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Abstract

Kidney exchange is an organized barter market that al-
lows patients with end-stage renal disease to trade willing
donors—and thus kidneys—with other patient-donor pairs.
The central clearing problem is to find an arrangement
of swaps that maximizes the number of transplants. It is
known to be NP-hard in almost all cases. Most existing
approaches have modeled this problem as a mixed integer
program (MIP), using classical branch-and-price-based tree
search techniques to optimize. In this paper, we frame the
clearing problem as a Maximum Weighted Independent Set
(MWIS) problem, and use a Graph Neural Network guided
Monte Carlo Tree Search to find a solution. Our initial results
show that this approach outperforms baseline (non-optimal
but scalable) algorithms. We believe that a learning-based op-
timization algorithm can improve upon existing approaches
to the kidney exchange clearing problem.

1 Introduction

Transplantation is favored over dialysis as a treatment for
chronic kidney disease. Although there is a supply of kidney
transplants from cadavers, this resource is extremely limited.
As of 2018, there are over 40,554 people in the U.S. entering
the waiting list for a kidney cadaver transplants, with only
14,725 people leaving with a transplant.! If a patient has a
willing donor, an operation may be performed if the two are
compatible. Compatibility is influenced by a variety of fac-
tors, including blood type and antibodies within the patient’s
blood. However, in many cases, a patient has an incompati-
ble donor, and cannot directly perform a transplantation.

Kidney exchange provides a method to match patients and
donors. The pool of patients is commonly expressed with a
compatibility graph GG, with a vertex for each patient-donor
pair. A directed edge e connects v; to v; if the patient of
pair v; is compatible with the donor of v;. A solution can
be achieved through cyclic trades, where each pair’s donor
donates to the next pair’s patient. Our goal is to maximize
the cardinality of pairs covered by the disjoint cycles.

This problem is known as the disjoint cycle covering
problem, and is NP-hard for finite cycles of length at least
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three (Abraham, Blum, and Sandholm 2007). Both the the-
ory and practice of kidney exchange have been impacted by
the Al, OR, and Economics communities (Anderson et al.
2015; Dickerson and Sandholm 2015). We reformulate the
disjoint cycle covering problem as Maximum Weighted In-
dependent Set (MWIS). We create a new graph with a vertex
for each possible cycle in the compatibility graph and weight
set to its original cycle’s cardinality. We create an edge be-
tween two vertices if their respective cycles share a vertex.
Our goal is to select a subset of vertices in this new graph
with (i) maximum weight and (ii) no two vertices sharing an
edge.

Traditionally, these problems are solved through branch-
and-price-based methods (Barnhart et al. 1998), relying on
generic heuristics to guide the search. These algorithms of-
ten fail to exploit the distributional data (e.g., over the fam-
ily of directed compatibility graphs) available via historical
matchings. In other words, the constraints induced by the
compatibility graph can be thought of as being drawn from
some underlying distribution.

Motivated by this circumstance, we approach this prob-
lem (now cast as MWIS) as a learning problem. We adopt a
graph neural network (GNN) as our heuristic, as it handles
structured data well, and can scale to different sizes of input
(i.e., graph sizes). Graph neural networks have seen success
in a variety of areas, such as structured molecular prediction,
text classification and relation reasoning (Wu et al. 2019).
We then use the trained GNN as a heuristic in a Monte Carlo
Tree Search (MCTS). MCTS-based approaches can work
well in combinatorial games such as Go, and many com-
binatorial optimization problems (Browne and others 2012).
We give promising preliminary results and future directions.

2 Methods

After formulating the compatiblity graph G = (V, E) as
a WMIS problem graph G, we adopt a Monte Carlo Tree
Search (MCTS) guided by a Graph Neural Network (GNN).

