
Improving Policy-Constrained Kidney Exchange

via Pre-Screening

Anonymous Author(s)
Affiliation
Address
email

Abstract

In barter exchanges, participants swap goods with one another without exchanging1

money; these exchanges are often facilitated by a central clearinghouse, with the2

goal of maximizing the aggregate quality (or number) of swaps. Barter exchanges3

are subject to many forms of uncertainty–in participant preferences, the feasibility4

and quality of various swaps, and so on. Our work is motivated by kidney exchange,5

a real-world barter market in which patients in need of a kidney transplant swap6

their willing living donors, in order to find a better match. Modern exchanges7

include 2- and 3-way swaps, making the kidney exchange clearing problem NP-8

hard. Planned transplants often fail for a variety of reasons–if the donor organ is9

rejected by the recipient’s medical team, or if the donor and recipient are found10

to be medically incompatible. Due to 2- and 3-way swaps, failed transplants can11

“cascade” through an exchange; one US-based exchange estimated that about 85%12

of planned transplants failed in 2019. Many optimization-based approaches have13

been designed to avoid these failures; however most exchanges cannot implement14

these methods, due to legal and policy constraints. Instead, we consider a setting15

where exchanges can query the preferences of certain donors and recipients–asking16

whether they would accept a particular transplant. We characterize this as a two-17

stage decision problem, in which the exchange program (a) queries a small number18

of transplants before committing to a matching, and (b) constructs a matching19

according to fixed policy. We show that selecting these edges is a challenging20

combinatorial problem, which is non-monotonic and non-submodular, in addition to21

being NP-hard. We propose both a greedy heuristic and a Monte Carlo tree search,22

which outperforms previous approaches, using experiments on both synthetic data23

and real kidney exchange data from the United Network for Organ Sharing.24

1 Introduction25

We consider a multi-stage decision problem in which a decision-maker uses a fixed policy to solve26

a hard (stochastic) problem. Before using the policy, the decision-maker can first measure some of27

the uncertain problem parameters–in a sense, guiding the policy toward a better solution. Our primary28

motivation is kidney exchange, a process where patients in need of a kidney transplant swap their29

(willing) living donors, in order to find a better match. Many government-run kidney exchanges match30

patients and donors using a matching algorithm that follows strict policy guidelines [8]; this matching31

algorithm is often written into law or policy, and is not easily modified. Modern kidney exchanges32

use both cyclical swaps and chain-like structures (initiated by an unpaired altruistic donor) [23], and33

identifying the max-size or max-weight set of transplants is both NP- and APX-hard [1, 7].34

In kidney exchange–as in many resource allocation settings–information used by the decision-35

maker is subject to various forms of uncertainty. Here we are primarily concerned with uncertainty36

in the feasibility of potential transplants: if a donor is matched with a potential recipient, will the37

transplant actually occur? Planned transplants may fail for a variety of reasons: for example, medical38

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

testing may reveal that the donor and recipient are incompatible (a positive crossmatch); the recipient39

or their medical team may reject a donor organ in order to wait for a better match; or the donor40

may decide to donate elsewhere before the exchange is planned. Failed transplants are especially41

troublesome in kidney exchange, due to the cycle and chain structures used: for example, suppose42

that a cyclical swap is planned between three patient/donor pairs; if any one of the planned transplants43

fails, then none of the other transplants in that cycle can occur. Unfortunately, it is quite common for44

planned transplants to fail. For example, the United Network for Organ Sharing (UNOS1) estimates45

that in FY2019, about 85% of their planned kidney transplants failed [18].46

Various matching algorithms have been proposed that aim to mitigate transplant failures (for exam-47

ple, using stochastic optimization [15, 3], robust optimization [21], or conditional value at risk [6]).48

However, implementing these strategies would require modifying fielded matching algorithms–which49

in many cases would require changing law or policy. One way to avoid failures without modifying50

the matching algorithm is to pre-screen potential transplants [18, 9, 10], by communicating with the51

recipients’ medical team and possibly using additional medical tests. Pre-screening transplants is52

costly, as it requires scarce time and resources. Furthermore, there are often many thousand potential53

transplants in any given exchange; selecting which transplants to screen is not easy.54

In this paper we investigate methods for selecting a limited number of transplants to pre-screen,55

in order to “guide” the matching algorithm to a better outcome. We formalize this as a multistage56

stochastic optimization problem, and we consider both an offline setting (where screenings are57

selected all at once), and an online setting (where screenings are selected sequentially).58

Related Work. While kidney exchange is known to be a hard packing problem, several algorithms59

exist that are scalable in practice, and are used by fielded exchanges [14, 3, 19]. Prior work has60

addressed potential transplant failures; our model is inspired by Dickerson et al. [15]. Pre-screening61

potential transplants has also been addressed in prior work ([10, 22], and § 5.1 of [12]), and our model62

is similar to stochastic matching and stochastic k-set packing [5]. However there are substantial63

differences between these models and ours: (a) many prior approaches assume that a large number64

of transplants may be pre-screened [10, 22]–on the order of one for each patient in the exchange;65

we assume far fewer screenings are possible; (b) prior work often assumes a query-commit setting–66

where successfully pre-screened transplants must be matched. Instead we assume that non-screened67

transplants may also be matched–which more-accurately represents the way that modern exchanges68

operate; (c) most prior work assumes that transplants that pass pre-screening are guaranteed to result69

in a transplant. In reality, transplants often fail after pre-screening, a fact reflected in our model.70

One of our approaches is based on Monte Carlo Tree Search (MCTS), which allows efficient explo-71

ration of intractably large decision trees. While MCTS is primarily associated with Markov decision72

processes and game-playing [11], it has been used successfully for combinatorial optimization [16].73

We use a version of MCTS, Upper Confidence Bounds for Trees (UCT), which balances exploration74

and exploitation by treating each tree node as a multi-armed bandit problem [4, 17].75

Our Contributions76

1. (§ 2) We formalize the policy-constrained edge query problem: where a decision-maker (such77

as a kidney exchange program) selects a set of potential edges (potential transplants) to pre-78

screen, prior to constructing a final packing (a set of transplants) using a fixed algorithm. This79

model generalizes existing models in the literature, as edge failure probabilities depend on80

whether or not the edge is pre-screened. Further, we allows for context-specific constraints,81

such as those imposed by public policy or the particular hospital or exchange.82

2. (§ 3) We prove that when the decision-maker uses a max-weight packing policy (the83

most common choice among fielded exchanges), the edge query problem is both non-84

monotonic and non-submodular in the set of queried edges. Despite these worst-case85

findings we show that this problem is nearly monotonic for real and synthetic data, and86

simple algorithms perform quite well. On the other hand, when the decision-maker uses87

a failure-aware (stochastic) packing policy, the edge query problem becomes monotonic88

under mild assumptions.89

3. (§ 4) We conduct numerical experiments on both simulated and real exchange data from the90

United Network for Organ Sharing (UNOS). We demonstrate that our methods substantially91

outperform prior approaches and a randomized baseline.92

1UNOS is the organization tasked with overseeing organ transplantation in the US: https://unos.org/.

