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Abstract

We consider the task of automated theorem proving, a key Al task. Deep learning
has shown promise for training theorem provers, but there are limited human-
written theorems and proofs available for supervised learning. To address this
limitation, we propose to learn a neural generator that automatically synthesizes
theorems and proofs for the purpose of training a theorem prover. Experiments on
real-world tasks demonstrate that synthetic data from our approach improves the
theorem prover and advances the state of the art of automated theorem proving in
Metamath. Code is available at https://github.com/princeton-vl/MetaGen.

1 Introduction

Automated theorem proving aims to automatically generate a proof given a conjecture (the target
theorem) and a knowledge base of known facts, all expressed in a formal language. Automated
theorem proving is useful in a wide range of applications, including the verification and synthesis of
software and hardware systems (Gu et al., 2016; Darvas et al., 2005; Kern & Greenstreet, 1999).

Automated theorem proving boils down to a search problem: finding the sequence of symbol
manipulations that generate a valid proof. The fundamental challenge lies in the explosion of search
space, in particular with long proofs and large knowledge bases. The success of theorem proving thus
relies on effective heuristics that guide the prover by deciding the next step the prover should take.

Deep learning has emerged as a promising approach to learning search heuristics in an automated
theorem prover (Irving et al., 2016; Whalen, 2016; Loos et al., 2017; Bansal et al., 2019a; Lee et al.,
2019). The search process fundamentally reduces to a sequence of actions on manipulating a set of
symbols. Thus a deep network can be trained to select the best action at each step.

A key challenge is how to train such networks. Prior work has used human-written theorems and
proofs to perform imitation learning and has shown promising results (Loos et al., 2017; Yang &
Deng, 2019; Whalen, 2016; Paliwal et al., 2019). The training data consists of theorems and proofs
manually written by human experts in a formal language, and the prover is trained to imitate the
proof steps demonstrated by humans.

However, relying on human-written data has a major drawback: such data has limited availability and
scalability. Writing theorems and proofs in a formal language requires highly specialized knowledge
and skills, including mathematics, computer programming, and proficiency in the particular formal
language. For a CS graduate student, it can take months to master a new formal language such as
Mizar, Metamath or HOLight (Wiedijk, 2003), after which it can take days to formalize a single page
of a math textbook. This makes it impractical to crowdsource human-written proofs at large scale.

In this paper, we propose to train a theorem prover using synthetic data. The basic idea is to construct
a generator that automatically synthesizes new theorems and their proofs, which serve to augment
human-written data for training the prover.
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Figure 1: Left: A proof task. Middle: The proof tree of the theorem 3eqtri. Each leaf node is a
hypothesis and each internal node corresponds to a proof step. Right: The overview of our approach.

To generate a new theorem and its proof, the generator performs a sequence of symbol manipulations,
similar to a prover. It repeatedly applies inference rules on a set of existing theorems and combines
their proofs to form the proof of the new theorem. It is important to note that despite the similarity of
operations, the generator has a much easier task than the prover. The generator just needs to generate
some new theorem of its own choice, whereas the prover needs to find the proof for a particular target
theorem specified by someone else.

One challenge of generating synthetic theorems is that there are infinitely many possibilities but the
prover can only use a finite amount of them during training. Not all theorems are equally useful as
training data. Thus a key question is how to generate synthetic theorems that are more useful. To this
end we make the generator learnable by parameterizing it with deep networks.

We hypothesize that the generated data will be more useful if they are similar to human-written
data. Therefore we use human-written data to train a generator. We consider two scenarios. If the
human-written data consist of both theorem statements and their proofs, we train the generator to
follow the proof steps in the forward direction, so that a well-trained generator would derive theorems
humans tend to derive. If the human-written data consist of only theorem statements but not their
proofs, i.e. no human actions to imitate, we use reinforcement learning to let the generator discover
good actions that lead to synthetic theorems that are similar to the human-written theorems. To
measure similarity between synthetic theorems and human theorems, we use a discriminator trained
to distinguish the human theorems from synthetic ones, similar to GANs (Goodfellow et al., 2014).

We instantiate our approach in Metamath (Megill & Wheeler, 2019), a popular language for formal
mathematics, and with Holophrasm (Whalen, 2016), a Metamath neural prover. We propose a neural
theorem generator called “MetaGen”, which synthesizes new theorems and their proofs expressed
in the formalism of Metamath. To the best of our knowledge, MetaGen is the first neural generator
of synthetic training data for theorem proving. Experiments on real-world Metamath tasks show
that synthetic data from MetaGen can help train better provers, advancing the state of art in theorem
proving on Metamath.

2 Related Work

Automated theorem proving Our work is related to prior work on learning to prove theo-
rems (Whalen, 2016; Gauthier et al., 2018; Bansal et al., 2019a; Yang & Deng, 2019; Loos et al.,
2017; Balunovic et al., 2018; Kaliszyk et al., 2018; Bansal et al., 2019b; Polu & Sutskever, 2020).
Our work directly builds off of Holophrasm (Whalen, 2016), a neural-augmented theorem prover for
Metamath. It contains three deep networks to generate actions and initial values to guide proof search
following the UCT algorithm (Kocsis & Szepesviri, 2006). Polu & Sutskever (2020) also build
the theorem prover for Metamath by adopting the GPT-like network architectures and pretraining
methods and generating proof steps autoregressively.

TacticToe (Gauthier et al., 2018), DeepHOL (Bansal et al., 2019a) and ASTactic (Yang & Deng, 2019)
are learning-based theorem provers based on interactive theorem provers HOL4 (Slind & Norrish,
2008), HOL Light (Harrison, 2009) and Coq (Bertot & Castéran, 2004) respectively. Paliwal et al.
(2019) improves DeepHOL by representing formulas as graphs. Loos et al. (2017) proposes to learn
clause selection by deep learning inside the first-order logic prover E (Schulz, 2002).



All of these methods are orthogonal to our approach because all of their provers are learned from
human-written training data, whereas our prover is trained from human data augmented with synthetic
data. Our contribution is on the generation of synthetic data and using such data to train a prover.

