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Abstract. In recent years, Reinforcement learning (RL), especially Deep
RL (DRL), has shown outstanding performance in video games from
Atari, Mario, to StarCraft. However, little evidence has shown that DRL
can be successfully applied to real-life human-centric tasks such as edu-
cation or healthcare. Different from classic game-playing where the RL
goal is to make an agent smart, in human-centric tasks the ultimate RL
goal is to make the human-agent interactions productive and fruitful.
Additionally, in many real-life human-centric tasks, data can be noisy
and limited. As a sub-field of RL, batch RL is designed for handling sit-
uations where data is limited yet noisy, and building simulations is chal-
lenging. In two consecutive classroom studies, we investigated applying
batch DRL to the task of pedagogical policy induction for an Intelli-
gent Tutoring System (ITS), and empirically evaluated the effectiveness
of induced pedagogical policies. In Fall 2018 (F18), the DRL policy is
compared against an expert-designed baseline policy and in Spring 2019
(S19), we examined the impact of explaining the batch DRL-induced
policy with student decisions and the expert baseline policy. Our results
showed that 1) while no significant difference was found between the
batch RL-induced policy and the expert policy in F18, the batch RL-
induced policy with simple explanations significantly improved students’
learning performance more than the expert policy alone in S19; and 2) no
significant differences were found between the student decision making
and the expert policy. Overall, our results suggest that pairing simple
explanations with induced RL policies can be an important and effective
technique for applying RL to real-life human-centric tasks.

Keywords: Deep Reinforcement Learning · Pedagogical Policy · Expla-
nation.

1 Introduction

In interactive learning environments such as Intelligent Tutoring Systems (ITSs)
and educational games, the human-agent interactions can be viewed as a tempo-
ral sequence of steps [2, 20]. Most ITSs are tutor-driven in that the tutor decides
what to do next. For example, the tutor can elicit the subsequent step from
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the student either with prompting or without (e.g., in a free form entry window
where each equation is a step). When a student enters an entry on a step, the ITS
records its success or failure and may give feedback (e.g. correct/incorrect mark-
ings) and/or hints (suggestions for what to do next). Alternatively, the tutor
can choose to tell them the next step directly. Each of such decisions affects the
student’s successive actions and performance. Pedagogical policies are used for
the agent (tutor) to decide what action to take next in the face of alternatives.

Reinforcement Learning (RL) offers one of the most promising approaches
to data-driven decision-making for improving student learning in ITSs. RL algo-
rithms are designed to induce effective policies that determine the best action for
an agent to take in any given situation so as to maximize a cumulative reward.
In this work, we use batch RL, an RL sub-field that deals with the inability to
explore the environment. In batch RL, all the learning is done from a fixed-length
dataset of samples that were obtained by interacting with the environment using
some unknown behavior policy. A number of researchers have studied applying
RL to improve the effectiveness of ITSs (e.g. [8, 7, 11, 21, 25, 40, 39, 48, 47]). While
promising, prior work has two limitations: communication and agency.

One limitation of applying RL to ITSs is communication. In recent years,
RL, especially Deep RL, has achieved superhuman performance in several com-
plex games [50, 51, 56, 3]. However, different from the classic game-play situations
where the ultimate goal is to make the agent effective, in human-centric tasks
such as ITSs, the ultimate goal is for the agent to make the student-system inter-
actions productive and fruitful. Thus, we argue it is important to communicate
the agent’s pedagogical decisions to students. Prior work on applying RL to ITSs
primarily focused on inducing effective pedagogical policies for the tutor to act,
but the tutor rarely explains to students why certain pedagogical decisions are
made. As far as we know, no prior research has been done on exploring the effec-
tiveness of explaining pedagogical policies to students. On the other hand, prior
research in Self-Determination Theory (SDT) suggests that explanations could
be a powerful tool to increase student engagement and autonomy in learning.
For example, it was shown that explaining the benefits of learning a specific task
to students would increase their sense of control over their own learning [9, 44,
22, 19, 58, 49], which can improve their learning outcomes.

The other limitation of RL in ITSs is agency. Rather than inducing effective
pedagogical policies for the tutor to act, would it be more effective if we just let
students make certain pedagogical decisions? Prior research has shown that it is
desirable for students to experience a sense of control over their own learning,
which could enhance their motivation and engagement [9, 19] and improve their
learning experience [44, 58]. People are more likely to persist in constructive
activities, such as learning, exercising, or quitting smoking, when they are given
choices and make decisions. Thus, we investigated the effectiveness of letting
students make pedagogical decisions vs. the traditional tutor-driven approach.