2

and rejections using binary random variables: r ∈ {0, 1}|E| denotes pre-match rejections, where129

re = 1 if e is queried and rejected, and 0 otherwise (re = 0 for all non-queried edges). Similarly130

f ∈ {0, 1}|E| denotes post-match failures, where fe = 1 if edge e fails post-match, and 0 otherwise.131

We assume that the distribution of rejections r ∼ PR(q) is known, and depends on q; we assume the132

distribution of failures f ∼ PF (q, r) is known, and depends on both q and r.133

Rejections and failures impact the matching through the weight of each cycle and chain. If any
cycle edge fails, then no transplants in the cycle can proceed; if a chain edge fails, than all edges
following it cannot proceed.3 Suppose we observe failures f ; the final matching weight of c is

F (c,y) ≡







∑

e∈c we if
∑

e∈c ye = 0

0 if c is a cycle and
∑

e∈c ye > 0
∑

e∈c′ we if c is a chain, where c′ includes all edges up to the first failed edge.

Thus the post-match expected weight of matching x, due to both rejections r and failures f , is134

W (x; q, r) ≡ E
f∼PF (q,r)

[

∑

c∈C

xc F (c, r + f)

]

.

Matching Policy In this paper we assume that the final matching is constructed using a fixed matching135

policy, which uses only non-rejected edges; we denote this policy by M(r). We focus primarily136

on the max-weight policy MMAX(·), which is used by most fielded exchanges, and the failure-aware137

policy MFA(·), which maximizes the expected post-match weight [15]:138

MMAX(r) ∈ argmax
x∈M

∑

c∈C

xc F (c, r) , MFA(r) ∈ argmax
x∈M(r)

E
f∼PF (q,r)

[

∑

c∈C

xc F (c, r + f)

]

.

Next we formalize the edge selection problem–the main focus of this paper. We denote by E the set139

of “legal” edge subsets, subject to exchange-specific constraints; we assume that E is a matroid with140

ground set E. For example, the decision-maker may limit the number of queries issued to any one141

medical team (vertex in G) or transplant center (group of vertices). We aim to select an edge set142

q ∈ E which maximizes the expected weight of the final matching. These edges are selected using143

only the distribution of future rejections and failures; we take a stochastic optimization approach,144

maximizing the expected outcome over this uncertainty.145

Single-Stage Setting. The single-stage policy-constrained edge selection problem (henceforth, the146

edge selection problem) is expressed as147

max
q∈E

V S(q) , with V S(q) ≡ E
r∼PR(q)

[

W (M(r); q, r)
]

, (1)

where, M(r) denotes the matching policy after observing rejections r, and W (x; q, r) denotes the148

post-match expected weight of matching x. Exact evaluation of V S(q) is often intractable, as the149

support of PR(q) grows exponentially in |q|. In experiments we approximate V S(q) using sampling,150

and these approximations converge for a moderate number of samples (see Appendix B).151

Multistage Setting. In the multi-stage setting, edge rejections are observed immediately after each152

edge is queried. The multi-stage problem is expressed as153

max
q1∈E1

E
r1∼PR(q1)

[

max
q2∈E1

E
r2∼PR(q2)

[

. . . max
qK∈E1

E
rK∼PR(qK)

[W (M(r); q, r)]

]

. . .

]

, (2)

where q ≡
∑K

i=1 q
i denotes all queried edges, r ≡

∑K

i=1 r
i denotes all rejections, and E1 ⊆ E be154

denotes the legal edge subsets containing only one edge. First, we observe that Problems 1 and 2155

require evaluating a matching policy M(r). In the case of kidney exchange, evaluating both the156

max-weight policy MMAX(·) and the failure-aware policy MFA(·) require solving NP-hard problems;157

thus Problems 1 and 2 are at least NP-hard as well.158

However, regardless of matching policy, the question whether edge selection is is hard. We observe159

that while these problems are difficult in principle, experiments (§ 4) show that they are easy in160

practice. Proofs of the following propositions can be found in Appendix D.161

3This assumes that chains can be partially executed: for example, suppose that the 4th edge in a 10-edge
chain fails; the first three edges can still be matched, and the post-failure chain weight sums only these three
edges. Not all fielded exchanges use this policy: some exchanges cancel the entire chain if one of its edges fails.

4

Proposition 2.1. With matching policy MFA(·), the objective of Problem 1 is non-monotonic in the162

number of queried edges, even with independent edge distributions.163

In other words, querying additional edges can sometimes lead to a worse outcome. This is164

somewhat counter-intuitive; one might think that providing additional information to the matching165

policy would strictly improve the outcome. This is a worst-case result–and in fact our experiments166

demonstrate that querying edges almost always leads to a better final matching weight.167

Proposition 2.2. With matching policy MMAX(·), the objective of Problem 1 is non-submodular in168

the set of queried edges.169

In other words, certain edges are complementary to each other–and querying complementary edges170

simultaneously can yield a greater improvement than querying them separately. Taken together, these171

propositions indicate that single-stage edge selection with matching policy MMAX(·) is a challenging172

combinatorial optimization problem. On the other hand, using the failure-aware matching policy173

MFA(·) allows us to avoid some of these issues.174

Proposition 2.3. With matching policy MFA(·), and if all edges are independent, the objective of175

Problem 1 is monotonic in the set of queried edges.176

While Propositions 2.1 and 2.2 state that single-stage edge selection is challenging in the worst177

case, our computational results suggest that these problems are often easier on realistic exchanges.178

3 Solving the Policy-Constrained Edge Query Problem179

First we propose an exhaustive tree search which returns an optimal solution to Problem 1 given180

enough time. Building on this, we propose a Monte Carlo Tree Search algorithm and a simple greedy181

algorithm. Our multi-stage approaches are very similar to these, and can be found in Appendix E.182

Our optimal exhaustive search uses a search tree where each tree node corresponds to an edge183

subset in q ∈ E . The children of node q correspond to any q′ ∈ E which are equivalent to the parent184

q, but include one additional edge: C(q) ≡ {(q+ q′) ∀q′ ∈ E : |q′| = 1 | (q+ q′) ∈ E} . We say185

that edge sets (or tree nodes) containing L edges are on the Lth level of the tree. We refer to nodes186

with no children as leaf nodes. Unlike other tree search settings, the optimal solution to Problem 1187

may be at any node of the tree, not only leaf nodes; this is a consequence of non-monotonicity (see188

Proposition 2.1). The tree defined by root node q = 0 and child function C(q) contains all legal edge189

subsets in E , when E is a matroid. Thus, any exhaustive tree search algorithm (such as depth-first190

search) will identify an optimal solution, given enough time and memory.191

Of course exhaustive search is only tractable if E is small. Consider the class of budgeted edge sets192

