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Abstract

Clustering is a foundational problem in machine
learning with numerous applications. As machine
learning increases in ubiquity as a backend for
automated systems, concerns about fairness arise.
Much of the current literature on fairness deals
with discrimination against protected classes in
supervised learning (group fairness). We define
a different notion of fair clustering wherein the
probability that two points (or a community of
points) become separated is bounded by an in-
creasing function of their pairwise distance (or
community diameter). We capture the situation
where data points represent people who gain some
benefit from being clustered together. Unfairness
arises when certain points are deterministically
separated, either arbitrarily or by someone who
intends to harm them as in the case of gerryman-
dering election districts. In response, we formally
define two new types of fairness in the clustering
setting, pairwise fairness and community preser-
vation. To explore the practicality of our fairness
goals, we devise an approach for extending exist-
ing k-center algorithms to satisfy these fairness
constraints. Analysis of this approach proves that
reasonable approximations can be achieved while
maintaining fairness. In experiments, we com-
pare the effectiveness of our approach to classi-
cal k-center algorithms/heuristics and explore the
tradeoff between optimal clustering and fairness.
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1. Introduction

Clustering is one of the foundational problems in unsuper-
vised learning and operations research. In it, we seek to
partition n data points into clusters such that points within
each cluster are similar according to some distance func-
tion. Its numerous applications include document/webpage
similarity for search engines (Cutting et al., 1992; Zamir
et al., 1997), targeted advertising including employment op-
portunities (Datta et al., 2015), medical imaging (Srinivasan
et al., 2010; Malkomes et al., 2015), and various other data
mining and machine learning tasks. However, as machine
learning has become ubiquitous, concerns have arisen about
the “fairness” of many algorithms, especially when the data
points represent human beings. In this case, we seek addi-
tional guarantees on how people will be treated beyond the
typical goal of pure optimization.

The k-center problem is a fundamental clustering problem.
The objective is to select k center points and assign all other
points to clusters around them such that the maximum dis-
tance from any point to its assigned center is minimized.
The problem is NP-hard with the best possible approxi-
mation factor being 2 assuming P # NP (Hochbaum &
Shmoys, 1985; Gonzalez, 1985). Fairness for k-center can
have many definitions depending on the application. When
the points are labeled (e.g., with racial demographics or
another protected class), a group fairness constraint may
require clusters to contain a minimum amount of diversity
among labels (Chierichetti et al., 2017; Bercea et al., 2019;
Backurs et al., 2019). However, we consider a different kind
of fairness which bounds the probability that nearby points
(presumably similar or related) are assigned to different clus-
ters. Our approach can also address issues of discrimination
against protected classes, albeit in a different way.

We introduce two new notions of fairness to the k-center
clustering problem, pairwise fairness and community-
preserving fairness. A k-center algorithm is a-pairwise
fair if every pair of points has a probability of at most « of
being assigned to different centers, where «(+) is an increas-
ing function of the distance between the two points, and
a(0) = 0. We define a community as any subset of points
with arbitrary diameter D and a community is preserved if
its points are assigned to as few different clusters as possible
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(ideally one cluster). Communities do not need to be known
or explicitly identified. An algorithm is S-community pre-
serving if every community has probability at most 8 of
being partitioned into more than ¢ clusters where (3 is an
increasing function of the community diameter D and a
decreasing function of the number of clusters .

The concept of pairwise fairness is relevant in settings where
the points represent people and certain clusters may be
preferable to others. We may assume the distance between
two points represents some similarity between them and by
extension, implies they should be treated similarly (assigned
to the same cluster) with some related probability. We are
thus being “fair” to each point by treating it like its nearby
neighbors. The seminal work of (Dwork et al., 2012) also
explores this idea of a “fairness constraint,” that “similar in-
dividuals are treated similarly,” but applied to classification
and differing from our work as discussed in Section 1.2.

Community preservation becomes relevant in settings where
the data points are people who gain some benefit from shar-
ing a cluster with their near neighbors. For example, con-
sider the drawing of congressional districts and the practice
of gerrymandering which has gained enormous attention
and study recently. In a single-member district plurality
system (e.g., the US House of Representatives), populations
are partitioned into clusters called districts which each elect
a single candidate based on a plurality vote. In this setting,
a person or political party may draw gerrymandered dis-
tricts in order to divide a community of people with shared
needs, thus weakening or eliminating the power of that com-
munity to influence elections. Many cities in the United
states demonstrate this phenomenon. Notably, the city of
Austin, Texas is distributed among five separate congres-
sional districts while its population is small enough to fit
comfortably into two. Although it is the 11th largest city in
U.S., Austin residents represent a minority in each of those
five districts (United States Census Bureau, Population Di-
vision, 2016, accessed May, 2018).

