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ABSTRACT
Modeling student learning processes is highly complex since
it is influenced by many factors such as motivation and
learning habits. The high volume of features and tools pro-
vided by computer-based learning environments confounds
the task of tracking student knowledge even further. Deep
Learning models such as Long-Short Term Memory (LSTMs)
and classic Markovian models such as Bayesian Knowledge
Tracing (BKT) have been successfully applied for student
modeling. However, much of this prior work is designed to
handle sequences of events with discrete timesteps, rather
than considering the continuous aspect of time. Given that
time elapsed between successive elements in a student’s tra-
jectory can vary from seconds to days, we applied a Time-
aware LSTM (T-LSTM) to model the dynamics of student
knowledge state in continuous time. We investigate the ef-
fectiveness of T-LSTM on two domains with very different
characteristics. One involves an open-ended programming
environment where students can self-pace their progress and
T-LSTM is compared against LSTM, Recent Temporal Pat-
tern Mining, and the classic Logistic Regression (LR) on the
early prediction of student success; the other involves a clas-
sic tutor-driven intelligent tutoring system where the tutor
scaffolds the student learning step by step and T-LSTM is
compared with LSTM, LR, and BKT on the early predic-
tion of student learning gains. Our results show that T-
LSTM significantly outperforms the other methods on the
self-paced, open-ended programming environment; while on
the tutor-driven ITS, it ties with LSTM and outperforms
both LR and BKT. In other words, while time-irregularity
exists in both datasets, T-LSTM works significantly better
than other student models when the pace is driven by stu-
dents. On the other hand, when such irregularity results
from the tutor, T-LSTM was not superior to other models
but its performance was not hurt either.

1. INTRODUCTION
Student Modeling sits at the epicenter of educational data
mining. It monitors a student’s progress, ability, or knowl-
edge over a set of skills and can predict the student’s future
performance based on historical sequence data. In recent
years, recurrent neural network architectures, such as Long
Short-Term Memory (LSTMs), have become the workhorses
for modeling sequence data in a variety of tasks involving se-
quential data, such as video processing, climate change de-
tection, and patient disease progression prediction [20, 19,
25, 12]. Deep Knowledge Tracing [35, DKT], the first LSTM
approach in student modeling, reported an impressive im-
provement over a classical statistical model Bayesian Knowl-
edge Tracing [10, BKT]. Both LSTM/DKT and BKT are de-
signed to handle sequences of events with discrete timesteps,
not considering the continuous aspect of time.

On the other hand, student response time, the elapsed times
between consecutive elements of a sequence can vary greatly
by student, from seconds to days. Ever since the mid-1950s,
student response time has been used as a preferred educa-
tional assessment to evaluate how active and accessible stu-
dent knowledge is in cognitive psychology [43]. For example,
it has been shown that response time reveals student pro-
ficiency [40] and there is a significant negative correlation
between student average response time and student final
exam score taken at the end of the semester [16]. Addi-
tionally, response time has been suggested as an indicator
of student engagement in answering questions [21] as well as
an important factor for predicting motivation in learning en-
vironments [9]. Also, by leveraging time information, BKT
prediction performance can be improved [38, 44]. Therefore,
by not taking the time intervals into consideration, the de-
sign of traditional LSTM and BKT may lead to sub-optimal
performance for modeling student learning.

Previous work for modeling sequence data has explored sev-
eral ways to handle time irregularity [3, 34, 8, 6] and among
them, Time-aware LSTM (T-LSTM) is one of the most state-
of-the-art models [3]. T-LSTM transforms time intervals
between successive elements into weights and uses them to
adjust the memory passed from previous moments. In this
work, we apply T-LSTM to model the dynamics of student
knowledge state in continuous time and conduct two empiri-
cal comparisons between T-LSTM and the standard LSTM,
Recent Pattern Mining [23], and classical student model-



ing methods such as BKT and logistic regression models on
two real-world data sets collected from two learning environ-
ments with very different characteristics. One is an open-
ended block-based programming environment for a novice
programming task where students are free to explore the
environment with minimal system support or constraints.
Each student’s log file is a trajectory of actions with corre-
sponding time stamps and time intervals calculated between
the two consecutive student actions. The other probabil-
ity tutor is tutor-driven in that the tutor decides what to
do next. Each student’s log file is a trajectory of student-
ITS interactions. In each interaction, the tutor first elicits
the subsequent step from a student with prompting, and
when the student performs a step, the tutor records its suc-
cess or failure and may give feedback (e.g. correct/incorrect
markings); if the student’s answer is incorrect, the tutor
provides a series of hints from general to specific and the
bottom-out hint tells the student exactly what to do. The
interaction is ended only when a step is correctly answered
and the tutor moves to the next interaction. As a result,
each student’s log file is a trajectory of tutor actions mixed
with student’s responses with corresponding time stamps. In
this environment, the time intervals are calculated between
the student’s first attempt on one problem and the next.
Our research question is: By taking time-awareness into
consideration, would T-LSTM outperform other tra-
ditional student modeling methods on both self-paced
and tutor-driven learning environments?

2. METHODS
2.1 Long Short-Term Memory
Long Short Term Memory [18, LSTM] is a special type of
RNN which is explicitly designed to avoid the long-term de-
pendency problem. LSTM can avoid the vanishing (and
exploding) gradient problem and works tremendously well
on a large variety of problems.