Kaliszyk et al. (2018); Bansal et al. (2019a,b); Balunovic et al. (2018) use reinforcement learning
to train provers with only human-written theorems or SMT conjectures but not proofs. During
training, a prover collects rewards only upon finding full proofs. In contrast, we always train our
prover using imitation learning. Under the same setting with only human-written theorems but not
proofs, we use reinforcement learning to train our generator, whose reward is the similarity between
a generated theorem and human-written theorems, as measured by an adversarial discriminator. Our
reinforcement learning task is much easier because the reward is continuous and there are many ways
to generate theorems similar to human-written ones.

Synthetic theorem generation Zombori et al. (2019); Fawzi et al. (2019) construct theorem provers
by training on randomly generated synthetic theorems and evaluate the learned prover on synthetic
theorems. The main difference of our approach is that our generator is optimized through learning, as
opposed to random generation.

Kaliszyk et al. (2018); Jakubiv & Urban (2019); Urban et al. (2008); Kaliszyk et al. (2014); Piotrowski
& Urban (2018) train theorem provers iteratively. They repeatedly apply the trained prover on existing
human theorems and generate new machine proofs to train the prover further. In these methods, only
new proofs are synthesized and the synthetic proofs are only for existing human theorems; no new
theorems are synthesized. In contrast, our approach synthesizes both new theorems and new proofs
which could cover a much larger space of possible derivations than the proofs of existing human
theorems.

Urban (2004); Kaliszyk & Urban (2015); Kaliszyk et al. (2015) extract proof tasks from the proofs
of human-written theorems, such as the intermediate inference steps or their variants. That is, they
extract "sub-proofs" from existing proofs. In contrast, we generate entirely new theorems and new
proofs that are not part of any existing proofs.

Our work is also related to the line of work on conjecturing (Chvalovsky et al., 2019; Urban &
Jakubiiv, 2020; Colton, 2012), which aims to generate mathematical conjectures automatically. The
generated conjectures are not necessarily true, and their proofs are not required. In contrast, each of
our synthetic theorem is guaranteed to be correct and its proof is automatically available.

Automatic goal generation by self-play Our work is similar to the line of work in reinforcement
learning (Florensa et al., 2018; Sukhbaatar et al., 2017, 2018; Durugkar & Stone, 2018) that deploys
two agents in adversary self-play, where one agent to generate tasks for another agent to accomplish.
We pursue similar ideas in the new context of theorem proving by learning to generate synthetic
theorems to train the prover. Also of note is that we have no adversarial self-play. The goal of the
generator is to discover novel theorems similar to human-written ones, not to beat the prover.

Recently, Huang (2019) introduced a two-player game which encourages players to learn to predict
the consistency of logical formulas by self-play. These two players behave symmetrically and
compete with each other in the game. In contrast, our generator and prover execute different tasks,
and are co-operative. In addition, their game remains a theoretical proposal without any empirical
validation, whereas we have performed experiments on large-scale data.

3 Background on Metamath

Metamath is a language for developing formal mathematics. It is one of the simplest formal systems.
It has only one inference rule, called substitution, but is universally applicable in formalizing a large
portion of mathematics ! and different types of logic (Megill & Wheeler, 2019).

Expression and theorem A basic building block of Metamath is expressions. An expression is a
sequence of tokens that follows a set of grammar rules called “generating axioms”. A token is either a
constant or a variable. For example, = + 2 x y = y + (z + y) is an expression, where x and y are two
variables. Each expression corresponds to a unique parse tree where each internal node represents a
generating axiom and each leaf node is a token.

'ts largest knowledge base, set .mm ranks 3rd in the "Formalizing 100 Theorems" challenge (Wiedijk, 2019).



A theorem consists of a set of expressions, one expression as its assertion and zero or more expressions
as its hypotheses. The theorem can be understood to state that the hypotheses (e.g. 22 = 1 and z > 0)
entail the assertion (e.g. x = 1). Some examples of theorems are shown in Figure 1.

Substitution The only inference rule in Metamath is substitution, which transforms one expression
by replacing each variable with a non-empty new expression. For example, the expression A = B
can be transformed to £/ + F' = C * D by the substitution A — F 4+ F and B — C * D.

Given two expressions a and b, we say b can reach a or a is reachable from b if there exists a
substitution that transforms b to a. This is equivalent to saying that the parse tree of b can be obtained
by “trimming” the parse tree of a—repeatedly picking an internal node, removing all its descendants,
and replacing it with a variable node. Reachability can be checked by comparing parse trees; an
algorithm is described in Appendix B.

Proof step A proof step is the basic unit of reasoning. A proof step in Metamath has two parts: (1) a
theorem and (2) a substitution that maps each variable in the theorem to a new expression. A proof
step serves to establish entailment between expressions based on the invoked theorem. For example,
let ¢ be the theorem over1i, with the hypothesis A = B and the assertion (A F' C') = (B F (),
where {A, B, C, F'} is the set of variables in ¢. Let ¢ be a substitution that maps each variable in ¢ to
anew expression: A — 2, B — (1+ 1), C — 2 and F' — +. By replacing variables in ¢ with their
corresponding expressions given by ¢, we have a new hypothesis 2 = (1 + 1) and a new assertion
(24 2) = ((1+ 1) 4 2) This proof step (¢, ¢) establishes that the new hypothesis 2 = (1 + 1) entails
the new assertion (2 + 2) = ((1 + 1) + 2) based on theorem ¢. The new assertion is called the
conclusion and the new hypothesis is called the precondition. Because a theorem has one assertion
and zero or more hypotheses, a proof step thus has one conclusion and zero or more preconditions.

Proof A theorem is proved if we can construct a proof tree that connects the hypotheses of the
theorem to its assertion through entailment. The root node of a proof tree is the assertion of the
theorem. Each leaf node of the tree is either a hypothesis of the theorem or empty. Each internal
node of the tree is an expression and is associated with a proof step that uses an pre-existing theorem,
together with an appropriate substitution, to establish the entailment of this internal node by its
child nodes. Note that if an internal node has an empty child, it means that the proof step has no
preconditions. An example proof tree is shown in Figure 1.