The US Supreme Court ruled on racial gerrymandering in
Thornburg v. Gingles (Cas, Thornburg v. Gingles, No. 83-
1968, 478 U.S. 30 (1986)), establishing that communities
of people belonging to a racial or language group should
not be fractured in order to weaken their vote (subject to
very specific criteria). However, partisan gerrymandering
was recently ruled not justiciable by that court in Rucho
v. Common Cause (Cas, Rucho v. Common Cause, No.
18-422, 588 U.S. ___(2019)), leaving it up to the voters in
individual states to advocate for some fairer approach to
districting.

To combat gerrymandering, recent research has explored
the use of computational approaches to draw or evaluate
congressional districts (Liu et al., 2016; Altman & McDon-
ald, 2010; Fryer & Holden, 2011; Altman, 1998), including

k-clustering approaches (Cohen-Addad et al., 2018). Like
many techniques in machine learning, computational redis-
tricting has the familiar promise of being an impartial arbiter
in place of biased or adversarial human decisions. While
this promise cannot be overstated, we know from the fair-
ness literature that additional fairness constraints are often
necessary. An algorithmic redistricting approach may claim
to be unbiased because it does not use sensitive features
such as party affiliation. However, these sensitive features
may be redundantly encoded in other features as in the case
of party affiliation correlating with population density in the
US. Figure 1 gives a simple example of how a community
can be deterministically separated by k-clustering using the
k-center objective.

This notion of preserving communities can also be extended
to problems where people are assigned to a group and benefit
from having some neighbors assigned to the same group
as in the problem of assigning students to public grade
schools. For this problem, Ashlagi and Shi (Ashlagi &
Shi, 2014) incorporated the concept of community cohesion,
keeping neighborhoods together. They illustrate their point
by quoting Boston mayor Menino (Menino, 2012) saying in
a 2012 State of the City address, "Pick any street. A dozen
children probably attend a dozen different schools. Parents
might not know each other; children might not play together.
They can’t carpool, or study for the same tests.”

Returning to the issue of protected classes, we observe that
the community fragmentation imposed by current imple-
mentations of school lotteries disproportionately affects
members of protected classes. On the other hand, mem-
bers of more “privileged” classes are more likely to live in a
community where assignment is not determined by lottery.

To further elaborate on the school-choice problem, we note
that centers need not correspond to physical locations of
schools. Many school districts, such as Boston, do not use a
model wherein students are always assigned to their nearest
school: e.g., a cluster could be a school bus stop for a set
of students who will share a bus which is assigned to some
school. We refer to (Ashlagi & Shi, 2014) for more details.

Figure 1. An optimal k-center clustering (k = 2) with squares de-
noting the centers. This deterministically separates the community
of four nearby points in the middle even though that fractured
community has small diameter.
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Thus, we see that pairwise fairness and community preserva-
tion have broad applications. Even in the apparently benign
application of document clustering, we can view a document
as its author’s voice which could be negatively affected by
an unfair clustering. These fairness constraints can be use-
ful any time we wish to treat nearby points similarly, grant
equal access to the strength of a community, or provide
protection from efforts to weaken a community.

1.1. Definitions and Preliminaries

k-center clustering. In the classical (or unfair) k-center
problem, we are given a set U of n points and a parameter
k as input. We assume we can compute some distance
function d(u, v) satisfying triangle inequality on any pair of
points u, v € U. The objective is to choose k points in U
to be centers such that we minimize the maximum distance
of any point in U to its nearest center. In clustering, each
center then defines a cluster. Typically, a point is assigned
to its nearest center. However, in fair clustering and other
constrained clustering variants, we may assign points to
centers other than the nearest one to satisfy other goals.

o-pairwise fairness. We call a k-center algorithm o-
pairwise fair if for every pair of points u, v € U, the proba-
bility that u and v are assigned to different centers/clusters
is at most & = «(u,v) with a(u,v) being an increasing
function of d(u, v). In this paper, we give an algorithm for
the function o = d(u,v)/d where § > 0 is some distance
chosen by the user. As a corollary, we focus on the natural
case of 6 = YR, where R is the optimal radius that can
be achieved by an “unfair” algorithm solving the classical
k-center problem without fairness constraints and ¢» > 0
is a user-specified constant. The distance R is used as a
natural property of the problem input that can suggest what
is “reasonable” to expect. In practice,  could be determined
by domain knowledge of a specific application. We present
an algorithm that achieves (d(u, v)/d)-pairwise fairness and
show that when o = (d(u, v)/(¢R)), the price of fairness is
not too bad using both theoretical bounds and experiments.