Figure 1: The Structure of a LSTM Unit

The internal structure of each LSTM module is shown in
Figure 1. There are three major components: a forget gate,
an input gate, and an output gate in a standard LSTM unit
cell, where these components interact with each other to
control how information flows. In the first step, a function
of the previous hidden state ht−1 and the new input Xt

passes through the forget gate, indicating what is probably
irrelevant and can be taken out of the cell state. The for-

get component will calculate a weight ft between 0 to 1 for
each element in hidden state vector Ct−1. An element with
a weight of 0 should be completely forgotten whereas an el-
ement with a weight of 1 needs to be entirely remembered.
The formula to calculate ft is shown below where Wf and
bf are the weights and intercepts, respectively, for the forget
component.

ft = sigmoid(Wf · [ht−1, xt] + bf ) (1)

There are two steps involved in input component’s calcula-
tion. In the first step, a tanh layer calculates a candidate
vector C̃t that could be added to the current hidden state.
In the second step, the input components calculate a weight
vector it (ranging from 0 to 1) to determine to what extent

C̃t should update the current memory state.

C̃t = tanh(Wc · [ht−1, xt] + bc) (2)

it = sigmoid(Wi · [ht−1, xt] + bi) (3)

With the forget and input components, the module is able
to throw away the expired information in the previous cell
state by calculating Ct−1 · ft, and process new information
by computing C̃t · it. Consequently, the formula to update
the current memory cell is shown below. Note that the cur-
rent memory cell state Ct is then passed to the next LSTM
module.

Ct = Ct−1 · ft + C̃t · it (4)

Finally, the output component is simply an activation func-
tion that filters elements in Ct. The Ct can be converted to
a value between -1 to 1 by the tanh function. The output
component calculates a weight vector

ot = sigmoid(Wo · [ht−1, xt] + bo) (5)

that determines how much information is allowed to be re-
vealed.

Ct = ot ∗ tanh(Ct) (6)

With such a gated structure, LSTM is capable of handling
long-term dependencies.

2.2 Time-Aware Long Short Term Memory
The standard LSTM assumes that the elapsed times be-
tween elements of a sequence are uniformly distributed, and
therefore it is designed to handle sequences with discrete
timesteps. However, in the educational domain, the interval
between two consecutive steps during a student trajectory
can span from seconds to days. In general, the events that
occurred long ago tend to have less impact to the current
state and thus we should properly reduce their contributions.
Therefore, it is important to consider the elapsed time when
predicting the current event’s output. In this work, we ap-
plied Time-aware LSTM [3, T-LSTM], which is proposed to
handle the temporal dynamics of sequential data with time
irregularities, to model student knowledge states in contin-
uous time.

The T-LSTM architecture is shown in Figure 2. To fit in
our domain, we represent the input sequence by the stu-
dent trajectories. Apart from the three gates in standard
LSTM: forget, input, and output; T-LSTM also integrates
the time elapsed between successive records into the net-
work architecture, and we call this as the time decay compo-
nent. The information stored in the memory of the previous



Figure 2: The Structure of a T-LSTM Unit

hidden state Ct−1 is decomposed into two parts: long-term
memory and short-term memory. Without losing the long-
term memory contained in Ct−1, the time decay component
mainly plays a role to adjust the short-term memory by em-
ploying the elapsed time between successive steps. If the
gap between two steps is significantly huge, e.g. few hours
in our domain, it means there has been a long time with no
interaction between students and the tutor/computer. In
that case, there is not much point to heavily rely on the
previous short-term memory to predict the current output.
In the framework of T-LSTM, a non-increasing function of
the elapsed time is applied to transform the time duration
into an appropriate weight. And in this work, we applied
g(∆t) = 1/ log(e+ ∆t) to get the corresponding weights.

The following calculations are involved in the time decay
component of T-LSTM. First, short-term memory CS

t−1 is
calculated.

CS
t−1 = tanh (Wd · Ct−1 + bd) (7)

The long-term memory can be obtained by deducting short-
term memory from the previous hidden state.

CL
t−1 = Ct−1 − CS

t−1 (8)

Then CS
t−1 is discounted by the elapsed time weight to ob-

tain the discounted short-term memory ĈS
t−1.

ĈS
t−1 = CS

t−1 ∗ g(∆t) (9)

Finally, the adjusted previous hidden state C∗t−1 is com-
posed by adding long-term memory and discounted short-
term memory.

C∗t−1 = CL
t−1 + ĈS

t−1 (10)

The following parts are very similar to standard LSTM. Fol-
lowing the steps in Section 2.1, we first calculate the forget
gate ft, candidate vector C̃t and input gate it by applying
Equation (1), (2) and (3). For the calculation of the current
memory cell state Ct, the adjusted previous hidden state
C∗t−1 instead of Ct−1 is applied in the T-LSTM framework.

Ct = C∗t−1 · ft + C̃t · it (11)

The final output for the current state can be achieved using
the following Equation (6). In this work, we investigate the
effectiveness of T-LSTM via the early prediction of both stu-
dent success and learning gains. As far as we know, no prior
studies have explored T-LSTM on both computer-based pro-
gramming systems and intelligent tutoring systems.

2.3 Recent Temporal Pattern Mining
The Recent Temporal Pattern mining (RTP) framework [2]
was originally proposed to find predictive patterns from com-
plex multivariate time series data. This framework first con-
verts time series into time-interval sequences of temporal
abstractions, and then constructs more complex temporal
patterns backwards. The following part will explain how
the RTP framework is applied in our work.