In short, we 1) examined the impact of simple explanations of tutor ped-
agogical decisions on student learning, and 2) investigated the effectiveness of
letting students be the decision makers. Through two empirical classroom stud-
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ies, our results show that batch RL-induced policies could improve students’
learning performance more than our expert-designed baseline policy only if sim-
ple explanations are present; and no significant difference was found between the
student decision making and the baseline policy. In summary, our work suggest
that neither letting the tutor make effective pedagogical policy alone nor letting
students make decisions alone may be sufficient to improve student learning, a
more effective way is to let the tutor make effective pedagogical decisions while
communicating some of the decisions to students through simple explanations.

2 Background & Related Work

Prior Research in Applying RL to Pedagogical Policy Induction can
be roughly divided into classic RL vs. Deep RL approaches. The latter is highly
motivated by the fact that the combination of deep learning (neural networks)
and novel reinforcement learning algorithms has made solving complex problems
possible in the last decade. For instance, the Deep Q-Network (DQN) algorithm
[30] takes advantage of convolutional neural networks to learn to play Atari
games observing the pixels directly. Since then, DRL has achieved success in
various complex tasks such as the games of Go [50], Chess/Shogi [51], Starcraft
II [56], and robotic control [3]. One major challenge of these methods is sample
inefficiency where RL policies need large sample sizes to learn optimal, general-
izable policies. Batch RL, a sub-field of RL, aims to fix this problem by learning
the optimal policy from a fixed set of a priori-known transition samples [24],
thus efficiently learning from a potentially small amount of data and being able
to generalize to unseen scenarios.

Prior research using classic RL approaches has applied both online and
batch/offline approaches to induce pedagogical policies for ITSs. Beck et al. [6]
applied temporal difference learning to induce pedagogical policies that would
minimize the students’ time on task. Similarly, Iglesias et al. applied Q-learning
to induce policies for efficient learning [15, 16]. More recently, Rafferty et al.
applied an online partially observable Markov decision process (POMDP) to
induce policies for faster learning [34]. All of the models described above were
evaluated via simulations or classroom studies, yielding improved student learn-
ing and/or behaviors as compared to some baseline policies. Offline or batch RL
approaches, on the other hand, “take advantage of previous collected samples,
and generally provide robust convergence guarantees” [45]. Thus, the success
of these approaches depends heavily on the quality of the training data. One
common convention for collecting an exploratory corpus is to train students on
ITSs using random yet reasonable policies. Shen et al. applied value iteration
and least square policy iteration on a pre-collected exploratory corpus to induce
a pedagogical policy that improved students’ learning performance [48, 47]. Chi
et al. applied policy iteration to induce a pedagogical policy aimed at improv-
ing students’ learning gain [7]. Mandel et al. [25] applied an offline POMDP to
induce a policy which aims to improve student performance in an educational
game. All the models described above were evaluated in classroom studies and
were found to yield certain improved student learning or performance relative
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to a baseline policy. Wang et al. applied an online DRL approach to induce a
policy for adaptive narrative generation in educational game using simulations
[57]; the resulting DRL-induced policies were evaluated via simulations only. In
this work, based on the characteristics of our task domain, we focus on batch RL
with neural networks, also known as batch Deep Reinforcement Learning (batch
DRL) [18, 13] and evaluate their effectiveness in classroom studies.

The Impact of Explanation on Learning: This work is highly motivated by
large amount of research in Self-Determination Theory (SDT) investigating the
benefit of explanations [10, 17, 42, 43, 36]. When teaching correlations to college
students in a teacher training program, Jang et al. found that the students who
were told the benefit of learning correlation (Explanation), were significantly
more engaged than those who were not told (No-Explanation), in that the for-
mer showed more on-task attention, effort, and persistence than the latter [17].
Similarly, on a routine tedious task of letter copying, the Explanation students
were significantly more engaged in the task than the No-Explanation peers who
were not told [43]. Additionally, Reeve et al. compared the impact of Expla-
nation vs. No-Explanation [36] on learning Chinese and found that the former
self-reported significantly higher engagement in the task on a post-survey.