[-community preserving. We define a community as any
subset of points with arbitrary diameter D, and a community
is preserved if its points are assigned to as few different
centers/clusters as possible (ideally just one cluster). In our
model, communities do not need to be known or explicitly
identified as part of the input. An algorithm is S-community
preserving if every community has probability at most 3
of being partitioned into more than ¢ clusters. Here, ( is
an increasing function of the community diameter D and a
decreasing function of ¢. In our algorithm, every community
has probability at most 3 = (D/4)! of being partitioned into
more than ¢ clusters, t > 1, where § > 0 is some distance
chosen by the user (This probability is a decreasing function

of ¢ since we may assume D/d < 1:if D/6 > 1, then the
probability is trivially at most 1). As with pairwise fairness,
we examine the natural choice of § = ¥ R. Here, we show
that we can give the guarantee that every community has a
probability of at most 3 = (D/(¢)R))" of being partitioned
into more than ¢ clusters. We include ¢ because it captures
how fragmented a community becomes more than simply
whether or not it has been separated.

Randomization. Both definitions of fairness assume a
randomized algorithm and the probabilities discussed are
over the randomness in the algorithm. As with some other
fairness problems (e.g., fair allocation of indivisible goods),
randomness is essentially required to achieve meaningful
gains in fairness. Otherwise, it is easy to construct worst
case examples where a fair deterministic algorithm must
place all points in one large cluster while a fair randomized
algorithm could achieve results close to the unfair optimal.
Randomization can even be necessary to meet certain fair-
ness criteria such as the right to a chance to vote in a district
with voter distribution similar to a randomly sampled legal
district map (Brubach et al., 2020). We further note that our
pairwise fairness definition makes no assumption of inde-
pendence or correlation between the separation probabilities
of different pairs of points. It is an individual guarantee for
each pair of points. Consideration of multiple points at once
is addressed by the community preservation definition.

Focus on § as a function of optimal unfair radius R.
We consider the special case of § depending on R in our
analysis because R is a reasonable threshold of nearness re-
lated to the properties of a given dataset and the k-clustering
task at hand. For example, if a community is geographically
larger than the optimal unfair clusters themselves, it may be
reasonable to partition this community into multiple clus-
ters whereas a small community which can fit easily into a
cluster should have some chance of being preserved.

Approximation ratio and price of fairness. The approx-
imation ratio of an algorithm for an NP-hard minimization
problem like k-center is typically defined as a bound on the
ratio of the algorithm’s solution to the solution of an opti-
mal algorithm. The price of fairness for a fair variant of a
problem is the ratio of the best solution for the fair problem
to the best solution for the unfair problem. In our case, the
best benchmark we are able to compare our fair algorithm
to is the optimal unfair k-center solution. Thus, our approx-
imation ratios simultaneously show a bound on the price
of fairness for our proposed fairness definitions. This price
of fairness can affect the choice to use a fair algorithm for
both practical and legal reasons. From a legal perspective,
the disparate impact of an unfair algorithm can be permitted
due “business necessity” if the added cost of fairness is too
burdensome (United States Senate, 1991; Supreme Court of
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the United States, 2015), but a low price of fairness could
potentially preclude this defense.

1.2. Related Work

There is a long line of work on the classical k-center prob-
lem. A 2-approximation is known and is the best possible
assuming P # N P (Hochbaum & Shmoys, 1985; Gonza-
lez, 1985; Hochbaum & Shmoys, 1986). Followup work
has studied many variations of the problem including capac-
itated (Khuller & Sussmann, 1996; Fernandes et al., 2018),
connected (Ge et al., 2008), fault tolerant (Khuller et al.,
2000; Fernandes et al., 2018), with outliers (McCutchen &
Khuller, 2008; Chakrabarty et al., 2016; Malkomes et al.,
2015), and minimum coverage (Lim et al., 2004). Other
settings include streaming (Charikar et al., 1997; 2003; Mc-
Cutchen & Khuller, 2008), sparse graphs (Thorup, 2001),
and distributed algorithms for massive data (Malkomes et al.,
2015). However, our formulation of pairwise fairness and
community preservation, has not been studied.