A proof is a sequence of proof steps that can be obtained by traversing a proof tree in pre-order. This
linearized proof is an equivalent to the tree representation. In this work we will use “proof” and
“proof tree” interchangeably.

Corpus A corpus consists of a set of axioms and a sequence of theorems and their corresponding
proofs. The proof of each theorem uses only the axioms and the preceding theorems.

4 Approach

Task setup We use the standard theorem proving setup in prior work Irving et al. (2016); Bansal
et al. (2019a); Whalen (2016). A proof task consists of a target theorem (or “target” in short) to be
proved and a set of background theorems to be used as known facts. For each theorem in a corpus,
we construct a proof task using the theorem as the target theorem and all preceding theorems (i.e. the
theorems that humans had available when they were proving the target theorem) as the background
theorems. In other words, each theorem in the corpus corresponds to a unique proof task that uses
the theorem as the target. We randomly split all theorems into three disjoint sets: a training set, a
validation set, and a test set. Accordingly, we have three corresponding sets of proof tasks using the
theorems as targets. More details about this setup in Appendix A.

4.1 Generator

We propose MetaGen, a neural generator that performs forward reasoning to synthesize theorems. It
takes a set of training proof tasks as input and outputs a set of synthetic theorems. These synthetic
theorems are then combined with original training proof tasks to train the theorem prover (as shown
in the right of Fig. 1). The basic operation is generating a proof step—selecting an existing theorem
and constructing a substitution. From this single proof step we can derive a new theorem. Now, we
can treat this new theorem as an existing theorem and repeat to generate additional new theorems.



One issue requiring special handling is avoiding generating “meaningless” theorems. A meaningless
theorem is one that includes falsehood in its hypotheses—as a result it is always provable regardless
what the assertion says. It is possible to generate such a theorem if we allow arbitrary substitutions in
constructing a proof step. For example, the hypothesis A = B can be substituted into 1 = 2. Such
theorems are valid but unlikely to be useful as training data.

To avoid meaningless theorems, in constructing a proof step, we require that each new hypothesis
produced by substitution must be identical to the full expression of a node in an existing proof tree
(either the root, a leaf, or an internal node), such as the five expressions in yellow boxes in Fig. 1.
This prevents introducing false expressions as hypotheses, provided that the existing proofs have no
false expressions. See Appendix D about more discussion on meaningless theorems

A second issue is generating new theorems with multi-step proofs. A single proof step gives a shallow
tree. To generate theorems with longer proofs, we “graft” this shallow tree with existing proof trees
or subtrees. For a leaf node e of the shallow tree, we can replace it with an existing proof tree (or
subtree) whose root node is also e. For example, suppose the shallow tree proves that 22 = 1 and
x > 0 entail 7 = 1, and there already exists another tree proving that 2> > 0 entails z > 0. Then we
can join the two trees to generate a new tree proving that z3 > 0 and 2 = 1 entail x = 1.

To generate theorems and proofs more similar to human-written ones, we impose an additional
constraint that a synthesized proof step can only invoke a theorem that has appeared as a background
theorem in a training proof task. This is because in the ground-truth proof for a proof task, only the
background theorems are invoked in proof steps. This means that we do not invoke any synthesized
theorems. To implement this constraint, the generator constructs proof steps using a restricted set of
“invocable” theorems pre-specified as input to the generator.

Initializing existing proof trees The generator takes as input a set F of existing theorems and
optionally their proof trees, and a set I of invocable theorems, where E and I are the union of the
target and background theorems of the training proof tasks respectively. To enable tree grafting, it
first builds a set G of existing proof trees. For every theorem in FE, if its proof tree is available, for
every node e in its proof tree, we add to G the subtree that is rooted at e and contains all nodes below
e. Otherwise, we add to G every hypothesis of this theorem as a single node proof tree.

Two proof trees are considered equivalent if they have the same root node and the same leaf nodes,
i.e. they prove the same theorem. Among equivalent trees, we only keep the smallest one. As a result,
G contains all sub-proof trees from all the existing theorems that can be grafted to a new proof step.

Generating new theorems To generate a new theorem, the key procedure is to construct a proof step
and a set S of existing proof trees such that .S is a subset of G and each precondition of this proof
step matches the root node of a proof tree in .S. This is achieved in three steps as follows:

1. Pick an invocable theorem ¢ € I according to the frequencies of invocable theorems being
used in the proofs of the existing theorems.

2. Initialize the set S of proof trees as empty. Initialize the substitution ¢ for ¢ as empty. For
each hypothesis h of theorem ¢, apply the current substitution ¢ to hypothesis h to obtain
the transformed expression h(¢), find all compatible proof trees, those whose root nodes are
reachable from h(¢)—h(¢) can be transformed to the root nodes by substitution, which can
be determined by comparing parse trees—and perform the following:

* Select a compatible proof tree c using a relevance network (to be described later). For
each variable that has not been substituted in h, update ¢ by assigning the variable a
substitute expression to match the root of c¢. Add tree c to set S.

If no compatible proof tree exists, go to Step 1 and rebuild this proof step from scratch.

3. If a variable appears in a hypothesis of ¢, its substitution has been determined by matching
this hypothesis with the root of a compatible proof tree. For the remaining variables that
appear exclusively in the assertion of ¢, use a subtitution network (to be described later) to
generate substitute expressions for them.

This proof step gives a one-step proof tree, which we expand to a multi-step proof tree by grafting the
trees in set S onto its leaves. This multi-step proof tree is added to G for subsequent generation. We
repeat this procedure to get a set of synthetic theorems (pseudo-code in Appendix C).



Relevance network of generator The relevance network in step 2 is a deep network trained to pick
a proof tree from a set of candidates by scoring and ranking them. It uses the same design as the
relevance network in Holophrasm Whalen (2016) (see Sec. 4.2) but has different inputs and purposes.
It takes two sequences of tokens as input. One input sequence represents the root and leaf nodes
of a proof tree. The other sequence consists of two parts. One part represents the leaf nodes of the
proof trees that have been selected for preceding hypotheses (the hypotheses are processed one by
one). The other part represents the assertion and hypotheses of the invocable theorem transformed by
the current substitution, except for the current hypothesis to be processed which is represented by a
special token. Two GRU encoders convert each input sequence to an embedding vector, followed by
a bilinear layer to output a score from the two vectors. In practice, we limit the number of candidate
trees to 2000 for tractability.