E(Γ) used in our experiments: E(Γ) ≡ {q ∈ {0, 1}|E| | |q| ≤ Γ} (edge sets containing at most Γ193

edges). The number of edge sets in E(Γ) grows roughly exponentially in Γ and |E|, and is impossible194

to enumerate even for small graphs. Suppose a graph has 50 edges and we have an edge budget of195

five: there are over two million edge sets in E(5). Even small exchange graphs can have thousands of196

edges, and thus E(Γ) cannot be enumerated. Therefore, we propose search-based approach.197

Monte Carlo Tree Search for Edge Selection (MCTS): We propose a tree-search algorithm for198

single-stage edge selection, MCTS, based on Monte Carlo Tree Search (MCTS), with the Upper199

Confidence for Trees (UCT) algorithm [17]. UCT aims to learn the value of tree nodes using repeated200

sampling and simulation. When the set of tree nodes is too large to enumerate UCT can use a huge201

amount of memory–by storing values for each visited node. To limit both memory use and runtime,202

we incrementally search the tree from a temporary root node. Beginning from the root (the the empty203

edge set), we use UCB sampling on the next L levels of nodes–where L is a small fixed integer.204

After a fixed time limit, sampling stops and we set the new root node to the current root’s best child205

according to its UCB estimate–using the method of [17]. This process repeats until we reach the final206

level of the search tree. Algorithm 1 gives a pseudocode description of MCTS, which uses Algorithm 2207

as a submethod. While often successful, MCTS requires extensive training and parameter tuning. As208

a simpler alternative, we propose a greedy algorithm.209

Single-Stage Greedy Algorithm: Greedy. Like MCTS, our greedy algorithm (Greedy) begins with210

the empty edge set as the root node, and iteratively searches deeper levels of the tree. However unlike211

MCTS, Greedy simply selects the child node with the greatest objective value in Problem 1–that is,212

greedily improving the objective value; see Appendix E for a pseudocode description.213

5

ALGORITHM 1: MCTS: Tree Search for
Single-Stage Edge Selection

(input) K: maximum size of any legal edge set
(input) T : time limit per level
(input) L: number of look-ahead levels

q
R ← 0 root node (no edges)

q
∗ ← 0 the best visited node

V ∗ ← objective value of q∗

for N = 1, . . . ,K do
M ← min{N + L,K}
Q← all nodes in levels N to M
U [q]← 0 ∀q ∈ Q UCB value estimate
V [q]← 0 ∀q ∈ Q objective value
N [q]← 0 ∀q ∈ Q number of visits
while less than time T has passed do

Sample(qR, M)

q
R ← argmax

q∈C(qR) U [q]

Delete U [·], V [·], and N [·]
return q

∗

ALGORITHM 2: Sample: Sampling function used
by MCTS

(input) q, M

N [q]← N [q] + 1
V [q]← objective of edge set q in Problem 1
if V [q] > V ∗ then

q
∗ ← q, V ∗ ← V [q]

if q has no children then
return V [q]

if q has children then
if |q| < M then

q
′ ← argmax

q∈C(qR) U [q] + UCB[q]

U [q]← U [q]+ Sample(q′, M)
else

q
′ ← a random descendent of q at any level

V ′ ← objective value of q′ in Problem 1
if V ′ > V ∗ then

q
∗ ← q

′, V ∗ ← V ′

U [q]← U [q] + V ′

214

4 Computational Experiments215

We conduct a series of computational experiments using both synthetic data, and real kidney216

exchange data from UNOS; all code for these experiments is available online.4 In these experiments,217

“legal” edge sets are the budgeted edge sets defined as E(Γ) ≡ {q ∈ {0, 1}|E| | |q| ≤ Γ}.218

In Sections 4.1 and 4.2 we present results in the single- and multi-stage edge selection settings,219

respectively. We use two types of data for these experiments:220

Real Data. We use exchange graphs from the United Network for Organ Sharing (UNOS), represent-221

ing UNOS match runs between 2010 and 2016. Some of these exchange graphs only have the trivial222

matching (no cycles or chains), or they have only one non-trivial matching. We ignore these graphs223

because the matching policy is a “constant” function (to return the one feasible matching) and edge224

queries cannot change the outcome. Removing these, we are left with 240 UNOS exchange graphs.225

Synthetic Data. We generate random kidney exchange graphs based on directed Erdős-Rényi graphs226

defined using parameters N and p: let V be a fixed set of N vertices; for each pair of vertices (V1, V2)227

there is an edge from V1 to V2 with probability p, and an edge from V2 to V1 with probability p228

(independent of the edge from V1 to V2). Any vertices with no incoming edges are considered NDDs.229

In these experiments edge rejections and failures are independently distributed for each edge e; let230

PR be the rejection probability, PQ is the post-match success probability if e is queried/accepted, and231

PN is the success probability if e is not queried. To simulate edge rejections and failures we use two232

synthetic edge distributions: Simple and KPD. In the Simple distribution, PR = 0.5, PQ = 1, and233

PN = 0.5 for all edges. The KPD distribution is inspired by the fielded exchange setting from which234

we draw our real underlying compatibility graphs. According to UNOS, about 34% of all edges are235

rejected by a donor or recipient pre-match [18]; we draw PR uniformly from U(0.25, 0.43) for each236

edge. Edges ending in highly-sensitized patients (who are often less healthy and more likely to be237

incompatible) are considered high-risk; for these edges we draw PQ from U(0.2, 0.5) and PN from238

U(0.0, 0.2). For other edges we draw PQ from U(0.9, 1.0) and PN from U(0.8, 0.9).239

4.1 Single-Stage Edge Selection Experiments240

In this section we compare against the baseline of a max-weight matching without edge queries241

(using policy MMAX(·)). Let VX be the objective5 of Problem 1 achieved by method X , we calculate242

∆MAX (the relative difference from baseline) as ∆MAX ≡ (VX − V S(0))/V S(0). A value of ∆MAX = 0243

means that method X did not improve over the baseline, a value of ∆MAX = 1 means that X achieved244

an objective 100% greater than the baseline, and so on.245

4(link removed during review)
5All objective values are estimated using up to 1000 sampled rejection scenarios (see Appendix B), as it is

intractable to evaluate the exact objective of large edge sets.

6

Table 1: Left: Optimality gap for Greedy, over 100 random graphs with p = 0.01 and various N , with edge
budget Γ = 3; bottom row shows the maximum value of %OPT over all graphs. Right: Single-stage results
on UNOS graphs using the variable IIAB edge budget (top rows), and the failure-aware method (bottom row).
Columns PX indicates the Xth percentile of ∆MAX over all UNOS graphs.

Num. Graphs (out of 100)

%OPT N = 50 N = 75 N = 100

[0, 0.1] 93 93 90

(0, 1] 5 4 9

(1, 2] 1 3 1

(2, 100] 1 0 0

Max %OPT 2.8 1.5 1.0

Simple edge dist. KPD edge dist.