On the fairness side, our notion of pairwise fairness is par-
tially inspired by (Dwork et al., 2012). That work focused
on binary classification as opposed to clustering and used
techniques from differential privacy to achieve fairness guar-
antees. More specifically, they assume access to a separate
similarity metric on the data points and require similar points
to have similar distributions on outcomes. While our model
is related, it differs in two crucial ways. First, we do not use
(or require) a separate similarity metric. The similarity of
two points is defined by the same metric space we are clus-
tering in. Second, we bound the probability that two points
are actually assigned to the same cluster rather than having
similar distributions. This is important for applications in
which nearby points derive a benefit from being clustered
together or when the meaning of a cluster is not defined
prior to the realization of assignments.

For k-center specifically, (Chierichetti et al., 2017) consid-
ered an entirely different “balance” constraint definition of
fairness (aka group fairness) wherein each point is given
one of two possible labels and each cluster should contain a
minimum percent representation of each label. Follow-on
work expands their model (Rosner & Schmidt, 2018; Bera
et al., 2019) and addresses concerns in privacy while (Klein-
dessner et al., 2019b) applied their definition of fairness
to spectral clustering. Additional work improved scalabil-
ity (Backurs et al., 2019) and improved approximation ratios
while allowing an unfair solution to be transformed into a
fair one (Bercea et al., 2019). Separately, and motivated
by the bias mitigation in data summarization, (Kleindess-
ner et al., 2019a) also looks at a different form of k-center
fairness. Zemel et al. (Zemel et al., 2013) address fairness
in classification by first transforming the input data into an
intermediate representation that balances goodness of repre-

sentation with removal of certain traits before classification
is performed. This first step is a form of clustering with
fairness concerns. Finally, there are fair service guarantees
for individuals that bound the distance from each point to
its nearest center (or facility) (Harris et al., 2019; Jung et al.,
2020; Mahabadi & Vakilian, 2020).

Regarding community preservation, (Ashlagi & Shi, 2014)
observed that assigning students to schools via an indepen-
dent lottery mechanism fractures communities by sending
neighboring students to different schools. They proposed
a correlated lottery algorithm that that maintains the same
expected outcomes for individual students while preserving
“community cohesion.” We note that they define commu-
nities by partitioning a city into a grid with each square
representing a community, whereas we allow any bounded
diameter subset of points to be a community.

Bounding the probability of separating nearby points and
similar negative-binomial-type (or discrete exponential) dis-
tributions have been used in numerous other settings. Some
examples include locality sensitive hashing (LSH) (Indyk
& Motwani, 1998; Gionis et al., 1999; Datar et al., 2004),
randomly shifted grids (Hochbaum & Maass, 1985), low
diameter graph decompositions (Linial & Saks, 1993), and
randomized tree embeddings (Bartal, 1996; Fakcharoen-
phol et al., 2003). Our work differs from this past work
in the modeling of fairness applications and the challenge
of balancing fairness with the k-center objective which is
not guaranteed in something like LSH. More commonly, an
approach like LSH is used to speed up and scale cluster-
ing algorithms with approximate near neighbor search or
partitioning data for parallel and distributed algorithms.

1.3. Our Contributions

In addition to presenting new definitions of fairness in clus-
tering, we show how any algorithm for the k-center prob-
lem can be extended to ensure a-pairwise fairness and (-
community preservation at the expense of a log k approx-
imation factor (also price of fairness). We bound our fair
algorithm in comparison to the optimal radius achieved in
the “unfair” classical k-center problem. There are two rea-
sons for this. One is that the “unfair” optimal serves as the
best known lower bound to the fair optimal. The other is
that it captures the price of fairness. In other words, it upper
bounds the price we must pay in expanding the radius in
order to achieve our fairness objectives.

Theorem 1. There exists an algorithm which finds an
O(log k)-approximation to the k-center problem (i.e., the
maximum cluster radius is at most O(Rlogk)) with high
probability and such that every pair of points u and v is sep-
arated with probability at most o = d(u,v)/(¢YR), where
R is the maximum radius obtained by any chosen k-center
algorithm and 1 > 0 is a user-specified constant.
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The community preserving property in Corollary 2 follows
from the pairwise guarantee. A strength of this formulation
is that we do not need to explicitly identify communities in
the data to preserve them with nontrivial probability.

Corollary 2. There is an efficient O(log k)-approximation
algorithm for k-center (i.e., the maximum cluster-radius
is at most O(Rlog k)) with high probability and such that
every subset of points with diameter D is partitioned into
more than t separate clusters, for any t > 1, with probability
at most 3 = (D/(¢¥R))" where R is the maximum radius
obtained by any chosen k-center algorithm. Here, 1) > 0 is
a user-specified constant.

For both Theorem 1 and Corollary 2, we note that for some
pairs of points (or communities) the value of « (or 5) may
be greater than 1 and therefore not a valid probability. For
these cases, the bound on fairness is trivially true. The
constant factors in our big-Oh notation also depend on the
constant 1) and our experiments in Section 3 show that there
are not large hidden constants in practice.

