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Abstract

In clustering problems, a central decision-maker is given a complete metric graph
over vertices and must provide a clustering of vertices that minimizes some ob-
jective function. In fair clustering problems, vertices are endowed with a color
(e.g., membership in a group), and the requirements of a valid clustering might also
include the representation of colors in the solution. Prior work in fair clustering
assumes complete knowledge of group membership. In this paper, we generalize
this by assuming imperfect knowledge of group membership through probabilistic
assignments, and present algorithms in this more general setting with approxi-
mation ratio guarantees. We also address the problem of “metric membership”,
where group membership has a notion of order and distance. Experiments are
conducted using our proposed algorithms as well as baselines to validate our ap-
proach, and also surface nuanced concerns when group membership is not known
deterministically.

1 Introduction

Machine-learning-based decisioning systems are increasingly used in high-stakes situations, many
of which directly or indirectly impact society. Examples abound of automated decisioning systems
resulting in, arguably, morally repugnant outcomes: hiring algorithms may encode the biases of
human reviewers’ training data Bogen and Rieke [2018], advertising systems may discriminate based
on race and inferred gender in harmful ways Sweeney [2013], recidivism risk assessment software
may bias its risk assessment improperly by race Angwin et al. [2016], and healthcare resource
allocation systems may be biased against a specific race Ledford [2019]. A myriad of examples such
as these and others motivate the growing body of research into defining, measuring, and (partially)
mitigating concerns of fairness and bias in machine learning. Different metrics of algorithmic fairness
have been proposed, drawing on prior legal rulings and philosophical concepts; Mehrabi et al. [2019]
give a recent overview of sources of bias and fairness as presently defined by the machine learning
community.

The earliest work in this space focused on fairness in supervised learning Luong et al. [2011], Hardt
et al. [2016] as well as online learning Joseph et al. [2016]; more recently, the literature has begun
expanding into fairness in unsupervised learning Chierichetti et al. [2017]. In this work, we address
a novel model of fairness in clustering—a fundamental unsupervised learning problem. Here, we
are given a complete metric graph where each vertex also has a color associated with it, and we are
concerned with finding a clustering that takes both the metric graph and vertex colors into account.
Most of the work in this area (e.g., Ahmadian et al. [2019a], Bercea et al. [2018], Chierichetti et al.
[2017]) has defined a fair clustering to be one that minimizes the cost function subject to the constraint
that each cluster satisfies a lower and an upper bound on the percentage of each color it contains—a
form of approximate demographic parity or its closely-related cousin, the p%-rule Biddle [2006].
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We relax the assumption that a vertex’s color assignment is known deterministically; rather, for each
vertex, we assume only knowledge of a distribution over colors.

Our proposed model addresses many real-world use cases. Ahmadian et al. [2019a] discuss clustering
news articles such that no political viewpoint—assumed to be known deterministically—dominates
any cluster. Here, the color membership attribute—i.e., the political viewpoint espoused by a news
article—would not be provided directly but could be predicted with some probability of error using
other available features. Awasthi et al. [2019] discuss the case of supervised learning when class
labels are not known with certainty (e.g., due to noisy crowdsourcing or the use of a predictive model).
Our model addresses such motivating applications in the unsupervised learning setting, by defining a
fair cluster to be one where the color proportions satisfy the upper and lower bound constraints in
expectation. Hence, it captures standard deterministic fair clustering as a special case.

Outline & Contributions. We begin (§2) with an overview of related research in general clustering,
fairness in general machine learning, as well as recent work addressing fairness in unsupervised
learning. Next (§3), we define two novel models of clustering when only probabilistic membership is
available: the first assumes that colors are unordered, and the second embeds colors into a metric
space, thus endowing them with a notion of order and distance. This latter setting addresses use cases
where, e.g., we may want to cluster according to membership in classes such as age or income, whose
values are naturally ordered. Following this (§4), we present two approximation algorithms with
theoretical guarantees in the settings above. We also briefly address the (easier but often realistic)
“large cluster” setting, where it is assumed that the optimal solution does not contain pathologically
small clusters. Finally (§5), we verify our proposed approaches on four real-world datasets. We note
that all proofs are put in the appendix due to the page limit.

