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Abstract

In barter exchanges, participants swap goods with one another without exchanging
money; these exchanges are often facilitated by a central clearinghouse, with the
goal of maximizing the aggregate quality (or number) of swaps. Barter exchanges
are subject to many forms of uncertainty—in participant preferences, the feasibility
and quality of various swaps, and so on. Our work is motivated by kidney exchange,
a real-world barter market in which patients in need of a kidney transplant swap
their willing living donors, in order to find a better match. Modern exchanges
include 2- and 3-way swaps, making the kidney exchange clearing problem NP-
hard. Planned transplants often fail for a variety of reasons—if the donor organ is
rejected by the recipient’s medical team, or if the donor and recipient are found
to be medically incompatible. Due to 2- and 3-way swaps, failed transplants can
“cascade” through an exchange; one US-based exchange estimated that about 85%
of planned transplants failed in 2019. Many optimization-based approaches have
been designed to avoid these failures; however most exchanges cannot implement
these methods, due to legal and policy constraints. Instead, we consider a setting
where exchanges can guery the preferences of certain donors and recipients—asking
whether they would accept a particular transplant. We characterize this as a two-
stage decision problem, in which the exchange program (a) queries a small number
of transplants before committing to a matching, and (b) constructs a matching
according to fixed policy. We show that selecting these edges is a challenging
combinatorial problem, which is non-monotonic and non-submodular, in addition to
being NP-hard. We propose both a greedy heuristic and a Monte Carlo tree search,
which outperforms previous approaches, using experiments on both synthetic data
and real kidney exchange data from the United Network for Organ Sharing.

1 Introduction

We consider a multi-stage decision problem in which a decision-maker uses a fixed policy to solve
a hard (stochastic) problem. Before using the policy, the decision-maker can first measure some of
the uncertain problem parameters—in a sense, guiding the policy toward a better solution. Our primary
motivation is kidney exchange, a process where patients in need of a kidney transplant swap their
(willing) living donors, in order to find a better match. Many government-run kidney exchanges match
patients and donors using a matching algorithm that follows strict policy guidelines [8]; this matching
algorithm is often written into law or policy, and is not easily modified. Modern kidney exchanges
use both cyclical swaps and chain-like structures (initiated by an unpaired altruistic donor) [23], and
identifying the max-size or max-weight set of transplants is both NP- and APX-hard [1, 7].

In kidney exchange—as in many resource allocation settings—information used by the decision-
maker is subject to various forms of uncertainty. Here we are primarily concerned with uncertainty
in the feasibility of potential transplants: if a donor is matched with a potential recipient, will the
transplant actually occur? Planned transplants may fail for a variety of reasons: for example, medical
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testing may reveal that the donor and recipient are incompatible (a positive crossmatch); the recipient
or their medical team may reject a donor organ in order to wait for a better match; or the donor
may decide to donate elsewhere before the exchange is planned. Failed transplants are especially
troublesome in kidney exchange, due to the cycle and chain structures used: for example, suppose
that a cyclical swap is planned between three patient/donor pairs; if any one of the planned transplants
fails, then none of the other transplants in that cycle can occur. Unfortunately, it is quite common for
planned transplants to fail. For example, the United Network for Organ Sharing (UNOS') estimates
that in FY2019, about 85% of their planned kidney transplants failed [18].

Various matching algorithms have been proposed that aim to mitigate transplant failures (for exam-
ple, using stochastic optimization [15, 3], robust optimization [21], or conditional value at risk [6]).
However, implementing these strategies would require modifying fielded matching algorithms—which
in many cases would require changing law or policy. One way to avoid failures without modifying
the matching algorithm is to pre-screen potential transplants [18, 9, 10], by communicating with the
recipients’ medical team and possibly using additional medical tests. Pre-screening transplants is
costly, as it requires scarce time and resources. Furthermore, there are often many thousand potential
transplants in any given exchange; selecting which transplants to screen is not easy.

In this paper we investigate methods for selecting a limited number of transplants to pre-screen,
in order to “guide” the matching algorithm to a better outcome. We formalize this as a multistage
stochastic optimization problem, and we consider both an offline setting (where screenings are
selected all at once), and an online setting (where screenings are selected sequentially).

Related Work. While kidney exchange is known to be a hard packing problem, several algorithms
exist that are scalable in practice, and are used by fielded exchanges [14, 3, 19]. Prior work has
addressed potential transplant failures; our model is inspired by Dickerson et al. [15]. Pre-screening
potential transplants has also been addressed in prior work ([10, 22], and § 5.1 of [12]), and our model
is similar to stochastic matching and stochastic k-set packing [5]. However there are substantial
differences between these models and ours: (a) many prior approaches assume that a large number
of transplants may be pre-screened [10, 22]—on the order of one for each patient in the exchange;
we assume far fewer screenings are possible; (b) prior work often assumes a guery-commit setting—
where successfully pre-screened transplants must be matched. Instead we assume that non-screened
transplants may also be matched—which more-accurately represents the way that modern exchanges
operate; (c) most prior work assumes that transplants that pass pre-screening are guaranteed to result
in a transplant. In reality, transplants often fail after pre-screening, a fact reflected in our model.

One of our approaches is based on Monte Carlo Tree Search (MCTS), which allows efficient explo-
ration of intractably large decision trees. While MCTS is primarily associated with Markov decision
processes and game-playing [11], it has been used successfully for combinatorial optimization [16].
We use a version of MCTS, Upper Confidence Bounds for Trees (UCT), which balances exploration
and exploitation by treating each tree node as a multi-armed bandit problem [4, 17].

Our Contributions

1. (§ 2) We formalize the policy-constrained edge query problem: where a decision-maker (such
as a kidney exchange program) selects a set of potential edges (potential transplants) to pre-
screen, prior to constructing a final packing (a set of transplants) using a fixed algorithm. This
model generalizes existing models in the literature, as edge failure probabilities depend on
whether or not the edge is pre-screened. Further, we allows for context-specific constraints,
such as those imposed by public policy or the particular hospital or exchange.

2. (§ 3) We prove that when the decision-maker uses a max-weight packing policy (the
most common choice among fielded exchanges), the edge query problem is both non-
monotonic and non-submodular in the set of queried edges. Despite these worst-case
findings we show that this problem is nearly monotonic for real and synthetic data, and
simple algorithms perform quite well. On the other hand, when the decision-maker uses
a failure-aware (stochastic) packing policy, the edge query problem becomes monotonic
under mild assumptions.

