR becomes
mutable.

X. RELATED WORK

Generation-based Approaches. Generation-based fuzzing
can effectively test software that require structural inputs, such
as compilers and document viewers [1, 46, 51, 54, 60, 74].
They usually leverage a model or grammar, which describes the
required format of the inputs, so they can efficiently generate
test cases that pass the syntax check of the parsers. MoWF [54]
shows how to use file format information as the model to
fuzz the code beyond the parser. SQLsmith [1] generates SQL
queries utilizing SQL grammar and database schemas.

However, it can be nontrivial to get the model or grammar.
For example, the tested application is closed-source and has no
public documents. Recent works propose methods to infer the
structures of the inputs by static analysis or machine learning
on an initial seed corpus [24, 39, 45, 61]. Viide et al. [61]
proposes a model inference approach to assist fuzzing. Osbert
et al. [24] utilizes a set of test cases and the black-box access
to the tested binary to construct a context-free grammar of the
language. AUTOGRAM [45] uses dynamic taint analysis to
produce readable and accurate input grammars.

Considering the infinite input space, blindly generating test
cases is still inefficient for exploring program states. Therefore,
researchers also propose utilizing feedback from execution to
guide test case generation. Apollo [47] measures the difference
in execution time to favor generated SQL queries. Nautilus [22]
adopts code coverage as feedback to decide whether to keep
its generated test cases for mutation.

Programming language testing further requires the semantic
correctness of the inputs. Improving the semantic correctness
of the generated test case greatly helps fuzzers detect deeper
bugs in language processors [33, 74]. CodeAlchemist [43]
proposes semantics-aware assembly to synthesize semantics-
correct JavaScript test cases. CSmith [74] specializes its
analysis for C semantics and produces completely correct test
cases. Dewey et al. uses constraint logic programming to
specify syntactic features and semantic behaviors in test case
generation [33, 34], which relies on symbolic executions and
complex constraint programming.

PoLYGLOT differs from the aforementioned works in the
following aspects: POLYGLOT adopts grammar for mutation
instead of pure generation so it can fully utilize coverage
guidance; POLYGLOT is generic and easy to apply on different
language processors.

Mutation-based Approaches. Mutation-based fuzzing is
effective in exploring deep logic of tested programs [38, 76, 77].
Unlike generation-based ones, mutation-based fuzzers usually
require an initial corpus to run. They perform random mutation
on existing test cases to generate new ones. If a test case
triggers a new execution path, it will be considered as useful
and saved for further mutation. In this way, fuzzers quickly
reach the deep logic and explore more program states. AFL [77]
adopts coverage feedback as guidance and performs random
bitflip mutation. As naive bitflip mutation can hardly pass

13

complicated checks such as magic numbers, existing fuzzers
[23, 25, 29, 30, 36, 56, 58, 76] adopt symbolic execution or
taint analysis to overcome the problem. Driller [58] performs
selective concolic execution while QSYM [76] integrates the
symbolic emulation with the native execution.

To fully utilize computation power, researchers try to find
a better feedback guidance other than naive code cover-
age [27, 28, 49, 65]. AFLGo [27] introduces directed greybox
fuzzing with the objective of reaching a given set of target
program locations efficiently. TaintScope [64] uses checksum
as feedback guidance to help fuzz file segments. SAVIOR [31]
prioritizes its concolic execution towards the locations with
potential vulnerabilities. Ijon [21] annotates the data that
represent the internal program states to guide the fuzzer.

However, the aforementioned mutation-based fuzzers are
unaware of the input structures. Their effectiveness greatly
reduces when highly structural inputs are required. Recent
fuzzers try to learn the structures [26, 32, 62, 75]. DIFUZE [32]
leverages static analysis to identify the input structures of kernel
drivers. GRIMORE [26] performs large-scale mutation using
grammar-like combinations to synthesize structured inputs
without users’ help. SLF [75] infers the relation between input
validity checks and input fields to generate valid seed inputs.
Alternatively, researchers propose advanced mutation on a
higher level than bits and bytes [42, 44, 52, 55, 63, 71, 73, 78].
LangFuzz [44] and Superion [63] accept a grammar to translate
test cases to AST and then mutate the AST. Fuzzilli [42] and
Squirrel [78] design their own IRs for mutation and semantic
analysis in JavaScript and SQL respectively.