2 Related Work

Classical forms of the metric clustering problems k-center, k-median, and k-means are well-studied
within the context of unsupervised learning and operations research. While all of these problems
are NP-hard, there is a long line of work on approximating them and heuristics are commonly
used in many practical applications. This vast area is surveyed by Aggarwal and Reddy [2013]
and we focus on approximation algorithms here. For k-center, there are multiple approaches to
achieve a 2-approximation and this is the best possible unless P = NP Hochbaum and Shmoys
[1985], Gonzalez [1985a], Hochbaum and Shmoys [1986]. Research for the best approximations
to k-median and k-means is ongoing. For k-median there is a (2.675 + ε)-approximation with a
running time of nO((1/ε) log(1/ε)) Byrka et al. [2014], and for k-means a 6.357-approximation is the
best known Ahmadian et al. [2019b].

The study of approximation algorithms that achieve demographic fairness for metric clustering was
initiated by Chierichetti et al. [2017]. They considered a variant of k-center and k-median wherein
each point is assigned one of two colors and the color of each point is known. Followup work extended
the problem setting to the k-means objective, multiple colors, and the possibility of a point being
assigned multiple colors (i.e. modeling intersecting demographic groups such as gender and race
combined) Bercea et al. [2018], Bera et al. [2019], Backurs et al. [2019], Huang et al. [2019]. Other
work considers the one-sided problem of preventing over-representation of any one group in each
cluster rather than strictly enforcing that clusters maintain proportionality of all groups Ahmadian
et al. [2019a].

In all of the aforementioned cases, the colors (demographic groups) assigned to the points are known
a priori. By contrast, we consider a generalization where points are assigned a distribution on
colors. We note that this generalizes settings where each point is assigned a single deterministic color.
Moreover, our setting is distinct from the setting where points are assigned multiple colors in that we
assume each point has a single true color. In the area of supervised learning, the work of Awasthi
et al. [2019] addressed a similar model of uncertain group membership. Other recent work explores
unobserved protected classes from the perspective of assessment Kallus et al. [2019]. However, no
prior work has addressed this model of uncertainty for metric clustering problems in unsupervised
learning.
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3 Preliminaries and Problem Definition

Let C be the set of points in a metric space with distance function d : C ×C → R≥0. The distance
between a point v and a set S is defined as d(v, S) = minj∈S d(v, j). In a k-clustering an objective
function Lk(C) is given, a set S ⊆ C of at most k points must be chosen as the set of centers, and each
point in C must get assigned to a center in S through an assignment function φ : C → S, forming a
k-partition of the original set: C1, . . . , Ck. The optimal solution is defined as a set of centers and an
assignment function that minimizes the objective Lk(C). The well known k-center, k-median, and
k-means can all be stated as the following problem:

min
S:|S|≤k,φ

Lkp(C) = min
S:|S|≤k,φ

(∑
v∈C

dp(v, φ(v))
)1/p

(1)

where p equals∞, 1, and 2 for the case of the k-center, k-median, and k-means, respectively. For
such problems the optimal assignment for a point v is the nearest point in the chosen set of centers S.
However, in the presence of additional constraints such as imposing a lower bound on the cluster size
Aggarwal et al. [2010] or an upper bound Khuller and Sussmann [2000], Cygan et al. [2012], An
et al. [2015] this property no longer holds. This is also true for fair clustering.