Method P10 P50 P90 P10 P50 P90

MCTS 0.40 0.67 1.11 0.05 0.46 3.56

Greedy 0.42 0.72 1.13 0.01 0.49 3.56

Random 0.00 0.10 0.45 −0.11 0.00 0.63

IIAB 0.21 0.45 0.89 -0.24 0.14 2.66

Fail-Aware 0.00 0.09 0.24 -0.25† 0.00† 2.17†

First we investigate the difficulty of edge selection. Using random graphs, we compare Greedy246

to the optimal solution to Problem 1, found by exhaustive search (OPT). We generate three sets of247

100 random graphs with N = 50, 75, and 100 vertices, and each with p = 0.01. For all graphs248

we run both OPT and Greedy with edge budget 3; we calculate the optimality gap of Greedy as249

%OPT ≡ 100 × (VOPT − VGreedy)/VOPT, where VX denotes the objective achieved by method X .250

(VOPT > 0 in all graphs used in these experiments.) If %OPT = 0 then Greedy returns an optimal251

solution, and %OPT > 0 means that Greedy is not optimal. Table 1 (left) shows the number of random252

graphs binned by %OPT, as well as the maximum %OPT over all graphs. For each N , Greedy returns253

an optimal solution for at least 90 of the 100 graphs; the maximum %OPT over all graphs is 2.8.254

We also test Greedy on real UNOS graphs, using maximum budget 100. Figure 2a shows the255

median ∆MAX over all UNOS graphs, with shading between the 10th and 90th percentiles. Larger256

edge budgets almost never decrease the objective achieved by Greedy, and Greedy never produces257

a worse outcome than the baseline. Thus–in our setting–single-stage edge selection is effectively258

monotonic in our setting, and Greedy is an effective method.259

Small Edge Budgets on Real UNOS Graphs We compare all methods on UNOS graphs, using260

smaller, more-realistic edge budgets from 1 to 10. For MCTS we use a 1-hour time limit per edge (Γ261

hours total). Figures 2b and 2d compare ∆MAX for MCTS, Greedy, and random edge selection, for262

the Simple and KPD edge distributions, respectively. We draw two conclusions from these results:263

(1) MCTS and Greedy produce almost identical results, further suggesting that Greedy is nearly264

optimal in our setting; (2) in our setting, edge selection is effectively monotonic, as ∆MAX almost never265

decreases. However Figure 2d gives an example of non-monotonicity for both Greedy and Random:266

in some cases, querying edges can lead to a worse outcome than querying no edges.267

We also compare against two state-of-the-art approaches: the edge selection approach of [10]268

(IIAB), which uses a variable edge budget that depends on the graph structure; and and the failure-269

aware matching policy of [15] (Fail-Aware), which does not query edges. We for the KPD distribution270

we use an approximation of Fail-Aware, which assumes a uniform edge failure probability. To our271

knowledge no scalable algorithm exists for the general Fail-Aware method. Table 1 (right) shows a272

comparison of all edge-selection methods–each using the variable edge budget of IIAB; the bottom273

row shows results for Fail-Aware.274

4.2 Multi-Stage Edge Selection Experiments on UNOS Graphs275

We run initial multi-stage edge selection experiments on a subset of 150 randomly chosen UNOS276

graphs. For each graph we test our multi-stage variants of MCTS and Greedy, and compare with277

a baseline of random edge selection; as before, MCTS uses a 1-hour training time per level. It278

is substantially harder to evaluate the multi-stage objective, as each edge edge-selection method279

changes depending on rejections observed in prior stages. Similarly, the MCTS search tree is orders of280

magnitude larger in the multi-stage setting: each node in tree corresponds to both an edge set and a281

rejection scenario (see Appendix E).282

In these initial experiments we evaluate each method on 10 edge rejections realizations (only a283

small subset). We estimate ∆MAX for each method and each graph by averaging the final matching284

weight over all realizations. Figure 2c shows the results of these experiments.285

†We use an approximation of Fail-Aware for the KPD dist.; true Fail-Aware should always have ∆MAX > 0.

7

Broader Impact312

Patients with end-stage renal disease have only two options: receive a transplant, or undergo313

dialysis once every few days, for the rest of their lives. In many countries (including the US), these314

patients register for a deceased donor waiting list–and it can be months or years before they receive a315

transplant. Many of these patients have a friend or relative willing to donate a kidney, however many316

patients are incompatible with their corresponding donor. Kidney exchange allows patients to “swap”317

their incompatible donor, in order to find a higher-quality match, more quickly than a waiting list.318

Transplants allow patients a higher quality of life, and cost far less, than lifelong dialysis. About 10%319

of kidney transplants in the US are facilitated by an exchange.320

Our aim in this paper is to understand the impact of transplant pre-screening on a mathematical321

formulation of kidney exchange. None of our experiments impact actual kidney exchange participants,322

however the methods we propose for pre-screening transplants could readily be applied by a real323

exchange, including nascent organ exchanges for other organs such as livers. Thus, we briefly discuss324

two potential impacts of our methods on a fielded exchange program:325

• From a mathematical perspective, we show that pre-screening transplants can–in the worst326

case–negatively impact the final matching weight (or size) of an exchange (see Propo-327

sition 2.1). In other words, pre-screening can result in fewer patients receiving kidney328

transplants, and/or that the resulting transplants are of lower quality.329

• In kidney exchange, some patients are harder to match than others. These hard-to-match330

(highly sensitized) patients are often sicker, and far less likely to find a compatible kidney331

donor, than other patients. As a consequence, highly sensitized patients are less likely to332

be matched by a kidney exchange algorithm [13, 20]; in fact, many exchanges (including333

the exchange run by UNOS) use policies to prioritize highly sensitized patients so they are334

not marginalized by a matching algorithm. There is a risk that, by algorithmically selecting335

transplants for pre-screening, we would further marginalize highly sensitized patients. This336

risk warrants further study, which we leave for future work.337

References338

[1] D. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter exchange markets:339

Enabling nationwide kidney exchanges. In Proceedings of the ACM Conference on Electronic340

Commerce (EC), pages 295–304, 2007.341

[2] N. Agarwal, I. Ashlagi, E. Azevedo, C. R. Featherstone, and Ö. Karaduman. Market failure in342

kidney exchange. American Economic Review, 109(11):4026–70, 2019.343

[3] R. Anderson, I. Ashlagi, D. Gamarnik, and A. E. Roth. Finding long chains in kidney exchange344

using the traveling salesman problem. Proceedings of the National Academy of Sciences, 112345

(3):663–668, 2015.346

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.347

Machine learning, 47(2-3):235–256, 2002.348

[5] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When LP is the cure for349

your matching woes: Improved bounds for stochastic matchings. Algorithmica, 63(4):733–762,350

2012.351

[6] H. Bidkhori, J. P. Dickerson, K. Ren, and D. C. McElfresh. Kidney exchange with inhomoge-352

neous edge existence uncertainty. In Proceedings of the Conference on Uncertainty in Artificial353