While explanations in much of the prior work above were human generated,
in recent years an increasing amount of research has explored on how to au-
tomatically generate explanations. For example, Eslami et al. [12] investigated
users’ perspective on revealing advertisement algorithms and personal informa-
tion used for generating personalized advertisements. As expected, users pre-
ferred interpretable explanations about how and why an ad was personalized
to their identity. Additionally, Rago et al. [35] and Palanca et al. [32] explored
using argumentation to provide explanations for recommender systems. More
closely to this work, Barria-Pineda & Brusilovsky [5] and Tsai & Brusilovsky [53]
explored explaining recommendations in education and social recommender sys-
tems and showed great promises. Despite these results, Kunkel et al. [23] showed
human-generated explanations were rated more highly for recommendations and
trustworthiness than machine-generated explanations based on item similarity.
In [10], Deci et al. examined the impact of several factors on the effectiveness of
explanations. As an example, they investigated two levels of controllingness: a
high controlling statement would be something like “You must watch me solve
this problem” while a low controlling counterpart sentence would be “Now you
can watch me solve this problem”. Results showed that low controlling expla-
nations can be significantly more effective to enhance participants’ engagement
than high controlling ones and more importantly, the former can lead to a posi-
tive correlation between engagement and the desired learning outcomes. Inspired
by this result, in this work our simple explanations are human-generated and to
do so, we followed the low controlling principle.

Students as Decision Makers on ITS: While engaging students in decision-
making within an ITS is not novel, prior research has focused on letting students
dictate content by letting them decide what problem they wish to solve [20] but
not how they wished to solve it. On one hand, letting students make their own
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decisions would allow them to experience a sense of control over their learning,
which could enhance their motivation and engagement [9, 19] and further improve
their learning experience [44, 58]. On the other hand, prior research has shown
that students, especially low performing ones, may not always have the necessary
meta-cognitive skills to make effective pedagogical decisions [1]. In that research,
Aleven & Koedinger studied students’ help-seeking behaviors in the Cognitive
Tutor where students request help when they do not know what step to take
next. Help is provided via a sequence of hints that progress from general top-
level hints to bottom-out hints that tell them exactly what action to take. They
found that students do not always have the necessary metacognitive skills to
know when they need help. Roll et al., by contrast, examined the relationship
between students’ help-seeking patterns and their learning [38], and found that
asking for help on challenging steps was productive while help-abusing behavior
(asking for help as a way to avoid work) was correlated with poor learning.

3 Methods

In the conventional RL, an agent interacts with an environment E over a series
of decision-making steps, which can be framed as a Markov Decision Process
(MDP). At each timestep t, the agent observes E in state st; it chooses an action
at from a discrete set of possible actions; and E provides a scalar reward rt and
evolves into next state st+1. The future rewards are discounted by the factor

γ ∈ (0, 1]. The return at time-step t is defined as Rt =
∑T
t′=t γ

t′−trt′ , where T is
the last time-step in the episode. The agent’s goal is to maximize the expected
discounted sum of future rewards, also known as the return, which is equivalent
to finding the optimal action-value function Q∗(s, a) for all states. Formally,
Q∗(s, a) is defined as the highest possible expected return starting from state
s, taking action a, and following the optimal policy π∗ thereafter. It can be
calculated as Q∗(s, a) = maxπ E[Rt|st = s, at = a, π] and Q∗(s, a) must follow
the Bellman Equation. We follow the batch RL formulation in that we have a
fixed-size dataset D consisting of all historical sample episodes, each formed by a
sequence of state, action, reward tuples (s0, a0, r0, ..., sT , aT , rT ). We assume that
the state distribution and behavior policy that were used to collect D are both
unknown. We explored two batch DRL algorithms: Deep Q-Network (DQN) and
Double Deep Q-Network (Double DQN).

DQN [30] is fundamentally a version of Q-learning which uses neural networks to
approximate the true Q-values. In order to train the DQN algorithm, two neural
networks with equal architectures are employed: one for calculating the Q-value
of the current state and action Q(s, a), and another neural network to calculate
the Q-value of the next state and action Q(s′, a′). The former is the main network
and its weights are denoted θ and the latter is the target network, and its weights
are denoted θ−. Equation 1 shows its corresponding Bellman Equation. It is
trained through gradient descent to minimize the squared difference of the two
sides of the equality. Online DQN uses an experience replay buffer to store the
recently collected data and to uniformly sample (s, a, r, s′) steps from it. When
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inducing our batch RL policy, the whole D is in the experience replay buffer.