To formulate the fair clustering problem, a set of colors H = {h1, . . . , h`, . . . , hm} is introduced
and each point v is mapped to a color through a given function χ : C → H. Previous work in fair
clustering Chierichetti et al. [2017], Ahmadian et al. [2019a], Bercea et al. [2018], Bera et al. [2019]
adds to (1) the following proportional representation constraint, i.e.:

∀i ∈ S, ∀h` ∈ H : lh`
| Ci | ≤ | Ci,h`

| ≤ uh`
| Ci | (2)

where Ci,h`
is the set of points in cluster i having color h`. The bounds lh`

, uh`
∈ (0, 1) are given

lower and upper bounds on the desired proportion of a given color in each cluster, respectively.

In this work we generalize the problem by assuming that the color of each point is not known
deterministically but rather probabilistically. We also address the case where the colors lie in a
1-dimensional Euclidean metric space.

3.1 Probabilistic Fair Clustering

In probabilistic fair clustering, we generalize the problem by assuming that the color of each point is
not known deterministically but rather probabilistically. That is, each point v has a given value ph`

v

for each h` ∈ H, representing the probability that point v has color h`, with
∑
h`∈H p

h`
v = 1.

The constraints are then modified to have the expected color of each cluster fall within the given
lower and upper bounds. This leads to the following optimization problem:

min
S:|S|≤k,φ

Lkp(C) (3a)

s.t. ∀i ∈ S, ∀h` ∈ H : lh`
|φ−1(i)| ≤

∑
v∈φ−1(i)

ph`
v ≤ uh`

|φ−1(i)| (3b)

Following Bera et al. [2019], we define a γ violating solution to be one for which for all i ∈ S:

lh`
|φ−1(i)| − γ ≤

∑
v∈φ−1(i)

ph`
v ≤ uh`

|φ−1(i)|+ γ (4)

This effectively captures the amount γ, by which a solution violates the fairness constraints.

3.2 Metric Membership Fair Clustering

Representing a point’s (individual’s) membership using colors may be sufficient for binary or other
unordered categorical variables. However, this may leave information “on the table” when a category
is, for example, income or age, since colors do not have an inherent sense of order or distance.

For this type of attribute, the membership can be characterized by a 1-dimensional Euclidean space.
Without loss of generality, we can represent the set of all possible memberships as the set of all
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consecutive integers from 0 to some R > 0, where R is the maximum value that can be encountered.
Hence, letHR = {0, 1, . . . , R}. Each point v has associated with it a value rv ∈ HR. In this problem
we require the average total value of each cluster to be within a given interval. Hence:

min
S:|S|≤k,φ

Lkp(C) (5a)

s.t. ∀i ∈ S : l|φ−1(i)| ≤
∑

v∈φ−1(i)

rv ≤ u|φ−1(i)| (5b)

where l and u are respectively upper and lower bounds imposed on each cluster. We do not have
a subscript h` for either l or u because we essentially only have one color (the metric membership
value).

Similar to section 3.1, we define a γ violating solution to be one for which ∀i ∈ S:

l|φ−1(i)| − γ ≤
∑

v∈φ−1(i)

rv ≤ u|φ−1(i)|+ γ (6)

If we consider the case of income, then the objective of (5) can be used to force each cluster to have
an average income around the global average preventing the possibility of having low or high income
individuals from being over or under represented in any given cluster.

4 Approximation Algorithms and Theoretical Guarantees

We essentially have two algorithms although they involve similar steps. One algorithm is for the
two-color and metric membership case which is discussed in section (4.1) and the other algorithm us
for the multiple-color case under a large cluster assumption which is discussed in section (4.2).

4.1 Algorithms for the Two Color and Metric Membership Case

Our algorithm follows the two step method of Bera et al. [2019], although we differ in the LP
rounding scheme. Let PFC(k, p) denote the probabilistic fair clustering problem. The color-blind
clustering problem, where we drop the fairness constraints, is denoted by Cluster(k, p). Further,
define the fair assignment problem FA-PFC(S, p) as the problem where we are given a fixed set of
centers S and the objective is to find an assignment φ minimizing Lkp(C) and satisfying the fairness
constraints 3b for probabilistic fair clustering or 5b for metric-membership. We prove the following
(similar to theorem 2 in Bera et al. [2019]):
Theorem 4.1. Given an α-approximation algorithm for Cluster(k, p) and a γ-violating algorithm
for FA-PFC(S, p), a solution with approximation ratio α+ 2 and constraint violation at most γ can
be achieved for PFC(k, p).

