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ABSTRACT
Motivated by the recent advances of reinforcement learning and
the traditional grounded Self Determination Theory (SDT), we ex-
plored the impact of hierarchical reinforcement learning (HRL)
induced pedagogical policies and data-driven explanations of the
HRL-induced policies on student experience in an Intelligent Tutor-
ing System (ITS). We explored their impacts first independently and
then jointly. Overall our results showed that 1) the HRL induced
policies could significantly improve students’ learning performance,
and 2) explaining the tutor’s decisions to students through data-
driven explanations could improve the student-system interaction
in terms of students’ engagement and autonomy.
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1 INTRODUCTION
E-learning environments such as intelligent tutoring systems (ITSs)
have become more and more prevalent in educational settings
[1, 16]. Most existing ITSs are tutor-centered in that the tutor decides
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what to do next in each step when it interacts with the student. For
example, the tutor can elicit the subsequent step from the student or
to tell him/her the next step directly. Pedagogical policies are used for
the tutor to decidewhat action to take next in the face of alternatives.
Each of these decisions affects the student’s successive actions
and performance. But its impact on student learning often cannot
be observed immediately and the effectiveness of one decision
often depends on how subsequent decisions are made. Ideally, an
effective learning environment should craft and adapt its decisions
to users’ needs [1, 27]. However, there is no existingwell-established
theory on how to make these system decisions effectively. On the
other hand, Reinforcement Learning (RL) offers one of the most
promising data-driven decision-making approaches for improving
student learning in ITSs. RL algorithms are designed to induce
decision-making policies that specify the best action to take in any
given situation so as to maximize a cumulative reward. A number
of researchers have studied applying existing RL algorithms to
improve the effectiveness of ITSs (e.g. [5, 6, 10, 17, 22, 31, 32, 40, 41,
47, 49, 49]). While promising, this work has three key limitations.

The first limitation is one of granularity. In ITSs, there are many
decisions to make at different levels of granularity. For example, we
may decide to give a student a problem to solve, to show him/her
the next step to take, or to give immediate feedback (e.g., “Good
Job!”). All of these actions may have compatible goals but some
are more important or impactful than others. Human decision-
makers treat these distinct levels of granularity differently and are
capable of selecting among them [11, 20]. However, most existing
RL approaches treat all decisions equally or independently and do
not take into account the long-term impact of higher-level actions.
In this work, we use Hierarchical Reinforcement Learning (HRL)
to handle decisions at different levels of granularity.

The second limitation is one of interpretability. RL-induced poli-
cies are often large, cumbersome, and difficult to understand. For
example, RL policies are often represented by complicated compu-
tational models that consider a lot of features to make decisions.
It is therefore difficult for us to understand how such decisions
are made. The opacity raises a major open question: How can we
identify the key features RL used to make pedagogical decisions? In
this work, we used Random Forest (RF) to shed some light on the
key features.
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The third limitation is one of communication in that the tutor
rarely explains to students why certain pedagogical decisions are
made. Prior research in Self-Determination Theory (SDT) suggests
that explanations could be a powerful tool to enhance student
engagement and autonomy during learning. For example, it was
shown that explaining the benefits of learning specific knowledge
could increase students’ sense of control over their own learning
[7, 15, 18, 37, 42, 46], which could, in turn, enhance their motivation
and engagement [7, 15] and improve their learning experience [37,
46]. However, as far as we know, no prior research has investigated
the impact of explaining pedagogical decisions to students. In this
work, we generated data-driven explanations based on the key
features identified from the HRL-induced policies and investigated
how the explanations may impact student-system interaction in
terms of engagement and autonomy.

In short, we 1) investigated the effectiveness of HRL induced
pedagogical policies that make decisions at different levels of granu-
larity and 2) examined the impact of explaining the tutor’s pedagog-
ical decisions using data-driven explanations of the HRL polices. In
three classroom studies, we first examined the two factors indepen-
dently and then jointly. Overall, the results suggest that the HRL-
induced policies could improve students’ learning performance
and data-driven explanations could enhance the student-system
interaction in terms of engagement and autonomy.

2 BACKGROUND AND RELATEDWORK
2.1 Applying RL to ITSs
Generally speaking, RL approaches can be categorized into online
where the agent learns a policy in real-time by interacting with the
environment and offline where the agent learns a policy from a pre-
collected training corpus. Online applications of RL for pedagogical
policy induction often relied on simulations. As a consequence, the
success of these approaches depends heavily on the quality or accu-
racy of the simulation. Many researchers have applied online RL to
induce pedagogical policies [4, 13, 28]. Offline RL approaches, on
the other hand, “take advantage of previously collected samples and
generally provide robust convergence guarantees” [38]. Thus, the
success of these approaches depends heavily on the quality of the
training data. One common convention is to collect exploratory cor-
pus by training students on ITSs that make random yet reasonable
decisions and then induce policies from that corpus. Again, many
researchers have applied offline RL to induce pedagogical policies
[5, 22, 40, 41]. All of the online and offline models described above
were evaluated in classroom studies, yielding improved student
learning and/or behaviors as compared to baseline policies.