Compared with these fuzzers, POLYGLOT adopts light-
weight analyses to efficiently generate valid inputs that pass
the syntactic and semantic checks of language processors.
Meanwhile, it keeps its generic applicability by basing its
analysis on a uniform IR.

XI. CONCLUSION

We present POLYGLOT, a generic fuzzing framework that
generates high-quality inputs for testing processors of different
programming languages. We applied POLYGLOT on 21 pro-
cessors of 9 languages and successfully identified 173 new
bugs. Our evaluation shows POLYGLOT is more effective in
testing language processors than existing fuzzers with up to
30x improvement in code coverage.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful feed-
back. The work was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under contracts
HRO00112090031 and HR00112090034, the Office of Naval
Research (ONR) under grants N00O014-17-1-2895, N0O0OO14-
15-1-2162, N00014-18-1-2662, N00014-16-1-2912, N00014-
16-1-2265 and N00014-17-1-2894, and the National Science
Foundation (NSF) under grant CNS-1652790. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of DARPAR, NSF or ONR.

[1
[2

[

[3

—

[5

=

[6]

[7

—

8
[9

—_

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(171

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

REFERENCES
SQLSmith. https://github.com/ansel/sqlsmith, 2016.

Domato, A DOM fuzzer. https://github.com/googleprojectzero/domato,
2017.

List of programming languages. https://en.wikipedia.org/wiki/List_of_
programming_languages, 2017.

Dismissed PHP flaw shown to pose code execution
https://portswigger.net/daily-swig/dismissed- php-flaw-shown-to-
pose-code-execution-risk, 2019.

PHP 7.0-7.4 disable_functions bypass. https://github.com/mmOr1/exploits/
tree/master/php7-backtrace-bypass, 2019.

THE STORY OF TWO WINNING PWN20OWN JIT
VULNERABILITIES IN MOZILLA FIREFOX. https:
/Iwww.thezdi.com/blog/2019/4/18/the-story- of-two-winning-pwn2own-
jit-vulnerabilities-in-mozilla-firefox, 2019.

Bugs in PHP interpreter found by OSS-FUZZ. https://bugs.chromium.
org/p/oss-fuzz/issues/list?q=-status%3 AWontFix %2CDuplicate%20-
component%3Alnfra%20PHP&can=1, 2020.

Data type. https://en.wikipedia.org/wiki/Data_type, 2020.

risk.

Flex, the fast lexical analyzer generator. https://github.com/westes/flex/,
2020.

From Web to Pwn - FFI Arbitrary read/write without FFI::cdef or
FFI::load. http://blog.huntergregal.com/2020/07/from-web-to-pwn-ffi-
arbitrary-readwrite.html, 2020.

Gnu bison. https://www.gnu.org/software/bison/, 2020.

Grammars written for ANTLR v4. https://github.com/antlr/grammars-v4,
2020.

JavaScript: Standard built-in objects. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects, 2020.

Memory unsafety problem in safe Rust. https://github.com/rust-lang/rust/
issues/69225, 2020.

Miscompilation: for range loop reading past slice end. https://github.
com/golang/go/issues/40367, 2020.

Online PHP Sandbox. https://wtools.io/php-sandbox/, 2020.

OSS-Fuzz: Continuous Fuzzing for Open Source Software. https://github.
com/google/oss-fuzz, 2020.

PHP: Internal (built-in) functions.
functions.internal.php, 2020.

PHP Sandbox, Test your PHP code with this code tester. https://sandbox.
onlinephpfunctions.com/, 2020.

Tiobe index for august 2020. https://www.tiobe.com/tiobe-index/, 2020.