Q(s, a;θ) = E
s′∼E

[r + γmax
a′

Q(s′, a′;θ−)] (1)

Double-DQN was proposed by Van Hasselt et al. [54] by combining the idea
behind Double Q-Learning [14] with the neural network advances of the DQN
algorithm to form Double-DQN. The intuition behind it is to decouple the action
selection from the action evaluation. To achieve this, the Double-DQN algorithm
uses the main neural network for action selection first, and then the target net-
work evaluates its Q-value. This trick has been proven to significantly reduce
overestimations in Q-value calculations, resulting in better final policies. With
this technique, the modified Bellman Equation becomes:

Q(s, a;θ) = E
s′∼E

[r + γQ(s′, argmax
a′

Q(s′, a′,θ); θ−)] (2)

Last but not least, in order to address the credit assignment problem caused
by having delayed rewards in our ITS, we used the Gaussian Processes (GP)
approach in [4] to estimate immediate rewards based on delayed rewards.

4 Pedagogical Decisions & Pedagogical Policy Induction

Pedagogical Decisions: When comparing the effectiveness of students’ ped-
agogical decision-making vs. batch DRL, we strictly control the instructional
content to be equivalent for all students in that our ITS gives students the
same training problems and we focused on tutorial decisions that cover the same
domain content: Problem-Solving (PS) versus Worked Examples (WE). In PS,
students are given tasks or problems to complete either independently or with
assistance of ITSs while in WE, students are given detailed solutions.

A great deal of research has investigated the impacts of WEs vs. PSs on learn-
ing. [52, 29, 27, 26, 37, 46, 31, 41]. Generally speaking, it is shown that studying
WEs can significantly reduce the total time on task while keeping the learning
performance comparable to doing PS [29, 27, 26]; alternating WE and PS can be
more effective than PS only [52, 26, 37, 46, 31, 41]. Despite prior work, there is lit-
tle consensus on how they should be combined effectively and thus when deciding
between PS and WE, most existing ITSs always choose PS [20, 55]. Since there
is no widespread consensus on how or when each alternative should be used, we
apply batch DRL to derive pedagogical strategies directly from empirical data.
Training Corpus: Our training corpus consists of 786 historical student-ITS
trajectory interactions over 5 different semesters, one trajectory per student. All
students go through a standard pretest, training on ITS, and posttest proce-
dure and each student spent around 2-3 hours on the ITS, completing around
20 training problems. To represent the learning environment, 142 state features
from five categories were extracted. More specifically, we have 10 Autonomy
features describing the amount of work done by the student; 29 Temporal fea-
tures including average time per step, the total time spent, the time spent on
PS, the time spent on WE, and so on; 35 Problem Solving features describing
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the difficulty of the problem, the number of easy and difficult problems solved,
and so on; 57 Performance features including the number of incorrect steps, and
the ratio of correct to incorrect rule applications and so on; 11 Hint-related fea-
tures including the total number of hints requested etc. The primary goal of
our RL-induced pedagogical policy is to improve student Learning Gain, mea-
sured by the difference between the posttest and the pretest scores with a range
of [−200,+200]. Since in RL immediate rewards are often more effecient than
delayed ones, here we applied Gaussian Processes (GP) [4] to infer the imme-
diate rewards for non-terminal states from the final delayed reward (students’
Learning Gain).
Policy Induction: For both DQN and Double DQN, we explored using Fully
Connected (FC) vs. Long Short Term Memory (LSTM) to estimate the action-
value function Q. Our FC network consists of four fully connected layers of 128
units each, with Rectified Linear Unit (ReLU) as the activation function. Our
LSTM architecture consists of two layers of 100 LSTM units each with ReLU
activation functions, and a fully connected layer as output. Additionally, for both
FC and LSTM, for a given time t, we explored three input settings: 1) k = 1
that use only the last state st; 2) k = 2 that uses to use the last two states: st−1
and st; and 3) k = 3 for using st−2, st−1 and st. L2 regularization was employed
to get a model that generalizes better to unseen data and avoid overfitting. We
trained our models for 50,000 iterations, using a batch size of 200. To select the
best pedagogical policy, we compared all of the different models (FC vs. LSTM,
DQN vs. Double-DQN, k={1, 2, 3}) using Per-Decision Importance Sampling
(PDIS), which is one of the most robust off-policy evaluation methods [33]. The
policy with highest PDIS value was selected to be our final pedagogical policy. In
this work, our final pedagogical policy was DQN with an LSTM network using
k = 3 observations.
Simple Explanations: The design of our explanation is rather straightforward.
We followed the ”low-controllingness” principle described in [10]. Our explana-
tions are action-based in that they focused on explaining the benefit of taking
the subsequent tutorial actions. Our simple, action-based explanations were pri-
marily based on the prior research on learning science and cognitive science. For
example, a large amount of research showed that studying WEs can be more ben-
eficial if it is a problem involving new level of difficulty or content [29, 28] and
thus if the current problem was the first problem in a level, our action-based
explanation for WE would state “The AI agent thinks you should view this
problem as a Worked Example to learn how some new rules work.” Our simple
action-based explanation for other WE states: ”The AI agent thinks you would
benefit from viewing this problem as a worked example.” Similarly, if the policy
decided that the next problem should be a PS, then the message shown stated
something like: ”The AI agent thinks you should solve this problem yourself.”