Despite these successes, the necessity for accurate simulations
(online) or large training corpora (offline) has limited the wide use of
RL for policy induction. Additionally, most existing applications of
RL for pedagogical policy induction has been flat in that all system
decisions were treated equally or independently. On the other hand,
the tutoring procedure of ITSs can be viewed as a two-loop structure
[44]. The outer loop makes problem-level decisions as problem
selection while the inner loop makes step-level decisions such as
whether or not to give feedback or hint. Motivated by this two-
loop structure, in this work we apply hierarchical reinforcement
learning (HRL) to induce a hierarchical policy that makes decisions

at both the problem (worked example vs. problem solving) and step
(elicit vs. tell) levels.

It has been widely shown that HRL can be more effective and
data-efficient than flat RL approaches [8, 19, 26, 33, 45]. HRL gener-
ally breaks down a large decision-making problem into a hierarchy
of small sub-problems and induces a policy for each of them. Since
the sub-problems are small, they usually require fewer data to find
the optimal policies. Although promising, the use of hierarchy re-
quires additional information, such as the transitions and rewards
at different levels of granularity, to induce a policy, and this may be
hard to get from pre-collected data. Therefore, most existing HRL
applications have been online, but here, we apply an offline HRL
approach. Previously, we have applied HRL to induce a hierarchical
pedagogical policy. Empirical evaluation results showed that the
HRL policy was significantly more effective than a DQN induced
flat policy and a random flat policy [47]. However, that study did
not explore the impact of explanations.

In terms of interpreting RL policies, previous research has of-
ten relied on interpretable RL models [12, 21]. For example, Maes
et al. proposed an interpretable RL approach that searches high-
performance policies in an interpretable policy space [21]. Our
approach differs from previous ones in that it induces the policy us-
ing a non-interpretable Gaussian Processes (GP) model, allowing us
more flexibility to learn better policies and then, relies on random
forest to interpret the policy via identifying the key features.

2.2 The Impact of Explanations on Learning
A lot of SDT research has shown that giving explanations can lead
to enhanced engagement [9, 14, 30, 35, 36]. For example, Jang et al.
compared the impact of Explanation vs. No-Explanation [14] on
learning correlations. They recruited college students in a teacher
training program to learn correlation and only told the Explana-
tion condition that learning correlation would help them became
more reflective teachers. Results showed that the former were sig-
nificantly more engaged than the latter, showing more on-task
attention, effort, and persistence. Similar impacts were found in
other studies [30, 36]. Moreover, Deci et al. examined several fac-
tors that may impact the effectiveness of explanations, such as the
wording used [9]. Results showed that a low-controlling wording
that minimizes pressure and conveys choice can be significantly
more effective in enhancing participants’ engagement than a high-
controlling wording that expresses pressure. More importantly, a
low-controlling wording can lead to a positive correlation between
engagement and the desired learning outcomes. Note that most
of prior studies used self-reported survey to measure engagement,
while here, we used moment-by-moment student-system interac-
tion logs, which avoid human bias. More importantly, prior research
mainly focused on explaining the importance of the task, but our
explanations state the reason behind pedagogical decisions and
our goal is to see whether these explanations can enhance student-
system interaction.

3 PEDAGOGICAL POLICY INDUCTION
Prior research applying RL to induce pedagogical policies often
formalize student-system interaction as a Markov Decision Process
(MDP). The central idea behind RL approaches is to transform the



problem of inducing effective policies into a computational problem
of finding an optimal policy for choosing actions in MDP. An MDP
describes a stochastic control process using a 4-tuple < 𝑆,𝐴,𝑇 , 𝑅 >.
In pedagogical policy induction, states 𝑆 are often represented
by a vector composed of relevant learning environment features,
such as the percentage of the correct entries a student entered so
far and so on. Actions 𝐴 are the tutor’s possible actions, such as
elicit or tell. The reward function 𝑅 is usually calculated from the
system’s success measures, such as students’ learning gain. Once
the < 𝑆,𝐴, 𝑅 > has been defined, the transition probability function
𝑇 is estimated from the training corpus.

Given a defined MDP, we can transform our student-system
interaction logs into trajectories as: 𝑠1

𝑎1,𝑟1−−−−→ 𝑠2
𝑎2,𝑟2−−−−→ · · · 𝑠𝑛

𝑎𝑛,𝑟𝑛−−−−→.
Here 𝑠𝑖

𝑎𝑖 ,𝑟𝑖−−−−→ 𝑠𝑖+1 indicates that at the 𝑖th turn, the learning envi-
ronment was in state 𝑠𝑖 , the tutor executed action 𝑎𝑖 and received
reward 𝑟𝑖 , and then the environment transferred into state 𝑠𝑖+1.

Most HRL research is based upon an extension of MDP called
discrete Semi-Markov Decision Processes (SMDPs), which adds
a set of complex activities [3] or options [43]. Complex activities
can invoke other activities recursively, thus allowing the hierarchi-
cal policy to function. The complex activities are distinct from the
primitive actions in that a complex activity may contain multiple
primitive actions. A complex activity consists of three elements: an
initiation set, a termination condition, and a policy 𝜋 that maps
states to each available option. A solution to the SMDP mentioned
above is an optimal policy (𝜋∗), a mapping from state to complex ac-
tivities or primitive actions, that maximizes the expected discounted
cumulative rewards for each state.