3. (§ 4) We conduct numerical experiments on both simulated and real exchange data from the
United Network for Organ Sharing (UNOS). We demonstrate that our methods substantially
outperform prior approaches and a randomized baseline.

"UNOS is the organization tasked with overseeing organ transplantation in the US: https://unos.org/.
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Figure 1: Single-stage edge selection: First, edges are selected to be queried, and responses revealed.
Then, a final matching is constructed according to the exchange’s matching policy. Finally, the
post-match edge failures are revealed.

2 The Policy-Constrained Edge Query Problem

Kidney exchanges are represented by a graph G = (E, V') where vertices V represent (incom-
patible) patient-donor pairs, and non-directed donors (NDDs) who are willing to donate without
receiving a kidney in return. Directed edges e € I between vertices represent potential transplants
from the donor of one vertex to the patient of another. Edge weights represent the “utility” of an
edge, and are typically set by exchange policy. Solutions to a kidney exchange problem (henceforth,
matchings) consist of both directed cycles on G containing only patient-donor pairs, and directed
chains beginning with an NDD and passing through one or more pairs; see Appendix A for an
example exchange graph. Each vertex may participate in only one edge in a matching—as each vertex
can donate and receive at most one kidney.

Vectors are denoted in bold, and are indexed by either cycles or edges: y. indicates the element of
y corresponding to edge e, and x. is the element of & corresponding to cycle c. Our notation uses a
cycle-chain representation for matchings?: let C represent cycles and chains in G, where each cycle
and chain corresponds to a list of edges; as is standard in modern exchanges, we assume that cycles
and chains are limited in length. Matchings are expressed as a binary vector € {0, 1}/°l, where
x. = 1 if cycle/chain cis in the matching, and 0 otherwise. Let w,. be the weight of cycle/chain c (the
sum of ¢’s edge weights). Let M denote the set of feasible matching—that is, the set of vertex-disjoint
cycles and chains on G. The total weight of a matching is simply the summed weights of all its
constituent cycles and chains: ) . z.w.. We denote sets of edges using binary vectors, where

q € {0, 1}I! represents the set of all edges with g, = 1.

In the remainder of this paper we refer to pre-screening a transplant as querying an edge, in order
to be consistent with the literature.

Selecting Edge Queries. Our setting consists of two phases (see Figure 1): during pre-match, the
decision-maker selects edges to query, and each queried edge is either accepted or rejected; then
the decision-maker constructs a matching using a fixed policy. During post-match, each match edge
either fails (no transplant) or succeeds (the transplant proceeds). We consider two version of the
pre-match phase: in the single-stage version, the decision-maker selects all queries before observing
edge responses (accept/reject); in the multi-stage version, one edge is selected at a time and responses
are observed immediately.

Unlike most prior work, edges in our model may fail during both the pre- and post-match phase.
For example, suppose the decision-maker queries an edge from a 60-year-old non-directed donor, to
a 35-year-old recipient; if the recipient or their medical team rejects the elderly donor and decides
to wait for a younger donor, this is a pre-match rejection. Instead suppose the edge is not queried,
and it is included in the final matching; if medical screening reveals that the patient and donor are
incompatible, this is a post-match failure. We refer to pre-match failures as rejections and post-match
failures as failures; however we make no assumption about their cause. We represent potential failures

2Our experiments use the position-indexed formulation, which is more compact and equivalent [14].
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and rejections using binary random variables: r € {0, 1}Zl denotes pre-match rejections, where
r. = 1 if e is queried and rejected, and 0 otherwise (7. = 0 for all non-queried edges). Similarly
feAo, 1}‘E | denotes post-match failures, where f, = 1 if edge e fails post-match, and 0 otherwise.
We assume that the distribution of rejections r ~ Pr(q) is known, and depends on g; we assume the
distribution of failures f ~ Pr(q,r) is known, and depends on both g and r.

Rejections and failures impact the matching through the weight of each cycle and chain. If any
cycle edge fails, then no transplants in the cycle can proceed; if a chain edge fails, than all edges
following it cannot proceed.® Suppose we observe failures f; the final matching weight of c is

ZEEC We if Zeéc Ye = O
F(c,y) =<0 ifcisacycleand > . yo >0
> ece We if ¢ is a chain, where ¢’ includes all edges up to the first failed edge.

Thus the post-match expected weight of matching x, due to both rejections 7 and failures f, is

W(x;q,7)= E . Fle,r +
@ar= E [2; (er+ )

Matching Policy In this paper we assume that the final matching is constructed using a fixed matching
policy, which uses only non-rejected edges; we denote this policy by M (7). We focus primarily
on the max-weight policy M™**(-), which is used by most fielded exchanges, and the failure-aware
policy MF4(-), which maximizes the expected post-match weight [15]:

M"™(r) € argmax z.F(e,r), M™(r) € argmax E z. Fle,r+ f)
TEM g zeM(r) F~Pr(gr) ze;j

Next we formalize the edge selection problem—the main focus of this paper. We denote by & the set
of “legal” edge subsets, subject to exchange-specific constraints; we assume that £ is a matroid with
ground set /. For example, the decision-maker may limit the number of queries issued to any one
medical team (vertex in () or transplant center (group of vertices). We aim to select an edge set
g € £ which maximizes the expected weight of the final matching. These edges are selected using
only the distribution of future rejections and failures; we take a stochastic optimization approach,
maximizing the expected outcome over this uncertainty.

Single-Stage Setting. The single-stage policy-constrained edge selection problem (henceforth, the
edge selection problem) is expressed as

VS ith V9(q)= E
max (q), wi (q) "

[ W (M(r);q.7) ], (1)
(q)
where, M (r) denotes the matching policy after observing rejections r, and W (x; q, r) denotes the
post-match expected weight of matching x. Exact evaluation of V¥(q) is often intractable, as the
support of Pr(q) grows exponentially in |g|. In experiments we approximate V°(q) using sampling,
and these approximations converge for a moderate number of samples (see Appendix B).

Multistage Setting. In the multi-stage setting, edge rejections are observed immediately after each
edge is queried. The multi-stage problem is expressed as

max E max E ... max E [W(M(r);q,r)]}...}, )

qle&r r1~Pr(q') | q?€&1 r2~Pr(q?) qK €& rE~Pr(qK)

where g = Zsz L g* denotes all queried edges, r = Zfil r denotes all rejections, and & C € be
denotes the legal edge subsets containing only one edge. First, we observe that Problems 1 and 2
require evaluating a matching policy M (r). In the case of kidney exchange, evaluating both the
max-weight policy M™% (.) and the failure-aware policy M**() require solving NP-hard problems;
thus Problems 1 and 2 are at least NP-hard as well.

