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Abstract

Accurate local-level poverty measurement is an es-
sential task for governments and humanitarian or-
ganizations to track the progress towards improv-
ing livelihoods and distribute scarce resources. Re-
cent computer vision advances in using satellite
imagery to predict poverty have shown increasing
accuracy, but they do not generate features that
are interpretable to policymakers, inhibiting adop-
tion by practitioners. Here we demonstrate an in-
terpretable computational framework to accurately
predict poverty at a local level by applying object
detectors to high resolution (30cm) satellite im-
ages. Using the weighted counts of objects as fea-
tures, we achieve 0.539 Pearson’s r2 in predicting
village level poverty in Uganda, a 31% improve-
ment over existing (and less interpretable) bench-
marks. Feature importance and ablation analysis
reveal intuitive relationships between object counts
and poverty predictions. Our results suggest that
interpretability does not have to come at the cost of
performance, at least in this important domain.

1 Introduction

Accurate measurements of poverty and related human liveli-
hood outcomes critically shape the decisions of governments
and humanitarian organizations around the world, and the
eradication of poverty remains the first of the United Nations
Sustainable Development Goals [Assembly, 2015]. However,
reliable local-level measurements of economic well-being are
rare in many parts of the developing world. Such measure-
ments are typically made with household surveys, which are
expensive and time consuming to conduct across broad ge-
ographies, and as a result such surveys are conducted infre-
quently and on limited numbers of households. For example,
Uganda (our study country) is one of the best-surveyed coun-
tries in Africa, but surveys occur at best every few years, and
when they do occur often only survey a few hundred villages
across the whole country (Fig. 1). Scaling up these ground-
based surveys to cover more regions and more years would
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likely be prohibitively expensive for most countries in the de-
veloping world [Jerven, 2017]. The resulting lack of frequent,
reliable local-level information on economic livelihoods ham-
pers the ability of governments and other organizations to tar-
get assistance to those who need it and to understand whether
such assistance is having its intended effect.

To tackle this data gap, an alternative strategy has been
to try to use passively-collected data from non-traditional
sources to shed light on local-level economic outcomes. Such
work has shown promise in measuring certain indicators of
economic livelihoods at local level. For instance, [Blumen-
stock et al., 2015] show how features extracted from cell
phone data can be used to predict asset wealth in Rwanda, and
[Sheehan et al., 2019] show how applying NLP techniques to
Wikipedia articles can be used to predict asset wealth in mul-
tiple developing countries, and [Jean et al., 2016] show how a
transfer learning approach that uses coarse information from
nighttime satellite images to extract features from daytime
high-resolution imagery can also predict asset wealth varia-
tion across multiple African countries.

These existing approaches to using non-traditional data are
promising, given that they are inexpensive and inherently
scalable, but they face two main challenges that inhibit their
broader adoption by policymakers. The first is the outcome
being measured. While measures of asset ownership are
thought to be relevant metrics for understanding longer-run
household well-being [Filmer and Pritchett, 2001], official
measurement of poverty requires data on consumption expen-
diture (i.e. the value of all goods consumed by a household
over a given period), and existing methods have either not
been used to predict consumption data or perform much more
poorly when predicting consumption than when predicting
other livelihood indicators such as asset wealth [Jean et al.,
2016]. Second, interpretability of model predictions is key for
whether policymakers will adopt machine-learning based ap-
proaches to livelihoods measurement, and current approaches
attempt to maximize predictive performance rather than inter-
pretability. This tradeoff, central to many problems at the
interface of machine learning and policy [Murdoch et al.,
2019], has yet to be navigated in the poverty domain.