Multivariate State Sequences: We denote a State S as
(F, V ), where F is a temporal feature and V is the value
for feature F at a given time and the State Interval E
is denoted as (F, V, s, e), where s and e refer to the start
and end times of the state (F, V ). Thus, we can convert
each student’s data xi into a corresponding Multivariate
State Sequence (MSS) zi by sorting all the state intervals by
their start times: zi = 〈E1, E2, ..., En〉 : Ej .s ≤ Ej+1.s, j ∈
{1, ..., n − 1}. And we apply two temporal relations in this
work: 1)Ei before(b) Ej : When Ei ends before the start
of Ej (Ei.e < Ej .s); 2) Ei co-occurs(c) with Ej : When Ei

and Ej have some overlap (Ei.s ≤ Ej .s ≤ Ei.e).

Recent Temporal Patterns: Here, we call a state interval
E = (F, V, s, e) a Recent State Interval of MSS zi if: 1)
E is the last state interval for feature F ; that is, for all

E
′

= (F, V
′
, s

′
, e

′
), we have E

′
.e ≤ E.e; or 2) E is less

than g time units away from the end time of the last state
interval: zi.end; that is, zi.end− E.e ≤ g.

Given an MSS zi, a temporal pattern P = (〈S1, ..., Sn〉, R),
and a maximum gap parameter g, we say P is a recent tem-
poral pattern (RTP) in zi, denoted Rg(P, zi), if all 3 of the
following conditions hold: 1) zi contains P , where P ∈ zi
if: (a) zi contains all k states of P , and (b) all temporal
relations of P are satisfied in zi; 2) Sn = (Fn, Vn) matches
a recent state interval in zi; and 3) Every consecutive pair
of states in P maps to a state interval less than g time units
apart. That is, each pair of temporal sequences should not
be g time units apart. In short, parameter g forces pat-
terns to be close to the end of the sequence zi, and forces
consecutive states to be close to each other.

Mining Algorithm: Taking student success classification
as an example, we will have two sets of labeled MSSs: Z1 =
{zi : yi = 1} for all unsuccessful sequences and Z0 = {zj :
yi = 0} for all successful ones. Given Z1, the mining al-
gorithm applies a level-wise search to find frequent RTPs.
More specifically, it first starts with all frequent 1-RTPs, and
then extends the patterns by adding a new state to each se-
quence, one at a time, until no new patterns are discovered.
That is, at each level k, the algorithm finds frequent (k+1)-
RTPs by repeatedly extending k-RTPs through Backward
candidate generation, and the Counting phase, as described
below.

Backward (k + 1)-pattern candidates are generated from a
k-pattern P = (〈S1, ..., Sk〉, R), by adding a new frequent

state, Snew, to the beginning of the sequence to create P
′

=

(〈Snew, S1, ..., Sk〉,R
′
). Then we specify the new before (b)

or co-occurs (c) relations R
′

between Snew and all original
k states, restricted by the following two criteria: 1) Two
state intervals of the same temporal feature cannot co-occur.



Figure 3: An example of generating 3-patterns out
of a single 2-RTP, by appending a new state.

That is, if Snew.F = Si.F for i ∈ {1, ..., k}, then R′new,i 6=
c. 2) Since the state sequence in pattern P is sorted by
the start time of the states, once a relation becomes before:
R′new,i = b for any i ∈ {1, ..., k}, all of the following relations
have to be before, so R′new,j = b for j ∈ {i+ 1, ..., k}.

In the Counting phase, candidate (k + 1)-patterns are re-
moved if they do not meet the minimum support threshold
by occurring at least σ times as RTPs in Z1. The same
procedure is carried out for Z0. Finally, we combine all the
frequent RTPs into a final Ω set of RTPs.

Binary Matrix Transformation: We transform each MSS
zi ∈ Z into a binary vector vi of size |Ω|, such that each 0
and 1 indicates whether the pattern Pj ∈ Ω is a recent tem-
poral pattern in Zi or not. This will result in a binary matrix
of size N × |Ω|, which represents our original dataset.

2.4 Bayesian Knowledge Tracing
BKT is a student modeling method extensively used in ITSs.
Figure 4 shows a graphical representation of the model and a
possible sequence of student observations. The shaded nodes
S represent hidden knowledge states. The unshaded nodes
O represent observation of students’ behaviors. The edges
between the nodes represent their conditional dependence.

Figure 4: The Bayesian network topology of the
standard Knowledge Tracing model

Fundamentally, the BKT model is a two-state Hidden Markov
Model [11, HMM] characterized by five basic elements: 1)
N, the number of different types of hidden state; 2) M, the
number of different types of observation; 3) Π, the initial
state distribution P (S0); 4) T, the state transition probabil-
ity P (St+1|St) and 5) E, the emission probability P (Ot|St).
Note that both N and M are predefined before training
occurs, while Π, T and E are learned from the students’
observation sequence.