However, regardless of matching policy, the question whether edge selection is is hard. We observe
that while these problems are difficult in principle, experiments (§ 4) show that they are easy in
practice. Proofs of the following propositions can be found in Appendix D.

3This assumes that chains can be partially executed: for example, suppose that the 4" edge in a 10-edge
chain fails; the first three edges can still be matched, and the post-failure chain weight sums only these three
edges. Not all fielded exchanges use this policy: some exchanges cancel the entire chain if one of its edges fails.
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Proposition 2.1. With matching policy M (-), the objective of Problem 1 is non-monotonic in the
number of queried edges, even with independent edge distributions.

In other words, querying additional edges can sometimes lead to a worse outcome. This is
somewhat counter-intuitive; one might think that providing additional information to the matching
policy would strictly improve the outcome. This is a worst-case result—and in fact our experiments
demonstrate that querying edges almost always leads to a better final matching weight.

Proposition 2.2. With matching policy M (.), the objective of Problem 1 is non-submodular in
the set of queried edges.

In other words, certain edges are complementary to each other—and querying complementary edges
simultaneously can yield a greater improvement than querying them separately. Taken together, these
propositions indicate that single-stage edge selection with matching policy M™**(.) is a challenging
combinatorial optimization problem. On the other hand, using the failure-aware matching policy
MFA(-) allows us to avoid some of these issues.

Proposition 2.3. With matching policy M*(-), and if all edges are independent, the objective of
Problem 1 is monotonic in the set of queried edges.

While Propositions 2.1 and 2.2 state that single-stage edge selection is challenging in the worst
case, our computational results suggest that these problems are often easier on realistic exchanges.

3 Solving the Policy-Constrained Edge Query Problem

First we propose an exhaustive tree search which returns an optimal solution to Problem 1 given
enough time. Building on this, we propose a Monte Carlo Tree Search algorithm and a simple greedy
algorithm. Our multi-stage approaches are very similar to these, and can be found in Appendix E.

Our optimal exhaustive search uses a search tree where each tree node corresponds to an edge
subset in g € £. The children of node g correspond to any ¢’ € £ which are equivalent to the parent
g, but include one additional edge: C(q) ={(g+¢q')Vq' €E:|qd'|=1 | (g+q') € £} . We say
that edge sets (or tree nodes) containing L edges are on the L level of the tree. We refer to nodes
with no children as leaf nodes. Unlike other tree search settings, the optimal solution to Problem 1
may be at any node of the tree, not only leaf nodes; this is a consequence of non-monotonicity (see
Proposition 2.1). The tree defined by root node ¢ = 0 and child function C'(q) contains all legal edge
subsets in £, when £ is a matroid. Thus, any exhaustive tree search algorithm (such as depth-first
search) will identify an optimal solution, given enough time and memory.

Of course exhaustive search is only tractable if £ is small. Consider the class of budgeted edge sets
£(T) used in our experiments: £(T') = {q € {0, 1}/¥l | |q| < T} (edge sets containing at most I
edges). The number of edge sets in £(T") grows roughly exponentially in T and |E|, and is impossible
to enumerate even for small graphs. Suppose a graph has 50 edges and we have an edge budget of
five: there are over two million edge sets in £(5). Even small exchange graphs can have thousands of
edges, and thus £(I") cannot be enumerated. Therefore, we propose search-based approach.

Monte Carlo Tree Search for Edge Selection (MCTS): We propose a tree-search algorithm for
single-stage edge selection, MCTS, based on Monte Carlo Tree Search (MCTS), with the Upper
Confidence for Trees (UCT) algorithm [17]. UCT aims to learn the value of tree nodes using repeated
sampling and simulation. When the set of tree nodes is too large to enumerate UCT can use a huge
amount of memory—by storing values for each visited node. To limit both memory use and runtime,
we incrementally search the tree from a temporary root node. Beginning from the root (the the empty
edge set), we use UCB sampling on the next L levels of nodes—where L is a small fixed integer.
After a fixed time limit, sampling stops and we set the new root node to the current root’s best child
according to its UCB estimate—using the method of [17]. This process repeats until we reach the final
level of the search tree. Algorithm 1 gives a pseudocode description of MCTS, which uses Algorithm 2
as a submethod. While often successful, MCTS requires extensive training and parameter tuning. As
a simpler alternative, we propose a greedy algorithm.

Single-Stage Greedy Algorithm: Greedy. Like MCTS, our greedy algorithm (Greedy) begins with
the empty edge set as the root node, and iteratively searches deeper levels of the tree. However unlike
MCTS, Greedy simply selects the child node with the greatest objective value in Problem 1—that is,
greedily improving the objective value; see Appendix E for a pseudocode description.
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ALGORITHM 1: MCTS: Tree Search for ~ALGORITHM 2: Sample: Sampling function used
Single-Stage Edge Selection by MCTS

(input) K: maximum size of any legal edge set  (input) g, M
(input) 7": time limit per level

(input) L: number of look-ahead levels N|qg] + Nig] +1
V'[q] « objective of edge set g in Problem 1
g < 0 root node (no edges) if V[g] > V™ then
q* + 0 the best visited node q" +—q, V"< V]q]
V* < objective value of g* if g has no children then
for N =1,...,K do return Vq]
M < min{N + L, K} if g has children then
Q < all nodes in levels N to M if |g| < M then
Ulq] + 0Vqg € Q@ UCB value estimate q' + argmax ccqr) Ulq] + UCBJg]
Vig] <+ 0Vqg € Q objective value Ulq] + Ulq]+ Sample(q’, M)
Nlq] + 0Vq € Q number of visits else
while less than time T' has passed do q’ < arandom descendent of q at any level
Sample(q®t, M) V' + objective value of ¢’ in Problem 1
q" « argmax,co(qr) Ulq] if V/ > V" then
Delete U[], V[-], and N|/] q —q, V<V
return g* Ulg] + Ulq] + V'

4 Computational Experiments

We conduct a series of computational experiments using both synthetic data, and real kidney
exchange data from UNOS; all code for these experiments is available online.* In these experiments,
“legal” edge sets are the budgeted edge sets defined as £(T') = {q € {0,1}/*! | |q| < T}.
In Sections 4.1 and 4.2 we present results in the single- and multi-stage edge selection settings,
respectively. We use two types of data for these experiments:

Real Data. We use exchange graphs from the United Network for Organ Sharing (UNOS), represent-
ing UNOS match runs between 2010 and 2016. Some of these exchange graphs only have the trivial
matching (no cycles or chains), or they have only one non-trivial matching. We ignore these graphs
because the matching policy is a “constant” function (to return the one feasible matching) and edge
queries cannot change the outcome. Removing these, we are left with 240 UNOS exchange graphs.