Since the complex activities in SMDPs can take a variable number
of low-level activity (or actions) to execute across multiple time
steps, it is necessary to extend the state-transition function to take
into account the activity length. If an activity 𝑎 in state 𝑠 takes
𝑡 ′ time steps to be executed, then the state transition probability
function given 𝑠 and 𝑎 is defined by the joint distribution of the
result state 𝑠 ′ and the number of time steps 𝑡 ′ the activity 𝑎 takes:
𝑃 (𝑠 ′, 𝑡 ′ |𝑠, 𝑎). Accordingly, the expected reward function needs to be
extended to accumulate over the waiting time 𝑡 ′ in 𝑠 given activity
𝑎: 𝑅(𝑠, 𝑎, 𝑡 ′, 𝑠 ′).

Similar to RL, HRL learns the policy through estimating the Q-
value function𝑄 (𝑠, 𝑎), denoted as the expected cumulative rewards
the agent will receive if it takes action 𝑎 in state 𝑠 and follows the
policy to the end. The optimal Q-value function 𝑄∗ denotes the
expected cumulative rewards the agent can receive if it follows
the optimal policy and 𝑄∗ satisfies the Bellman equation [43]. In
SMDPs, the Bellman equation can be rewritten as:

𝑄 (𝑠, 𝑎)∗ = 𝑅(𝑠, 𝑎) +
∑
𝑠′,𝑡 ′

𝛾𝑡
′
𝑃 (𝑠 ′, 𝑡 ′ |𝑠, 𝑎)max

𝑎′∈𝐴
𝑄 (𝑠 ′, 𝑎′), (1)

where 0 ≤ 𝛾 ≤ 1 is a discount factor. Once 𝑄∗ is calculated, the
optimal policy can be easily determined by simply taking the action
𝑎 with the highest Q value in state 𝑠 . For HRL, learning occurs
at multiple levels. The global learning generates a policy for the
top level decisions and local learning generates a policy for each
complex activity. This process retains the fundamental assumption
of RL: that goals are defined by their association with rewards,
and thus that the objective is to discover actions that maximize

the long-term cumulative rewards. Local learning focuses not on
learning the best policy for the overall task but the best policy for
the corresponding complex activity.

In our offline HRL framework, both problem- and step-level
policies were learned by recursively using the Gaussian Processes
(GP) to estimate the Q-value function [29] following equation 1
until the Q-value function and the policy converge. In each iteration,
a Q value was generated for each state-action pair in the training
trajectories following equation 1 based on the reward function and
the latest GP model. Then the GP model was updated based on the
new Q-value assigned to each state-action pair.
Our ITS is a web-based ITS that teaches college probability such
as Addition Theorem and Bayes’ Theorem. During training, for
each problem, the tutor first makes a problem-level decision and
then makes step-level decisions based on the problem-level deci-
sion. More specifically, the tutor first decides whether the next
problem should be worked example (WE), problem solving (PS), or
collaborative problem solving (CPS). In WE, students observe how
the tutor solves a problem; in PS, students solve the problem by
themselves; while in CPS, students co-construct the solution with
the tutor. Based on the problem-level decision, the tutor then makes
step-level decisions on whether to elicit the next solution step from
the student or to tell or show it to the student directly. We refer to
such decisions as elicit/tell. If WE is selected, an all-tell step-level
policy will be carried out; if PS is selected, an all-elicit policy will be
executed; finally, if CPS is selected, the tutor will decide whether to
elicit or to tell a step based on the corresponding step-level policy.
Our training corpus contains 1,147 students’ interaction logs col-
lected from training students on the tutor using random (yet rea-
sonable) pedagogical decisions at the problem and step levels. Each
student spent around 2 hours on the system and completed around
400 steps. From the logs, we extracted 142 state features to represent
the learning environment. More specifically, the features can be
grouped into five categories:

• Autonomy (10 features): the amount of work done by the
student, such as the number of elicits since the last tell nElic-
itSinceTell;

• Temporal (29): time related information about the student’s
behavior, such as the average time per step avgStepTime;

• Problem Solving (35): information about the current problem
solving context, such as problem difficulty problemDifficulty;

• Performance (57): information about the student’s performance
so far, such as the percentage of correct entries pctCorrect;

• Hints (11): information about the student’s hint usage, such as
the total number of hints requested nHint.

Since the primary goal of the ITS is to improve students’ learn-
ing gains, we used Normalized Learning Gain (NLG) as the reward
because it measures students’ gain irrespective of their incoming com-
petence. 𝑁𝐿𝐺 =

𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡−𝑝𝑟𝑒𝑡𝑒𝑠𝑡√
1−𝑝𝑟𝑒𝑡𝑒𝑠𝑡 where 𝑝𝑟𝑒𝑡𝑒𝑠𝑡 and 𝑝𝑜𝑠𝑡𝑡𝑒𝑠𝑡 refer

to students’ test scores before and after the ITS training respectively
and 1 is the maximum score. To induce the hierarchical policy, we
defined a problem-level semi-MDP for determining whether the
next problem should be WE, PS, or CPS and for each of the training
problems, we defined a step-level semi-MDP for inducing a step-
level policy to determine elicit vs. tell if a complex activity CPS was
selected for that training problem.