Conventional BKT assumes there are two types of hidden
knowledge states (N=2) corresponding to student knowl-
edge states of unlearned and learned. It also assumes there
are two types of student observation (M=2) correspond-
ing to student performance of incorrect and correct. BKT
makes two assumptions about its conditional dependence
as reflected in the edges in Figure 4. The first assumption
BKT makes is a student’s knowledge state at a time t is
only contingent on her knowledge state at time t − 1. The
second assumption is a student’s performance at time t is
only dependent on her current knowledge state. These two
assumptions are captured by the state transition probability
T and the emission probability E.In the context of student
learning, BKT further defines five parameters:

Prior Knowledge = P(S0=learned)
Learning Rate = P(learned|unlearned )
Forget = P(unlearned | learned)
Guess = P(correct | unlearned)
Slip = P(incorrect | learned)

In order to apply BKT to our dataset, we captured and
mapped all students’ actions based on the learning oppor-
tunities of knowledge components (KCs) step by step. For
each of the KC, the Baum-Welch algorithm (or EM method)
is used to iteratively update the model’s parameters until a
maximized probability of observing the training sequence is
achieved.

3. EXPERIMENTS
In this work, we explored different student modeling tasks
based on characteristics of two different learning environ-
ments. One was the task of early prediction of student suc-
cess in an open-ended, self-paced programming environment
while the other is the task of early prediction of student
learning gains within a tutor-paced probability tutor.

3.1 Predicting Student Success on iSnap
3.1.1 iSnap

iSnap1 is an extension to Snap! [15], a block-based pro-
gramming environment, used in an introductory computing
course for non-majors in a public university in the United
States [37]. iSnap extends Snap! by providing students with
data-driven hints derived from historical correct student so-
lutions [36]. In addition, iSnap logs all students actions while
programming (e.g. adding or deleting a block), as a trace,
allowing us to detect the sequences of all student steps, as
well as the time taken for each step. In this work, we focused
on one homework exercise named Squiral, derived from the
BJC curriculum [15]. In Squiral, students are asked to write
a procedure that draws a square-like spiral. As shown in
Figure 5, correct solutions require procedures, loops, and
variables using at least 7 lines of code. We collected stu-
dents’ data for Squiral from Spring 2016, Fall 2016, Spring
2017, and Fall 2017. We excluded students who requested
hints from iSnap to eliminate factors that might affect stu-
dents’ problem-solving progress, leaving a total of 65, 38, 29,

1All tutors and assignments names have been blinded for
anonymous review



and 39 student code traces from each semester, respectively.
The detailed statistics for iSnap dataset are shown in Table
1.

The data collected from iSnap consists of a code trace for
each student’s attempt. This code trace represents a se-
quence of timestamped snapshots of student code. We used
an expert feature detector (EFD), described in [49], that
automatically detects 7 features of a correct solution in a
student snapshot. For example, for each snapshot in a stu-
dent code trace, the EFD outputs a feature state, which is
a series of 0s and 1s (e.g. 10000001) indicating the absence
or presence of each feature, such that feature-state: 1000001
shows that feature 1 and feature 7 are present, while the
other 5 features are not. We ran the expert-feature detector
to tag each snapshot in all 171 code traces, making a total
of 31,064 tagged snapshots.

Figure 5: The iSnap interface, with the blocks
palette on the left, the output stage on the right,
the scripting area in the middle, and the hints but-
ton on top.

3.1.2 Student Success
In the context of iSnap, all the models were measured on
the task of predicting student success. We classify the stu-
dents who finished the programming assignment in one hour
or less and got full credit as successful and labeled with “0”,
those who either failed to complete or submit the assignment
within one hour as unsuccessful, labeled with “1”. The one-
hour cutoff was chosen based on a distribution showing that
the vast majority of students (around 94%) who complete
the assignment with full credit do so within one hour. Thus,
each trajectory is assigned one ground truth label based on
whether the student finished the assignment successfully or
unsuccessfully. As a result, we refer to this task as the early
prediction task for student success. Based on this definition,
59 of 171 students are in the successful group, and the re-
maining 112 are in the unsuccessful group. Note that this is
a homework assignment that counts for only a small portion
of a student’s overall grade, and this behavior (of not at-
tempting to obtain full credit) is typical in this introductory
level.

To predict student success, we are given the first up to n
minutes of a student’s sequence data and our goal is to pre-
dict whether the student will successfully complete the pro-
gramming assignment at any given point in the remainder
of the sequence. To conduct this task, we left-aligned all the
students’ trajectories by their starting times and our obser-
vation window (the part of data used to train and test dif-

ferent machine learning models) includes the sequences from
the very beginning to the first n minutes. If a student’s tra-
jectory is less than n minutes, our observation window will
include their entire sequence except the last one.

3.1.3 Four Models
In the task of early prediction of student success, we have
four models involved: Logistic Regression (LR), RTP, LSTM
and T-LSTM. Note that BKT is not included here because
for the open-ended domain like iSnap, there are no pre-
defined steps or knowledge components that students must
achieve to complete a given program. Thus, it is hard to map
student actions on iSnap to learning opportunities defined
in BKT.

Logistic Regression (LR): Since LR do not handle se-
quence data directly, we used a “Last Value” approach to
treat the last measurement of each attribute within the given
observation window as the input to train models. For early
prediction settings, we truncated all the sequences in the
training dataset in the same fashion as the testing dataset
and then applied the Last Value approach on the truncated
training dataset. For example, when our observation win-
dow is 6 minute, we apply the last value before 6 minutes
for each sequence and treat them as inputs for LR.

RTP: For the RTP-based model, we first used RTP mining
to generate the binary matrix and then applied LR to learn
from the generated binary matrix. For early prediction, we
only apply the truncated training sequences included in ob-
servation window to find RTPs. For example, for our 6-
minute observation window, only the first 6 minutes of se-
quences were used for pattern extraction.