Substitution network of generator The substitution network generates the substitution for a tar-
get variable of an invocable theorem. It uses the same design as the “generation network™ in
Holophrasm Whalen (2016) (see Sec. 4.2) but has different inputs and purposes. It is a sequence-to-
sequence model with the encoder-decoder GRU network. It takes as input the sequence of tokens that
represents the assertion of the invocable theorem and the leaf nodes of the existing proof trees that
have been selected to construct a proof step. The target variable is represented by a special token.
The network outputs a sequence of tokens, sampled one by one based on the softmax probabilities.

Generator training We propose two strategies to train the relevance network and the substitution
network, depending on the availability of human-written proofs.

Our generator can work without learnable parameters if we remove the two deep network and sample
new proof steps by randomly picking existing proof trees and generating substitutions. We call such
a generator as MetaGen-Rand.

Given human-written proofs, we train MetaGen-IL by imitation learning. Given a proof step (¢, ¢) in
a human-written proof tree s, each transformed hypothesis h(¢) of theorem ¢ is an internal node of
tree s and is the root of a subtree; we train the relevance network to imitate this step by selecting this
subtree among a large set of candidates.

For a variable f that appears in the assertion but not the hypotheses of ¢, the substitution network is
trained to produce its human-written substitute expression ¢(f).

In the case of only human-written theorems but not their proofs, we can no longer perform imitation
learning. We instead use reinforcement learning. The objective is to learn actions to maximize the
similarity between the generated theorems and human-written theorems. We propose two reward
functions to evaluate a generated theorem and update the two deep networks toward the higher
rewards via the Reinforce algorithm Williams (1992). The first reward function is the cross-entropy
of a generated theorem given by a language model trained from the human-written theorems. The
generator from this reward is called MetaGen-RL-LM.

The second reward function is given by an adversarial loss similar to GAN (Goodfellow et al.,
2014)—a binary classifier to distinguish the human-written theorems from the generated ones. It
is pretrained to separate human-written theorems from the theorems generated by MetaGen-Rand,
and then updated on-the-fly to separate human-written theorems from the theorems generated by the
current generator. The generator is updated to minimize the adversarial loss. We call this generator
MetaGen-RL-Adv.

More details about the deep networks of the generator are presented in Appendix F.1.

4.2 Prover

We use Holophrasm (Whalen, 2016) as our theorem prover and augment its training with synthetic
data. Given a proof task, Holophrasm conducts backward reasoning to prove the target theorem as
described in Appendix E. For completeness we briefly summarize how Holophrasm works and refer
the reader to Whalen (2016) and Appendix E for more details.

Holophrasm uses Monte Carlo Tree Search (MCTS) to explore multiple branches of actions to find a
proof tree. It involves three learnable deep networks: a payoff network to determine which branch is



Table 1: Performance of the relevance network of the prover on validation data of iset .mm (top two
rows) and set .mm (starting from the third row).

Human Synthetic Generator Model Top-1 Top-5 Top-20 MRR
proofs proofs

7123 (ISET) 0 - RELEVANCE 43.27 69.57 89.68 0.5535

7123 (ISET) IM MetaGen-IL RELEVANCE 45.10 71.00 89.46 0.5699

0 0 - TE-IDF 1428 21.13  32.55 0.1877

0 0 - RELEVANCE  0.96 5.33 15.67  0.0445

0 300K MetaGen-Rand RELEVANCE 24.22 37.27 4992 0.3093

0 300K MetaGen-RL-LM  RELEVANCE 24.74 37.66 54.22 0.3182

0 300K MetaGen-RL-Adv.  RELEVANCE 25.07 39.33  50.23  0.3242

2179 (10%) 0 - RELEVANCE 41.24 67.56 86.84 0.5356

2179 (10%) IM MetaGen-Rand RELEVANCE 45.44 70.13 88.33  0.5692

2179 (10%) M MetaGen-IL RELEVANCE 46.10 71.12 89.38 0.5772

4358 (20%) 0 - RELEVANCE 47.02 72.45 89.48 0.5870

21786 (100%) 0 - RELEVANCE 51.52 78.56 93.41 0.6367

21786 (100%) 10M MetaGen-Rand RELEVANCE 52.08 77.76 92.83  0.6375

21786 (100%) 10M MetaGen-IL RELEVANCE 53.20 78.73 93.13 0.6474

more promising, a relevance network to pick a background theorem to construct a proof step, and a
substitution network® to generate substitutions.

4.3 Applicability to other formal systems

As is standard in related work Loos et al. (2017); Irving et al. (2016); Kaliszyk et al. (2018); Yang &
Deng (2019), we instantiate and validate our approach on a single formal system, but our approach is
applicable to other formal systems such as HOL Light, Coq and Isabelle.

Our approach can be applied to a new system under the following conditions: (1) the search heuristics
of the theorem prover can be trained by imitating ground truth proofs; (2) the proof of a theorem is a
tree of intermediate goals, and a proof steps demonstrate the entailment of a goal by its children; (3)
an intermediate goal in the proof is equivalent to a legal theorem. These conditions are satisfied by
the formal systems mentioned above.

To adapt our approach to a new system, the main effort is to rewrite the procedure of sampling proof
steps, by replacing substitution with inference rules of the new system. HOL Light, Coq and Isabelle
only provide tactics as inference rules to decompose a goal into subgoals for backward reasoning.
However, to generate new theorems, we need to execute the corresponding reverse tactics, which are
unavailable in their ML environments. We leave the experiments on these systems as future work.

5 Experiments

Dataset We experiment on two Metamath knowledge bases: iset.mm and set.mm. iset.mm
formalizes intuitionistic logic and contains 463 axioms and 8916 theorems, which give rise to 8916
corresponding proof tasks. These proof tasks are divided into 7123 training tasks, 890 validation
tasks and 903 test tasks. We use the same version of set .mm as Whalen (2016). It formalizes the ZFC
set theory and contains 1099 axioms and 27218 theorems, which give rise to 27218 corresponding
proof tasks. These proof tasks are divided into 21786 training tasks, 2712 validation tasks and 2720
test tasks.