Figure 1: Screenshots of Explanations

4 EXPLAINING TUTOR’S DECISIONS
We explored two types of explanations: action-based vs. policy-
based, as shown in Figure 1. Action-based explanations specify the
benefit of taking a tutorial action while policy-based explanations
give a reason behind the HRL policy’s current decision. Since students
often skip long sentences, we made our explanations short. The
explanations were written following Deci, et al.’s design principles,
which suggest that effective explanations should present the bene-
fits of a decision, and be written in a way that minimizes pressure
and conveys choice [9]. To avoid bothering students by giving too
many explanations, we explain only the problem-level WE and CPS
decisions and the step-level tell decisions. That’s because traditional
ITSs are designed to support student problem solving and thus PS
and elicit are often considered as the default actions.

4.1 Action-based Explanations
For action-based explanations, we relied on prior cognitive science
research to explain the benefit of a tutorial action. For example, a
lot of research showed that studying WEs can save students’ time
[23, 24]. Thus our action-based explanation for WE says “ The AI
agentwill solve the next problem for you to save you time.” Similarly,
for CPS, it says “The AI agent will solve this problem together with
you to improve your learning.” as prior research had shown that
CPS could be more effective than PS in improving student learning
performance [34, 39]. Note that the explanations are written using
a low-controlling wording in that it says what the AI agent will do,
rather than what the student must do.

4.2 Policy-based Explanations
The policy-based explanations were written based on the key fea-
tures of the HRL induced policy, which were identified via mining
the HRL policy’s decision making examples using random forest
(RF). More specifically, we first train an RF classification model
based on the HRL policy’s decision making examples and then take
the key features of the RF as the HRL policy’s key features. The
examples are in the form of state(142 features)-action pairs and
thus the RF takes 142 features as its input and predicts the action.

We chose RF here because it could generate clear, intuitive rule-
based classifiers to shed some light on the important features. Specif-
ically, RF is an enssembled model consisting of decision trees. The
decision trees provide us with an intuitive way to identify the im-
portant features because they always put the important features
at higher levels (from the root). To identify the key features of an
RF, we first count the occurrence of each feature in the top two
levels (from the root) across all decision trees. Then, we pick the
most frequent one in each feature category to be the key feature.
At the step level, problem-level features were excluded to improve
relevance.

When training the RF, we also took the importance of each de-
cision into account, which is determined by Q-values generated
by HRL. Recall that the Q-values 𝑄 (𝑠, 𝑎) indicate the expected cu-
mulative rewards the agent would receive if it takes action 𝑎 in
state 𝑠 and follows the policy to the end. Thus, for a given state 𝑠 ,
the larger the Q-value difference is between two actions, the more
important it is for the agent to take the good one. To account for
the importance of each decision, we weight each decision making
example using the difference between the highest (𝑚𝑎𝑥𝑎𝑄 (𝑠, 𝑎))
and lowest (𝑚𝑖𝑛𝑎𝑄 (𝑠, 𝑎)) Q-value for the state 𝑠 .

The key features for the problem- and step-level policies were
identified separately through training an RF consisting of 70 trees,
each with a max depth of 10. All the models were trained using the
“sklearn” package [25] and all the results reported below were gen-
erated with 5-fold cross-validation. For the problem-level decisions,
the RF trained on 12,180 examples yielded an accuracy of 64.9% vs.
44.6% for majority voting. For the step-level decisions, with 450,165
examples, the RF yielded an accuracy of 87.6% vs. 57.1% for majority
voting.

At the problem level, the RF identified four key features:
• timeOnTutoring: the total time that the student has spent on
the tutoring task so far;

• problemDifficulty: the difficulty of the current problem;
• avgTimeOnStep: the average time the student spent on a step.
• nCorrectElicitStepSinceLastWrongKC: the number of correct
elicit steps the student has completed since last wrong for the
knowledge component required by the current step;



At the step level, the RF identified three key features:
• avgTimeOnStepSessionTell: the average time the student spent
on a tell step in the current session;

• nCorrectElicitStepSinceLastWrongPrinSession: the number
of correct elicit step the student has completed since last wrong in
the current session for the steps that require selecting or applying
a probability principle to solve;

• ntellsSinceElicitKC: the number of tell steps the student has
received since last elicit for the knowledge component required
by the current step.
For each of the identified key features, we wrote several explana-

tion sentences to cover all possible decision-reason combinations.
Note that since there are multiple key features (for both problem-
and step-level decisions), each tutor decision has multiple candidate
explanations and the tutor will randomly select one to present. Fig-
ure 1.d shows an example explanation for the decisionWE, which is
generated based on the feature “avgTimeOnStep”, Figure 1.e shows
an example explanation for CPS based on “nCorrectElicitStepSince-
LastWrongKC”, and Figure 1.f shows an example explanation for
the step level decision tell based on “avgTimeOnStepSessionTell”.

Note that the explanations present our interpretations of the
features instead of their strict definition. That’s because some of
the features, such as “nCorrectElicitStepSinceLastWrongPrinSes-
sion” are too complicated for students without strong educational
background to interpret. Thus, to promote student acceptance, the
system presents our interpretations. Moreover, to avoid negative
wording, we present negative reasons implicitly. For example, in
Figure 1.e, the feature indicates that the student is not performing
well, but we implicitly hint this reason by asking “Trying to figure
out how to solve problems?”.