Graph Neural Network

We use a graph neural network (GNN), f»(QG), to predict the
likelihood of a vertex being in an optimal solution. The in-
put to the GNN is a weighted MWIS graph, G = (V, E),
with n = |V|. The graph neural network outputs a probabil-



ity map p € [0, 1]™, with each element p; corresponding to
vertex ¢’s likelihood. We use supervised learning with an or-
acle to train the graph neural network. The oracle, for each
graph G, outputs a binary label vector 1 € {0,1}" for a
particular optimal solution, with 1 indicating that the corre-
sponding vertex is in the solution, and O otherwise. We use
the ADAM optimizer to minimize the cross entropy loss be-
tween the probability map p = fy(G) and 1.

Monte Carlo Tree Search

We adopt a Monte Carlo Tree Search (MCTS) guided by a
GNN to tackle the MWIS problem. The GNN serves as a
probabilistic prior for the search algorithm, narrowing down
the large branching factor. We use the GNN in two distinct
ways: to rank the unexplored nodes in the search tree for ex-
pansion, and as a coefficient in our upper confidence bound.
Selection. The MCTS algorithm follows a tree policy from
the root node to a leaf node, a node not yet fully ex-
panded. At step ¢ of selection, the algorithm chooses a;
argmax, (Q(s;, a) + U(s;, a)), with Q) as an estimation of
the value of the state-action, and U as an upper confidence
bound. We incorporate the GNN fy as a coefficient of U:

2y N(st,b)
1+ N(st,a)

with P(s,a) = [softmaz(fy(s))]s, and N(s,a) as the
state-action visit count. Using the GNN'’s coefficient allows
the GNN to have an influence on the tree policy early on,
with diminishing influence as the MCTS algorithm becomes
more confident (indicated by the visit counts).

Expansion. Once the MCTS algorithm reaches a leaf node
s1, the algorithm picks a node to expand by choosing action

ap ~ SOftmax([[fG(sl)}Aa € Aunemplored(Sl)])

This technique effectively allows the GNN to “rank” the un-
explored nodes. Once a node has k explored nodes, we label
the node as fully expanded. We use the GNN and this limit
to manage the large branching factor that arises from the
MWIS MDP.

Simulation. We use uniformly random rollouts starting
from the leaf node to a terminal node s;. Random rollouts
provide a quicker simulation than a full rollout guided by the
GNN, while retaining a reasonable amount of performance.
Backpropagation. Most MCTS algorithms use an average
of rollouts to estimate a node’s ) value. We propose to use
a maximum of the rollouts, as our rollouts can be viewed
as a lower bound on the node’s true () value (Sabharwal,
Samulowitz, and Reddy 2012).

U(sg,a) = cx P(sy,a) *

3 Experiment

We analyze the performance of our MCTS approach com-
pared to two baselines.

Dataset. We generate random Erd6s-Rényi compatiblity
graphs with various sizes and sparsities. We converted these
compatibility graphs into their respective MWIS graphs, and
used Gurobi as our oracle to find an optimal solution.
Baselines. We compare our MCTS algorithm against two
baselines, random and greedy. Random generates a random
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Figure 1: Optimality ratios of MCTS, Greedy, and Random
on Erd6s-Rényi graphs (p = 0.02), with 1 SD intervals.

maximal independent set by picking a random action at each
step of the MDP. Greedy repeatedly picks the node that
minimizes the short term “loss”, the difference between the
node’s weight and the weighted sum of the node’s neighbors.
Evaluation. We tested the performance of our algorithm and
baselines by examining the optimality ratio, the ratio be-
tween the attained score and the optimal score.” The score
is defined as the weighted sum of the nodes in the MWIS
solution set, or the cardinality of the cycle cover.

Results. Our algorithm outperformed both baseline algo-
rithms on a variety of compatibility graph sizes (Fig. 1).

4 Conclusion

We propose a novel method to approximately solve the com-
binatorial optimization problem of kidney exchange through
GNN-guided MCTS. This is very early-stage, but promis-
ing, work (Fig. 1). Moving forward, we are applying some
of the techniques described in the context of branch and
bound search. Branch and bound enables us to utilize both
the upper and lower bounds of a particular state, as well as
the guidance from a learning method such as GNNs. Ac-
knowledgements. Dickerson was supported by NSF CA-
REER Award I1S-1846237 and a gift from Google.
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