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Abstract

Machine learning applications often require cal-
ibrated predictions, e.g. a 90% credible inter-
val should contain the true outcome 90% of the
times. However, typical definitions of calibration
only require this to hold on average, and offer
no guarantees on predictions made on individ-
ual samples. Thus, predictions can be system-
atically over or under confident on certain sub-
groups, leading to issues of fairness and poten-
tial vulnerabilities. We show that calibration for
individual samples is possible in the regression
setup if the predictions are randomized, i.e. out-
putting randomized credible intervals. Random-
ization removes systematic bias by trading off
bias with variance. We design a training objec-
tive to enforce individual calibration and use it
to train randomized regression functions. The re-
sulting models are more calibrated for arbitrarily
chosen subgroups of the data, and can achieve
higher utility in decision making against adver-
saries that exploit miscalibrated predictions.

1. Introduction

Many applications of machine learning, such as safety-
critical systems and medical diagnosis, require accurate
estimation of the uncertainty associated with each predic-
tion. Uncertainty is typically represented using a proba-
bility distribution on the possible outcomes. To reflect the
underlying uncertainty, these probabilities should be cali-
brated (Cesa-Bianchi & Lugosi, 2006; Vovk et al., 2005;
Guo et al., 2017). In the regression setup, for example, the
true outcome should be below the predicted 50% quantile
(median) roughly 50% of the times (Kuleshov et al., 2018).

However, even when the probability forecaster is cali-
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brated, it is possible that the true outcome is always below
the predicted median on a subgroup (e.g., men), and always
above the predicted median for another (e.g., women). In
other words, the standard notion of calibration is a prop-
erty that needs to hold only on average across all predic-
tions made (i.e., on the set of all input data points). The
predicted probabilities can still be highly inaccurate for in-
dividual data samples. These predictions can lead to un-
fair or otherwise suboptimal decisions. For example, a
bank might over-predict credit risk for one gender group
and unfairly deny loans, or under-predict credit risk for a
group that can then exploit this mistake to their advantage.
Group calibration (Kleinberg et al., 2016) partly addresses
the short-comings of average calibration by requiring cali-
bration on pre-specified groups (e.g. men and women). In
particular, (Hébert-Johnson et al., 2017) achieves calibra-
tion on any group that can be computed from input by a
small circuit. However, these methods are not applicable
when the groups are unknown or difficult to compute from
the input. For example, groups can be defined by features
that are unobserved e.g. due to personal privacy.

Ideally, we would like forecasters that are calibrated on
each individual sample. Our key insight is that individ-
ual calibration is possible when the probability forecaster
is itself randomized. Intuitively, a randomized forecaster
can output random probabilistic forecasts (e.g., quantiles)
— it is the predicted quantile that is randomly above or be-
low a fixed true value with the advertised probability (see
Figure 1). Randomization can remove systematic miscal-
ibration on any group of data samples. Useful forecasters
also need to be sharp — the predicted probability should
be concentrated around the true value. We design a con-
crete learning objective that enforces individual calibration.
Combined with an objective that enforces sharpness, such
as traditional log-likelihood, we can learn forecasters that
trade-off calibration and sharpness Pareto optimally. The
objective can be used to train any prediction model that
takes an additional random source as input, such as deep
neural networks.

We assess the benefit of forecasters trained with the new
objective on two applications: fairness and decision mak-
ing under uncertainty against adversaries. Calibration on
protected groups traditionally has been a definition for fair-
ness (Kleinberg et al., 2016). On a UCI crime prediction
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Figure 1: Example of deterministic forecaster that is calibrated on average (left) and randomized forecaster that is individ-

ually calibrated (right). We plot the
in cyan the area where the

and the
is less than the true function value. Left: the deterministic forecaster outputs

the forecaster outputs, and shade

a fixed credible interval (the left 2 plots are identical) and and can be miscalibrated on sub-groups of the data samples (e.g.

it is not calibrated for the samples in the shaded area, because the

is always less than the true function

value). Right: The randomized forecaster outputs a different credible interval each time (the right 2 plots are different),
and can remove systematic miscalibration on sub-groups of data samples.

task, we show that forecasters trained for individual cali-
bration achieve lower calibration error on protected groups
without knowing these groups in advance.