An identical theorem and proof follows for the metric membership problem as well.

4.1.1 Step 1, Color-Blind Approximation Algorithm:

At this step an ordinary (color-blind) α-approximation algorithm is used to find the cluster centers.
For example, the Gonzalez algorithm Gonzalez [1985b] can be used for the k-center problem or the
algorithm of Byrka et al. [2014] can be used for the k-median. This step results in a set S of cluster
centers. Since this step does not take fairness into account, the resulting solution does not necessarily
satisfy constraints 3b for probabilistic fair clustering and 5b for metric-membership.

4.1.2 Step 2, Fair Assignment Problem:

In this step, a linear program (LP) is set up to satisfy the fairness constraints. The variables of the LP
are xij denoting the assignment of point j to center i in S. Specifically, the LP is:

min
∑

j∈C,i∈S
dp(i, j)xij (7a)

s.t. ∀i ∈ S and ∀h` ∈ H : (7b)
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lh`

∑
j∈C

xij ≤
∑
j∈C

ph`
j xij ≤ uh`

∑
j∈C

xij (7c)

∀j ∈ C :
∑
i∈S

xij = 1, 0 ≤ xij ≤ 1 (7d)

Since the LP above is a relaxation of FA-PFC(S, p), we have OPTLP
FA-PFC ≤ OPTFA-PFC. We

note that for k-center there is no objective, instead we have the following additional constraint:
xij = 0 if d(i, j) > w where w is a guess of the optimal radius. Also, for k-center the optimal value
is always the distance between two points. Hence, through a binary search over the polynomially-
sized set of distance choices we can WLOG obtain the minimum satisfying distance. Further, for the
metric membership case ph`

j , lh`
and uj in 7c are replaced by rj , l and u, respectively.

What remains is to round the fractional assignments xij resulting from solving the LP.

4.1.3 Rounding for the Two Color and Metric Membership Case

First we note the connection between the metric membership problem and the two color case of
probabilistic fair clustering. Effectively the setHR = {0, 1, . . . , R} is the unnormalized version of
the set of probabilities {0, 1

R ,
2
R , . . . , 1}. Our rounding method is based on calculating a minimum-

Algorithm 1 Form Flow Network Edges for Culster Ci
~Ai are the points j ∈ φ−1(i) in non-increasing order of pj
initialize array ~a of size |Ci| to zeros, and set s = 1

put the assignment xij for each point j in ~Ai in ~zi according the vertex order in ~Ai
for q = 1 to |Ci| do
~a(q) = ~a(q) + xi ~Ai(s)

, and add edge ( ~Ai(s), q)

~zi(s) = 0
s = s+ 1 {Move to the next vertex}
repeat

valueToAdd = min(1− ~a(q), ~zi(s))

~a(q) = ~a(q) + valueToAdd, and add edge ( ~Ai(s), q)
~zi(s) = ~zi(s)− valueToAdd
if ~zi(s) = 0 then
s = s+ 1

end if
until ~a(q) = 1 or s > | ~Ai| {until we have accumulated 1 or ran out of vertices}

end for

cost flow in a carefully constructed graph. For each i ∈ S, a set Ci with |Ci| =
⌈∑

j∈C xij

⌉
vertices

is created. Moreover, the set of vertices assigned to cluster i, i.e. φ−1(i) = {j ∈ C |xij > 0} are
sorted in a non-increasing order according to the associated value rj and placed into the array ~Ai. A
vertex in Ci (except possibly the last) is connected to as many vertices in ~Ai by their sorting order
until it accumulates an assignment value of 1. A vertex in ~Ai may be connected to more than one
vertex in Ci if that causes the first vertex in Ci to accumulate an assignment value of 1 with some
assignment still remaining in the ~Ai vertex. In this case the second vertex in Ci would take only what
remains of the assignment. See Algorithm 1 for full details. Appendix C demonstrates an example.