Synthetic Data. We generate random kidney exchange graphs based on directed Erdds-Rényi graphs
defined using parameters N and p: let V be a fixed set of NV vertices; for each pair of vertices (V7, V3)
there is an edge from V; to V5 with probability p, and an edge from V5 to V; with probability p
(independent of the edge from V; to V5). Any vertices with no incoming edges are considered NDDs.

In these experiments edge rejections and failures are independently distributed for each edge e; let
P, be the rejection probability, P is the post-match success probability if e is queried/accepted, and
Py is the success probability if e is not queried. To simulate edge rejections and failures we use two
synthetic edge distributions: Simple and KPD. In the Simple distribution, Pg = 0.5, Py = 1, and
Pn = 0.5 for all edges. The KPD distribution is inspired by the fielded exchange setting from which
we draw our real underlying compatibility graphs. According to UNOS, about 34% of all edges are
rejected by a donor or recipient pre-match [18]; we draw Pg uniformly from U (0.25,0.43) for each
edge. Edges ending in highly-sensitized patients (who are often less healthy and more likely to be
incompatible) are considered high-risk; for these edges we draw Py from U(0.2,0.5) and Py from
U(0.0,0.2). For other edges we draw Py from U(0.9, 1.0) and Py from U(0.8,0.9).

4.1 Single-Stage Edge Selection Experiments

In this section we compare against the baseline of a max-weight matching without edge queries
(using policy M™X(.)). Let Vx be the objective’ of Problem 1 achieved by method X, we calculate
AMX (the relative difference from baseline) as A"™* = (Vx — V(0))/V°(0). A value of AM™* = 0
means that method X did not improve over the baseline, a value of A™* = 1 means that X achieved
an objective 100% greater than the baseline, and so on.

*(link removed during review)
3 All objective values are estimated using up to 1000 sampled rejection scenarios (see Appendix B), as it is
intractable to evaluate the exact objective of large edge sets.
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Table 1: Left: Optimality gap for Greedy, over 100 random graphs with p = 0.01 and various N, with edge
budget I' = 3; bottom row shows the maximum value of %0PT over all graphs. Right: Single-stage results
on UNOS graphs using the variable IIAB edge budget (top rows), and the failure-aware method (bottom row).
Columns Px indicates the X" percentile of A"™* over all UNOS graphs.

Num. Graphs (out of 100) Simple edge dist. KPD edge dist.
%0PT N =50 N =175 N =100 Method Pio Pso Poo Pio Pso Poo
[0,0.1] 93 93 90 MCTS 0.40 0.67 1.11 0.05 0.46 3.56
(0,1] 5 4 Greedy 0.42 0.72 1.13 0.01 0.49 3.56
(1,2] 1 3 1 Random 0.00 0.10 0.45 —0.11 0.00 0.63
(2,100] 1 0 0 IIAB 0.21 0.45 0.89 -0.24 0.14 2.66
Max %0PT 2.8 15 1.0 Fail-Aware 0.00 0.09 0.24  -0.257 0.007 2.177

First we investigate the difficulty of edge selection. Using random graphs, we compare Greedy
to the optimal solution to Problem 1, found by exhaustive search (OPT). We generate three sets of
100 random graphs with N = 50, 75, and 100 vertices, and each with p = 0.01. For all graphs
we run both OPT and Greedy with edge budget 3; we calculate the optimality gap of Greedy as
%0PT = 100 X (Vopr — Vireeay)/Vorr, Where Vx denotes the objective achieved by method X.
(Voer > 0 in all graphs used in these experiments.) If %0PT = 0 then Greedy returns an optimal
solution, and %0PT > 0 means that Greedy is not optimal. Table 1 (left) shows the number of random
graphs binned by %0PT, as well as the maximum %0PT over all graphs. For each N, Greedy returns
an optimal solution for at least 90 of the 100 graphs; the maximum %0PT over all graphs is 2.8.

We also test Greedy on real UNOS graphs, using maximum budget 100. Figure 2a shows the
median A" over all UNOS graphs, with shading between the 10" and 90*" percentiles. Larger
edge budgets almost never decrease the objective achieved by Greedy, and Greedy never produces
a worse outcome than the baseline. Thus—in our setting—single-stage edge selection is effectively
monotonic in our setting, and Greedy is an effective method.

Small Edge Budgets on Real UNOS Graphs We compare all methods on UNOS graphs, using
smaller, more-realistic edge budgets from 1 to 10. For MCTS we use a 1-hour time limit per edge (I
hours total). Figures 2b and 2d compare A™?* for MCTS, Greedy, and random edge selection, for
the Simple and KPD edge distributions, respectively. We draw two conclusions from these results:
(1) MCTS and Greedy produce almost identical results, further suggesting that Greedy is nearly
optimal in our setting; (2) in our setting, edge selection is effectively monotonic, as A"™* almost never
decreases. However Figure 2d gives an example of non-monotonicity for both Greedy and Random:
in some cases, querying edges can lead to a worse outcome than querying no edges.

We also compare against two state-of-the-art approaches: the edge selection approach of [10]
(IIAB), which uses a variable edge budget that depends on the graph structure; and and the failure-
aware matching policy of [15] (Fail-Aware), which does not query edges. We for the KPD distribution
we use an approximation of Fail-Aware, which assumes a uniform edge failure probability. To our
knowledge no scalable algorithm exists for the general Fail-Aware method. Table 1 (right) shows a
comparison of all edge-selection methods—each using the variable edge budget of IIAB; the bottom
row shows results for Fail-Aware.