Training protocol On set .mm, we control for the number of human proofs provided during training.
Specifically, we compare our approach to baselines while including either 0%, 10%, or 100% of the
human proofs. We also report the baseline with 20% human proofs for comparison.

2called the generation network in Whalen (2016) but renamed here to avoid confusion with the generator.



Table 2: Performance of the substitution network of the prover on validation data of iset.mm (top

two rows) and set .mm (starting from the third row).

Human proofs  Synthetic proofs Generator Model Prob  Accuracy
7123 (ISET) 0 - SUBSTITUTION 0.1723 49.45
7123 (ISET) IM MetaGen-IL SUBSTITUTION 0.2554 57.81

0 0 - LAUGUAGE MODEL  0.0032 9.06
0 0 - SUBSTITUTION 0.0008 0.01
0 300K MetaGen-Rand SUBSTITUTION 0.0103 29.68
0 300K MetaGen-RL-LM SUBSTITUTION 0.0181 24.33
0 300K MetaGen-RL-Adv SUBSTITUTION 0.0186 31.38
2179 (10%) 0 - SUBSTITUTION 0.2738 58.91
2179 (10%) 1M MetaGen-Rand SUBSTITUTION 0.3203 61.78
2179 (10%) IM MetaGen-IL SUBSTITUTION 0.3710 66.56
4358 (20%) 0 - SUBSTITUTION 0.3765 67.07

21786 (100%) 0 - SUBSTITUTION 0.6142 81.57

21786 (100%) 10M MetaGen-Rand SUBSTITUTION 0.6439 81.85

21786 (100%) 10M MetaGen-IL SUBSTITUTION 0.6847 83.90

Table 3: Number of theorems proved on test data of iset.mm (top two rows) and set .mm (starting
from the third row). {: without removing the trivial proof steps from the training data of the relevance

network.

Human Synthetic Generator Prover Test proofs
proofs proofs found

7123 (ISET) 0 - HOLOPHRASM 378
7123 (ISET) 1M MetaGen-IL HOLOPHRASM 398
0 0 - TE-IDF & LM 312
0 0 - HOLOPHRASM 219
0 300K MetaGen-Rand HOLOPHRASM 346
0 300K MetaGen-RL-LM HOLOPHRASM 351
0 300K MetaGen-RL-Adv HOLOPHRASM 357
2179 (10%) 0 - HOLOPHRASM 454
2179 (10%) 1M MetaGen-Rand HOLOPHRASM 457
2179 (10%) 1M MetaGen-IL HOLOPHRASM 472
4358 (20%) 0 - HOLOPHRASM 476
21786 (100%) 0 - HOLOPHRASM(’16) 388
21786 (100%) 0 - HOLOPHRASM 557
21786 (100%) 10M MetaGen-Rand HOLOPHRASM 565
21786 (100%) 10M MetaGen-IL HOLOPHRASM' 574
21786 (100%) 10M MetaGen-IL HOLOPHRASM 600

Implementation details We train the generator on the training set and use the trained generator to
generate synthetic theorems and proofs. The prover is trained on both training and synthetic proofs.

On iset.mm, we generate 1M unique synthetic theorems. On set.mm, we generate 300K unique
theorems for the setting of 0% of human proofs (after discarding any duplicates) and 1M unique
theorems for 10% of the human training proofs. We generate 10M theorems for the setting of 100%
of human proofs, by generating 1M unique theorems a time (maximum allowed by memory limit)
and repeating 10 times.

During the training of the relevance network of the prover, we filter out the "trivial" proof steps. A
goal is trivial if it is reachable from the assertion of a background theorem b and b has no hypotheses,
because this goal can be decomposed by b without generating any new subgoals. By removing the
training proof steps that have trivial goals when we train the relevance network, the performance of
the prover is improved as shown in Tab. 3.

Please refer to Appendix F for more details about the implementation and baselines.



5.1 Results

To validate the effectiveness of our theorem generator, we evaluate provers trained on the synthetic
data and compare them against various baselines.

Relevance network of prover We evaluate how synthetic data can improve the relevance network
of Holophrasm. The relevance network assigns a score to each candidate background theorem. We
use two metrics: (1) top-k accuracy defined as the percentage of times a groundtruth background
theorems is ranked in the top k and (2) mean reciprocal rank (MRR) of every groundtruth background
theorem among all candidates of its corresponding proof step. Both of them are the higher the better.

We evaluate the relevance network combined with different generators. We also evaluate with tf-idf
similarity between sequences of tokens. In Tab. 1, we see that synthetic data brings significant
improvement in all settings and the best performance is achieved with our trained generators.

Substitution network of prover We evaluate how synthetic data can improve the substitution
network of Holophrasm. The substitution network predicts the probability of each token at each
position under teacher forcing. We use two metrics: (1) accuracy, defined as the percentage of
times the tokens in the groundtruth substitutions have the highest probabilities and (2) the average
probability to generate the groundtruth substitutions normalized by its length. Tab. 2 reports the
results, including the result of a language model. In all settings, synthetic data brings significant
improvement. The best performance is achieved with our trained generators.

Prover To evaluate the prover as a whole, we follow the same protocol of Whalen (2016) (more
details in Appendix F.2) and report the number of theorems proved. We compare with the original
Holophrasm prover proposed by Whalen (2016) trained by imitation learning on human-written
proofs only. With zero human-written proofs for prover training, we also evaluate TF-IDF & LM, an
ablated version of Holophrasm that needs no training proofs—we remove the relevance network and
instead pick a background theorem using tf-idf similarity; we replace the substitution network with a
language model of theorem statements.

As shown in Tab. 3, the performance of the prover shares the same pattern as the relevance and
substitution network. On both iset.mm and set . mm, the provers trained on synthetic data consistently
prove more theorems than the provers trained on human proofs only. On set.mm, with 10% human
proofs, the use of synthetic proofs almost achieve the same effect by doubling the number of human
proofs (472 vs 476 proved theorems). The provers trained with learnable generators perform better
than the provers trained with MetaGen-Rand.