Intelligence (UAI), forthcoming, 2020.354

[7] P. Biró, D. F. Manlove, and R. Rizzi. Maximum weight cycle packing in directed graphs, with355

application to kidney exchange programs. Discrete Mathematics, Algorithms and Applications,356

1(04):499–517, 2009.357

[8] P. Biró, J. van de Klundert, D. Manlove, W. Pettersson, T. Andersson, L. Burnapp, P. Chromy,358

P. Delgado, P. Dworczak, B. Haase, et al. Modelling and optimisation in european kidney359

exchange programmes. European Journal of Operational Research, 2019.360

[9] A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma. Harnessing the power of two crossmatches.361

In Proceedings of the ACM Conference on Electronic Commerce (EC), pages 123–140, 2013.362

9

[10] A. Blum, J. P. Dickerson, N. Haghtalab, A. D. Procaccia, T. Sandholm, and A. Sharma. Igno-363

rance is almost bliss: Near-optimal stochastic matching with few queries. Operations Research,364

2020. Earlier version appeared in the ACM Conference on Economics and Computation (EC),365

2015.366

[11] B. Bouzy. Associating shallow and selective global tree search with Monte Carlo for 9× 9 Go.367

In International Conference on Computers and Games, pages 67–80. Springer, 2004.368

[12] J. P. Dickerson. A unified approach to dynamic matching and barter exchange. Technical report,369

Doctoral Dissertation, Carnegie Mellon University, Pittsburgh, PA, 2016.370

[13] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Price of fairness in kidney exchange. In371

International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages372

1013–1020, 2014.373

[14] J. P. Dickerson, D. Manlove, B. Plaut, T. Sandholm, and J. Trimble. Position-indexed for-374

mulations for kidney exchange. In Proceedings of the ACM Conference on Economics and375

Computation (EC), 2016.376

[15] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Failure-aware kidney exchange. Manage-377

ment Science, 65(4):1768–1791, 2019. Earlier version appeared in the ACM Conference on378

Economics and Computation (EC), 2013.379

[16] B. Kartal, E. Nunes, J. Godoy, and M. Gini. Monte Carlo tree search with branch and bound for380

multi-robot task allocation. In The IJCAI-16 workshop on autonomous mobile service robots,381

volume 33, 2016.382

[17] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In European conference on383

machine learning, pages 282–293. Springer, 2006.384

[18] R. Leishman. Challenges in match offer acceptance in the optn kidney paired donation pilot385

program. In INFORMS Annual Meeting, 2019. Presentation in Session TB94 - Kidney386

Allocation & Exchange.387

[19] D. Manlove and G. O’Malley. Paired and altruistic kidney donation in the UK: Algorithms and388

experimentation. ACM Journal of Experimental Algorithmics, 19(1), 2015.389

[20] D. C. McElfresh and J. P. Dickerson. Balancing lexicographic fairness and a utilitarian objective390

with application to kidney exchange. AAAI Conference on Artificial Intelligence (AAAI), 2018.391

[21] D. C. McElfresh, H. Bidkhori, and J. P. Dickerson. Scalable robust kidney exchange. In392

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1077–1084,393

2019.394

[22] M. Molinaro and R. Ravi. Kidney exchanges and the query-commit problem. Manuscript, 2013.395

[23] M. Rees, J. Kopke, R. Pelletier, D. Segev, M. Rutter, A. Fabrega, J. Rogers, O. Pankewycz,396

J. Hiller, A. Roth, T. Sandholm, U. Ünver, and R. Montgomery. A nonsimultaneous, extended,397

altruistic-donor chain. New England Journal of Medicine, 360(11):1096–1101, 2009.398

10

n d1

p1

d2

p2

d3

p3

d4

p4

d5

p5

eA

eB eC

Figure 3: Sample exchange graph with a 3-chain (dashed edges) and two 2-cycles (solid edges). The
NDD is denoted by n, and each patient (and associated donor) is denoted by pi (di). If edge e1 is not
queried, or queried and accepted, then the chain may be included in the final matching. However if
edge eA is queried and rejected, then only the 2-cycles may be included in the final matching.

Edge budgets N = 10 N = 30 N = 50 N = 100 N = 1000

1-10 0.0994 0.0568 0.0443 0.0316 0.00978
11-20 0.118 0.0689 0.0533 0.0373 0.0119
21-30 0.131 0.0758 0.0590 0.0418 0.0131
31-40 0.136 0.0787 0.0609 0.0436 0.0135
41-50 0.140 0.0812 0.0627 0.0442 0.014
51-60 0.146 0.0846 0.0653 0.0461 0.0147
61-70 0.152 0.0883 0.0680 0.0481 0.0153
71-80 0.162 0.093 0.0720 0.0514 0.0162
81-90 0.172 0.0995 0.0763 0.0544 0.0172
91-100 0.182 0.104 0.0815 0.0576 0.0180

Table 2: Median normalized standard deviation of the bootstrap mean, over 200 bootstrap samples
for each sample size N , binned by edge budget.

A Kidney Exchange399

B Estimating The Objective of Problem 1400

DCM: @Michael can you review this for accuracy? I added and changed some words, which are401

hopefully correct402

The objective of the single-stage edge selection problem requires evaluating all rejection scenarios403

r ∼ PR(q), and the support of this distribution grows exponentially in the number of edges |q|. In404

computational experiments, to estimate the objective of Problem 1, we sample up to 1000 scenarios405

from PR(q). More explicitly: we exactly evaluate the objective of edge sets with fewer than 10 edges;406

for larger edge sets, we sample the objective using 1000 draws from PR(q).407

Using bootstrapping experiments we demonstrate that our sampling approach is sufficient to408

accurately estimate the true objective, even for large edge sets. For 152 UNOS graphs, we computed409

edge sets by running Greedy with edge budgets ranging from 1 to 100. For each edge set, we then410

sample a subset of N ∈ {10, 30, 50, 100, 1000} rejection scenarios, with replacement, from the set411

of all sampled edge outcomes. For each edge set and choice of N we repeat 200 times and calculate412

the sample mean for each replication. We then compute the standard deviations of these bootstrap413

sample means to estimate the variance due to sampling. For each N , we calculate the mean sample414

standard deviation, normalized by the sample mean. Table 2 shows the median normalized standard415

deviation for all experiments under each N , with edge budgets aggregated into 10 bins. We find that416

with N = 1000 samples, the standard deviation was on average only about 2% of the overall mean417

value, even for large edge budgets.418

Michael: do we need to cite bootstrapping? this is fairly ad-hoc.419

11

Γ MCTS Greedy Random IIAB

P10 P50 P90 P10 P50 P90 P10 P50 P90 P10 P50 P90

1 0.10 0.18 0.42 0.10 0.18 0.42 0.00 0.01 0.09
2 0.17 0.30 0.65 0.17 0.29 0.64 0.00 0.02 0.16
3 0.22 0.38 0.80 0.24 0.38 0.79 0.00 0.03 0.23
4 0.27 0.45 0.91 0.28 0.47 0.91 0.00 0.05 0.39
5 0.31 0.53 1.06 0.33 0.53 1.07 0.00 0.05 0.47
6 0.35 0.58 1.16 0.38 0.60 1.18 0.00 0.07 0.54
7 0.37 0.63 1.28 0.41 0.66 1.27 0.00 0.09 0.62
8 0.39 0.67 1.34 0.43 0.70 1.33 0.00 0.11 0.74
9 0.41 0.69 1.39 0.46 0.72 1.37 0.00 0.11 0.85