LSTM and T-LSTM: For LSTM the input is a multivari-
ate temporal sequence from student work, and the output
from the last step is used to make a prediction. While for
T-LSTM, we also feed it with another sequence indicating
time intervals for each student. As shown in Table 1, the
time intervals of iSnap range from 1 to 291 seconds across
four semesters, with µ = 0.613 and σ = 0.217 for the over-
all decayed intervals. For both LSTM and T-LSTM, we
used one hidden layer with 128 hidden neurons and set the
maximum length to accommodate the longest sequence in
our data. Typically for deep learning models, the whole
multivariate time series from student sequence data is used
as input data. However, for early prediction, only those
events happening within our observation window from each
sequence were used.

3.2 Predicting Learning Gains on Pyrenees
3.2.1 Pyrenees

Pyrenees is a web-based ITS teaching probability, which
covers 10 major knowledge components (KCs), such as the
Addition Theorem, the Complement Theorem, and Bayes’
Rule, etc. Domain experts both identified the 10 KCs and la-
beled each step/exercise with the corresponding KCs, kappa
> 0.9. Figure 6 shows the interface of Pyrenees which con-
sists of a problem statement window, a variable window,
an equation window, and a tutor-student dialogue window.
Through the dialogue window, Pyrenees provides messages
to the students. It can explain a worked example or prompt



Table 1: Detailed data statistics for iSnap, including total steps, total time spent in minutes, time intervals
in seconds, corresponding decayed time intervals, and the success labels distribution for each of the four
semesters.

Semester
Total Steps Total Time (minutes) Time Intervals (seconds) Decayed Time Intervals Success Labels

min max median mean(std) min max median mean(std) min max median mean (std) mean(std) S U
S16 10 1024 169 199 (175) 0.533 95.667 20.733 22.777 (17.149) 1 209 2 6.739 (13.75) 0.628 (0.217) 23 42
F16 28 884 121 167 (168) 3.283 119.083 16.325 22.379 (24.177) 1 189 3 7.919 (14.12) 0.594 (0.217) 15 23
S17 15 439 75 112 (94) 2.817 62.983 14.167 16.347 (11.872) 1 177 3 8.512 (16.14) 0.599 (0.225) 12 17
F17 10 2276 100 219 (376) 1.65 189.667 19.1 28.224 (33.869) 1 291 3 7.597 (15.61) 0.609 (0.215) 9 30

the student to complete the next step. Students can en-
ter their inputs in the text area. Any variable or equa-
tion that is defined through this process is displayed on the
left side of the screen for reference. Pyrenees can also pro-
vide on-demand hints. The bottom-out hint tells the stu-
dent exactly how to solve a problem. Different from iSnap,
the Pyrenees tutor provides immediate feedback for correct-
ness/incorrectness whenever an answer is submitted.

Figure 6: The Pyrenees interface, with the problem
statement on the top, the variable window in the
middle, the equation window at the bottom, and
the dialog window on the right.

When training on Pyrenees, students were required to com-
plete 4 phases: 1) pre-training, 2) pretest, 3) training, and
4) post-test. During the pre-training phase, all students
studied the domain principles from a probability textbook.
The students then took a pretest which contained 10 prob-
lems. The textbook was not available. Students were not
given feedback on their answers, nor were they allowed to
go back to earlier questions. During the training phase, stu-
dents received the same 12 training problems in the same
order on Pyrenees. Each domain concept was applied at
least twice. The minimum number of steps needed to solve
each training problem ranged from 10 to 50. The number
of domain principles required to solve each problem ranged
from 3 to 10. Finally, all of the students took a post-test
with 20 problems. Both pretests and post-tests were graded
in a double-blind manner by a single experienced grader (not
the authors), and were normalized in the range of [0,1]. We
collected six semesters of data from Pyrenees, including Fall
2016, Spring 2017, Fall 2017, Spring 2018, Fall 2018, and
Spring 2019. The overall dataset comprises 102,948 data
points from 1190 students, with 207, 159, 215, 161, 261 and
187 from each semester, respectively. The detailed statistics
for Pyrenees dataset are shown in Table 2.

3.2.2 Quantized Learning Gain
In the context of Pyrenees, we applied all the models for
student learning gains prediction. The concept of learning
gain is formally defined as the difference between the skills,
competencies, content knowledge and personal development
demonstrated by students at two points in time [28]. we
used a qualitative measurement called Quantized Learning
Gain [24, QLG] to determine whether a student has bene-
fited from our learning environment. QLG is a binary quali-
tative measurement on students’ learning gains from pretest
to the posttest: high vs. low. To infer QLGs, students were
split into“low”,“medium”, and“high”based on whether they
scored below the 33rd percentile, between the 33rd and 66th
percentile, or higher than the 66th percentile in pre-test and
post-test respectively. Once a student’s pre- and post-test
performance groups are decided, the student is a“high”QLG
if he/she moved from a lower performance group to a higher
performance group from pre-test to post-test or remained in
“high”performance groups; whereas a“low”QLG is assigned
to the student if he/she either moved from a higher perfor-
mance group to a lower performance group from pre-test to
post-test, or stayed at a“low”or“medium”groups (as shown
in Figure 7). In Figure 7, solid lines represented the forma-
tion of the high QLG groups and dashed lines represents the
formation of the low QLG groups, and they will be coded
with “1” and “0” respectively for QLG prediction. As a re-
sult, we have 487 of 1190 students in the high learning gain
group, and the remaining 703 students in the low learning
gain group.