We denote the set of edges that connect all points in C to points in Ci by EC,Ci
. Also, let Vflow =

C ∪(∪i∈SCi) ∪ S ∪ {t} and Eflow = EC,Ci
∪ ECi,S ∪ ES,t, where ECi,S has an edge from every

vertex in Ci to the corresponding center i ∈ S. Finally ES,t has an edge from every vertex i in S to

the sink t if
∑
j∈C xij >

⌊∑
j∈C xij

⌋
. The demands, capacities, and costs of the network are:

• Demands: Each v ∈ C has demand dv = −1 (a supply of 1), du = 0 for each u ∈ Ci,
di =

⌊∑
j∈C xij

⌋
for each i ∈ S. Finally t has demand dt = |C| −

∑
i∈S di.
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• Capacities: All edge capacities are set to 1.
• Costs: All edges have cost 0, expect the edges in EC,Ci

where ∀(v, u) ∈ EC,Ci
, d(v, u) =

d(v, i) for the k-median and d(v, u) = d2(v, i). For the k-center, either setting suffices.

v1

v2

v3

v4

v5

v6

c1i

c2i

c3i

i

i′

t

Figure 1: Network flow construction.

See Figure 1 for an example. It is clear that the entire
demand is | C | and that this is the maximum possible
flow. The LP solution attains that flow. Further, since the
demands, capacities and distances are integers, an optimal
integral minimum-cost flow can be found in polynomial
time. If x̄ij is the integer assignment that resulted from
the flow computation, then violations are as follows:
Theorem 4.2. The number of vertices assigned to a clus-
ter (cluster size) is violated by at most 1, i.e. |

∑
j∈C x̄ij −∑

j∈C xij | ≤ 1. Further for metric membership, the viola-
tion in the average value is at most R, i.e. |

∑
j∈C x̄ijrj −∑

j∈C xijrj | ≤ R. It follows that for the probabilistic
case, the violation in the expected value is at most 1.

Our rounding scheme results in a violation for the two
color probabilistic case that is at most 1, whereas for metric-membership it is R. The violation of R
for the metric membership case suggests that the rounding is too loose, therefore we show a lower
bound of at least R2 for any rounding scheme applied to the resulting solution. This also makes our
rounding asymptotically optimal.
Theorem 4.3. Any rounding scheme applied to the resulting solution has a fairness constraint
violation of at least R2 in the worst case.

4.2 Algorithms for the Multiple Color Case Under a Large Cluster Assumption:

First, we point out that for the multi-color case, the algorithm is based on the assumption that the
cluster size is large enough. Specifically:
Assumption 4.1. Each cluster in the optimal solution should have size at least L = Ω(nr) where
r ∈ (0, 1).

We firmly believe that the above is justified in real datasets. Nonetheless, the ability to manipulate the
parameter r, gives us enough flexibility to capture all occurring real-life scenarios.
Theorem 4.4. If Assumption 4.1 holds, then independent sampling results in the amount of color for
each clusters to be concentrated around its expected value with high probability.