5 EXPERIMENTS SETUP
Participants The participants in our studies were undergraduate
students enrolled in the Discrete Mathematics course offered by the
computer science department at North Carolina State University in
the Fall 2018 or Spring 2019 semester. The ITS was given as one of
the regular homework assignment and students had one week to
complete it and were graded based upon their demonstrated effort
rather than performance. Completion of the ITS was required to
earn assignment credit. In the following, we will describe the three
empirical studies and also our post-hoc analysis in detail. Note that
all studies used the same baseline (control) condition: step-level
random with no explanation. We chose step-level decisions as the
baseline because problem-level WEs and PS can be seen as two
extreme cases of CPS, and thus a non-hierarchical way to make
decisions would be to focus on the step level only. Since both elicit
and tell are always considered to be reasonable interventions in
our learning context, the baseline random policy is “random yet
reasonable”.
• The HRL Study
Research Question:Would the HRL induced pedagogical policy
improve students’ learning performance?
Conditions: HRL vs. Baseline;
Measurements: learning performance measured by NLG;
Hypothesis: 𝐻𝑅𝐿 > 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 on NLG.
• The Exp Study

Research Question: would explaining the tutor’s decisions en-
hance the student-system interaction in terms of autonomy and
engagement?
Conditions: Exp vs. Baseline. The Exp condition employed action-
based explanations and a random hierarchical policy which first
randomly decides whether the next problem should be WE, PS,
or CPS, and then if CPS is selected, it randomly decides whether
to elicit or tell each step. Here, we chose the hierarchical random
policy for the Exp condition because it allows us to explain both the
problem- and step-level decisions. Note that, a series of our prior
studies suggest that the two types of random policies (step-level
vs. hierarchical) do not result in significant differences in student
learning [48, 50], allowing us to examine the impact of explanations
across both policies.
Measurements: Based on previous SDT research, we expect that
giving explanations would improve student-system interaction in
terms of autonomy and engagement but may or may not improve
student learning performance. Student autonomy is measured by:
hints per elicit, which is calculated as the number of hints requested
on elicit steps during the training divided by the total number of
elicit steps. This measure indicates to what extent students relied
on their own knowledge to complete problems. For engagement, we
used percentage of correct entries, which is defined as the percentage
of correct entries the student made on the first attempt in elicit
steps. Engagement is defined in different ways in learning science
literature. A commonly used definition is the time and effort stu-
dents devote to the task, which is also suggested by Next Generation
Science Standards (NGSS). Prior research suggests that disengaged
students often “game the system” to finish quickly rather than to
actually learn the material [2]. As a result, disengaged students
should have both lower time on task and performance during train-
ing. To verify that these two measures are correlated, we performed
an analysis and found a significant correlation (r = 0.26; p = 0.0008)
between a time on task indicator (the average time students spent
on each wrong step) and their training performance (the percentage
of correct elicit entries). Since the latter reflects both time and effort,
we chose it to measure student engagement.
Hypothesis: Exp would ask for less hint per elicit and have a
higher percentage of correct entries than Baseline.
• The HRL+Exp Study
Research Question: would the HRL policy and policy-based ex-
planations together improve both students’ learning performance
and student-system interaction?
Conditions: HRL+Exp vs. Baseline;
Measurements: NLG, hints per elicit, and percentage of correct
entries;
Hypothesis: 𝐻𝑅𝐿 + 𝐸𝑥𝑝 > 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 on NLG and student-system
interaction.
• Post-hoc Analysis
Research Questions: how would the HRL policy and the explana-
tions impact students’ learning independently and jointly?
Conditions: HRL, Exp, HRL+Exp, Baseline;
Measurements: NLG, hints per elicit, and percentage of correct
entries;
Hypothesis: 𝐻𝑅𝐿,𝐻𝑅𝐿 + 𝐸𝑥𝑝 > 𝐸𝑥𝑝, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 on NLG while
𝐻𝑅𝐿 + 𝐸𝑥𝑝, 𝐸𝑥𝑝 > 𝐻𝑅𝐿, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 on student-system interaction.



Procedure All students went through the identical four phases: 1)
textbook, 2) pre-test, 3) training on ITS, and 4) post-test. During
textbook, all students read a general description of each princi-
ple, reviewed some examples, and solved some practice problems.
The students then took a pre-test which contained a total of 14
problems. No feedback was given to their answers and they were
not allowed to go back to earlier questions (this was also true for
the post-test). During training on the ITS, all students received
the same 12 problems in the same order. Each domain principle was
applied at least twice in the 12 problems and each of the problems re-
quired 20-50 steps to solve. Finally, all students took the 20-problem
post-test: 14 of them were isomorphic to the pre-test, and the re-
mainder were non-isomorphic multiple-principle problems. Condi-
tions differed only in the pedagogical policy used (HRL vs. Baseline)
and the explanations of the tutor’s decision (No-Explanation vs.
Explanation) in the training phase.
Grading Criteria The pre- and post-test problems required stu-
dents to derive an answer by writing and solving one or more
equations. We used three scoring rubrics: binary, partial credit, and
one-point-per-principle. Under the binary rubric, a solution was
worth 1 point if it was completely correct or 0 if not. Under the par-
tial credit rubric, each problem score was defined by the proportion
of correct principle applications evident in the solution. A student
who correctly applied 4 of 5 possible principles would get a score
of 0.8. The one-point-per-principle rubric in turn gave a point for
each correct principle application. All of the tests were graded in a
double-blind manner by a single experienced grader. The results
presented below were based upon the partial-credit rubric but the
same results hold for the other two. For comparison purposes, all
test scores were normalized to the range of [0, 100].