C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz. Ijon: Exploring
deep state spaces via fuzzing. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1597-1612, 2020.

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. Nautilus: Fishing
for deep bugs with grammars. In NDSS, 2019.

Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. REDQUEEN: fuzzing with input-to-state corre-
spondence. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesiz-
ing program input grammars. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2017, pages 95-110, New York, NY, USA, 2017. Association for
Computing Machinery.

Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A
taint based approach for smart fuzzing. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, pages 818—
825. IEEE, 2012.

Tim Blazytko, Cornelius Aschermann, Moritz Schlogel, Ali Abbasi,
Sergej Schumilo, Simon Woérner, and Thorsten Holz. Grimoire: Syn-
thesizing structure while fuzzing. In Proceedings of the 28th USENIX

Conference on Security Symposium, SEC’19, pages 1985-2002, USA,
2019. USENIX Association.

https://www.php.net/manual/en/

14

(27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]
(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
pages 2329-2344, 2017.

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-
based greybox fuzzing as markov chain. I[EEE Transactions on Software
Engineering, 45(5):489-506, 2017.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI, volume 8, pages 209-224, 2008.

P. Chen and H. Chen. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 711-725,
2018.

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong
Zhang, Long Lu, et al. Savior: Towards bug-driven hybrid testing.
In Proceedings of the 41st IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2020.

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: Interface
aware fuzzing for kernel drivers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security.

Kyle Dewey, Jared Roesch, and Ben Hardekopf. Language fuzzing using
constraint logic programming. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE 14,
pages 725-730, New York, NY, USA, 2014. Association for Computing
Machinery.

Kyle Dewey, Jared Roesch, and Ben Hardekopf. Fuzzing the rust
typechecker using clp (t). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 482—493.
IEEE, 2015.

Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu
Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 679—-696. IEEE, 2018.

Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In 2009 IEEE 3lst International Conference on
Software Engineering, pages 474-484. IEEE, 2009.

P. Godefroid, H. Peleg, and R. Singh. Learn fuzz: Machine learning for
input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 50-59, 2017.

Google. Honggfuzz, 2016. https://google.github.io/honggfuzz/.

Rahul Gopinath, Bjorn Mathis, Mathias Hoschele, Alexander Kampmann,
and Andreas Zeller. Sample-free learning of input grammars for
comprehensive software fuzzing. arXiv preprint arXiv:1810.08289, 2018.

Rahul Gopinath, Bjorn Mathis, Matthias Hoschele, Alexander Kampmann,
and Andreas Zeller. Sample-free learning of input grammars for
comprehensive software fuzzing. ArXiv, abs/1810.08289, 2018.

Rahul Gopinath, Bjorn Mathis, and Andreas Zeller. Inferring input
grammars from dynamic control flow. arXiv preprint arXiv:1912.05937,
2019.

Samuel GroB3. Fuzzil: Coverage guided fuzzing for javascript engines.
Master thesis, TU Braunschweig, 2018.

HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAlchemist:
Semantics-aware code generation to find vulnerabilities in javascript
engines. 2019.

Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code
fragments. In Proceedings of the 21st USENIX Conference on Security
Symposium, Security’12, page 38, USA, 2012. USENIX Association.

Matthias Hoschele and Andreas Zeller. Mining input grammars from
dynamic taints. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 720-725. IEEE, 2016.

Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart
contracts for vulnerability detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering,
ASE 2018, pages 259-269, New York, NY, USA, 2018. Association for
Computing Machinery.

Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang.
APOLLO: Automatic Detection and Diagnosis of Performance Regres-

https://github.com/anse1/sqlsmith
https://github.com/googleprojectzero/domato
https://en.wikipedia.org/wiki/List_of_programming_languages
https://en.wikipedia.org/wiki/List_of_programming_languages
https://portswigger.net/daily-swig/dismissed-php-flaw-shown-to-pose-code-execution-risk
https://portswigger.net/daily-swig/dismissed-php-flaw-shown-to-pose-code-execution-risk
https://github.com/mm0r1/exploits/tree/master/php7-backtrace-bypass
https://github.com/mm0r1/exploits/tree/master/php7-backtrace-bypass
https://www.thezdi.com/blog/2019/4/18/the-story-of-two-winning-pwn2own-jit-vulnerabilities-in-mozilla-firefox
https://www.thezdi.com/blog/2019/4/18/the-story-of-two-winning-pwn2own-jit-vulnerabilities-in-mozilla-firefox
https://www.thezdi.com/blog/2019/4/18/the-story-of-two-winning-pwn2own-jit-vulnerabilities-in-mozilla-firefox
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-status%3AWontFix%2CDuplicate%20-component%3AInfra%20PHP&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-status%3AWontFix%2CDuplicate%20-component%3AInfra%20PHP&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=-status%3AWontFix%2CDuplicate%20-component%3AInfra%20PHP&can=1
https://en.wikipedia.org/wiki/Data_type
https://github.com/westes/flex/
http://blog.huntergregal.com/2020/07/from-web-to-pwn-ffi-arbitrary-readwrite.html
http://blog.huntergregal.com/2020/07/from-web-to-pwn-ffi-arbitrary-readwrite.html
https://www.gnu.org/software/bison/
https://github.com/antlr/grammars-v4
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://github.com/rust-lang/rust/issues/69225
https://github.com/rust-lang/rust/issues/69225
https://github.com/golang/go/issues/40367
https://github.com/golang/go/issues/40367
https://wtools.io/php-sandbox/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.php.net/manual/en/functions.internal.php
https://www.php.net/manual/en/functions.internal.php
https://sandbox.onlinephpfunctions.com/
https://sandbox.onlinephpfunctions.com/
https://www.tiobe.com/tiobe-index/
https://google.github.io/honggfuzz/

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

sions in Database Systems (to appear). In Proceedings of the 46th
International Conference on Very Large Data Bases (VLDB), Tokyo,
Japan, August 2020.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
2123-2138, 2018.

Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation
strategy for increasing greybox fuzz testing coverage. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 475485, 2018.

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. Deepfuzz:
Automatic generation of syntax valid ¢ programs for fuzz testing. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1044-1051, 2019.

MozillaSecurity. funfuzz. https://github.com/MozillaSecurity/funfuzz,
2020.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and
Yves Le Traon. Semantic fuzzing with zest. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 329-340, 2019.

Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In Proceedings
of the 41st IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, May 2020.

Van-Thuan Pham, Marcel Bohme, and Abhik Roychoudhury. Model-
based whitebox fuzzing for program binaries. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016.

Van-Thuan Pham, Marcel B6hme, Andrew Edward Santosa, Alexan-
dru Razvan Caciulescu, and Abhik Roychoudhury. Smart greybox fuzzing.
IEEE Transactions on Software Engineering, 2019.

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano
Giuffrida, and Herbert Bos. Vuzzer: Application-aware evolutionary
fuzzing. In NDSS, volume 17, pages 1-14, 2017.

Chris Rohlf and Yan Ivnitskiy. Attacking clientside jit compilers. Black
Hat USA, 2011.

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu
Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. Driller: Augmenting fuzzing through selective symbolic
execution. In NDSS, volume 16, pages 1-16, 2016.

Ken Thompson. Reflections on Trusting Trust. Commun. ACM, 27(8),
August 1984.

Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos.
Ifuzzer: An evolutionary interpreter fuzzer using genetic programming. In
European Symposium on Research in Computer Security, pages 581-601.
Springer, 2016.

Joachim Viide, Aki Helin, Marko Laakso, Pekka Pietikdinen, Mika
Seppinen, Kimmo Halunen, Rauli Puuperi, and Juha Roning. Experiences
with model inference assisted fuzzing. In Proceedings of the 2nd
Conference on USENIX Workshop on Offensive Technologies, WOOT’ 08,
USA, 2008. USENIX Association.