Here we demonstrate an interpretable computational
framework for predicting local-level consumption expendi-
ture using object detection on high-resolution (30cm) day-
time satellite imagery. We focus on Uganda, a country with

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

Special Track on AI for Computational Sustainability and Human Well-being

4410



existing high-quality ground data on consumption where per-
formance benchmark are available. We first train a satellite
imagery object detector on a publicly available, global scale
object detection dataset, called xView [Lam et al., 2018],
which avoids location specific training and provides a more
general object detection model. We then apply this detec-
tor to high resolution images taken over hundreds of villages
across Uganda that were measured in an existing georefer-
enced household survey, and use extracted counts of detected
objects as features in a final prediction of consumption ex-
penditure. We show that not only does our approach substan-
tially outperform previous performance benchmarks on the
same task, it also yields features that are immediately and in-
tuitively interpretable to the analyst or policy-maker.

2 Related Work

Poverty Prediction from Imagery. Multiple studies have
sought to use various types of satellite imagery for local-
level prediction of economic livelihoods. As already de-
scribed, [Jean et al., 2016] train a CNN to extract features in
high-resolution daytime images using low-resolution night-
time images as labels, and then use the extracted features to
predict asset wealth and consumption expenditure across five
African countries. [Perez et al., 2017] train a CNN to pre-
dict African asset wealth from lower-resolution (30m) multi-
spectral satellite imagery, achieving similar performance to
[Jean et al., 2016]. These approaches provide accurate meth-
ods for predicting local-level asset wealth, but the CNN-
extracted features used to make predictions are not easily in-
terpretable, and performance is substantially lower when pre-
dicting consumption expenditure rather than asset wealth.

Two related papers use object detection approaches to pre-
dicting economic livelihoods from imagery. [Gebru et al.,
2017] show how information on the make and count of cars
detected in Google Streetview imagery can be used to predict
socioeconomic outcomes at local level in the US. This work
is promising in a developed world context where streetview
imagery is available, but challenging to employ in the devel-
oping world where such imagery is very rare, and where car
ownership is uncommon. In work perhaps closest to ours, an
unpublished paper by [Engstrom et al., 2017] use detected
objects and textural features from high-resolution imagery to
predict consumption in Sri Lanka, but model performance is
not validated out of sample and the object detection approach
is not described.

3 Problem Setup

3.1 Poverty Estimation from Remote Sensing Data

The outcome of interest in this paper is consumption expen-
diture, which is the metric used to compute poverty statistics;
a household or individual is said to be poor or in poverty if
their measured consumption expenditure falls below a defined
threshold (currently $1.90 per capita per day). Throughout
the paper we use “poverty" as shorthand for “consumption
expenditure", although we emphasize that the former is com-
puted from the latter. While typical household surveys mea-
sure consumption expenditure at the household level, publicly

available data typically only release geo-coordinate informa-
tion at the “cluster" level – which is a village in rural areas and
a neighborhood in urban areas. Efforts to predict poverty have
thus focused on predicting at the cluster level (or more aggre-
gated levels), and we do the same here. Let {(xi, yi, ci)}

N
i=1

be a set of N villages surveyed, where ci = (clati , c
long
i ) is the

latitude and longitude coordinates for cluster i, and yi ∈ R is
the corresponding average poverty index for a particular year.

For each cluster i, we can acquire high resolution satel-
lite imagery corresponding to the survey year xi ∈ I =
R

W×H×B , a W × H image with B channels. Following
[Jean et al., 2016], our goal is to learn a regressor f : I → R

to predict the poverty index yi from xi. Here our goal is to
find a regressor that is both accurate and interpretable, where
we use the latter to mean a model that provides insight to a
policy community on why it makes the predictions it does in
a given location.