6 RESULTS
6.1 The HRL Study
120 students were randomly assigned to the HRL (N = 60) and the
Baseline (N = 60) conditions 1. Due to preparations for exams and
the length of the study, 92 students completed the training. 11 stu-
dents who performed perfectly in the pre-test, completed the study
in groups, or quickly rushed through the pre- or post-test with
minimal and wrong answers were excluded from our subsequent
analysis. The remaining 81 students were distributed as follows:
44 for the HRL condition and 37 for the Baseline condition. A 𝜒2

test showed that the participants’ completion rate did not signif-
icantly differ by condition: 𝜒2 (1, 𝑁 = 120) = 0.419, p = 0.517. A
t-test analysis on the pre-test score showed no significant differ-
ence between the HRL (M = 66.4, SD = 18.8) and the Baseline
condition (M = 68.5, SD = 16.6): t (79) = −0.55, p = .587, d = 0.12.
This suggested that the two conditions were balanced in incoming
competence.

Learning Performance and Training Time To measure stu-
dents’ learning improvement, we conducted a repeated measures
analysis using test type (pre-test vs. isomorphic post-test) as a fac-
tor and test score as the dependent measure. Results showed a main
effect for test type: F (1, 79) = 141.40, p < 0.0001, 𝜂 = 0.635 in that
students scored significantly higher in the isomorphic post-test

1Since the three studies were conducted in the same class but in two different semesters
(Fall 2018 or Spring 2019), the size of the conditions in them differed slightly.

Figure 2: Iso NLG and Full NLG Results

than in the pre-test. More specifically, both conditions scored signif-
icantly higher in the post-test than in the pre-test: F (1, 43) = 54.10,
p < 0.0001, 𝜂 = 0.557 for the HRL condition and F (1, 36) = 31.40,
p < 0.0001, 𝜂 = 0.466 for the Baseline condition. This showed that
the basic practice and problems, domain exposure, and interactivity
of our ITS could effectively help students acquire knowledge, even
when the decisions were made randomly yet reasonably.

Figure 2.a shows a comparison of students’ learning gains be-
tween the two conditions. The Iso NLG was calculated based on the
pre- and isomorphic post-test while the Full NLG was calculated
based on the pre- and full post-test. The full post-test had six addi-
tional multiple-principle problems. A t-test on the Iso NLG showed
that there was a trend that the HRL condition (M = 33.3, SD = 15.4)
scored higher than the Baseline condition (M = 24.9, SD = 23.0):
t (79) = 1.96, p = .053, d = 0.44. In addition, a t-test on the Full NLG
showed that the HRL condition (M = 14.3, SD = 19.2) scored sig-
nificantly higher than the Baseline condition (M = 0.2, SD = 35.9):
t (79) = 2.24, p = .028, d = 0.50. Overall, the results suggested that
the HRL policy was more effective than the baseline policy. Finally,
a t-test on the total training time showed no significant difference
between the two conditions.

Student-system Interaction As expected, t-tests on the hints
per elicit and percentage of correct entries showed no significant
differences between the HRL and the Baseline conditions.

6.2 The Exp Study
114 students were randomly assigned to the Exp (N = 57) and Base-
line (N = 57) conditions and 94 students completed the study. 9
students were excluded from our subsequent analysis for perfect
pre-test, group work or rush behavior. The remaining 85 students
were distributed as follows: 42 for Exp and 43 for Baseline. A 𝜒2 test
showed that the participants’ completion rate did not significantly
differ by condition: 𝜒2 (1, 𝑁 = 114) = 0.061, p = 0.81. A t-test on
the pre-test score showed that there was a trend that the Baseline
condition (M = 75.9, SD = 18.6) scored higher than the Exp condi-
tion (M = 69.1, SD = 17.9): t (83) = 1.72, p = .089, d = 0.37. This
suggests that our random assignment did not balance students’ in-
coming competence perfectly. Therefore, for learning performance,
we mainly focused on Iso NLG and Full NLG because they consider
the pre-test differences.



Learning Performance and Training Time As expected, we
found that while both conditions learned significantly from our
ITS and there was no significant difference between the Exp and
Baseline conditions on learning performance (Iso NLG and Full
NLG) and training time.

Student-system Interaction For this study, we expected that
the Exp condition would request less hints per elicit and have a
higher percentage of correct entries than the Baseline condition.
However, no significant difference was found between them on
hints per elicit (M = .165, SD = .676 for Exp and M = .2, SD = .555
for Baseline): t (83) = 0.62, p = .534 and percentage of correct
entries (M = 80.5, SD = 11.4 for Exp and M = 80.6, SD = 11.9 for
Baseline): t (83) = 0.05, p = .964. (Since hints per elicit has a large
variance, its p values were calculated based on the log transfor-
mation of the original value here and in the following.) There are
two possible reasons for the results: 1) the pedagogical decisions
are randomly made rather than adaptively and 2) the action-based
explanations are not helpful. Therefore, in the HRL+Exp study, we
employed HRL induced policy and data-driven explanations.