Given Theorem 4.4 our solution essentially forms a reduction from the problem of probabilistic fair
clustering PFC(k, p) to the problem of deterministic fair clustering with lower bounded cluster sizes
which we denote by DFCLB(k, p, L) (the color assignments are known deterministically and each
cluster is constrained to have size at least L). Our algorithm (2) involves three steps. In the first

Algorithm 2 Algorithm for Large Cluster PFC(k, p)

Input: C, d, k, p, L, {(lh`
, uh`

)}h`∈H
Relax the upper and lower by ε: ∀h` ∈ H, lh`

← lh`
(1− ε) and uh`

← uh`
(1 + ε)

For each point v ∈ C sample its color independently according to ph`
v

Solve the deterministic fair clustering problem with lower bounded clusters DFCLB(k, p, L) over
the generated instance and return the solution.

step, the upper and lower bounds are relaxed since -although we have high concentration guarantees
around the expectation- in the worst case the expected value may not be realizable (could not be
an integer). Moreover the upper and lower bounds could coincide with the expected value causing
violations of the bounds with high probability. See appendix B for more details.

After that, the color assignments are sampled independently. The following deterministic fair
clustering problem is solved for resulting set of points:

(8a)
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s.t. ∀i ∈ S : (1− δ)lh`
| Ci | ≤ | Ci,h`

| ≤ (1 + δ)uh`
| Ci | (8b)

∀i ∈ S : | Ci | ≥ L (8c)

The difference between the original deterministic fair clustering problem and the above is that the
bounds are relaxed by ε and a lower bound L is required on the cluster size. This is done in order
to guarantee that the resulting solution satisfies the relaxed upper and lower bounds in expectation,
because small size clusters do not have a Chernoff bound and therefore nothing ensures that they are
valid solutions to the original PFC(k, p) problem.

The algorithm for solving deterministic fair clustering with lower bounded cluster sizes DFCLB is
identical to the algorithm for solving the original deterministic fair clustering Bera et al. [2019],
Bercea et al. [2018] problem with the difference being that the setup LP will have a bound on the
cluster size. That is we include the following constraint ∀i ∈ S :

∑
ij xij ≥ L. See appendix E

for further details. In theorem A.2 we show that it has an approximation ratio of α + 2 like the
ordinary (deterministic) fair clustering case, where again α is the approximation ratio of the color
blind algorithm.

Theorem 4.5. Given an instance of the probabilistic fair clustering problem PFC(k, p), with high
probability algorithm 2 results in a solution with violation at most ε and approximation ratio (α+ 2).

5 Experiments

We now evaluate the performance of our algorithms over a collection of real-world datasets. We give
experiments in the two (unordered) color case (§5.2), metric membership (i.e., ordered color) case
(§5.3), as well as under the large cluster assumption (§5.4). We include experiments for the k-means
case here, and the (qualitatively similar) k-center and k-median experiments to Appendix F.

5.1 Experimental Framework

Hardware & Software. We used only commodity hardware through the experiments: Python 3.6
on a MacBook Pro with 2.3GHz Intel Core i5 processor and 8GB 2133MHz LPDDR3 memory.
A state-of-the-art commercial optimization toolkit, CPLEX Manual [2016], was used for solving
all LPs. NetworkX Hagberg et al. [2013] was used to solve minimum cost flow problems, and
Scikit-learn Pedregosa et al. [2011] for standard machine learning tasks such as training SVMs,
pre-processing, and performing traditional k-means clustering.

Color-Blind Clustering. The color-blind clustering algorithms we use are as follows.

• Gonzalez [1985b] gives a 2-approximation for k-center.
• We use Scikit-learn’s k-means++ module.
• A 5-approximation algorithm due to Arya et al. [2004] modified with D-sampling Arthur

and Vassilvitskii [2006] according to Bera et al. [2019].

Generic-Experimental Setup and Measurements. For a chosen dataset, a given color h` would
have a proportion fh`

= |v∈C |χ(v)=h`|
| C | . Following Bera et al. [2019], the lower bound is set to

lh`
= (1 − δ)rh`

and the upper bound is to uh`
=

fh`

(1−δ) . For metric membership, we similarly

have f =
∑

v∈C rv
| C | as the proportion, l = (1 − δ)f and u = f

1−δ as the lower and upper bound,
respectively. We set δ = 0.2, as Bera et al. [2019] did, unless stated otherwise.