Our GPU re-implementation of Holophrasm finds 557 proofs trained on 100% of human proofs, more
than the number reported in Whalen (2016). We believe this is due to the fact that our prover runs
faster on GPUs.

By removing the trivial proof steps from the training data of the relevance network of the prover, the
number of proved theorems on the test set increases from 574 to 600.

Polu & Sutskever (2020) demonstrate significant improvement on theorem proving of the set .mm
benchmark by using very large Transformer (Vaswani et al., 2017) models. Their model can prove
29.22% of test theorems (our percentage is 22.06%). We note a couple potential differences in
experimental setup, which may make our results not directly comparable. They appear to use a
different version of the set .mm knowledge base which has about 38k proofs (ours has 27218 proofs);
their evaluation protocol may be different (our prover has a time limit of 5 minutes for each run while
their time limit is not mentioned).

Please refer to Appendix G for the examples of synthetic theorems.

6 Conclusion

We have proposed a neural generator that automatically synthesizes theorems and proofs for the
purpose of training a theorem prover. Experiments on real-world tasks have demonstrated that
synthetic data from our approach improves the theorem prover and advances the state of the art of
automated theorem proving in Metamath.
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Broader Impact

Our work addresses automated theorem proving. A successful automated theorem prover can help us
write programs that are provably correct, which is essential to safety-critical applications, such as
software for autonomous driving. On the other hand, since the correctness of the found proofs and
synthesized programs relies on the correctness of the underlying theorem prover, bugs in the prover
can lead to catastrophic failure.
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Appendix

A. Task setup

We use the standard theorem proving setup in prior work Irving et al. (2016); Bansal et al. (2019a);
Whalen (2016). Suppose we have a sequence of theorems (¢1, ta, ..., t,, ), where each theorem appear
at the order it is proved by mathematicians. For each theorem ¢;, we construct a proof task that
proving ¢; (as the target theorem) using all its preceding theorems (1, ..., t;—1) (as the background
theorems), such that the prover has the same set of known facts as mathematicians to prove ¢;. Then
we randomly split the five proof tasks into three sets for training, validation and testing.

It is important to note that a theorem can serve both as a target theorem in the test set and as a
background theorem in the training set. This is a standard setup and is not “training on the test
set”—a background theorem is used as a known fact in a training proof task and only its statement is
provided, not its proof; seeing the statement of a background theorem during training does not tell us
how to prove it during testing.

B. Checking reachability between expressions

For an expression e, let . be the root node of the parse tree of e. Each node in the parse tree represents
either a generating axiom (if internal node) or a token (if leaf node). We check if expression b can
reach expression a by comparing their parse trees 7, and r; through the following procedure:

1. Initialize the substitution ¢ as empty.
2. Compare the two root nodes.

* If root node r;, represents a variable f, do the following:
— If the substitute expression ¢(f) is not determined, let ¢(f) < r,. Return True
(i.e. reachable).
- If ¢(f) = rq, return True (i.e. reachable) because we can replace f with .
— Otherwise return False (unreachable), because r, conflicts with the current substi-
tution ¢.
* If the two root nodes represent the same generating aixom or constant, repeat Step 2 to
check if each child of r, is reachable from the corresponding child of 7.
— If every child of r, is reachable from the corresponding child of 7, return True.
— Otherwise return False.
* Otherwise return False, because the two root nodes have different values and they can
not be matched.

This procedure is summarized in Algorithm 1.
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Algorithm 1 Function Reachable(ng, ng, ¢)

Input: node n,, node n;, substitution ¢
Output: True if ny could reach n,, otherwise False
if n;, represents a variable f then
if f in ¢ then
if o(f) = n, then
return True {Consistent with the current substitution }
else
return False {Conflict with a preceding branch}
end if
else
&(f) = ng {Variable f should be replaced by n, }
return 7True
end if
else
if n, and n; represent the same generating axiom or constant then
for i = 1to len(c,,) do
{c,, is the list of children of node n}
if Reachable(c,, [i], ¢n, [i], ®) = false then
{ A pair of child nodes doesn’t match}
return False
end if
end for
{Every child of n; could reach a child of n,}
return 7True
else
return False {Two nodes have different values}
end if
end if

C. Pseudo-code for MetaGen

Algorithm 3 summarizes the procedure to construct a proof step and the set S of existing proof trees.
Algorithm 4 summarizes the complete procedure of MetaGen.

D. Meaningless theorems

Tree “grafting” can potentially introduce meaningless theorems by combining conflicting hypotheses.
For example, suppose the shallow tree proves that 22 = 1 and = > 0 entail 2 = 1, we can replace the
leaf node z > 0 with a subtree proving = 5 entails > 0, which leads to a new tree proving that
x = 5 and 2 = 1 entail = = 1, which is meaningless. Unfortunately, there does not appear to be
an easy way to avoid meaningless theorems resulting from tree grafting, because this would require
checking the consistency of an arbitrary set of expressions, which can be as hard as general theorem
proving. Despite this limitation, however, we still perform tree grafting because a lot of interesting
mathematics do result from nontrivial combination of hypotheses.

E. Holophrasm

In this section we provide more background on the Holophrasm prover Whalen (2016). we refer the
reader to Whalen (2016) for more details.