6.3 The HRL+Exp Study
113 students were randomly assigned to the HRL+Exp (N = 56) and
Baseline (N = 57) conditions and 91 of them completed the study.
10 students were excluded from our subsequent analysis for prefect
pre-test, group work or rash behavior. The remaining 80 students
were distributed as follows: 37 for HRL+Exp and 43 for Baseline.
A 𝜒2 test showed that the participants’ completion rate did not
significantly differ by condition: 𝜒2 (1, 𝑁 = 113) = 0.675, p = 0.448.
A t-test on the pre-test score showed that there was no significant
difference between the HRL+Exp (M = 71.6, SD = 21.2) condition
and the Baseline condition (M = 75.9, SD = 18.6): t (78) = −0.97,
p = .336, d = 0.22.

Learning Performance and Training Time Repeated mea-
sures analysis showed that overall students scored significant higher
in the isomorphic post-test and in the pre-test: F (1, 78) = 47.54,
p < 0.0001, 𝜂 = 0.370. This was also true for each individual
condition. Figure 2.b shows a comparison between the two condi-
tions on Iso NLG and Full NLG. A t-test on the Iso NLG showed
that the HRL+Exp (M = 31.2, SD = 28.3) condition scored signif-
icantly higher than the Baseline condition (M = 18.2, SD = 27.1):
t (78) = 2.10, p = .039, d = 0.47. Similarly, on Full NLG, HRL+Exp
(M = 12.3, SD = 32.2) significantly outperformed Baseline (M =

−5.3, SD = 43.2): t (78) = 2.04, p = .045, d = 0.46. The results
suggest that the combination of the HRL policy and data-driven
explanations could effectively improve students’ learning perfor-
mance. A t-test on the total training time showed that there was
no significant difference between the two conditions.

Student-system interaction We expected that the HRL+Exp
condition would have higher percentage of correct entries and
request less hints per elicit than the Baseline condition. A t-test on
the percentage of correct entries showed that HRL+Exp (M = 86.5,
SD = 6.2) indeed scored significantly higher than Baseline (M =

80.6, SD = 11.9): t (78) = 2.72, p = .008, d = 0.61. Additionally, a t-
test on hints per elicit showed that there was a trend that HRL+Exp
(M = .044, SD = .071) requested less hints than Baseline (M = .2,
SD = .555): t (78) = −1.87, p = .066, d = 0.42.

6.4 Post-hoc Analysis
In order to comprehensively evaluate the impact of HRL policies
and explanations on learning, we conducted a two-factor post-hoc
analysis on policy (HRL vs. baseline) and explanation (Explanation
vs. No-Explanation) using the data collected in the three empiri-
cal classroom studies. Four conditions are included in the analysis,
HRL+Exp, HRL, Exp, and Baseline. To balance the group size among
the four conditions, we randomly sampled 40 students from the com-
bined Baseline group of 80 students. Among them, 19 students were
selected from the Fall 2018 semester and 21 students were selected
from the Spring 2019 semester. A 𝜒2 test showed that the selection
rate did not significantly differ by semester: 𝜒2 (1, 𝑁 = 80) = 0,
p = 1. T-tests showed that there was no significant difference
between the 40 sampled and the 40 unsampled students on test
scores, training time, and all other measures. This was also true
between the sampled and the unsampled students for the Fall 2018
and Spring 2019 semesters.

One-way ANOVA analysis on the pre-test score showed that
there was no significant difference among the four conditions (M =

71.6, SD = 21.2 for HRL+Exp; M = 66.4, SD = 18.8 for HRL;
M = 69.1, SD = 17.9 for Exp; M = 71.6, SD = 18.5 for Baseline):
F (3, 159) = 0.72, p = 0.540, 𝜂 = 0.013. This suggested that the four
conditions were balanced in incoming competence.

Learning Performance A repeated measures analysis showed
that overall students scored significantly higher in the isomorphic
post-test than in the pre-test: F (1, 159) = 168.12, p < 0.0001, 𝜂 =

0.508. This was also true for each individual condition. Figure 3.a
shows the Full NLG for the four conditions. A two-way ANOVA
analysis on policy and explanation showed a significant main effect
of policy: F (1, 159) = 5.59, p = 0.019, 𝜂 = 0.034 in that the two HRL
conditions scored significantly higher than the Baseline and the Exp
conditions. But there was no significant interaction effect or main
effect of explanation. Subsequent contrast analysis showed that the
HRL condition (M = 14.3, SD = 19.2) scored significantly higher
than the Baseline condition (M = −1.4, SD = 39.3): t (159) = 2.35,
p = 0.020, d = 0.52. This suggests again that the HRL policy was
more effective than the Baseline policy. Similar results were found
for Iso NLG.