Beyond theoretical results, we further explore the algorithm
experimentally in Section 3 on 40 different problem in-
stances of a benchmark dataset to show that it performs as
expected or better. On the benchmark problems, we illus-
trate in Figure 2 how tuning a parameter in our algorithm
can adjust the trade-off between fairness and minimizing the
cluster radius. In Section 4, we evaluate our algorithm on a
real dataset over different target numbers of clusters. The re-
sults suggest that our fair approach is not only more fair, but
more consistent in its fairness as k varies when compared
to a standard “unfair” algorithm. Thus, we can remove the
ability of a bad actor to cause unfairness by adjusting the
number of clusters k.

While our theoretical and experimental analysis focuses on
approximating the radius and fairness, we note that the run-
ning time of our proposed algorithm is dependent primarily
on the algorithm/heuristic for the initial clustering. Our
reassignment algorithm is rather fast with a running time of
O(kn). In practice, the running time is dominated by the
initial clustering rather than our reassignment algorithm.

2. The Fair Algorithm

We show how to extend any k-center algorithm to guarantee
pairwise fairness at the expense of a larger approximation
factor. The idea is to first run an “unfair” k-center algorithm
and order the clusters arbitrarily. Then, one-by-one, we ex-
pand the radius of each cluster by a value sampled indepen-
dently from an exponential distribution. Any point which
falls within the radii of more than one of these expanded
clusters is assigned to the earliest one in the ordering.

We use C; to refer to the i cluster found by the initial
“unfair” algorithm and ¢; to refer to its center. Similarly,

Algorithm 1 FAIRALG
Step 1: Run any chosen k-center algorithm and order the
clusters arbitrarily from 1 to k. Let R be the maximum
distance of any point to its center.
Step 2: Let C; be a set of points denoting cluster . Let
¢; € C; be the center of C; and R; be the radius of C;.
Step 3: Treat all points including centers as “unclustered”
and construct a new set of clusters denoted C/.
fori=1to k do
4: Sample an independent random variable x; from an
exponential distribution with parameter A = 1/(¢'R).
Let X; be the realization of that random variable.
5: Construct cluster C/ by adding every unclustered
point within radius R; + X; from original center c;.
6: If ¢; was unclustered at the start of this iteration
designate it as the center ¢ of C}. Otherwise, if ¢; has
been added to a previous cluster C;, j < 1, then choose
any other previously unclustered point in C/ to be the
center ¢;. If no such point exists, call the cluster empty.
end for

we use C! to refer to the i expanded cluster that we will
finally output and ¢} to refer to its center. For readability,
we also refer to C; and ¢; as original and C! and ¢, as
final. Let R; = maxyec, d(c;,u) be the radius of C; and
R = max; R; be the maximum radius of any cluster found
by the original clustering step. Let ¢ be any chosen constant
greater than 0. The approach is summarized in Algorithm 1.

We note that in the for loop of steps 4 to 6 of Algorithm 1,
the centers 1 through & are processed in an arbitrary order.
Because of this, our proofs also hold if the center are pro-
cessed in a random order or some particular order aligned
with another side objective.

We first prove that Algorithm 1 achieves a-pairwise fairness
for « = d(u,v)/(¥»R). At a high level, the memoryless
property of exponentially distributed random variables al-
lows our algorithm to achieve the guarantee in Lemma 3.

Lemma 3. For any pair of points u and v with distance
d(u,v), the probability that Algorithm 1 separates u and v
into two separate clusters is at most d(u,v) /(¢ R) where
R is the maximum radius obtained by the initial algorithm
used in step 1 and 1 > 0 is a user-specified constant.

Proof. For an arbitrary pair of points u, v € U, consider the
first iteration ¢ in which at least one of the points is added
to a final cluster C;. Without loss of generality, let u be the
closer point to the original center ¢; and note that d(c;, v) —
d(ci,u) < d(u,v) due to triangle inequality. If d(c;,v) <
R;, both points will be added to C/ regardless of the value
of X; and the probability of separating them is 0. Otherwise,
the probability of separating them is the probability that the
value R; + X falls between max(d(c;, u), R;) and d(c;, v)
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given that R; + X; > d(c¢;,u).

Pr[u and v are separated by C} | R; + X; > d(c;, u)]

< 1— 67/\d(u,v) -1 efd(u,v)/i/)R

< d(u,v)
STUR

O

We now bound the amount that the radius of any cluster
will increase beyond the maximum value R achieved by the
original “unfair” algorithm from step 1 of Algorithm 1.