Figure 7: Quantized Learning Gain

Students usually need to spend 2-4 hours to complete the
Pyrenees tutor. Thus we are given the first up to n percent-
age of a student’s sequence data to predict student QLG,
and our goal is to predict whether the student will benefit
from our tutoring system in the end. As with the success
prediction in iSnap, we left-aligned all the students’ trajec-
tories by their starting times and our observation window
includes the data from the very beginning to the first n per-
cent of the whole sequence.



Table 2: Detailed data statistics for Pyrenees, including total steps, total time spent in hours, time intervals in
seconds, corresponding decayed time intervals, and the QLG labels distribution for each of the six semesters.

Semester
Total Steps Total Time (hours) Time Intervals (seconds) Decayed Time Intervals QLG Labels

min max median mean(std) min max median mean (std) min max median mean (std) mean (std) low high
F16 12 144 78 75 (25) 0.545 173.553 4.142 15.039 (25.56) 1 542136 31 731.799 (10876.82) 0.298 (0.11) 80 127
S17 59 152 88 94 (23) 0.642 240.661 2.643 17.492 (38.29) 1 861636 25 685.094 (14329.39) 0.314 (0.11) 59 100
F17 38 148 113 105 (25) 0.773 576.055 5.100 24.335 (64.29) 1 1287547 24 844.083 (20941.73) 0.313 (0.11) 105 110
S18 23 138 73 71(21) 0.587 135.597 2.682 9.431(18.33) 1 354272 27 486.703 (7021.54) 0.307 (0.10) 47 114
F18 26 162 86 88 (23) 0.679 165.559 4.024 14.914 (22.54) 1 438986 28 613.861 (8924.83) 0.301 (0.10) 98 163
S19 12 138 81 83 (21) 0.571 170.116 4.613 16.909 (27.56) 1 609641 28 738.505 (11439.02) 0.305 (0.11) 98 89

3.2.3 Four Models
In the task of early prediction of student QLG, we have
four models involved: LR, BKT, LSTM and T-LSTM. Note
that we do not compare RTP here because, in Pyrenees, stu-
dents’ responses are determined not only by their underlying
knowledge state, but also by the pre-designed turn-taking
nature of the system, which could obscure the temporal pat-
terns found by RTP.

Logistic Regression (LR): As with student success pre-
diction, the “Last Value” approach was applied to the non-
temporal LR for the task of predicting student learning
gains, as well as the early prediction setting. For exam-
ple, when the training data is the first 30% sequence, only
the last value before 30% of each sequence was applied for
both training and testing.

BKT: To train the BKT model for QLG prediction, two
steps were involved. In the first step, the probability of a
student being in the learned state on each KC at the last at-
tempt was learned from the BKT model. And in the second
step, the output of the first step was computed as features
for our prediction tasks. That is, the number of features
involved here equals to the total number of KCs involved.
The logistic regression was applied to predict QLG. As with
early prediction setting of student success, only the truncated
training sequences were applied to learn student learning
probabilities from BKT.

LSTM and T-LSTM: In order to better compare LSTM
and T-LSTM performance with BKT, the same two types
of features were applied here for QLG prediction: 1) the
assignment of KCs corresponding to each step, and 2) stu-
dent performance at each step, i.e, correct or incorrect. As
shown in Table 2, the time intervals of Pyrenees range from
1 second to 14 days across the six semesters, with µ = 0.307
and σ = 0.107 for overall decayed intervals. For both LSTM
and T-LSTM, we used one hidden layer with 64 hidden neu-
rons and also set the maximum length to accommodate the
longest sequence in our data. Again, only those events hap-
pening within our observation window from each sequence
were applied for training and testing of early prediction.

3.3 Evaluation Metrics
Our models in this work were evaluated using Accuracy, Pre-
cision, Recall, F1 Score, and AUC (Area Under ROC curve).
Accuracy represents the proportion of students whose labels
were correctly identified. Precision is the proportion of stu-
dents who were predicted to be successful by each model
who were actually in the successful (or high QLG) group.
Recall tells us what proportion of students, who will actu-

ally be unsuccessful (or in low QLG group), who were cor-
rectly recognized by the model. F1 Score is the harmonic
mean of Precision and Recall that sets their trade-off. AUC
measures the ability of models to discriminate groups with
different labels. Given the nature of the tasks, we mainly use
Accuracy and AUC to compare different models. Finally, it
is important to emphasize that all models were evaluated us-
ing semester-based temporal cross-validation for both tasks,
which just applied data from previous semesters for training
and is a much stricter approach for time series data than the
standard cross-validation.

4. RESULTS
4.1 Predicting Student Success in iSnap
Table 3 shows the performance of all models using the first-
6-minute training sequences to predict students’ success in
the programming task. The first column indicates the mod-
els including majority baseline model using simple Majority
vote, Logistic Regression (LR), RTP, LSTM and T-LSTM.
Columns 2-5 report all of the models’ performance for the
first-6-minute observation window. We evaluated the mod-
els on different metrics including Accuracy, Precision, Re-
call, F1 and AUC score; note that we ignored the Precision,
Recall and F1-measure of the simple Majority baseline. The
last column reports the mean AUC score of all models from
0 - 20 minutes, with standard deviations between brackets.
At first-6-minute, we can observe that T-LSTM outperforms
all the other models and it contributes the highest score on
every measurement except that the best Recall comes from
RTP. LSTM and RTP have very similar performance at first-
6-minute, and both of them get better performance than
LR except on Precision and AUC. On the other hand, when
comparing the overall AUC score among all the models, T-
LSTM still achieves the highest score. These results suggests
T-LSTM can better learn the difference between success-
ful/unsuccessful groups with the help of time-awareness.