3.2 Dataset

Socio-economic Data

The dataset comes from field Living Standards Measurement
Study (LSMS) survey conducted in Uganda by the Uganda
Bureau of Statistics between 2011 and 2012 [UBOS, 2012].
The LSMS survey we use here consists of data from 2,716
households in Uganda, which are grouped into unique lo-
cations called clusters. The latitude and longitude location,

ci = (clati , c
long
i ), of a cluster i = {1, 2, . . . , N} is given,

with noise of up to 5 km added in each direction by the sur-
veyers to protect privacy. Individual household locations in
each cluster i are also withheld to preserve anonymity. We
use all N = 320 clusters in the survey to test the performance
of our method in terms of predicting the average poverty in-
dex, yi for a group i. For each ci, the survey measures the
poverty level by the per capital daily consumption in dollars.
For simplicity, in this study, we name the per capital daily
consumption in dollars as LSMS poverty score. We visualize
the chosen locations on the map as well as their correspond-
ing LSMS poverty scores in Fig. 1. From the figure, we can
see that the surveyed locations are scattered near the border of
states and high percentage of these locations have relatively
low poverty scores.

Uganda Satellite Imagery

The satellite imagery, xi corresponding to cluster ci is repre-
sented by K = 34×34 = 1156 images of W = 1000×H =
1000 pixels with B = 3 channels, arranged in a 34×34 square
grid. This corresponds to a 10 km × 10 km spatial neighbor-
hood centered at ci. We consider a large neighborhood to
deal with the noise in the cluster coordinates. The images
come from DigitalGlobe satellites with three bands (RGB)
and 30cm pixel resolution. Fig. 1 illustrates an example clus-
ter from Uganda. Formally, we represent all the images cor-

responding to ci as a sequence of K tiles as xi = {xj
i}

K
j=1

.

4 Fine-grained Detection on Satellite Images

Contrary to existing methods for poverty mapping which per-
form end-to-end learning [Jean et al., 2016; Sheehan et al.,
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Building
Fixed-Wing
Aircraft

Passenger
Vehicle

Truck
Railway
Vehicle

Maritime
Vessel

Engineering
Vehicle

Helipad
Vehicle
Lot

Construction
Site

AP 0.40 0.59 0.42 0.27 0.39 0.24 0.17 0.0 0.012 0.0003
AR 0.62 0.65 0.76 0.56 0.49 0.47 0.37 0.0 0.06 0.006

Table 1: Class wise performance (average precision and recall) of YOLOv3 when trained using parent level classes (10 classes).

2019; Perez et al., 2017], we use an intermediate object de-
tection phase to first obtain interpretable features for subse-
quent poverty prediction. However, we do not have object
annotations for satellite images from Uganda. Therefore, we
perform transfer learning by training an object detector on a
different but related source dataset Ds.

4.1 Object Detection Dataset

We use xView [Lam et al., 2018], as our source dataset. It is
one of the largest and most diverse publicly available over-
head imagery datasets for object detection. It covers over
1, 400 km2 of the earth’s surface, with 60 classes and approx-
imately 1 million labeled objects. The satellite images are
collected from DigitalGlobe satellites at 0.3 m GSD, aligning
with the GSD of our target region satellite imagery {xi}

N
i=1

.
Moreover, xView uses a tree-structured ontology of classes.
The classes are organized hierarchically similar to [Deng et
al., 2009; Lai et al., 2011] where children are more specific
than their parents (e.g., fixed-wing aircraft as a parent of small
aircraft and cargo plane). Overall, there are 60 child classes
and 10 parent classes.

4.2 Training the Object Detector

Models. Since we work on very large tiles (∼3000×3000
pixels), we only consider single stage detectors. Consider-
ing the trade off between run-time performance and accu-
racy on small objects, YOLOv3 [Redmon and Farhadi, 2018]

outperforms other single stage detectors [Fu et al., 2017;
Liu et al., 2016] and performs almost on par with RetinaNet
[Lin et al., 2017b] but 3.8 × faster [Redmon and Farhadi,
2018] on small objects while running significantly faster than
two-stage detectors [Lin et al., 2017a; Shrivastava et al.,
2016]. Therefore, we use YOLOv3 object detector with a
DarkNet53 [Redmon and Farhadi, 2018] backbone architec-
ture.