4.2 Multi-Stage Edge Selection Experiments on UNOS Graphs

We run initial multi-stage edge selection experiments on a subset of 150 randomly chosen UNOS
graphs. For each graph we test our multi-stage variants of MCTS and Greedy, and compare with
a baseline of random edge selection; as before, MCTS uses a 1-hour training time per level. It
is substantially harder to evaluate the multi-stage objective, as each edge edge-selection method
changes depending on rejections observed in prior stages. Similarly, the MCTS search tree is orders of
magnitude larger in the multi-stage setting: each node in tree corresponds to both an edge set and a
rejection scenario (see Appendix E).

In these initial experiments we evaluate each method on 10 edge rejections realizations (only a
small subset). We estimate AM™Z* for each method and each graph by averaging the final matching
weight over all realizations. Figure 2c shows the results of these experiments.

TWe use an approximation of Fail-Aware for the KPD dist.; true Fail-Aware should always have A" > 0.
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Figure 2: Results for UNOS graphs. Right: edge budget up to 10 for the Simple distribution (top)
and the KPD distribution (bottom). Top-left: Greedy with edge budget up to 100, for the simple
distribution. Bottom-left: multi-stage methods using the Simple distribution. In all plots, a solid line
indicates median A" over all UNOS graphs, and shading is between the 10" and 90" percentiles;
a dotted line indicates the baseline.

These initial multi-stage results are quite similar to our single-stage results. However it is notable
that the objective value in the multi-stage setting is somewhat higher than in the single-stage setting—
even using the simple method Greedy. Further, this suggests that more can be gained by developing
a more sophisticated multi-stage edge selection policy. We leave this for future work.

5 Conclusions and Future Research Directions

Many planned kidney exchange transplants fail for a variety of reasons; these failures greatly
reduce the number of transplants that an exchange can facilitate, and increase the waiting time for
many patients in need of a kidney. Avoiding transplant failures is a challenge, as exchanges are often
constrained by policy and law in how they match patients and donors. We consider a setting where
exchanges can pre-screen certain transplants, while still matching patients and donors using a fixed
policy. We formalize a multi-stage optimization problem based on realistic assumptions about how
transplants fail, and how exchanges match patients and donors; we emphasize that these important
assumptions are not included in prior work. While this problem is challenging in theory, we show
that it is much easier in practice-with computational experiments using both synthetic data and real
data from the United Network for Organ Sharing. In experiments, we find that pre-screening even a
small number of potential transplants (around 10) significantly increases the overall quality of the
final match—by more than 100% of the original match weight.

Our initial study of the pre-screening problem suggests several areas for future work. First we
assume that the distribution of transplant failures is known, when in reality only rough approximations
of these distributions are available. Second, we assume that exchange participants (donors, recipients,
hospitals) are not strategic. In reality, strategic behavior plays a substantial role in real exchanges [2];
we expect that participants might behave strategically when responding to pre-screening requests.
Third, our model does not account for equitable treatment of different patients [20]. For example,
it may be the case that pre-screening a transplant decreases the likelihood of the transplant being
matched. That might disproportionately impact highly-sensitized patients, which are both sicker and
more difficult to match than other patients.
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Broader Impact

Patients with end-stage renal disease have only two options: receive a transplant, or undergo
dialysis once every few days, for the rest of their lives. In many countries (including the US), these
patients register for a deceased donor waiting list—and it can be months or years before they receive a
transplant. Many of these patients have a friend or relative willing to donate a kidney, however many
patients are incompatible with their corresponding donor. Kidney exchange allows patients to “swap”
their incompatible donor, in order to find a higher-quality match, more quickly than a waiting list.
Transplants allow patients a higher quality of life, and cost far less, than lifelong dialysis. About 10%
of kidney transplants in the US are facilitated by an exchange.

Our aim in this paper is to understand the impact of transplant pre-screening on a mathematical
formulation of kidney exchange. None of our experiments impact actual kidney exchange participants,
however the methods we propose for pre-screening transplants could readily be applied by a real
exchange, including nascent organ exchanges for other organs such as livers. Thus, we briefly discuss
two potential impacts of our methods on a fielded exchange program:

e From a mathematical perspective, we show that pre-screening transplants can—in the worst
case—negatively impact the final matching weight (or size) of an exchange (see Propo-
sition 2.1). In other words, pre-screening can result in fewer patients receiving kidney
transplants, and/or that the resulting transplants are of lower quality.

e In kidney exchange, some patients are harder to match than others. These hard-to-match
(highly sensitized) patients are often sicker, and far less likely to find a compatible kidney
donor, than other patients. As a consequence, highly sensitized patients are less likely to
be matched by a kidney exchange algorithm [13, 20]; in fact, many exchanges (including
the exchange run by UNOS) use policies to prioritize highly sensitized patients so they are
not marginalized by a matching algorithm. There is a risk that, by algorithmically selecting
transplants for pre-screening, we would further marginalize highly sensitized patients. This
risk warrants further study, which we leave for future work.
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Figure 3: Sample exchange graph with a 3-chain (dashed edges) and two 2-cycles (solid edges). The
NDD is denoted by n, and each patient (and associated donor) is denoted by p; (d;). If edge e; is not
queried, or queried and accepted, then the chain may be included in the final matching. However if
edge e 4 is queried and rejected, then only the 2-cycles may be included in the final matching.

Edgebudgets | N=10 N =30 N=50 N =100 N =1000

1-10 0.0994  0.0568  0.0443 0.0316 0.00978
11-20 0.118 0.0689  0.0533 0.0373 0.0119
21-30 0.131 0.0758  0.0590 0.0418 0.0131
31-40 0.136 0.0787  0.0609 0.0436 0.0135
41-50 0.140 0.0812  0.0627 0.0442 0.014
51-60 0.146 0.0846  0.0653 0.0461 0.0147
61-70 0.152 0.0883  0.0680 0.0481 0.0153
71-80 0.162 0.093 0.0720 0.0514 0.0162
81-90 0.172 0.0995  0.0763 0.0544 0.0172

91-100 0.182 0.104 0.0815 0.0576 0.0180

Table 2: Median normalized standard deviation of the bootstrap mean, over 200 bootstrap samples
for each sample size NNV, binned by edge budget.

A Kidney Exchange
B Estimating The Objective of Problem 1

DCM: @Michael can you review this for accuracy? I added and changed some words, which are
hopefully correct

The objective of the single-stage edge selection problem requires evaluating all rejection scenarios
r ~ Pr(q), and the support of this distribution grows exponentially in the number of edges |g|. In
computational experiments, to estimate the objective of Problem 1, we sample up to 1000 scenarios
from P (q). More explicitly: we exactly evaluate the objective of edge sets with fewer than 10 edges;
for larger edge sets, we sample the objective using 1000 draws from Pz(q).