Training Time (on the system) results are shown in Figure 3.b.
A two-way ANOVA analysis showed a significant main effect of
explanation: F (1, 159) = 12.40, p = 0.0006, 𝜂 = 0.068 in that the two
Explanation conditions spent less time than the twoNo-Explanation
conditions and also a significant main effect of policy: F (1, 159) =
11.38, p = 0.0009, 𝜂 = 0.062 in that the two HRL conditions spent
more time than the Baseline and the Exp conditions. No significant
interaction effect was found. Subsequent contrast analysis revealed
that for the effect of explanation, the HRL+Exp condition (M = 1.89,
SD = .48) spent significantly less time than the HRL condition (M =

2.19, SD = .64): t (159) = −2.72, p = 0.007, d = 0.53; and the Exp
condition (M = 1.67, SD = .43) spent significantly less time than the
Baseline condition (M = 1.92, SD = .41): t (159) = −2.26, p = 0.025,
d = 0.60. For the effect of policy, the HRL condition (M = 2.19,
SD = .64) spent significantly more time than the Baseline condition
(M = 1.92, SD = .41): t (159) = 2.51, p = 0.013, d = 0.51; and the
HRL+Exp condition (M = 1.89, SD = .48) tended to spend more
time than the Exp condition (M = 1.67, SD = .43): t (159) = 1.96,



Figure 3: Comparisons on policy (HRL vs. Baseline) and Explanation (No-Explanation vs. Explanation) for a) Full NLG; b) Total
time on the ITS training task (in hours); c) Hints Per Elicit; and d) Percentage of Correct Entries.

p = 0.051, d = 0.49. Overall, the results suggest that explaining the
tutor’s decision could make students work more efficiently.

Student-system InteractionWe expected that the two Expla-
nation conditions would have higher percentage of correct entries
and request less hints per elicit than the two No-Explanation con-
ditions. Figure 3.c shows the number of hints requested per elicit.
A two-way ANOVA analysis showed a main effect of explanation:
F (1, 159) = 4.49, p = 0.036, 𝜂 = 0.027 in that the two Explanation
conditions requested significantly less hints per elicit than the two
No-Explanation conditions. But there was no significant interac-
tion effect or main effect of policy. Subsequent contrast analysis
revealed that the HRL+Exp condition (M = .044, SD = .071) re-
quested significantly less hints than the HRL condition (M = .345,
SD = 1.04): t (159) = −2.11, p = 0.037, d = 0.47. To investigate
whether difficulty may have been a factor in increased hint re-
quests, we partitioned our data by frequent and infrequent hint
users and found that there is no significant difference between the
two groups in terms of the difficulty of the elicit steps they received.
(M = 29.45, SD = 0.80 for frequent hint users and M = 29.66;
SD = 0.73 for infrequent hint users): t (161) = −1.74, p = .084,
d = 0.27.

Figure 3.d shows the percentage of correct entries. A two-way
ANOVA analysis showed a main effect of policy: F (1, 159) = 4.13,
p = 0.044, 𝜂 = 0.025 in that the two HRL conditions scored signifi-
cantly higher than the Baseline and the Exp conditions. But there
was no significant interaction effect or main effect of explanation.
Subsequent contrast analysis revealed that the HRL+Exp condition
(M = 86.5, SD = 6.2) scored significantly higher than the Exp con-
dition (M = 80.5, SD = 11.4): t (159) = 2.32, p = 0.021, d = 0.64
and tended to score higher than the HRL condition (M = 81.6,
SD = 14.1): t (159) = −1.93, p = 0.055, d = 0.44. In order to exam-
ine whether enhanced student-system interaction led to improved
learning performance, we performed Pearson’s correlation tests be-
tween percentage of correct entries and Full NLG. Results showed
that only the HRL+Exp condition had a significant correlation:
r = 0.517, p = 0.001. This is consistent with prior research that
effective explanations can lead to a positive correlation between en-
gagement and the desired learning outcome [9]. Overall the results
suggest that the HRL policy together with data-driven explanations
could enhance students’ engagement and autonomy.

7 CONCLUSION AND DISCUSSION
This work demonstrates how reinforcement learning (RL) can be
productively applied to improve student-system interaction. Specif-
ically, our work proposes a novel but replicable combination of
cutting-edge RL (for adaptation) and human authored explanations
(for interpretability) to improve student-system interaction. Empir-
ical results show that personalized RL decisions can be paired with
human-authored explanations to achieve improved student-system
interaction outcomes, rather than using RL decisions or explana-
tions alone. In recent years, RL, especially Deep RL, has achieved
superhuman performance in several complex games. However, dif-
ferent from the classic game-play situations where the ultimate
goal is to make smart system decisions, our ultimate goal for RL
is to make the student-system interaction productive and fruitful.
Thus, we argue that it is crucial to communicate the RL decisions to
students. By using intelligent tutoring systems (ITSs) as the testbed,
we show that neither RL decisions nor explanations alone promote
ITS goals. Our results suggest that future e-learning applications
can combine RL with human-authored explanations to significantly
influence how students and systems interact.

One limitation of this work is explanations were not validated in
a separate study. More specifically, it is unknown that how students
may interpret the messages and whether it is important for them
to benefit from the explanations. The mixed results in where ex-
planations are helpful (only for HRL) make it especially important
to further understand the nuance in when/why explanations are
helpful. In the future, we will add a survey in the study to explore
user perception and experience. Additionally, we will compare our
data-driven explanations with learning-theory-based explanations
to further explore their impacts. Another limitation is that the four
conditions were investigated in three studies instead of one study
that provides a more sensitive evaluation. Finally, a third limita-
tion is we used percentage of correct entries to measure students’
engagement, which could be impacted by the pedagogical policy.
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