10 0.41 0.73 1.48 0.46 0.73 1.37 0.01 0.15 0.86

IIAB 0.40 0.67 1.11 0.42 0.72 1.13 0.00 0.10 0.45 0.21 0.45 0.89

Table 3: Single-stage results for the simple edge distribution on UNOS graphs: ∆MAX for each method,
and for each edge budget Γ. The 10th, 50th and 90th percentiles of ∆MAX (P10, P50, and P90) are
reported across all UNOS graphs. Maximum value for each Γ is reported in bold.

Γ MCTS Greedy Random IIAB

P10 P50 P90 P10 P50 P90 P10 P50 P90 P10 P50 P90

1 0.02 0.21 1.94 0.02 0.21 1.94 -0.03 0.00 0.08
2 0.04 0.32 2.53 0.04 0.31 2.49 -0.04 0.00 0.36
3 0.05 0.37 2.99 0.04 0.37 2.99 -0.06 0.00 0.43
4 0.05 0.41 3.27 0.01 0.42 3.27 -0.07 0.00 0.38
5 0.05 0.43 3.42 -0.01 0.45 3.50 -0.10 0.00 0.48
6 0.05 0.44 3.57 -0.04 0.45 3.62 -0.14 0.00 0.66
7 0.05 0.45 3.63 -0.07 0.47 3.63 -0.17 0.00 0.67
8 0.03 0.44 3.64 -0.10 0.48 3.63 -0.18 0.00 0.78
9 0.02 0.44 3.64 -0.12 0.45 3.25 -0.17 0.00 0.81
10 0.04 0.47 3.74 -0.06 0.49 3.36 -0.07 0.02 0.88

IIAB 0.05 0.46 3.56 0.01 0.49 3.56 -0.11 0.00 0.63 -0.24 0.14 2.66

Table 4: Single-stage results for the KPD edge distribution on UNOS graphs: ∆MAX for each method,
and for each edge budget Γ. The 10th, 50th and 90th percentiles of ∆MAX (P10, P50, and P90) are
reported across all UNOS graphs. Maximum value for each Γ and each percentile is reported in bold.

C Additional Computational Experiment Results420

D Proofs for Section 2421

In the proofs of Proposition 2.1 and Proposition 2.2 we consider a setting where all edges’ pre-422

match rejections and post-match failures are i.i.d., where PR = 0.5 is the pre-match rejection423

probability, PQ = 1.0 is the post-match success probability if the edge is queried-and-accepted,424

and PN = 0.5 is the success probability if e is not queried. That is, queried edges have rejection425

probability 0.5, accepted edges have zero failure probability, and non-queried edges have failure426

probability 0.5.427

D.1 Proof of Proposition 2.1428

(Proof by counterexample.) We provide an example where querying a single edge results in a lower429

objective value in Problem 1 (i.e., final expected matching weight) than querying no edges–when430

using the max-weight matching policy MMAX(·).431

Consider the exchange graph in Figure 4; edge (E,B) has weight 1.5, while all other edges have432

weight 1. First we consider the objective due to querying no edges, V S(0). In this case, no edges433

can be rejected pre-match, the max-weight matching includes cycle (C,D, F) (expected weight434

3 × (1/2)3 = 3/8) and cycle (A,B) (expected weight 2 × (1/2)2 = 1/2), with total expected435

matching weight 7/8. That is, V S(0) = 7/8.436

12

A B C D

E F

e1 e2

w(E,B) = 1.5

e3

Figure 4: Exchange graph for Propositions 2.1 and 2.2. All edges have weight 1 except for edge
(E,B), which has weight 1.5.

Next consider the objective due to querying only edge e3 = (C,D), and let q′ denote edge set437

{e3}. With probability 1/2, e3 is rejected and cycle (B,C,E) is the max-weight matching – with438

expected weight 3.5/8. With probability 1/2, e3 is accepted and the max-weight matching includes439

cycles (A,B) (with expected weight 1/2) and (C,D, F) (with expected weight 3/4); this matching440

has total expected weight 5/4. Thus, V S(q) = 27/32 < 7/8 = V S(0), which concludes the proof.441

D.2 Proof of Proposition 2.2442

(Proof by counterexample.) We provide an example where the objective value in Problem 1 (i.e.,443

final expected matching weight) is non-submodular–when using the max-weight matching policy444

MMAX(·). We use the same rejection and failure distribution as in the proof of Proposition 2.1.445

Consider the exchange graph in Figure 4; edge (E,B) has weight 1.5, while all other edges
have weight 1. With some abuse of notation, we will denote by V S({ea, . . . , eN}) the objective
of Problem 1 due to edge set {ea, . . . , eN}. Our counterexample for submodulartiy is that, for this
graph,

V S(X ∪ {e1, e2}) + V S(X) > V S(X ∪ {e1}) + V S(X ∪ {e2}),

with set X ≡ {e3}. That is, the objective increase due to of querying both edges e1 and e3 is greater446

than the combined increase due to querying both edges separately. Next we explicitly calculate each447

of the above terms.448

V S(X) = V S({e3}). There are two cases to consider:449

• e3 is accepted, with probability 1/2. The max-weight matching is cycles (A,B) and450

(C,D, F), with expected weight (1/2 + 3/4),451

• e3 is rejected, with probability 1/2. The max-weight matching is cycle (B,C,E), with452

expected weight 3.5/8.453

Thus, V S(X) = (1/2)(1/2 + 3/4) + (1/2)(3.5/8) = 27/32.454

V S(X ∪ {e1}) = V S({e1, e3}). There are four cases to consider:455

• e1 and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A,B)456

and (C,D, F), with expected weight (1 + 3/8),457

• e1 is rejected and e3 is accepted, with probability 1/4. The max-weight matching is cycle458

(B,C,E), with expected weight 3.5/8.459

• e1 is accepted and e3 is rejected, with probability 1/4. The max-weight matching is cycle460

(B,C,E), with expected weight 3.5/8.461

• e1 and e3 are rejected, with probability 1/4. The max-weight matching is cycle (B,C,E),462

with expected weight 3.5/8.463

Thus the objective is V S(X ∪ {e3}) = (1/4)(1 + 3/8) + (3/4)(3.5/8) = 43/64.464

V S(X ∪ {e2}) = V S({e2, e3}). There are three cases to consider465

• e3 is accepted, with probability 1/2. The max-weight matching is cycles (A,B) and466