Using bootstrapping experiments we demonstrate that our sampling approach is sufficient to
accurately estimate the true objective, even for large edge sets. For 152 UNOS graphs, we computed
edge sets by running Greedy with edge budgets ranging from 1 to 100. For each edge set, we then
sample a subset of N € {10, 30, 50, 100, 1000} rejection scenarios, with replacement, from the set
of all sampled edge outcomes. For each edge set and choice of N we repeat 200 times and calculate
the sample mean for each replication. We then compute the standard deviations of these bootstrap
sample means to estimate the variance due to sampling. For each IV, we calculate the mean sample
standard deviation, normalized by the sample mean. Table 2 shows the median normalized standard
deviation for all experiments under each N, with edge budgets aggregated into 10 bins. We find that
with N = 1000 samples, the standard deviation was on average only about 2% of the overall mean
value, even for large edge budgets.

Michael: do we need to cite bootstrapping? this is fairly ad-hoc.
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r | MCTS Greedy Random IIAB
| Pl Pso Poo | Pio Pso Poo | Po Pso Peo | Pro Pso  Poo

0.10 0.18 0.42 | 0.10 0.18 042 | 0.00 0.01 0.09
0.17 030 0.65 | 0.17 0.29 0.64 | 0.00 0.02 0.16
022 038 080|024 038 0.79|0.00 0.03 0.23
027 045 091 | 028 047 091 | 000 0.05 0.39
031 053 1.06 | 033 0.53 1.07 | 0.00 0.05 047
035 058 1.16 | 0.38 0.60 1.18 | 0.00 0.07 0.54
037 0.63 128 | 041 0.66 1.27 | 0.00 0.09 0.62
039 0.67 134|043 0.70 1.33 | 0.00 0.11 0.74
041 0.69 139 | 046 0.72 1.37|0.00 0.11 0.85
041 0.73 148 | 046 0.73 1.37 | 0.01 0.15 0.86

IIAB | 040 0.67 1.11 | 042 0.72 1.13]0.00 0.10 045|021 045 0.89

Table 3: Single-stage results for the simple edge distribution on UNOS graphs: A™? for each method,
and for each edge budget I". The 10*", 50" and 90*" percentiles of AM* (Pyg, Pso, and Py) are
reported across all UNOS graphs. Maximum value for each I' is reported in bold.

=N =J=SIEN o WU RSN S

r | MCTS Greedy Random IIAB
| Pro Pso Po | Pio Pso Poo | P Pso Poo | Po  Pso  Poo

002 021 194|002 021 194 | -0.03 0.00 0.08
0.04 032 253|004 031 249 |-0.04 0.00 0.36
0.05 037 299|004 037 299 | -006 0.00 043
0.05 041 327|001 042 327 | -0.07 0.00 0.38
0.05 043 342 |-0.01 045 350 | -0.10 0.00 0.48
0.05 044 357 |-0.04 045 3.62 | -0.14 0.00 0.66
0.05 045 3.63|-0.07 047 3.63 | -0.17 0.00 0.67
0.03 044 3.64 | -0.10 048 3.63 | -0.18 0.00 0.78
0.02 044 364 |-0.12 045 325 -0.17 0.00 0.81
10 | 0.04 047 3.74 | -0.06 049 336 | -0.07 0.02 0.88

ITIAB | 0.05 046 3.56 | 0.01 049 3.56 | -0.11 0.00 0.63 | -024 0.14 2.66

Table 4: Single-stage results for the KPD edge distribution on UNOS graphs: A™X for each method,
and for each edge budget I'. The 10*", 50" and 90*" percentiles of A™X (P}, P50, and Py) are
reported across all UNOS graphs. Maximum value for each I" and each percentile is reported in bold.

O 0NN W=

C Additional Computational Experiment Results

D Proofs for Section 2

In the proofs of Proposition 2.1 and Proposition 2.2 we consider a setting where all edges’ pre-
match rejections and post-match failures are i.i.d., where Pr = 0.5 is the pre-match rejection
probability, Py = 1.0 is the post-match success probability if the edge is queried-and-accepted,
and Py = 0.5 is the success probability if e is not queried. That is, queried edges have rejection
probability 0.5, accepted edges have zero failure probability, and non-queried edges have failure
probability 0.5.

D.1 Proof of Proposition 2.1

(Proof by counterexample.) We provide an example where querying a single edge results in a lower
objective value in Problem 1 (i.e., final expected matching weight) than querying no edges—when
using the max-weight matching policy M"A*(.).

Consider the exchange graph in Figure 4; edge (F, B) has weight 1.5, while all other edges have
weight 1. First we consider the objective due to querying no edges, V*(0). In this case, no edges
can be rejected pre-match, the max-weight matching includes cycle (C, D, F') (expected weight
3 x (1/2)% = 3/8) and cycle (4, B) (expected weight 2 x (1/2)? = 1/2), with total expected
matching weight 7/8. That is, V°(0) = 7/8.

12
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Figure 4: Exchange graph for Propositions 2.1 and 2.2. All edges have weight 1 except for edge
(E, B), which has weight 1.5.

Next consider the objective due to querying only edge e3 = (C, D), and let ¢’ denote edge set
{es}. With probability 1/2, es is rejected and cycle (B, C, E) is the max-weight matching — with
expected weight 3.5/8. With probability 1/2, e3 is accepted and the max-weight matching includes
cycles (A, B) (with expected weight 1/2) and (C, D, F') (with expected weight 3/4); this matching
has total expected weight 5/4. Thus, V°(q) = 27/32 < 7/8 = V¥(0), which concludes the proof.

D.2 Proof of Proposition 2.2

(Proof by counterexample.) We provide an example where the objective value in Problem 1 (i.e.,
final expected matching weight) is non-submodular—when using the max-weight matching policy
M X(.). We use the same rejection and failure distribution as in the proof of Proposition 2.1.

Consider the exchange graph in Figure 4; edge (E, B) has weight 1.5, while all other edges

have weight 1. With some abuse of notation, we will denote by V°({e,,...,ex}) the objective
of Problem 1 due to edge set {e,, ..., en}. Our counterexample for submodulartiy is that, for this
graph,

V(X U{er,ex}) + V(X)) > VI(X U{er}) + VI(X U {ea}),
with set X = {e3}. That is, the objective increase due to of querying both edges e; and eg is greater
than the combined increase due to querying both edges separately. Next we explicitly calculate each
of the above terms.