For each experiment, we measure the price of fairness POF = Fair Solution Cost
Color-Blind Cost . We also measure the

maximum additive violation γ as it appears in inequalities 4 and 6.

5.2 Two Color Case

Here we test our algorithm for the case of two colors with probabilistic assignment. We use the
Bank dataset Moro et al. [2014] which has 4,521 data points. We choose marital status, a categorical
variable, as our fairness (color) attribute. To fit the binary color case, we merge single and divorced
into one category. Similar to the supervised learning work due to Awasthi et al. [2019], we make
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Figure 2: For pacc = 0.7 & pacc = 0.8, showing (a): #clusters vs. maximum additive violation; (b):
#clusters vs. POF .

Bank’s deterministic color assignments probabilistic by independently perturbing them for each
point with probability pnoise. Specifically, if v originally had color cv, then now it has color cv with
probability 1 − pnoise instead. To make the results more interpretable, we define pacc = 1 − pnoise.
Clearly, pacc = 1 corresponds to the deterministic case, and pacc = 1

2 corresponds to completely
random assignments.

In Fig. 2(a), we see that the violations of the color-blind solution can be as large as 25 while our
algorithm is within the theoretical guarantee that is less than 1. In Fig. 2(b), we see that in spite of the
large violation, fairness is achieved at a low relative efficiency loss, not exceeding 2% (POF ≤ 1.02).
In appendix F.1 we show further experiments which explore the relationship between pacc and POF.
We also show that the simple solution of assigning the most probable color does not work.

5.3 Metric Membership

Here we test our algorithm for the metric membership problem. We use two additional well-known
datasets: Adult Kohavi [1996], with age being the fairness attribute, and CreditCard Yeh and Lien
[2009], with credit being the fairness attribute. We apply a pre-processing step where for each point
we subtract the minimum value of the fairness attribute over the entire set. This has the affect of
reducing the maximum fairness attribute value, thus reducing the maximum violation of 1

2R, but still
keeping the values non-negative.

Fig. 3 (a) shows POF with respect to the number of clusters. For the Adult dataset, POF is at most
less than 5%, whereas for the CreditCard dataset it is as high at 25%. While the POF, intuitively,
rises with the number of clusters allowed, it is substantially higher with the CreditCard dataset. This
may be explained because of the correlation that exists between credit and other features represented
in the metric space.

Figure 3: Adult and CreditCard dataset results: (a) #Clusters (x-axis) vs. POF (y-axis), and
(b):#Clusters (x-axis) vs. normalized maximum additive violation (y-axis).

In Fig. 3 (b), we compare the number of clusters against the normalized maximum additive violation.
The normalized maximum additive violation is the same maximum additive violation γ from inequal-
ity 6—but normalized by R. We see that the normalized maximum additive violation is indeed less
than 1 as theoretically guaranteed by our algorithm, where for the color-blind solution it is as high as
250.
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5.4 The Large Cluster Assumption

Figure 4: Plot showing the performance of our in-
dependent sampling algorithm over the Census1990
dataset for k = 5 clusters with varying values on the
cluster size lower bound: (a) maximum violation nor-
malized by the cluster size, (b) the price of fairness.

Here we test our algorithm for the case of
probabilistically assigned multiple colors un-
der Assumption 4.1, which addresses cases
where the optimal clustering does not include
pathologically small clusters. We use the
Census1990 Meek et al. [2002] dataset. We
note that Census1990 is large, with over 2.4
million points. We use age groups (attribute
dAge in the dataset) as our fairness attribute,
which yields 7 age groups (colors).1 We then
sample 100,000 data points and use them to
train an SVM classifier2 to predict the age
group memberships. The classifier achieves
an accuracy of around 68%. We use the clas-
sifier to predict the memberships of another 100,000 points not included in the training set, and
sample from that to form the probabilistic assignment of colors.