(C,D, F), with expected weight (1/2 + 3/4),467

• e3 is rejected and e3 is accepted, with probability 1/4. The max-weight matching is cycle468

(B,C,E), with expected weight 3.5/4,469

• e3 and e2 are rejected, with probability 1/4. The max-weight matching is cycle (A,B),470

with expected weight 1/2.471

13

Thus the objective is V S(X ∪ {e2}) = (1/2)(1/2 + 3/4) + (1/4)(3.5/4) + (1/4)(1/2) = 31/32.472

V S(X ∪ {e1, e2}) = V S({e1, e2, e3}). There are four cases to consider:473

• e1 and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A,B)474

and (C,D, F), with expected weight (1 + 3/4),475

• e1 is accepted and e2 is rejected, with probability 1/4 (the response from e3 is irrelevant).476

The max-weight matching is (A,B) and (C,D, F), with expected weight 1 + 3/8.477

• e1 is rejected and e2 is accepted (the response from e3 is irrelevant), with probability 1/4.478

The max-weight matching is cycle (B,C,E), with expected weight 3.5/4.479

• e1 and e2 are rejected (the response from e3 is irrelevant), with probability 1/4. The480

max-weight matching is cycle (C,D, F), with expected weight 3/8.481

Thus the objective is V S(X ∪ {e1, e2}) = (1/4)(1 + 3/4) + (1/4)(1 + 3/8) + (1/4)(3.5/4) +482

(1/4)(3/8) = 35/32.483

Finally, we have:484

V S(X ∪ {e1, e2}) + V S(X) = 35/32 + 27/32

= 1.9375

and485

V S(X ∪ {e1}) + V S(X ∪ {e2}) = 43/64 + 31/32

= 1.640625

Therefore, V S(X ∪ {e1, e2}) + V S(X) > V S(X ∪ {e1}) + V S(X ∪ {e2}), which concludes the486

proof.487

D.3 Proof of Proposition 2.3488

For the proof of Proposition 2.3 we make one assumption about the distribution of edge rejections489

and failures: querying additional edges cannot increase the overall probability of rejection or failure490

for any edge.491

Assumption D.1. Let q, r ∈ {0, 1}|E| denote initial edge queries and responses. Let q′ be additional492

edges, such that q + q′ ∈ {0, 1}|E| denotes an augmented edge set; let r′ ∈ {0, 1}|E| denote the493

responses to edges q′ only. We assume that for any such q, r, and q′,494

E [r + f | q, r] ≥ E [r + r′ + f | q + q′, r] .

Intuitively, Assumption D.1 excludes distributions where queries arbitrarily increase edge failure495

or rejection. For example, Assumption D.1 disallows the following distribution: suppose all edges496

are independent; all queried edges are accepted (P (re = 1 | q) = 0 for all q), all accepted edges497

have failure probability 0.5 (P (fe = 1 | qe = 1, re = 0) = 0.5), and all non-queried edges have498

failure probability 0.1 (P (fe = 1 | qe = re = 0) = 0.1). In this case, if an edge is not queried, then499

it has overall rejection or failure probability 0.1 (i.e., E[re + fe | q, r] = 0.1 with qe = 0); if this500

edge is queried, then it has rejection or failure probability 0.5 (i.e., E[re + r′e + fe | q+ q′, r] = 0.5501

with q′
e = 1).502

First we prove a handful of useful results.503

Definition D.2 (Edge Independence). Two edges e, e′ ∈ E are independent if (a) their rejection
distributions are conditionally independent, given whether or not they were queried:

re ⊥⊥ re′ | qe and re ⊥⊥ re′ | qe′

and (b) their failure distributions are conditionally independent, given whether or not they were
queried and rejected:

fe ⊥⊥ fe′ | qe, re and fe ⊥⊥ fe′ | qe′ , re′ .

Lemma D.3. If all edges are independent, then additional edge queries cannot decrease expected504

post-match cycle and chain weights. Formally,505

E [F (c, r + f) | q, r] ≤ E [F (c, r + r′ + f) | q + q′, r]

for any q, q′ ∈ {0, 1}|E| such that q + q′ ∈ {0, 1}|E|, for any r ∈ {0, 1}|E|, and for all c ∈ C.506

Proof. We address cycles and chains separately.507

14

Cycles. Conditional on fixed q and r, the expected weight of cycle c = (e1, . . . , eL) is expressed508

as509

E [F (c, r + f) | q, r] =

(

∑

e∈c

we

)

E

[

∏

e∈c

(1− re − fe) | q, r

]

=

(

∑

e∈c

we

)

∏

e∈c

(1− E [re + fe | q, r])

where the second step is due to the fact that all fe are independent. Similarly, for fixed q′,510

E [F (c, r + r′ + f) | q + q′, r] =

(

∑

e∈c

we

)

∏

e∈c

(1− E [re + r′e + fe | q + q′, r]) .

Due to Assumption D.1, the following inequality holds for all edges e ∈ E

E [re + fe | q, r] ≥ E [re + r′e + fe | q + q′, r] ,

and it follows that

E [F (c, r + f) | q, r] ≤ E [F (c, r + r′ + f) | q + q′, r] .

Chains. Similarly, the expected weight of chain c = (e1, . . . , eL) is expressed as511

E [F (c, r + f) | q, r] =
L
∑

k=1





k
∑

j=1

wj



E





k
∏

j=1

(1− rej − fej) | q, r





=
L
∑

k=1





k
∑

j=1

wj





k
∏

j=1

(

1− E
[

rej + fej | q, r
])

,

where the second step is due to the fact that fe are independent. Similarly,512

E [F (c, r + r′ + f) | q + q′, r] =

L
∑

k=1





k
∑

j=1

wj





k
∏

j=1

(

1− E

[

rej + r′ej + fej | q + q′, r
])

.

as before, due to Assumption D.1 it follows that

E [F (c, r + f) | q, r] ≤ E [F (c, r + r′ + f) | q + q′, r] .