Figures 8 (a) and (b) report Accuracy and AUC performance
respectively for all models predicting student success. For
each graph, we vary the observation window from the first
2 minutes up to 20 minutes. As shown in Table 1, students
generally take 10 to 60 minutes to complete the task and
thus we took a measurement every 2 minutes for the first
10 minutes to generate the early stage predictions for each
model. T-LSTM is in red, LSTM in blue, RTP in purple,
LR in green, and majority baseline in black. Both Figures 8
(a) and (b) show that T-LSTM was the best model for stu-
dent programming success prediction as it stays on the top
across all sizes of the observation window. It is not surpris-



Table 3: iSnap Student Success Prediction at First-6-minute and Overall Time (0 - 20 minutes)

Models
first-6-minute Overall

Accuracy Precision Recall F1-measure AUC AUC
Majority 0.6604 - - - 0.5000 0.5000
LR 0.6038 0.8333 0.5000 0.6250 0.6528 0.7123(±0.08)
RTP 0.6792 0.7195 0.8429 0.7763 0.6020 0.6948(±0.09)
LSTM 0.6792 0.7368 0.8000 0.7671 0.6222 0.6755(±0.09)
T-LSTM 0.7358 0.875 0.7000 0.7778 0.7528 0.7512(±0.07)

Note: best model on each metric in bold

ing that generally for all the models (except majority base-
line), the longer the observation windows, the better perfor-
mance. This is because the training data includes more and
more information and students get closer to their final state.
The fact that the best prediction comes from T-LSTM re-
ally suggests that during the self-paced programming task,
taking time-awareness into consideration brings us closer to
the truth of the student learning process, especially for the
early stage (first 10 minutes). However, this is only one
observation from one programming task and more research
is needed to understand the full nature of the benefits of
time-awareness.

4.2 Predicting Learning Gains in Pyrenees
Table 4 shows the performance of all models using the first-
30%-sequence to predict students’ QLG on the probability
tutor. The first column indicates the models including ma-
jority baseline model using simple Majority vote, LR, BKT,
LSTM, and T-LSTM. Columns 2-5 report the all of the mod-
els’ performance at the first-30%-sequence observation win-
dow. As with Table 3, we evaluated the models on Accu-
racy, Precision, Recall, F1 and AUC score and ignored the
Precision, Recall and F1-measure for the simple Majority
baseline. The last column reports the mean AUC score of all
models from 0 - 100% sequence, with standard deviations be-
tween brackets. When only applying the first-30%-sequence,
T-LSTM generates the best performance on every measure-
ment except Recall and F1, where the best Recall is from LR
and best F1 from LSTM. Comparing the two deep learning
models with classic BKT, we can observe that both LSTM
and T-LSTM outperform BKT across all metrics. For the
overall AUC performance, LSTM and T-LSTM have very
similar scores and are equally good. And still, they achieve
higher mean AUC scores than BKT, with a lower standard
deviation. Despite the similar overall performance from the
two deep learning models, the better early prediction of T-
LSTM suggests that time-awareness can help to understand
student learning states earlier.

The early prediction results for student learning gains in
probability are reported in Figure 9. BKT is in purple, and
as in Figure 8, T-LSTM, LSTM, and LR are in red, blue and
green, respectively. For each graph, the results are measured
at every 10% increment of the sequence length. Generally
speaking, the three models (BKT, LSTM and T-LSTM) gen-
erate better results as the sequence length increases. Both
Figures 9 (a) and (b) show that the two deep learning mod-
els outperform BKT for probability, no matter on Accuracy
or AUC score. While between LSTM and T-LSTM, there
is not a clear winner. Sometimes T-LSTM gets better per-

(a) Accuracy performance

(b) Area under ROC performance

Figure 8: Student Success Early Prediction on iSnap



Table 4: Pyrenees Student QLG Prediction at First-30%-minutes and Overall Time (0 - 100%)

Models
first-30%-sequence Overall

Accuracy Precision Recall F1-measure AUC AUC
Majority 0.5860 - - - 0.5000 0.5000
LR 0.5839 0.5893 0.9566 0.7293 0.5066 0.4957(±0.01)
BKT 0.6022 0.6113 0.8819 0.7221 0.5442 0.5690 (±0.03)
LSTM 0.6226 0.6188 0.9271 0.7422 0.5594 0.6013 (±0.02)
T-LSTM 0.6328 0.6322 0.8924 0.7401 0.5789 0.5950 (±0.02)

Note: best model on each metric in bold

(a) Accuracy performance

(b) Area under ROC performance

Figure 9: Student Learning Gain Early Prediction
on Pyrenees

formance on Accuracy (from 10% to 30%) while sometimes
LSTM slightly outperforms T-LSTM (from 40% to 70%).
Overall, LSTM and T-LSTM generate very similar results
on predicting student QLG; and T-LSTM generally has bet-
ter performance on the very early stage.