15

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven
seed generation for fuzzing. In 2017 IEEE Symposium on Security and
Privacy (SP), pages 579-594. IEEE, 2017.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-
aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 724-735. 1IEEE, 2019.

T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In
2010 IEEE Symposium on Security and Privacy, pages 497-512, 2010.

Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao,
Dinghao Wu, and Purui Su. Not all coverage measurements are equal:
Fuzzing by coverage accounting for input prioritization. NDSS, 2020.

Wikipedia contributors. Backus-naur form — Wikipedia, the free
encyclopedia, 2020. [Online; accessed 1-September-2020].

Wikipedia contributors. Mann-whitney u test — Wikipedia, the free
encyclopedia, 2020. [Online; accessed 31-August-2020].

Wikipedia contributors. Rust (programming language) — Wikipedia, the
free encyclopedia, 2020. [Online; accessed 23-December-2020].

Wikipedia contributors. Scope (computer science) — Wikipedia, the free
encyclopedia, 2020. [Online; accessed 23-December-2020].

Wikipedia contributors. Translator (computing) — Wikipedia, the free
encyclopedia, 2020. [Online; accessed 1-September-2020].

Dominik Winterer, Chengyu Zhang, and Zhendong Su. On the unusual
effectiveness of type-aware mutations for testing smt solvers. arXiv
preprint arXiv:2004.08799, 2020.

Zhengkai Wu, Evan Johnson, Wei Yang, Osbert Bastani, Dawn Song,
Jian Peng, and Tao Xie. Reinam: reinforcement learning for input-
grammar inference. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 488—498, 2019.

Dingning Yang, Yuqing Zhang, and Qixu Liu. Blendfuzz: A model-based
framework for fuzz testing programs with grammatical inputs. In 2072
IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications, pages 1070-1076. IEEE, 2012.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding
and understanding bugs in ¢ compilers. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’11, New York, NY, USA, 2011.

W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang. SIf:
Fuzzing without valid seed inputs. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages 712-723, 2019.

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. Qsym:
A practical concolic execution engine tailored for hybrid fuzzing. In
Proceedings of the 27th USENIX Conference on Security Symposium,
USA, 2018.

Michal Zalewski. American Fuzzy Lop (2.52b). http://lcamtuf.coredump.
cx/afl, 2019.

Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and
Dinghao Wu. SQUIRREL: Testing Database Management Systems with
Language Validity and Coverage Feedback. In Proceedings of the 27th
ACM Conference on Computer and Communications Security (CCS),
Orlando, USA, November 2020.

https://github.com/MozillaSecurity/funfuzz
http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl

TABLE V: Detected bugs. POLYGLOT found 173 bugs, including 6 from GCC, 24 from Clang, 4 from G++, 6 from Clang++, 3 from v8, 1
from JSCore, 9 from ChakraCore, 1 from Hermes, 1 from mujs, 4 from njs, 5 from JerryScript, 1 from DukTape, 1 from QuickJs, 4 from R,
3 from pqgR, 35 from php, 27 from SQLite, 12 from Lua, 2 from LuaJit, 16 from solc, 8 from freepascal.
Bug Type: UAF: use-after-free. BOF:buffer overflow of Global (G), Heap (H), and Stack (S).

SEGYV: potential exploitable vulnerability. AF: assertion failure. LEAK: memory leak.
Bug Status: x: Fixed, e: Verified, ¢: Open, t: CVE

ID Type Function Reference ID Type Function Reference ID Type Function Reference
SQLite v3.31, 300K LoC V8 v8.2.0, 811K LoC PqR 5¢6058e, 845K LoC

1 UAF resetAccumulator T 2020-13871 68 SEGV TimeFormatConstructor « 1052019 128 SEGV Primitive ® issue-43
2 SBOF sqlite3_str_vappendf T 2020-13434 69 AF DeclarationScope * 1060023 129 SEGV do_dotcall_e < issue-44
3 SEGV sqlite3ExprCodeTarget T 2020-13435 70 SEGV monkey-patched < 1098588 130 SEGV plot © issue-45
4 HBOF multiSelectOrderBy T 2020-15358 JaveScriptCore v2.27.4, 497K LoC PHP v8.0.0, 1269K LoC