For decision making we consider the Bayesian decision
strategy — choosing actions that minimize expected loss
under the predicted probabilities. We prove strong upper
bounds on the decision loss when the probability forecaster
is calibrated on average or individually. However, when the
input data distribution changes, forecasters calibrated on
average lose their guarantee, while individually calibrated
forecasters are less affected. We support these results by
simulating a game between a bank and its customers. The
bank approves loans based on predicted credit risk, and
customers exploit any mistake of the bank, i.e. the distri-
bution of customers change adversarially for the bank. We
observe that the bank incurs lower loss when the credit risk
forecaster is trained for individually calibration.

2. Preliminary: Forecaster and Calibration
2.1. Notation

We use bold capital letters X, Y, Z, H to denote random
variables, lower case letters x, ¥, z, h to denote fixed val-
ues, and X', Y, Z, H to denote the set of all possible values
they can take.

For a random variable Z on Z we will use Fz to denote
the distribution of Z, and denote this relationship as Z ~
Fyz. If Z is an interval in R we overload Fz to denote the
cumulative distribution function (CDF) Z — [0, 1] of Z.

X is a random variable on X, if S C X is a measurable set
and Pr[X € S] > 0, we will use the notation X as the
random variable distributed as X conditioned on X € S.

Let Y be an interval in R, we use F()) denote the set of
all CDFs on ). We use d : F([0,1]) x F([0,1]) — R

to denote a distance function between two CDFs on [0, 1].
For example, the Wasserstein-1 distance is defined for any
F,F" € F([0,1]) as

dniEF) = [ )~ F)lar

This is the distance we will use throughout the paper. We
provide results for other distances in the appendix.

2.2. Problem Setup

Given an input feature vector x € X we would like to pre-
dict a distribution on the label y € ). We consider regres-
sion problems where ) is an interval in R.

Suppose there is a true distribution Fx on &', and a random
variable X ~ Fx. For each x € X, we also assume there
is some true distribution ]FY| = on Y, and a random variable
Y ~ Fy|,. As a convention, the random variable Y only
appears in any expression along side = or X. Its distribu-
tion is always defined conditioned on x (or after we have
randomly sampled = ~ Fx).

A probability forecaster is a function 4 : X — F(}) that
maps an input z € X to a continuous CDF h[z] over ).
Note that h[z] is a CDF, i.e. it is a function that takes in
y € Y and returns a real number h[z](y) € [0, 1]. We use
['] to denote function evaluation for z and (-) for y.

Let H & {h : X — F(Y)} be the set of possible proba-

bility forecasters. We consider randomized forecasters H
which is a random function taking values in #.

To clarify notation, H[X](Y), H[z](Y) and H[z](y) are
all random variables taking values in [0, 1], but they are
random variables on different sample spaces.

e H[X](Y) is a random variable on the sample space
Hx X x)Y—Allof H, X,Y are random.
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Figure 2: Relationships between different notions of calibration, ordered from strongest (individual calibration) to the
weakest (average calibration). *With caveats in certain situations, see additional discussion in Appendix A.6.

e H[z](Y) is a random variable on the sample space
H x Y, while x is just a fixed value in X.

e Hz](y) is a random variable on the sample space H,
while x, y are just fixed values in X x ).

Similarly h[X](Y), h[z](Y) are also random variables tak-
ing values in [0, 1], while h[z](y) is just a number in [0, 1]
(there is no randomness). This difference will be crucial to
distinguishing different notions of calibration.

We use Frx)(y), Fr)(v) and Frpg)(y), etc, to denote the
CDF of these [0, 1]-valued random variables. These are
in general different CDFs because the random variables
have different distributions (they are not even defined on
the same sample space).

If the H takes some fixed value in h € H with probability
1, we call it a deterministic forecaster. Because determin-
istic forecasters are a subset of randomized forecasters, we
will use H to denote them as well.

2.3. Background: Perfect Probability Forecast

We consider several criteria that a good probability fore-
caster H (randomized or deterministic) should satisfy, and
whether they are achievable.