Lemma 4. The maximum radius of a cluster found by Al-
gorithm 1 is O(Rlog k) with high probability.

Proof. We start by upper bounding the probability that
any cluster C; contains a point at distance greater than
O(Rlogk) from the original center ¢; of C;. This will
suffice to prove the lemma for the clusters where ¢ = ¢;.

Pr[3X; > Rlogk] < kPr[X; > Rlogk]
_ kef/\Rlogk _ ke*bgk/d’

_ kl—l/w

Now, suppose ¢; was added to some cluster C'J’», J <1, and
could not be chosen as the final center of C;. Then the
chosen center ¢, of C/ must be at most Rlogk distance
from ¢; with high probability by the above bound and the
fact that X; and X; were sampled independently. Thus, by
triangle inequality, the radius of such a cluster would be at
most 2R log k = O(R log k) with high probability. O

Lemma 5 extends Lemma 3 to community preservation.

Lemma 5. For any subset of points S with diameter D, the
probability that Algorithm 1 partitions S into more than t
separate clusters, t > 1, is at most (D/(¢¥R))" where R is
the maximum radius obtained by the initial algorithm used
in step I and v > 0 is a user-specified constant.

Proof. To bound the probability of the number of final clus-
ters .S is partitioned into, let j be the index of the last cluster
to recruit a member of S. Let C be the set of clusters
where some w € S has d(c¢;,w) < R; + X; and ¢ < j.
In other words, C*® contains the only clusters which could
possibly separate S. We observe that the final number of
clusters is upper bounded by the number of clusters in C*°
whose radii around original center ¢; separates S regardless
of whether the cluster C; was actually able to recruit any
unclustered points from S. We note that such a separation
can increase the number of partitions by at most one.

By the same arguments as in the proof of Lemma 3, given
that at least one point w € S has d(¢;, w) < R; + X;, the

probability that the radius around original center ¢; separates
S is at most d/t¢ R. This follows from taking » and v to be
the points in S; which are closest and farthest, respectively,
from the center and upper bounding d(c;,v) — d(c¢;, u) <
d(u,v) < d. We further note that if any C/ € C* fails to
separate .S, then any unassigned points in S will be assigned
to C7 and no future clusters will be able to separate S. Thus,
for S to be split into more than ¢ clusters, the first ¢ clusters
in C'° must each separate S. This occurs independently with
probability at most d/t R for each cluster after conditioning
on the clusters’ membership in C°. O

3. Benchmark dataset experiments

We ran experiments on the well-known p-median dataset
from OR-Lib (Beasley, 1990) which contains 40 different
problem instances. It was originally generated for the p-
median problem (Beasley, 1985), but has since been com-
monly used to evaluate k-center algorithms and heuris-
tics (Miheli & Robic, 2005; Garcia-Diaz et al., 2017). An-
other advantage to benchmarking with this data is that the
optimal radius is now known for each of the 40 problem
instances in the dataset. The specified number of centers,
k, varies across the instances with the smallest being k = 5
and the largest being k£ = 200. We evaluate our approach
on all 40 problem instances.

The code for these experiments and those in Section 4 is
available on GitHub.!

3.1. Experiment design

We compare three “unfair” algorithms to multiple versions
of our fair algorithm using different parameters. In all cases,
we use d(u,v)/Rger as the target separation probability
bound where Rg,; is the radius found by Scr heuristic de-
fined below. This choice is somewhat arbitrary, but it pro-
vides a fixed target to compare the different algorithms and
the Scr radius serves as a fairly close approximation to un-
fair optimal, which we assume is unknown to the algorithms.
Thus, if someone were to apply our algorithm in practice,
the radius found by Scr (or other chosen heuristic) would
be their best guess at the optimal radius. Each of the three
deterministic “unfair” algorithms was run once per dataset,
while each fair algorithm was run for 10,000 trials in order
to evaluate average performance.

The ‘““‘unfair” algorithms. In order to compare and eval-
uate our algorithm, we implemented three algorithms for
the classical k-center problem: Gonzl, Gonz+, and Scr.
The first two are variations of the famous Gonzalez algo-
rithm (Gonzalez, 1985). While they do not achieve the

'https://github.com/chakrabarti/pairwise_
fairness
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Figure 2. Comparison across all 40 instances of the pmed dataset. The three shades of blue circles show our algorithm parameterized by A
of 16/Rscr, 4/ Rser, and 1/ Rscr, while other shapes show the unfair algorithms. Points closer to the bottom are more fair while points
closer to the left represent solutions with a smaller radius. Our algorithm outperforms the unfair algorithms in both separation ratio (left)
and community preservation (right) at the expense of radius as expected. Comparing the three versions of the fair algorithm, we see a

clear trade-off between fairness and minimizing the radius.

strongest results on this dataset, they give theoretically op-
timal approximations and are known for their exceptional
speed and simplicity. The third algorithm, Scr, achieves
nearly optimal results (Miheli & Robic, 2005) on the dataset.
Recent heuristics have yielded marginal improvements over
Scr (Garcia-Diaz et al., 2017), but we choose Scr because
it achieves nearly the same results while remaining fairly
simple to implement and reproduce.