Backward Reasoning To construct a proof tree of a target theorem, a straightforward strategy is
to search backwards. We start with a single root node—the assertion of the new theorem—and
pick a proof step that establishes the entailment of the root node. We expand the tree by adding the
preconditions of this proof step as children of the root node. We repeatedly expand the tree by adding
children to leaf nodes, until each leaf node is either empty or a hypothesis of the target theorem. This
construction process can be understood as recursive goal decomposition: the assertion of the target
theorem is the original goal; by picking a proof step we decompose the original goal into subgoals,
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Algorithm 2 Initializing existing proof trees

Input: existing theorems E, existing proofs P
Output: existing proof trees G
G+ 0
for theorem ¢ in F do
for hypothesis h in h; do
Add hto G
end for
Add t to G as a one-step proof tree
end for
for proof tree p in P do
for node e in p do
g < the largest subtree of p rooted at e.
Addgto G
end for
end for

Algorithm 3 Constructing a proof step

Input: existing proof trees GG, invocable theorems [/
Output: proof step (¢, ¢), proof trees S
Sample an invocable theorem t € 1
¢, S+ 0,0
for hypothesis 4 in h; do
C < {g|g € G AReachable(h,ry, ¢) }
{rg is the root node of proof tree g. C'is the set of compatible existing proof trees}
Sample a proof tree g € C using softmax of the relevance network scores
¢’ < the substitution that transforms 4 to r,
Add ¢’ gtod, S
end for
for variable f in b do
if f not in ¢ then
Generate an expression e using the substitution network
o(f) ¢ ¢
end if
end for

Algorithm 4 MetaGen

Input: existing theorems F, existing proofs P, int N
Output: generated theorems
Initialize existing proof trees G from F and P
repeat
Construct a proof step (¢, ¢) with proof trees S
g < the one-step proof tree of (¢, @)
for hypothesis h in h; do
{h(9) is a leaf node of the one-step proof tree g}
Find s € S such that ry = h(¢)
Replace h(¢) with s in g {tree grafting}
end for
Add the new tree g to G
until G reaches the expected volume NV

which are the preconditions of the proof step; then for each subgoal we repeat this process until all
subgoals are resolved.

Obviously, each time we expand the tree, we may have multiple choices of proof steps and most
of them will lead to dead ends. We thus need to explore multiple alternatives, which gives rise to
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Table 4: Training details of the relevance network and the substitution network of the prover.

Network Data Human Synthetic data Training Initial Epoch to halve
set proofs per batch epochs learning rate  learning rate
RELEVANCE ISET 100% 20% 40 1073 [12 20 28]
SUBSTITUTION  ISET 100% 70% 40 5x107% [16,24,32]
RELEVANCE SET 0% 100% 5 1073 -
SUBSTITUTION  SET 0% 100% 5 5x 1074 -
RELEVANCE SET 10% 70% 20 1073 [8, 12, 16]
SUBSTITUTION  SET 10% 70% 60 5x 107 [15, 30, 45]
RELEVANCE SET 100% 50% 16 1073 [5, 12, 14]
SUBSTITUTION  SET 100% 50% 24 5x 1074 [10, 15, 20]

a search process where we need to keep track of what paths have been explored and decide which
paths to explore further.

Proof search Backward reasoning in Holophrasm Whalen (2016) is implemented with a proof search
tree, which keeps track of the exploration of multiple branches of actions to search for a complete
proof tree. A proof search tree has two kinds of nodes, expressions and proof steps. An expression
node has multiple proof steps as children and each proof step establishes the entailment of this
expression by the preconditions. A proof step node has its preconditions as children. A expression is
labeled solved if it is a hypothesis of the target theorem or any proof step in its children is solved. A
proof step is labeled solved if it has no precondition or all of its preconditions are solved. A complete
proof is found if the root node, which is the assertion of the target theorem, is solved.

Holophrasm maintains a payoff of each node in the proof search tree and uses Monte Carlo Tree
Search (MCTS) to extend the proof search tree. The prover runs in iterations. In each iteration, it
travels down from the root node. After visiting an expression, it either creates a new proof step as
a new child or visits its best-performing child according to the UCB (Kocsis & Szepesvari, 2006)
algorithm. After visiting a proof step, it travels to its worst-performing child with the lowest payoff.
When an expression node is created, it is assigned an initial payoff and has no children. When a proof
step node is created, its preconditions are also created as its children and the payoff of this proof step
is the lowest payoff among its children. A pass continues until a new proof step is created.

The main heuristics of the prover are how to construct a proof step and what is the initial payoff of an
expression. Similar to the generator, the prover constructs a proof step by using a relevance network
to pick a background theorem, and a substitution network to generate a substitution for the selected
background theorem. The initial payoff of an expression is calculated by a payoff network.

Relevance network of Holophrasm The relevance network of the prover is a deep network trained
to pick a background theorem b to establish the entailment of an expression e, for the purpose of
proving a target theorem ¢. It takes as input two sequences of symbols. One sequence represents the
assertion and hypotheses of b. Another one represents e and the hypotheses of t. Two GRU encoders
convert each sequence to an embedding vector, followed by a bilinear layer to output a score from two
embeddings. The background theorem with the highest score is selected to construct the next proof
step. The relevance network is trained to pick the background theorem that is used in the groundtruth
proof step.

Substitution network of Holophrasm The substitution network generates the substitution for a
target variable of a background theorem b for the purpose of proving a target theorem ¢. It is a
sequence-to-sequence model with an encoder-decoder GRU network. It takes as input a sequence of
symbols that represents the hypotheses of ¢ and the hypotheses of b. The target variable is replaced
by a special token. It is trained to generate the substitutions of groundtruth proof steps under teacher
forcing. When it is called by the prover, it generates multiple substitution candidates for each target
variable via beam search.

Payoff network of Holophrasm The payoff network calculates the payoff of an expression as the
probability of this expression being used in the proof tree of a target theorem. It consists of a GRU
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network followed by two linear layers and the sigmoid, and takes as input a sequence of symbols that
represents the expression to be evaluated and the hypotheses of the target theorem.

The payoff network is trained as a binary classifier to distinguish the expressions in groundtruth proof
trees (called positive expressions) from other expressions. Since the payoff network is used to evaluate
an expression added to the proof search tree, which is a precondition of a newly generated proof
step, the training examples of the payoff network are generated in a similar way. For each positive
expression, proof steps that establish the entailment of this expression are constructed by using
the pretrained relevance and substitution network. The positive expressions from the preconditions
of these proof steps are filtered out and the payoff network is trained to distinguish the positive
expressions from the rest of preconditions.

F. Additional Implementation details

We implement MetaGen and Holophrasm with the same network architectures as used by Whalen
(2016). For all of our networks in the generator and the prover, we use bidirectional GRUs to encode
input sequences, and use the Adam (Kingma & Ba, 2014) optimizer to update parameters. The batch
size is 100 unless otherwise noted.