SQLite v3.32 (development), 304K LoC 71 SEGV finishCreation * 208040 131 SBOF header callback © 79207
5 UAF sqlite3BlobCompare * da5a09b ChakraCore v1.12.0, 690K LoC 132 UAF zend_hash_packed_to_hash e 79209
6 UAF resetAccumulator * 7¢6d876 72 SEGV ReparseAsm]sModule e 6472 133 SEGV php_var_export_ex e 79214
7 SEGV sqlite3VdbeExec * 0899cfu 73 SEGV FlowGraph: :Build e 6473 134 SEGV zend_hash_next_index_insert * 79258
8 SEGV sqlite3VdbeExec * 116353 74 AF MapStFldHelper e 6474 135 SBOF php_array_element_dump * 79259
9 SEGV sqlite3VdbeCursorMoveto * €5504¢9 75 SEGV CloneBlockData © 6482 136 AF zend_dispatch_try * 19777
10 SEGV moveToRoot * 7d8908 76 AF FlowGraph Destruct © 6483 137 AF zend_closure_get_debug_info x 79778
11 SEGV sqlite3Select * b706351 77 AF GetArgCount © 6485 138 AF zend_wrong_string_offset * 79779
12 SEGV sqlite3VdbeCursorMoveto * 5829597 78 AF CallFunction & 6486 139 HBOF zend_array_destroy © 79781
13 SEGV isAuxiliaryVtabOperator x 4374860 79 SEGV Optimize o 6487 140 SEGV php_str_replace_common * 79783
14 AF flattenSubquery * e367f31 80 SEGV EmitTopLevelStatement ¢ 6488 141 UAF slow_index_convert * 79784
15 AF sqlite3VdbeExec * 9fb26d3 Hermes v0.5.0, 620K LoC 142 AF zend_array_destroy o 79788
16 AF sqlite3ExprCodeIN * fd1bda0 81 AF operationWalk * 279 143 AF zend_ast_evaluate * 79790
17 AF selectExprDefer * 7aa91lab MuJs 9f3e141, 15K LoC 144 AF _get_zval_ptr_cv_BP_VAR_RW x 79791
18 AF Where clause * el2a0ae 82 UAF jsR_run * 136 145 AF zend_array_destroy * 79792
19 AF sqlite3VdbeExec * c4c5648 njs v0.4.3, 78K LoC 146 UAF fetch imension_address * 79793
20 AF Vdbe Memory * d165ad7 83 SEGV 1JSON Stringify T 2020-24348 147 AF zend_gc_delref e 79813
21 AF sqlite3WhereBegin * 82b588d 84 SEGV njs_lvlhsh_bucket_find { 2020-24347 148 SEGV zend_string_release_ex * 79815
22 AF clearSelect * 618156e 85 SEGV njs_value_property T 2020-24349 149 AF _zend_is_inconsistent e 79816
23 AF OrderBy Optimize * 41c1456 86 UAF JSON Parse + 2020-24346 150 SBOF 2zval_get_tmp_string * 79817
24 AF xferOptimization * f07d71b JerryScript v2.4.0, 173K LoC 151 UAF ZEND_VM_HANDLER marco * 79818
25 AF Btree Cursor * aa43786 87 UAF jerry-core +2020-24344 152 SEGV zend_std_write_property © 79819
26 AF sqlite3IsLikeFunction * b985f0b 88 AF Typedarray * 3975 153 SEGV zend_get_properties_for * 79821
27 AF sqlite3VdbeExec * 9d36667 89 AF JSON parse * 3950 154 SEGV php_pcre_replace_array * 79829
GCC v10.0.1, 5956K LoC 90 AF JSON parse * 3945 155 LEAK php_var_dump * 79830
28 SEGV gimplify_compound_expr * 93576 91 AF Statement parser * 3944 156 AF increment_function o 79831
29 AF Nonlocal Reference e 93572 DukTape v2.5.0, 238K LoC 157 SEGV property_info_for_slot * 79832
30 AF force_constant_size e 93573 92 AF duk_hobject_getprop * 2338 158 SEGV php_str_replace_in_subject ¢ 79835
31 AF c_expr_sizeof_expr © 93574 QuickJs 32d72d4, 89K LoC 159 SEGV concat_function © 79836
32 AF extended_tree e 93577 93 LEAK JS_FreeRuntime * ¢38919594 160 SEGV zend_get_type_by_const < 79837
33 AF gimple_call_arg e 93631 solc v0.6.3, 193K LoC 161 SEGV zend_mm_alloc_small © 79838
G++ v10.0.1, 5956K LoC 94 SBOF ReferencesResolver * 8266 162 AF array_walk * 79839
34 SEGV dump_parameters e 93788 95 AF calldataEncodedSize * 8275 163 AF zend_get_property_offset * 79862
35 AF pop_local_binding * 93752 96 AF encodeToMemory * 8276 164 LEAK zend_hash * 79947
36 AF Output constructor e 93753 97 AF Expression Assignment x 8277 165 LEAK zend_string * 79951
37 AF cclplus * 93789 98 AF storeValue * 8278 freepascal v3.3.1, 405K LoC