Fair algorithm implementation. Our implementation of
the fair algorithm uses Scr to find the initial set of centers.
We choose Scr since it gets the tightest radius to begin with.
We parameterize our algorithm with the mean, 1/, of the
exponential distribution we sample from, where \ is the
exponential parameter used in Algorithm 1. For our “Exact”
fair algorithm we set A = 1/Rg,,- which corresponds to a
theoretical separation ratio at most d(u, v)/Rg., for each
pair of points (u, v). For our “Medium” fair algorithm, we
set A = 4/Rg., since Rg.,/4 is our target community ra-
dius described in our comparison criteria below. Finally,
for our “Tight” fair algorithm, we simply divide our mean
by another factor of 4 to get A = 16/Rg.,. Using three
different parameters gives some indication of the compro-
mise that can be reached between minimizing the radius and
optimizing the fairness.

In addition, our implementation makes two natural modifica-
tions to Algorithm 1 that do not affect the theoretical bounds.
First, the list of centers found in Step 1 is uniformly ran-
domly permuted before growing the clusters. Second, if we

have to choose a new center point in Step 6, we choose the
point in the cluster which minimizes the radius as opposed
to any arbitrary point.

Comparison criteria. We compared the algorithms in
terms of three criteria: radius, pairwise fairness, and com-
munity preservation. First, we looked at the approximation
of the radius with respect to the unfair optimal. This is the
ratio of the radius found by each algorithm to the optimal
radius (known for this dataset due to (Daskin, 2000; Elloumi
et al., 2004; Mladenovic et al., 2003)). For the randomized
algorithms, we give the average radius across all trials. More
specifically, this is an average taken over the max radius of
each trial derived from the cluster with the largest radius in
keeping with the k-center objective.

To evaluate the pairwise fairness, we considered only pairs
of points with d(u,v) < Rg., (i.e. target maximum separa-
tion probability at most 1). For each such pair, we compute
the ratio of the algorithm’s separation probability to the tar-
get maximum separation probability. For the deterministic
algorithms, the numerator of this ratio is 0 (not separated)
or 1 (separated). For the randomized algorithms, the sep-
aration probability is given as the number of trials where
the points were separated divided by the total number of
trials (10,000). Then, for each algorithm, we take the worst
separation probability ratio among all pairs of points with
distance at most Rg.,. For the deterministic algorithms
this is determined by the nearest pair of points which is
separated.
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In order to address communities, we needed to define some
specific type of community since analyzing every possi-
ble subset of points is infeasible. In practical applications
there may be some specific target communities based on
domain information. However, for this experiment we say
that every point defines a community including itself and
all other points within a distance of at most Rg.,/4 from
it. In practical terms, each point could be a person and its
community could be that person’s neighborhood. We as-
sume the community radius is smaller than the clustering
radius as is the case with real world examples such as con-
gressional voting districts. For each point’s community, we
count the number of different clusters its points have been
assigned to. To show the worst case, we highlight the most
fractured community, meaning the community split into the
most different clusters. For the randomized algorithms, each
community gets an average value over all trials and we note
the community with the worst average.

3.2. Experimental results

Figure 2 summarizes the main results of our k-center bench-
mark dataset experiments. Overall, we see a clear trade-off
between fairness and minimizing the radius with the three
different parameters of our fair algorithm.

For the maximum pairwise separation ratio, even our Tight
algorithm is more fair than any of the unfair algorithms
across almost all instances without paying too much cost in
terms of larger cluster radii. This implies that even slight
random perturbation of the clusters can dramatically im-
prove fairness with limited impact on the maximum radius
of the solution. The pairwise separation ratios for the Exact
fair algorithm are roughly 1 or less. Some pairwise sepa-
ration ratios slightly above 1 are to be expected even for
Exact since this is the worst performance of any pair of
points in a given problem instance and we are running only
10,000 trials of each randomized algorithm. Likewise, the
pairwise separation ratios of the Medium fair algorithm are
roughly upper bounded by 4 as expected. In several cases,
the pairwise separation ratio for Exact is actually below 1
meaning that every pair of points (u,v) in those instances
with d(u,v) < Rge, is separated with probability less than
d(u,v)/Rger-

With respect to community preservation, we can see that the
performance of Tight approaches the two Gonzalez algo-
rithms and is only slightly fairer than the unfair algorithms.
However, the maximum average number of different clus-
ters for Exact is always less than two. On some instances,
Scr separates some small community of nearby points into
6 or more clusters while Exact gives every community a
guarantee that it will be preserved in a single cluster with
fairly good probability.