Task setup It is important to note that a theorem can serve both as a target theorem in the test set and
as a background theorem in the training set. This is a standard setup and is not “training on the test
set”—a background theorem is used as a known fact in a training proof task and only its statement is
provided, not its proof; seeing the statement of a background theorem during training does not tell us
how to prove it during testing.

Input representation of the relevance and substitution network Here we provide more details on
the input representation of the relevance and substitution network, which take sequences as input. We
use the same form of input representations as used by Whalen (2016).

To represent an expression in a sequential form, one option is to use its “surface form”. For example,
“(1+1)=2" is simply given as such. Another option is to serialize its parse tree. The parse tree of
“(1+1)=2" has two generating axioms. The first axiom is the root node of its parse tree and generates
an expression in the form of “A=B”. The second axiom is the left child of the root node and generates
an expression in the form of “(C+D)” and this expression is used to substitute the variable A in the
first axiom. The right child of the first axiom is the token “2”. Both of the left child and the right
child of the second axiom are the token “1”. Then we can represent “(1+1)=2" as a sequence of
symbols (t—,t,,1,1,2), where each symbol is a node in the parse tree and ¢— and ¢, represent two
generating axioms. This new sequence is obtained by traversing the parse tree in pre-order. Following
Whalen (2016), we use the second option to represent expressions as input to our network.

Following Whalen (2016), we also make use of the graph structure of the parse tree. Each node in
the input sequence is converted to a feature vector by a learnable embedding layer. Then the feature
of this node is concatenated with another four-dimension vector describing the depth of the node,
the degree of the node, the degree of its parent, and its position into the children of its parent. The
concatenated vector is fed into the GRU encoder of the relevance and substitution network.

Multiple expressions are represented by their concatenation.

F.1. Generator

Configuration of GRUs All of the GRUs in the generator have two layers and 256-dimensional
hidden units.

Training relevance network of MetaGen-IL The relevance network of MetaGen-IL is updated to
minimize the cross-entropy loss. Each training sample has one groundtruth proof tree and 10 negative
candidates that are randomly sampled from compatible proof trees. It is trained for 60 epochs. The
learning rate is set to 10~ initially and halved after 30, 40 and 50 epochs.

Training substitution network of MetaGen-IL The substitution network of MetaGen-IL is trained
for 40 epochs. The learning rate is set to 5 x 10~# initially and halved after 20, 26 and 32 epochs.

Training of MefaGen-RL To train MetaGen-RL-LM, we learn the language model of human-written
theorems by utilizing a one-layer GRU with 64-dimensional hidden units. It is trained for 200 epochs.
The learning rate is set to 5 x 10~# initially and halved after 80, 120 and 160 epochs.
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Table 5: Examples of synthetic theorems from MetaGen-IL trained on all human proofs of set . mm.

Hypothesis Assertion Comment
0 Bx1)+(1+0)=1+3 SIMPLE ARITHMETIC.
] (loge) x A=A e =2.71828...
AeC sin(A + B) = (exp(i x (A+ B)) C: COMPLEX NUMBER SET.
BeC —exp(—ix (A4 B)) + (2 x1i) i=+—-1
0 GERANEER —sin(“f2 +1) R R: REAL NUMBER SET.
p—>F: XY ¢ - RAN(F)CY F: BUECTION FROM X TO Y.
RAN(F): RANGE OF F.
N={ze€ZM < z} PANK €EN — Z: INTEGER SET
Me{zeZIM <zAhz <K}
r=qgx2xy modp z=y— F(rxy)=F(sxx) MOD: MODULO OPERATION

s=qx2xx modp

To train MetaGen-RL-Adv, we train a binary classifier using the same architecture as the payoff
network of Holophrasm, which contains a two-layer GRU with 128-dimensional hidden units and two
subsequent linear layers. It is pretrained to distinguish human-written theorems from 300K synthetic
theorems generated by MetaGen-Rand. Then it is updated on-the-fly to distinguish human-written
theorems from the synthetic theorems generated in the most recent 20 episodes.

For both MetaGen-RL-LM and MetaGen-RL-Ady, we train the generator for 700 episodes with the
learning rate fixed to 10~%. We deploy 10 parallel threads to synthesize new theorems by utilizing
the current generator. Each thread generates 50 theorems in one episode and synchronizes the set G
of existing proof trees with other threads for every 20 episodes. We clip policy gradients whose norm
is larger 5.

F.2. Prover

Configuration of GRUs In the relevance and substitution network of the prover, all GRUs have two
layers and 256-dimensional hidden units. We found 256-dimensional GRUs have slightly better
performance than the 128-dimensional GRUs that are used by Whalen (2016). The GRU in the payoff
network of the prover has two layers and 128-dimensional hidden units.

Training of the prover All three networks of the prover are trained by imitation learning. The
relevance network and the substitution network are trained on both human-written proofs and
synthetic proofs. The payoff network is trained on human-written proofs only.

The relevance network of the prover is trained to minimize the cross-entropy loss. Each training
sample contains one groundtruth background theorem and 10 negative candidates that are randomly
sampled from all background theorems that can be applied in this step.

Table 4 presents the settings of learning rate schedules and the ratio of synthetic training samples per
batch, for the training of the relevance and substitution network of the prover.

In all experiments, the payoff network is trained for 30 epochs. The learning rate is set to 104
initially and halved after 15, 20 and 25 epochs.

Evaluation protocol Following the evaluation protocol used by Whalen (2016), the prover attempts
to prove each target theorem in the test set three times with the beam search width of the substitution
network set to 1, 5, or 20. The prover stops if it has executed 10000 MCTS passes or hit the time
limit of 5 minutes.

F.3. Baseline

Without human-written proofs, we compare our approach with a baseline that needs no training
proofs. We remove the relevance network of the prover and pick a background theorem according to
the tf-idf similarity between an expression and a background theorem, as proposed by Bansal et al.
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(2019b). We replace the substitution network of the prover with a language model trained on the
statements of human-written theorems. We use this language model to generate an expression as the
substitution of a target variable.

G. Examples of generated theorems

Some examples of synthetic theorems are presented in the Table 5. Some are trivial (first and
fourth), whereas others are fairly interesting—the third theorem involves a non-trivial statement about
trigonometric functions and complex numbers.
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