5 Experiment Setup

Our ITS is a graph-based logic tutor (name replaced for anonymity), which is
used in the undergraduate Discrete Mathematics class at a large university. In
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this ITS, students must sequentially apply rules to logic statement nodes in order
to derive the conclusion node and solve the problem. The tutor consists of seven
levels, with three to four problems per level. Here level 1 is our pretest and level
7 is our the posttest. All students experience the exact same problems in the
same way in the pretest and posttest. The pedagogical policy decides whether
to represent each problem in the training levels 2-6 as a Worked Example (WE)
or as a Problem Solving (PS). Our baseline policy is designed by the instructor
who has more than 20 years experience on the subject, referred to as the Expert-
designed baseline policy in the following. Based on our ITS, prior instructional
experience, and prior research on WE vs. PS, our Expert Baseline policy is
basically an alternative WE-PS policy with additional constraints: on each level,
students must complete at least one PS and one WE.

Two studies were conducted: one in Fall 2018 and the other in Spring 2019,
denoted F18 and S19 respectively. In both studies, our ITS was given as one of
the regular homework assignments and students had one week to complete it.

For F18, 84 students were randomly assigned to the two conditions using
stratified sampling based on the pretest score to ensure that the two conditions
had similar prior knowledge. As a result, we have N = 41 students for the
DQN condition and N = 43 for the Expert baseline condition. Here the tutor
in the DQN condition followed the induced DQN policies described in Section
4 without explanations. Our stratified sampling resulted in balanced incoming
competence in that no significant difference between the pretest scores for the
DQN (M = 59.23, SD = 30.63) and the Expert conditions (M = 57.42, SD =
30.95): t(82) = 0.27, p = 0.79. For S19, 83 students were randomly assigned to
three conditions through stratified sampling: DQN + Explanation (DQN+Exp)
(N = 30), Student Choice (N = 30), and the Expert baseline (N = 23). In the
Student Choice condition, once a next problem is presented the students will
make decisions on whether they want the ITS to show them how to solve the
next problem (WE) or they want to solve the next problem themselves (PS).
A one-way ANOVA test showed no significant difference in the pretest scores
among the three conditions: F (1, 81) = 0.26, p = 0.61. More specifically, we have
DQN+Exp (M = 54.2, SD = 30.0), Student Choice (M = 50.3, SD = 31.3), and
Expert Baseline (M = 49.9, SD = 35.8). In short, our results suggested that all
conditions were balanced in incoming competence in both F18 and S19.

6 Results

6.1 F18 Study:
Overall, no significant difference was found on the posttest between DQN (M =
48.6,SD = 22.7) and Expert-Baseline (M = 54.0,SD = 18.3). A one-way AN-
COVA analysis on posttest scores using Condition as factor and pretest scores
as a covariate shows that there was no significant difference: F (1, 81) = 1.76, p =
0.19. Moreover, much to our surprise, no significant differences were found on
the total training time nor on the total number of WE and PS students experi-
enced between the two conditions. So, our DQN-induced bath DRL policy is as
effective as the Expert baseline policy.



Exploring the Impact of Simple Explanations and Agency on Batch DRL 9

Table 1. Results of S19 study by condition.

PostTest Training Time (mins.) PS Count WE Count

DQN+Exp 41.61 (25.07) 93.0 (109.6) 9.40 (2.42) 6.10 (1.21)

Student Choice 34.24 (20.09) 75.5 (104.0) 8.06 (3.15) 7.46 (2.14)

Expert Baseline 29.44 (16.43) 65.8 (87.7) 8.13 (1.74) 7.34 (1.26)

6.2 S19 Study:

The S19 study had two goals: one was to determine whether DQN with simple
explanations (DQN+Exp) can be more effective than the Expert baseline policy,
and the other was to determine whether Student Choice can be more effective
than either the DQN+Exp or the Expert baseline policy. In the following, we
will first compare the three conditions in terms of learning performance and then
perform a log analysis. Table 1 shows a comparison of the posttest, total training
time, the total number of PSs, and the total number of WEs among the three
conditions, showing the mean (and SD) for each value.