Dataset Preparation. The xView dataset consists of 847
large images (roughly 3000 × 3000 px). YOLOv3 is usually
used with an input image size of 416 × 416 px. Therefore,
we randomly chip 416× 416 px tiles from the xView images
and discard tiles without any object of interest. This process
results in 36996 such tiles of which we use 30736 tiles for
training and 6260 tiles for testing.

Training and Evaluation. We use the standard per-class
average precision, mean average precision (mAP), and per-
class recall, mean average recall (mAR) metrics [Redmon and
Farhadi, 2018; Lin et al., 2017b] to evaluate our trained object
detector. We fine-tune the weights of the YOLOv3 model,
pre-trained on the ImageNet, using the training split of the
xView dataset. Since xView has an ontology of parent and
child level classes, we train two YOLOv3 object detectors
using parent level and child level classes seperately.

After training the models, we validate their performance on
the test set of xView. The detector trained using parent level
classes (10 classes) achieves mAP of 0.248 and mAR of 0.42.
On the other hand, the one trained on child classes achieves
mAP of 0.082 and mAR of 0.163. Table 1 shows the class-
wise performance of the parent-level object detector on the
test set. For comparison, Lam et al. report 0.14 mAP, but they
use a separate validation and test set in addition to the training
set (which are not publicly available) so the models are not
directly comparable. While not state of the art, our detector
reliably identifies objects, especially at the parent level.

4.3 Object Detection on Uganda Satellite Images

As described in Section 3.2, each xi is represented by a set

of K images, {xj
i}

K
j=1

. Each 1000× 1000 px tile (i.e. x
j
i ) is

further chipped into 9 416× 416 px small tiles (with overlap
of 124 px) and fed to YOLOv3.

Although the presence of objects across tile borders could
decrease performance, this method is highly parallelizable
and enables us to scale to very large regions. We perform ob-
ject detection on 320 × 1156 × 9 chips (more than 3 million
images), which takes about a day and a half using 4 NVIDIA
1080Ti GPUs. In total, we detect 768404 objects. Each detec-
tion is denoted by a tuple (xc, yc, w, h, l, s), where xc and yc
represent the center coordinates of the bounding box, w and
h represent the width and height of the bounding box, l and s
represent the object class label and class confidence score. In
Section 5.1, we explain how we use these details to create in-
terpretable features. Additionally, we experiment with object
detections obtained at different confidence thresholds which
we discuss in Section 6.1.

Transfer performance in Uganda. The absence of ground

truth object annotations for our Uganda imagery {xj
i}

K
j=1

pre-
vents us from quantitatively measuring the detector’s perfor-
mance on Uganda satellite imagery. However, we manually
annotated 10 images from the Uganda dataset together with
the detected bounding boxes to measure the detector’s per-
formance on building and truck classes. We found that the
detector achieves about 50%, and 45% AR for Building and
Truck which is slightly lower than the AR scores for the same
classes on the xView test set. We attribute this slight differ-
ence to the problem of domain shift and we plan to address
this problem via domain adaptation in a future work. To qual-
itatively test the robustness of our xView-trained object detec-
tor, we also visualize its performance on two representative
tiles in Fig. 2. The detection results prove the effectiveness
of transferring the YOLOv3 model to DigitalGlobe imagery
it has not been trained on.
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using a 0.6 confidence threshold (the effect of this hyper-
parameter is evaluated below). The best result of 0.539 Pear-
son’s r2 is obtained using GBDT trained on parent level ob-
ject counts features (red color entry). A scatter plot of GBDT
predictions v.s. ground truth is shown in Fig. 3. It can be seen
that our GBDT model can explain a large fraction of the vari-
ance in terms of object counts automatically identified in high
resolution satellite images. To the best of our knowledge, this
is the first time this capability has been shown with a rigor-
ous and reproducible out-of-sample evaluation (see however
the related but unpublished paper by Engstrom et al.).