V(X) =V9({es}). There are two cases to consider:

e e3 is accepted, with probability 1/2. The max-weight matching is cycles (A4, B) and
(C, D, F), with expected weight (1/2 + 3/4),

e 3 is rejected, with probability 1/2. The max-weight matching is cycle (B, C, E), with
expected weight 3.5/8.

Thus, VS (X) = (1/2)(1/2 + 3/4) + (1/2)(3.5/8) = 27/32.
V(X U{e1}) = VI({e1,e3}). There are four cases to consider:

e ¢; and e3 are accepted, with probability 1/4. The max-weight matching is cycles (4, B)
and (C, D, F), with expected weight (1 + 3/8),

e ¢ is rejected and e is accepted, with probability 1/4. The max-weight matching is cycle
(B, C, E), with expected weight 3.5/8.

e ¢ is accepted and e3 is rejected, with probability 1/4. The max-weight matching is cycle
(B, C, E), with expected weight 3.5/8.

e ¢; and ej3 are rejected, with probability 1/4. The max-weight matching is cycle (B, C, E),
with expected weight 3.5/8.

Thus the objective is V(X U {e3}) = (1/4)(1 4 3/8) + (3/4)(3.5/8) = 43/64.
V(X U{ez}) = VS({ea,e3}). There are three cases to consider

e ¢3 is accepted, with probability 1/2. The max-weight matching is cycles (A4, B) and
(C, D, F), with expected weight (1/2 + 3/4),

e e isrejected and e is accepted, with probability 1/4. The max-weight matching is cycle
(B, C, E), with expected weight 3.5/4,

e e3 and e are rejected, with probability 1/4. The max-weight matching is cycle (A, B),
with expected weight 1/2.
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Thus the objective is V(X U {ea}) = (1/2)(1/2 + 3/4) + (1/4)(3.5/4) + (1/4)(1/2) = 31/32.
V(X U{er,ea}) = VS({e1,e2,e3}). There are four cases to consider:
e ¢; and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A, B)
and (C, D, F), with expected weight (1 + 3/4),
e ¢; is accepted and e, is rejected, with probability 1/4 (the response from eg is irrelevant).
The max-weight matching is (A, B) and (C, D, F), with expected weight 1 + 3/8.
e ¢ is rejected and e is accepted (the response from ej is irrelevant), with probability 1/4.
The max-weight matching is cycle (B, C, E), with expected weight 3.5/4.
e ¢; and es are rejected (the response from eg is irrelevant), with probability 1/4. The
max-weight matching is cycle (C, D, F'), with expected weight 3/8.
Thus the objective is V(X U {e1,ea}) = (1/4)(1 + 3/4) + (1/4)(1 + 3/8) + (1/4)(3.5/4) +
(1/4)(3/8) = 35/32.
Finally, we have:
VI(X U{er,ex}) + VI(X) = 35/32 + 27/32
= 1.9375
and
VI(X U{er}) + V(X U{es}) = 43/64 + 31/32
= 1.640625
Therefore, V(X U {e1, ea}) + VI(X) > VI(X U{e1}) + V(X U {ez}), which concludes the
proof.
D.3 Proof of Proposition 2.3
For the proof of Proposition 2.3 we make one assumption about the distribution of edge rejections
and failures: querying additional edges cannot increase the overall probability of rejection or failure
for any edge.
Assumption D.1. Let q,r € {0, 1}Z! denote initial edge queries and responses. Let q' be additional
edges, such that q + q' € {0,1}F denotes an augmented edge set; let v’ € {0,1}E! denote the

responses to edges q' only. We assume that for any such q, r, and q’,
Elr+f|qr]>Elr+r+flqg+q, 7] .

Intuitively, Assumption D.1 excludes distributions where queries arbitrarily increase edge failure
or rejection. For example, Assumption D.1 disallows the following distribution: suppose all edges
are independent; all queried edges are accepted (P(r. = 1 | g) = 0 for all @), all accepted edges
have failure probability 0.5 (P(f. = 1| g = 1,7, = 0) = 0.5), and all non-queried edges have
failure probability 0.1 (P(f. = 1| g. = 7. = 0) = 0.1). In this case, if an edge is not queried, then
it has overall rejection or failure probability 0.1 (i.e., E[r. + f. | g¢,r] = 0.1 with g. = 0); if this
edge is queried, then it has rejection or failure probability 0.5 (i.., E[r. + 7.+ f. | g+ ¢, 7] = 0.5
with ¢/, = 1).

First we prove a handful of useful results.

Definition D.2 (Edge Independence). Two edges e, ¢’ € E are independent if (a) their rejection
distributions are conditionally independent, given whether or not they were queried:
re L re| g and 7o 1l re | qe

and (b) their failure distributions are conditionally independent, given whether or not they were
queried and rejected:

fe—u—fe’ |Qe,7"e and feJ-I-.fe’ ‘qe’vre’~

Lemma D.3. Ifall edges are independent, then additional edge queries cannot decrease expected
post-match cycle and chain weights. Formally,

ElF(e,r+f)|lar]<E[F(cr+r' +f)[q+4 ]
forany q,q' € {0,1}\%! such that q + q' € {0,1}1Z], for any r € {0, 1}Z!, and for all c € C.

Proof. We address cycles and chains separately.
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Cycles. Conditional on fixed g and r, the expected weight of cycle ¢ = (e, ..., er) is expressed
as

]E[F(cr+f |q, <Zwe> H]-_re_.fe)|qar
= (Zwe>H(1_E[re+fe|qarD

where the second step is due to the fact that all f, are independent. Similarly, for fixed q’,

E[F(c,r+7' +f) | q+d,r (Zw>H Efr.+r,+f.la+q,r]) .
ecc ecc
Due to Assumption D.1, the following inequality holds for all edges e € E
Elre+ felqr]>Elre+ri+f|a+4q,7],
and it follows that

E[F(c,r+f)|qr] <E[F(c,r+7 + f)|q+4,7].