513

Lemma D.4. With a failure-aware matching policy, and if all edges are independent, adding a
single edge to any edge query set weakly improves the objective of Problem 1. Formally, for any
q, q′ ∈ {0, 1}|E| with q + q′ ∈ {0, 1}|E| and |q′| = 1, and M(r) ≡ MFA(r),

V S(q) ≤ V S(q + q′)

Proof. The objective of Problem 1 for edge set q is expressed as514

V S(q) = E
r|q

[

E
f |q,r

[

∑

c∈C

MFA
c (r)F (c, r + f)

]]

=
∑

r∈{0,1}|q|

Pq(r) E
f |q,r

[

∑

c∈C

MFA
c (r)F (c, r + f)

]

=
∑

r∈{0,1}|q|

Pq(r)
∑

c∈C

MFA
c (r) E

f |q,r
[F (c, r + f)]

For edge set q + q′ we partition response variables into r, r′ ∈ {0, 1}|E|, where re is the response515

variable for all edges e ∈ q, and re = 0 for all other edges (including the edge in q′). Similarly, r′e is516

15

the response variable for edge q′, and r′e = 0 for all other edges. The objective of q+ q′ is expressed517

as518

V S(q + q′) = E
r,r′|q+q′

[

E
f |q+q′,r+r′

[

∑

c∈C

MFA
c (r + r′)F (c, r + r′ + f)

]]

=
∑

r∈{0,1}|q|

Pq+q′(r) E
r′|q+q′

[

E
f |q+q′,r+r′

[

∑

c∈C

MFA
c (r + r′)>F (c, r + r′ + f)

]]

=
∑

r∈{0,1}|q|

Pq(r) E
r′|q+q′

[

E
f |q+q′,r+r′

[

∑

c∈C

MFA
c (r + r′)F (c, r + r′ + f)

]]

,

where in the final line we replace Pq+q′(r) with Pq(r), because each re is conditionally independent,519

given qe.520

Next, by definition

E
f |q+q′,r+r′

[

∑

c∈C

MFA
c (r + r′)F (c, r + r′ + f)

]

≥ E
f |q+q′,r+r′

[

∑

c∈C

xcF (c, r + r′ + f)

]

∀x ∈ M.

That is, MFA is guaranteed to maximize this expectation, and thus521

V S(q + q′) ≥
∑

r∈{0,1}|q|

Pq(r) E
r′|q+q′

[

E
f |q+q′,r+r′

[

∑

c∈C

MFA
c (r)F (c, r + r′ + f)

]]

(B)

=
∑

r∈{0,1}|q|

Pq(r)
∑

c∈C

MFA
v (r) E

r′|q+q′

[

E
f |q+q′,r+r′

[F (c, r + r′ + f)]

]

(C)

Finally, combining (B) and (C) with Lemma D.3, the following inequality holds

V S(q) ≤ V S(q + q′).

522

Using the above lemmas, the proof of Proposition 2.3 is straightforward:523

Proposition 2.3 With a failure-aware matching policy, if all edges are independent, the objective524

of Problem 1 is monotonic in the set of queried edges.525

Proof. Let q′, q′′ ∈ E be two edge sets such that q′ ⊆ q′′. It remains to show that, with matching
policy M(r) ≡ MFA(r),

V S(q′′) ≤ V S(q′).

First note that because E is a matroid, there is a sequence of edges (qe1 , . . . , qeL) (with each526

|qei | = 1) such that q′′ + qe1 + · · · + qeL = q′. Due to Lemma D.4, the following sequence of527

inequalities hold:528

V (q′′) ≤ V (q′′ + qe1)

≤ V (q′′ + qe1 + qe2)

. . .

≤ V (q′′ + qe1 + · · ·+ qeL)

= V (q′)

which concludes the proof.529

E Algorithm Descriptions530

Here we describe more explicitly the algorithms for Greedy and MCTS, for both the single-stage531

and multi-stage settings.532

16

ALGORITHM 3: Greedy: Greedy Search Heuristic for Single-Stage Edge Selection

(input) E : legal edge sets

q
R ← 0 the root node (no edges)

V ∗ ← objective value of qR Problem 1

while q
R has children do

q
′ ← child node of qR with maximal objective value in Problem 1

q
R ← q

′

return q
R

E.1 Algorithms for Edge Selection533

Algorithm 3 gives a pseudocode description of Greedy for the single-stage setting.534

E.2 Multi-Stage Edge Selection535

Multi-Stage MCTS. The multi-stage version of MCTS differs from the single-stage version in that536

each node of the search tree corresponds to both a set of queried edges and a set of observed rejections.537

ALGORITHM 4: Multi-Stage MCTS: Tree
Search Heuristic for Multi-Stage Edge Selec-
tion
TODO: this has not been updated yet!!! (input)
E : legal edge sets
(input) K: maximum size of any legal edge set
(input) T : time limit per level
(input) L: number of look-ahead levels

q
R ← 0 root node (no edges)

q
∗ ← 0 the best visited node

V ∗ ← objective value of q∗

for N = 1, . . . ,K do
M ← min{N + L,K}
Q← all nodes in levels N to M
U [q]← 0 ∀q ∈ Q UCB value estimate
V [q]← 0 ∀q ∈ Q objective value
N [q]← 0 ∀q ∈ Q number of visits
while less than time T has passed do

Sample(qR, M)

q
R ← argmax

q∈C(qR) U [q]

Delete U [·], V [·], and N [·]
return q

∗

ALGORITHM 5: MultiSample: Sampling function
used by Multi-Stage MCTS

TODO: this has not been updated yet!!!
(input) q: tree node
(input) M : maximum level to sample from
N [q]← N [q] + 1
V [q]← objective of edge set q in Problem 1
if V [q] > V ∗ then

q
∗ ← q, V ∗ ← V [q]

if q has no children then
return V [q]

if q has children then
if |q| < M then

q
′ ← argmax

q∈C(qR) U [q]

U [q]← U [q]+ Sample(q′, M)
else

q
′ ← a random descendent of q at any level

V ′ ← objective value of q′ in Problem 1
if V ′ > V ∗ then

q
∗ ← q

′, V ∗ ← V ′

U [q]← U [q] + V ′

538

Multi-Stage Greedy. Algorithm 6 gives a pseudocode description of the multi-stage version of539

Greedy. This search heuristic returns the next edge to query with the highest expected final matching540

weight, ignoring all future queries. In other words, this approach treats every edge as the last edge;541

one might call this heuristic “myopic” as well as greedy.542

17

ALGORITHM 6: Greedy Heuristic for Multi-Stage Edge Selection

(input) E : legal edge sets
(input) q: previously-queried edges
(input) r: previously-observed rejections

e∗ ← ∅ V ∗ ← 0
for all q′ in q’s children do

e′ ← the new edge queried in child node q
′
r
A ← r

r
R ← r

r
A
e ← 1 (response scenario where e′ is accepted)

r
R
e ← 1 (response scenario where e′ is rejected)

pA ← probability that e is accepted, conditional on r

pR ← probability that e is accepted, conditional on r

V ′ ← pA ·W (M(rA); q′, rA) + pRW (M(rR); q′, qR) (value of querying edge e′)
if V ′ > V ∗ then

e
∗ ← e′

V ∗ ← V ′

return e
∗

18

	Introduction
	The Policy-Constrained Edge Query Problem
	Solving the Policy-Constrained Edge Query Problem
	Computational Experiments
	Single-Stage Edge Selection Experiments
	Multi-Stage Edge Selection Experiments on UNOS Graphs

	Conclusions and Future Research Directions
	Kidney Exchange
	Estimating The Objective of Problem 1
	Additional Computational Experiment Results
	Proofs for Section 2
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Proposition 2.3

	Algorithm Descriptions
	Algorithms for Edge Selection
	Multi-Stage Edge Selection