We observe that GBDT performs consistently better than
other regression models across the four features we consider.
As seen in Table 2, object detection based features deliver
positive r2 with a simple linear regression method which sug-
gests that they have positive correlation with LSMS poverty
scores. However, the main drawback of linear regression
against GBDT is that it predicts negative values, which is not
reasonable as poverty indices are non-negative. In general,
the features are useful, but powerful regression models are
still required to achieve better performance.

We also find that child-level object detections can perform
better than the coarser ones (second and third best) in some
cases. This is likely because although they convey more infor-
mation, detection and classification is harder and less accurate
at the finer level (see Section 4.2). Additionally, parent level
features are more suited for interpretability, due to household
level descriptions, which we show later.

— Best — Second Best — Third Best
Features/Method GBDT Linear Lasso Ridge

Parent Child Parent Child Parent Child Parent Child
Counts 0.539 0.508 0.311 0.324 0.312 0.46 0.311 0.329

Confidence × Counts 0.466 0.485 0.305 0.398 0.305 0.461 0.305 0.409
Size × Counts 0.455 0.535 0.363 0.47 0.363 0.476 0.363 0.47

(Conf., Size) × Counts 0.495 0.516 0.411 0.369 0.418 0.343 0.411 0.476

Table 2: LSMS poverty score prediction results in Pearson’s r2 us-
ing parent level features (YOLOv3 trained on 10 classes) and child
level features (YOLOv3 trained on 60 classes).

(a) Counts (b) Confidence × Counts

(c) Size × Counts (d) (Conf., Size) × Counts

Figure 3: Regression result of GBDT using parent level counts.

Comparison to Baselines and State-of-the-Art. We com-
pare our method with two baselines and a state-of-the-art
method: (a) NL-CNN where we regress the LSMS poverty
scores using a 2-layer CNN with Nightlight Images (48× 48
px) representing the clusters in Uganda as input, (b) RGB-
CNN where we regress the LSMS poverty scores using Im-
ageNet [Deng et al., 2009] pretrained ResNet-18 [He et al.,
2016] model with central tile representing ci as input, and
(c) Transfer Learning with Nightlights, [Jean et al., 2016]

proposed a transfer learning approach where nighttime light
intensities are used as a data-rich proxy.

Results are shown in Table 3. Our model substantially out-
performs all three baselines, including published state-of-the-
art results on the same task in [Jean et al., 2016]. We similarly
outperform the NL-CNN baseline, a simpler version of which
(scalar nightlights) is often used for impact evaluation in pol-
icy work [Donaldson and Storeygard, 2016]. Finally, the per-
formance of the RGB-CNN baseline reveals the limitation of
directly regressing CNNs on daytime images, at least in our
setting with small numbers of labels. As discussed below,
these performance improvements do not come at the cost of
interpretability – rather, our model predictions are much more
interpretable than each of these three baselines.

Method RGB-CNN NL-CNN [Jean et al., 2016] Ours

r2 0.04 0.39 0.41 0.54

Table 3: Comparison with baseline and state-of-the-art methods.

Impact of Detector’s Confidence Threshold. Finally, we
analyze the effect of confidence threshold for object detec-
tor on the poverty prediction task in Fig. 4. We observe that
when considering only Counts features, we get the best per-
formance at 0.6 threshold. However, even for very small
thresholds, we achieve around 0.3-0.5 Pearson’s r2 scores.
We explore this finding in Fig. 4b, and observe that the ratio
of classes in terms of number of bounding boxes remain sim-
ilar across different thresholds. These results imply that the
ratio of object counts is perhaps more useful than simply the
counts themselves – an insight also consistent with the sub-
stantial performance boost from GBT over unregularized and
regularized linear models in Table 1.

6.2 Interpretability

Existing approaches to poverty prediction using unstructured
data from satellites or other sources have understandably

Figure 4: Left: Regression results (GBDT) using object detec-
tion features (parent level classes) at different confidence thresholds.
Right: Average object counts across clusters for each parent class
(see Table 1 for color coding) at difference confidence thresholds.
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