Chains. Similarly, the expected weight of chain ¢ = (eq, ..., er) is expressed as
L k
E[F(e.r+f)ar]=) Zwy [Ta fe;)lar
k=1 j=1

_E lirej +fej |qar]) )

Il

Mm
i T

&
i

where the second step is due to the fact that f, are independent. Similarly,

L

k k
B(F(er '+ f)latar) =3 | Su | [L(1-E[r +0, + £ latar])
=1

k=1 \j=1
as before, due to Assumption D.1 it follows that
E[F(c,r+f)|ar] <E[F(c,r+7r" + f)[g+4,r].
O

Lemma D.4. With a failure-aware matching policy, and if all edges are independent, adding a
single edge to any edge query set weakly improves the objective of Problem 1. Formally, for any
q,q € {0,111 withq + q' € {0,1}\Fl and |q'| = 1, and M (r) = M*(r),

V3(q) <Vi(q+4q)

Proof. The objective of Problem 1 for edge set q is expressed as

rlq L”Iq T

>, Pulr)

V3(q)

ZMFA F(e,7+ f)

ZMFA F(e,r+ f)

re{0,1}lal f‘q "
= > Pq(r)ZMfA(r)fFT[F(C,r+f)]
re{0,1}lal ceC b

For edge set ¢ + ¢’ we partition response variables into 7, 7 € {0, 1}Z!, where r. is the response
variable for all edges e € g, and . = 0 for all other edges (including the edge in q’). Similarly, r/, is
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the response variable for edge ¢’, and 7/, = 0 for all other edges. The objective of g + ¢’ is expressed
as

VS(q+4q) S M2+ ) Fe,r+1' + f)
eC

E E
rr'lg+q’ | fla+q' ,r+r’ :

= D Paglr)

re{0,1}4l

= Z P(r)

re{0,1}4l

E

e ZM:A(T’+T/)TF(C,T‘+T‘,+]€)
qa+q’,r+r’

ceC

E
r'|g+q’

S M+ ) F(e,r 41+ f)
ceC

)

E E
r'lg+q’ | fla+q’ ,r+r’

where in the final line we replace Py o/ () with P4(r), because each 7. is conditionally independent,
given q..
Next, by definition

M (r + v YF(c,r + 7"+ > E z Fe,r+7 + Ve € M.
s s [ 2 ME ) D)2 B | 2T f)
That is, M4 is guaranteed to maximize this expectation, and thus
Vig+q)> Y P(r) E E 1Y MMr)F(e,r+7' + f) (B)
r'la+q' | fla+q',r+r’
rc{0,1}al ceC
= Y Pr)> M*r) E [ E  [Fle,r+7'+ f)]} (©)
re{0}lal v r'lg+q’ | flg+q',r+r
Finally, combining (B) and (C) with Lemma D.3, the following inequality holds
V3(q) <VS(a+4).
O

Using the above lemmas, the proof of Proposition 2.3 is straightforward:

Proposition 2.3 With a failure-aware matching policy, if all edges are independent, the objective
of Problem 1 is monotonic in the set of queried edges.

Proof. Let q',q" € £ be two edge sets such that ¢’ C q”. It remains to show that, with matching
policy M(r) = M (r),
V3(q") < V3(d).
First note that because £ is a matroid, there is a sequence of edges (g, ..., q%:) (with each

|g°| = 1) such that ¢" + q°* + --- 4+ q°* = q’. Due to Lemma D.4, the following sequence of
inequalities hold:

V(g") <V(q"+q%)
<V(q"+q* +q°)

<V(q'+q" +--+4")
=V(q)
which concludes the proof. O

E Algorithm Descriptions

Here we describe more explicitly the algorithms for Greedy and MCTS, for both the single-stage
and multi-stage settings.
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ALGORITHM 3: Greedy: Greedy Search Heuristic for Single-Stage Edge Selection
(input) &: legal edge sets

qR <— 0 the root node (no edges)

V* < objective value of g© Problem 1

while g7 has children do
q' <+ child node of g™ with maximal objective value in Problem 1
¢4

return qR

E.1 Algorithms for Edge Selection
Algorithm 3 gives a pseudocode description of Greedy for the single-stage setting.

E.2 Multi-Stage Edge Selection

Multi-Stage MCTS. The multi-stage version of MCTS differs from the single-stage version in that
each node of the search tree corresponds to both a set of queried edges and a set of observed rejections.

ALGORITHM 4: Multi-Stage MCTS: Tree = ALGORITHM 5: MultiSample: Sampling function
Search Heuristic for Multi-Stage Edge Selec-  used by Multi-Stage MCTS

tion - - TODO: this has not been updated yet!!!
TODO: this has not been updated yet!!! (input) (input) g: tree node

‘c’;  legal edge sets ) (input) M: maximum level to sample from
(input) K: maximum size of any legal edge set Nlq] + Niq] +1

(input) 7": time limit per level

V'[q] < objective of edge set g in Problem 1

(input) L: number of look-ahead levels if V[q] > V* then
n q" < q. V"« V]q]
q'" < 0 rootnode (no edges) if g has no children then
q* < 0 the best visited node return V[q]
V™ <« objective value of ¢* if g has children then
for N =1,..., K do if |g| < M then
M + min{N + L, K} q' < argmax ¢ o qr) Ulg]
@ <+ all nodes in levels N to M Ulq] «+ Ulq]+ Sample(q’, M)

Ulq] + 0Vqg € Q UCB value estimate

Vig] < 0Vq € Q objective value

Nlq] + 0VYqg € Q number of visits

while less than time T' has passed do
Sample(qR, M)

else
q’ < arandom descendent of q at any level
V' + objective value of g’ in Problem 1
if V' > V* then
q* — q/, V* — V/

qR < arg maX,cc(gR) U[q] U[q] s U[q] +V
Delete U[-], V'[-], and N[]
return q*

Multi-Stage Greedy. Algorithm 6 gives a pseudocode description of the multi-stage version of
Greedy. This search heuristic returns the next edge to query with the highest expected final matching
weight, ignoring all future queries. In other words, this approach treats every edge as the last edge;
one might call this heuristic “myopic” as well as greedy.
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ALGORITHM 6: Greedy Heuristic for Multi-Stage Edge Selection

(input) &: legal edge sets
(input) q: previously-queried edges
(input) 7: previously-observed rejections

PV +0
for all q' in q’s children do
¢’ + the new edge queried in child node ¢’ 7* « r
rf
rd—1 (response scenario where €’ is accepted)
rE < 1 (response scenario where €’ is rejected)
p™ « probability that e is accepted, conditional on r
pf « probability that e is accepted, conditional on 7
V' —pt  W(M>E); g, r?) + ptW (M (r?); ¢, q%)  (value of querying edge e)
if V' > V" then
e« ¢
VeV’
return e”
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