Clang v11.0.0, 1578K LoC 99 AF isDynamicallyEncoded * 8279 166 AF tmoddivnode.simplify * 37449
38 SEGV getExprLoc © 44729 100 AF interfaceType * 8280 167 AF TSparcReader.BuildOperand ¢ 37459
39 SEGV isa_impl_wrap © 44735 101 AF interfaceType * 8282 168 AF get_funcretloc * 37460
40 SEGV ActOnFinishFullExpr o 44741 102 AF TypeChecker: :visit * 8283 169 AF tinlinenode.handle_str * 37462
41 SEGV usePhysReg e 44750 103 AF memoryDataSize * 8286 170 AF replaceloadnodes * 37475
42 SEGV VisitBuiltinCallExpr < 44756 104 AF ConstStateVar * 8296 171 AF GetCopyAndTypeCheck < 37476
43 AF CheckListElementTypes ¢ 44738 105 AF copyToStackTop * 9272 172 AF searchcsedomain * 37477
44 AF ParseSwitchStatement © 44740 106 SEGV SourceLocation * 9404 173 AF GetCopyAndTypeCheck * 37508
45 AF ActOnForStmt © 44732 107 SEGV RationalNumber * 9434

46 AF VisitCastExpr < 44742 108 SEGV SourceLocation * 9441

47 AF DoMarkVarDeclReferenced < 44744 109 SBOF interfaceType * 9443

48 AF eliminateRegSequence * 44749 Lua v5.4.0, 31K LoC

49 AF getASTRecordLayout © 44734 110 UAF 1luaD_call T 2020-15888

50 AF cast_retty <o 44755 111 HBOF getobjname + 2020-15889

51 AF ImplicitMember © 44737 112 SEGV changedline T 2020-15945

52 AF VisitBuiltinCallExpr © 44757 113 SBOF 1luaO_pushvfstring T 2020-24342

53 AF isIncompleteDeclExternC ¢ 44758 114 UAF 1luaD_call T 2020-24371

54 AF udivrem © 44831 115 SEGV 1lua_getlocal 1 2020-24370

55 AF removeDecl © 44832 116 SEGV lua_traceexec + 2020-24369

56 AF getIndirectResult © 44850 117 SBOF 1luaO_pushvfstring * eb41999

57 AF getCommonPtr © 44867 118 HBOF 1luaT_adjustvarargs * 6298903

58 AF TailRecursionEliminator x 46125 119 HBOF 1luaD_pretailcall * eb41999

59 AF getTypeSizeInBits © 46211 120 HBOF 1luaH_get * 6298903

60 AF getAccessTagInfo < 46388 121 UAF 1lua_checkstack * 34affe7

61 SEGV Inifite loop © 46262 LuaJit v2.1, 88K LoC

Clang++ v11.0.0, 1578K LoC 122 SEGV 1j_err_run T 2020-15890

62 AF ParenExpression © 44924 123 SEGV 1j_err_run 1 2020-24372

63 AF HasAccess © 44925 R v4.0.2, 851K LoC

64 AF LookupTemplateName © 44926 124 HBOF printing system * 17867

65 AF ImplicitConversion < 44927 125 HBOF printAttributes * 17870

66 AF CreateOverloadedBinOp ¢ 44928 126 SEGV writelines * 17876

67 AF PushDeclContext © 44940 127 SEGV model.matrix = 17879

16

structS{intd;}s;
inta,c;
int main() {
short *e, b[3]={}, 2, 0};
e=b;
do{
C+=*(e++);