In summary, the fair and unfair algorithms perform as ex-

pected yielding a reasonable trade-off between fairness and
small radii. The effect of adjusting the )\ parameter varies
based on the structure of the input. In many cases, using
a smaller A than Exact could be a desirable heuristic if as-
sumptions can be made about the input. Another option,
time permitting, is to perform a binary search for the A
which best satisfies a desired balance of fairness and cluster
tightness.

4. Experiments on real data

We ran additional experiments on a sample of 1,000 points
from the adult dataset (Kohavi & Becker, 1996). To create
the metric space, we normalized the numeric features of
age, education-num, and hours-per-week and used them to
define points in euclidean space.

4.1. Experimental design

The design is similar to Section 3 with the following changes.
To evaluate performance while changing the parameter k,
we now study a single dataset, but vary the number of clus-
ters, k, from 2 to 20. Given that we do not know the optimal
radius for this data under different numbers of clusters, we
use the actual radius instead of a ratio in Figure 4. In addi-
tion, we only consider one “unfair” algorithm, Scr, which
gets closest to the optimal radius in practice.

4.2. Experimental results

Figure 3 shows that the fairer algorithms are more fair as
expected. However, we also see that as we scale the pa-
rameter toward greater fairness, the fairness level becomes
more consistent and robust to different values of k. Figure 4
illustrates the price of fairness we pay in terms of the maxi-
mum radius of any cluster. In all plots, we see predictably
strange behavior at the extreme low values of k (e.g., when
k = 2, the maximum number of clusters a community can
be fractured into is at most 2).

5. Conclusion and future directions

We introduced and motivated the concepts of pairwise fair-
ness and community preservation to the k-center clustering
problem. To explore the practicality of such constraints,
we designed a randomized algorithm that can be combined
with existing k-center algorithms or heuristics to ensure
fairness at the expense of the objective value. We validated
our algorithm both theoretically and experimentally.

In terms of future work, there are several open questions
around how these new fairness concepts can be combined
with other constraints or objectives including other defi-
nitions of fairness. For the k-center problem itself, it is
unknown whether our bounds on fairness or the objective
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Figure 3. Comparison over different numbers of clusters, k£, from 2 to 20 on the adult dataset. We measure the maximum pairwise
separation ratio (left) and maximum number of different clusters any community is separated into (right). In both cases, lower values on
the y-axis are more fair. We compare Scr to three versions of our algorithm parameterized by A of 16/Rscr, 4/Rser, and 1/ Rgcr. We
see that the most extreme fair algorithm, A = 1/Rgcr, is not only the most fair, but most consistent across different values of k.

Maximum Radius vs. Number of Clusters
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Figure 4. Comparison over different numbers of clusters, k, from
2 to 20 on the adult dataset. Here, we measure the maximum
radius. In both cases, lower values on the y-axis represent more
optimally compact clusters. We compare Scr to three versions
of our algorithm parameterized by A of 16/ Rser, 4/Rscr, and
1/Rscr. We see that the more extreme fair algorithms (smaller A
parameter) suffer a greater price of fairness, but this is constrained
within the theoretical bounds shown in Section 2.

function can be improved. Further, one could ask if these
fairness properties can be extended to variants of k-center
such as capacitated k-center which is well-motivated by
many real world applications. Other natural constraints to

combine with include other notions of fairness or linkage
constraints as seen in semi-supervised learning. We note
that pairwise fairness and community preservation can be
directly at odds with group fairness (e.g. if points belonging
to the same group tend to be close together in the metric
space). Finding the trade-off between these fairness con-
cepts is an open problem although it is not clear that many
application contexts would require both at the same time. Fi-
nally, these definitions could be extended to other common
objectives such as k-median and k-means. Our algorithm
targets o and 8 which are functions of the unfair radius R,
a natural parameter given the k-center objective. However,
for k-median, we may instead use the average distance from
points to centers. While it is easy to see how our fairness
definitions could apply to other objectives, our algorithm
does not extend to these objectives.
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