Learning Performance A one-way ANOVA test using the condition as a factor
showed a significant difference in the posttest scores: F (1, 81) = 4.47, p = 0.037,
with means (SD) shown in the first column in Table 1 for each condition.
Furthermore, a one-way ANCOVA analysis on posttest scores using Condi-
tion as factor and pretest scores as a covariate confirms a significant difference
in the posttest scores: F (1, 80) = 4.25, p = 0.042. Contrast analysis revealed
that the DQN+Exp condition significantly outperformed the Expert condition:
t(79) = 2.02, p = 0.046; but no significant difference was found between the
DQN+Exp and Student Choice conditions: t(79) = 1.30, p = 0.20 or between
the Student Choice and Expert conditions: t(79) = 0.81, p = 0.42. In short, our
results showed that on the posttest scores, DQN+Exp significantly our-performs
the Expert condition, and no significant difference was found between the Student
Choice and Expert conditions.

Training Time and Log Analysis The second column in Table 1 shows the
average amount of total training time (in minutes) students spent on the tutor
for each condition. Despite the differences among the three conditions, a one-way
ANOVA test using the condition as a factor showed no significant difference in
time on task among them: F (1, 81) = 0.97, p = 0.33.

The last two columns in Table 1 show the average number of WEs and PSs
that each condition experienced in S19. When comparing the DQN+Exp and
the Expert conditions, a t-test showed a significant difference in the number of
PS: t(51) = 2.22, p = 0.031, and a significant difference in the number of WE:
t(51) = 3.62, p = 0.0007, with the DQN condition seeing about one more PS and
one less WE than the Expert condition. When comparing the the DQN+Exp and
Student Choice conditions, a t-test showed a marginal difference in the number
of PS t(58) = 1.84, p = 0.07, and a significant difference in the number of WE
t(58) = −3.04, p = 0.003, with the DQN+Exp condition seeing about one more
PS and one less WE than the Student Choice group. A contrast analysis also
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showed a significant difference in the number of PS (t(80) = 2.02, p = 0.047)
and in the number of WE t(80) = −3.26, p = 0.001 between the DQN+Exp and
Student Choice conditions.

Much to our surprise, the Student Choice condition behaved in a very similar
way to the Expert condition in that no significant difference was found between
the two conditions on the number of PS: t(51) = −0.09, p = 0.93. Similarly,
no difference was found on the number of WE: t(51) = −0.251, p = 0.802.
To summarize, our log analysis shows that DQN+Exp generated more PS and
less WE than the other two conditions and no significant difference was found
between the Student Choice and Expert conditions.

7 Discussion and Conclusion

This work demonstrates one potential way to combine data-driven methods such
as DRL with other educational strategies that increase student autonomy and
agency, and observe that it can benefit student learning in our Intelligent Tu-
toring System. In this work, we investigated the impact of 1) providing students
with simple explanations for the decisions of a batch DRL policy and 2) the
impact of students’ pedagogical decision-making on learning. We focused on
whether to give students a WE or to engage them in PS. We strictly controlled
the domain content to isolate the impact of pedagogy from content.

In two classroom studies, we compared the batch DRL policy (with and
without explanations), the Student Choice pedagogical decision making and the
Expert baseline. Overall, our results show that when deciding whether to ap-
proach the next problem as PS or WE, both batch DRL-induced policies and
Student Choice can be as effective as the Expert baseline policy; however by
combining batch DRL-induced policies with simple explanations, we can signif-
icantly improve students’ learning performance more than our expert-designed
baseline policy. One potential hypothesis is that simple explanations can promote
students’ buy-in to pedagogical decisions made by batch DRL induced policies.
However, further survey studies are needed to determine this hypothesis. Inter-
estingly, our results showed that students can make as effective problem-level
decisions as the Expert baseline policy. Surprisingly, students selected as many
PSs and WEs as the Expert policy but the variance of decisions in Student
Choice is larger than those of Expert Baseline.

We believe that the results from this research can shed some light on how
to apply DRL for human-centric tasks such as an ITS, and further research is
needed to fully understand why simple explanations work and whether they can
indeed be applied effectively to other domains. Furthermore, in this work, we
have only explored straightforward, human-expert designed explanations, which
can sometimes be limiting. In the future, personalized, data-driven explanations,
will make the system more powerful and provide more accurate explanations.
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