5. RELATED WORK
Student modeling has been widely and extensively explored
in previous research. For example, prior research has pro-
posed a series of approaches based on logistic regression in-
cluding Item Response Theory (IRT) [42], Learning Factor
Analysis [5], Learning Decomposition [4], Instructional Fac-
tors Analysis [7], Performance Factors Analysis [33], and
Recent-Performance Factors Analysis [14]. These models
were implemented with different parameters to better un-
derstand and model student learning and were shown to be
very successful.

BKT [10] is one of the most widely investigated student
modeling approaches. It models a student’s performance in
solving problems related to a given concept using a binary
variable (i.e., correct, incorrect) and continually updates its
estimation of the student’s learning state for that concept.
Many extensions of BKT have been proposed to capture the
complex and diverse aspects of student learning. Pardos
and Heffernan [31] explored individualized prior knowledge
parameters based on students’ overall competence. Their
results showed that the proposed model outperformed con-
ventional BKT in predicting students’ responses to the last
question at the end of the entire training. They later in-
troduced problem difficulty to BKT and found substantial
performance improvement in predicting student step-by-step
responses over BKT [32]. Additionally, Yudelson et al. [48]
parameterized student learning rates in BKT models and
the results showed that the new model outperformed con-
ventional BKT in predicting whether the students’ next re-
sponses were going to be correct/incorrect. Baker et al.[1]
investigated contextualized guess and slip rates to deal with
the issues of identifiability and model degeneracy commonly
observed in conventional BKT. Their results suggested that
the proposed models achieved better performance in predict-
ing students’ next-step response than BKT. However, in this
study, BKT-based models cannot be directly applied to our
open-ended programming tasks, because of the adversity of
mapping students’ time-various actions step by step.

In recent years, extensive research has been conducted on
deep learning models, especially Recurrent Neural Networks
(RNN) or RNN-based models such as LSTM. These deep re-
current models have shown great success in many domains



such as speech recognition [17], language translation [26],
video classification [29], and rainfall intensity prediction [46],
etc. Their success in all these domains has opened up a new
line of research in educational data mining [35, 41, 22, 45,
47, 24, 30]. Mao et al. [27] have shown that LSTM has supe-
rior performance on the early prediction of student learning
gains compared with classic BKT-based models. For the
task of predicting students’ responses to exercises, LSTM
was shown to outperform conventional BKT [35] and Per-
formance Factors Analysis [33]. However, RNN and LSTM
did not always have better performance when the simple,
conventional models incorporated other parameters. For ex-
ample, Khajah et al. [22] investigated what statistical reg-
ularities neural networks can exploit that BKT cannot, and
showed that BKT with relaxed assumptions can outperform
LSTM. Wilson et al. [45] also show that Bayesian extensions
of simple IRT-based models are also equal to or outperform
RNN-based models on a variety of datasets.

While most of the previous studies on student modeling fo-
cus on predicting students’ success and failure in the next-
step attempt, some research has used student-tutor inter-
action data to predict student post-test scores [13, 39]. In
this work, we explored the early prediction of student suc-
cess and learning gains for a computer-based programming
system and an intelligent tutoring system, respectively.

6. CONCLUSIONS
Early prediction of student learning state is a crucial compo-
nent of student modeling, since it allows tutoring systems to
intervene by providing needed support, such as a hint, or by
alerting an instructor. Both prediction tasks involved in this
work are challenging because: 1) the open-ended nature of
iSnap hinders the prediction of student final success, and 2)
it is extremely hard to track whether a student benefits from
a tutoring system or not even in a well-defined domain like
Pyrenees. In this work, we investigated the effectiveness of a
time-aware model, T-LSTM on the two different prediction
tasks and compared it with other student modeling methods
including LSTM, RTP, logistic regression models, and BKT.
Our results show that T-LSTM consistently outperforms the
other models such as LSTM, RTP, and non-temporal logistic
regression on the task of predicting student success in iSnap,
at all observation windows from first 2 minutes to 20 min-
utes. On the other hand, for the task of predicting student
learning gains in Pyrenees, T-LSTM does not outperform
the other models. More specifically, T-LSTM outperforms
LSTM and BKT on the early stage with only 30% of the stu-
dent sequences, and afterward time-awareness does not help
much when more data is available. One possible explana-
tion behind this is that in a well-defined domain, the whole
learning process is mainly driven by the tutor, which makes
the elapsed time less important to student learning gains es-
pecially when the step-level performance is available. How-
ever, in the open-ended programming environment, students
are self-prompted to complete an assignment; and therefore
the amount of time they stayed in a state really matters to
understand their learning. And therefore, T-LSTM can gen-
erate better performance by modeling the student dynamics
of knowledge in continuous time than other methods in dis-
crete timesteps.

One limitation of this work is that we only explored one im-

portant student modeling task in each learning environment.
An important direction for future work is to investigate the
time-aware model on other student modeling tasks in both
learning environments to determine whether the same re-
sults will hold. In addition, we are planning to employ
the time-awareness to other models such as RTP to explore
whether it continues to support improvement for the open-
ended programming environment. Also, this work will be
applied to larger groups of students and longer program-
ming tasks, along with integration of more informative fea-
tures such as intervention and demographic features to de-
velop more robust models. Additionally, we plan to expand
our evaluations to longer programs with more complex con-
structs from both text-based and block-based programming
languages.
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