} while(*e);
intres=c;
return res;

Replace
_}

structS{intd;}s; structS{intd;}s;

inta,c; inta,c;
int main() { int main() {
short *e, b[3]={1, 2, 0};
for(FIXME=0; for(a=0; a < 39; a ++)
FIXME < 39; FIXME++) e=b;
FIXME =FIXME ; do{
do { C+=*(e++);
C+=*(e++); } while(*e);
} while(*e); intres=c;
intres=c; return res;
return res; }

Insert

Validate ' '

struct S{intd;}s;
inta,c;
int main() {
short *e, b[3]={, 2, 0};
for(a=0; a < 39; a ++)

e=b;
do{

C +=*(e++);
} while(*e);

intres=c;

return res;
} Validate

=

structS{intd;}s;
inta,c;
int main() {
short *e, b[3]={1, 2, 0};
for(a=0; a < 39; a ++)
e=b;

e i e
dof do{
case7: case 7:
c+=*(e++); C+= *(e++);
1 while(*e); } while(*e);
} *
intres=c; }
FOUMIES, | oert . roturnros, Validat
nse 3
} —_—) }

structS{intd;}s;
inta,c;
int main() {
short *e, b[3]={1, 2, 0};
for(a=0; a < 39; a ++)
e=b;

structS{intd;}s;
inta,c;
int main() {
short *e, b[3]={], 2, 0};
for(a=0; a < 39; a ++)
e=bh;
switch (c) {
while (--a){
do{
case 7:
C+=*(e++);
1 while(*e);
}
}
intres=c;
return res;

}

Fig. 11: The process of how POLYGLOT generates the PoC for Case Study 1. We perform three rounds of mutation and validation on the
motivating example of Fig. 2a. Each round of mutation introduces new code structures (e.g., the first replacement introduces a for statement),
and each round of validation generates correct expressions to fix the semantic errors.

TABLE VI: Execution speed of different fuzzers on the four tested programs within 24 hours. We repeat the experiment five times

and report the average result. The number represent

"Executions/Second".

Fuzzer Clang ChakraCore php solc
PoLYGLOT 5.39 5.56 20.55 20.08
POLYGLOT-syntax 10.15 9.09 57.73 47.96
AFL 24.29 35.38 102.71 103.71
QSYM 10.39 10.60 37.94 52.95
Nautilus 40.59 66.37 115.07 185.24
CSmith 0.34 - - -
DIE - 4.90 - -

17

	Introduction
	Problem
	Language Processors
	Limitations of Current Fuzzers
	Common Semantic Errors
	Our Approach

	Overview of PolyGlot
	Frontend Generation
	Intermediate Representation
	Generating IR Translator

	Constrained Mutation
	Rule 1: Type-Based Mutation
	Rule 2: Local Mutation

	Semantic Validation
	Type System
	Scope System
	Validation

	Implementation
	Evaluation
	Evaluation Setup
	Generic Applicability and Identified Bugs
	Contributions of Semantic Correctness
	Comparison with State-of-the-art Fuzzers

	Discussion
	Related work
	Conclusion