Fig. 4 shows the output of our large cluster algorithm over 100,000 points and k = 5 clusters with
varying lower bound assumptions. Since the clusters here are large, we normalize the additive
violations by the cluster size. We see that our algorithm results in normalized violation that decrease
as the lower bound on the cluster size increases—eventually dropping below 20%. The POF is high
relative to our previous experiments, but still less than 50%.

6 Conclusions & Future Research

Prior research in fair clustering assumes deterministic knowledge of group membership. We general-
ized prior work by assuming probabilistic knowledge of group membership. In this new model, we
presented novel clustering algorithms in this more general setting with approximation ratio guarantees.
We also addressed the problem of “metric membership,” where different groups have a notion of
order and distance—this addresses real-world use cases where parity must be ensured over, e.g., age
or income. We also conducted experiments on slate of datasets. The algorithms we propose come
with strong theoretical guarantees; on real-world data, we showed that those guarantees are easily met.
Future research directions involve the assignment of multiple colors (e.g., race as well as self-reported
gender) to vertices, in addition to the removal of assumptions such as the large cluster assumption.

1Group 0 is extremely rare, to the point that it violates the “large cluster” assumption for most experiments;
therefore, we merged it with Group 1, its nearest age group.

2We followed standard procedures and ended up with a standard RBF-based SVM; the accuracy of this SVM
is somewhat orthogonal to the message of this paper, and rather serves to illustrate a real-world, noisy labeler.
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Broader Impact

Guaranteeing that the color proportions are maintained in each cluster satisfies group (demographic)
fairness in clustering. In real-world scenarios, however, group membership may not be known
with certainty but rather probabilistically (e.g., learned by way of a machine learning model). Our
paper addresses fair clustering in such a scenario and therefore both generalizes that particular (and
well-known) problem statement and widens the scope of the application. In settings where a group-
fairness-aware clustering algorithm is appropriate to deploy, we believe our work could increase the
robustness of those systems. That said, we do note (at least) two broader points of discussion that
arise when placing potential applications of our work in the greater context of society:

• We address a specific definition of fairness. While the formalization we address is a
common one that draws directly on legal doctrine such as the notion of disparate impact, as
expressed by Feldman et al. [2015] and others, we note that the Fairness, Accountability,
Transparancy, and Ethics (FATE) in machine learning community has identified many such
definitions Verma and Rubin [2018]. Yet, there is a growing body of work exploring the gaps
between the FATE-style definitions of fairness and those desired in industry (see, e.g., recent
work due to Holstein et al. [2019] that interviews developers about their wants and needs
in this space), and there is growing evidence that stakeholders may not even comprehend
those definitions in the first place Saha et al. [2020]. Indeed, “deciding on a definition of
fairness” is an inherently morally-laden, application-specific decision, and we acknowledge
that making a prescriptive statement about whether or not our model is appropriate for a
particular use case is the purview of both technicians, such as ourselves, and policymakers
and/or other stakeholders.

• Our work is motivated by the assumption that, in many real-world settings, group mem-
bership may not be known deterministically. If group membership is being estimated by a
machine-learning-based model, then it is likely that this estimator itself could incorporate
bias into the membership estimate; thus, our final clustering could also reflect that bias.
As an example, take a bank in the United States; here, it may not be legal for a bank to
store information on sensitive attributes—a fact made known recently by the “Apple Card”
fiasco of late 2019 Knight [2019]. Thus, to audit algorithms for bias, it may be the case that
either the bank or a third-party service infers sensitive attributes from past data, which likely
introduces bias into the group membership estimate itself. (See recent work due to Chen
et al. [2019] for an in-depth discussion from the point of view of an industry-academic
team.)

We have tried to present this work without making normative statements about, e.g., the definition of
fairness used; still, we emphasize the importance of open dialog with stakeholders in any system, and
acknowledge that our proposed approach serves as one part of a larger application ecosystem.
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