Given some input z € X, an ideal forecaster should always
output the CDF of the true conditional distribution Fy,.
We call such a forecaster a “perfect forecaster”.

However, learning an (approximately) perfect forecaster
from training data is almost never possible. Usually each
r € X appear at most once in the training set (e.g. it is
unlikely for the training set to contain identical images). It
would be almost impossible to infer the entire CDF Fy-|,
from a single sample y ~ Fy |, (Vovk et al., 2005) without
strong assumptions.

2.4. Individual Calibration

Because perfect probability forecasters are difficult to
learn, we relax our requirement, and look at which desir-
able property of a perfect forecaster to emulate.

We first observe that for some z, when the random variable
Y is truly drawn from a continuous CDF Fy |, € F()),
by the inverse CDF theorem, Fy |, (Y) should be a random
variable with uniform distribution in [0, 1] — As a notation
reminder, Fy|, is a fixed (CDF) function ) — [0, 1], Y is
a random variable taking values in ). Therefore, IF‘Y‘z (Y)
is a random variable taking values in [0, 1]. Also recall the
convention that whenever Y appears in an expression, its
distribution is always conditioned on z,i.e. Y ~ Fy,.

If H is indeed a perfect forecaster, then Vz € X, H[z]
should always equal the true CDF: H[z] = Fy,. There-
fore H[z](Y) is a uniformly distributed random variable.
In other words, Fg)(y) is the CDF function of a uniform
random variable. Conversely, we can require this property
for any good forecaster.

Formally, let d : F([0,1]) x F([0,1]) — R* be any
distance function (such as the Wasserstein-1 distance) be-
tween CDFs over [0, 1]. For convenience we use Fy to
denote the CDF of a uniform random variable in [0, 1]. We
can measure

eIrgy (x) déf d(FH[L] (Y)» ]FU)

and if errgg (2) = 0 for all z € X, we say the forecaster H
satisfies individual calibration.

In practice individual calibration can only be achieved ap-
proximately, i.e. errg(z) = 0 for most values of x € X,
which we formalize in the following definition.

Definition 1. A forecaster H is (¢, 0)-probably approxi-
mately individually calibrated (PAIC) (with respect to dis-
tance metric d) if

Prierrg(X) <¢ >1-96
This definition is intimately related to a standard defini-

tion of calibration for regression (Gneiting et al., 2007;
Kuleshov et al., 2018) which we restate slightly differently

Definition 2. A forecaster H is e-approximately average
calibrated (with respect to distance metric d) if

d(Fuxv), Fu) <€
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Note that d(Fgix)(y), Fu) = 0is equivalent to the original
definition of calibrated regression in (Kuleshov et al., 2018)

Frx)(v)(¢) = PrH[X](Y) < ] = ¢ =Fy(c), Ve € [0,1]

In words, under the ground truth distribution, y should be
below the c-th quantile of the predicted CDF exactly c per-
cent of the times. More generally, an e-approximately aver-
age calibrated forecaster with respect to Wasserstein-1 dis-
tance also has € ECE (expected calibration error) — a met-
ric commonly used to measure calibration error (Guo et al.,
2017). For details see Appendix A.1.1.

Despite the similarity, individual calibration is actually
much stronger compared to average calibration (Figure 2).
Individual calibration requires H[z](Y') be uniformly dis-
tributed for every z. average calibration only require this
on average: H[X](Y) is uniformly distributed only if
X ~ Fx — it may not be uniformly distributed if X has
some other distribution. For example, if X can be parti-
tioned based on gender, the forecaster can be uncalibrated
when X is restricted to a particular gender.

2.5. Group Calibration

To address the short-coming of average calibration in Def-
inition 2, a stronger notion of calibration has been pro-
posed (Kleinberg et al., 2016; Hébert-Johnson et al., 2017).
We choose in advance measurable subsets S, -+ - , S C X
such that Pr[X € §;] # 0,Vi € [k] (for Hébert-Johnson
et al. (2017) these are sets that can be identified by a small
circuit from the input), and define the random variables
Xs,, -, Xs, (Recall that X, is distributed by X con-
ditioned on X € S;).

Definition 3 (Group Calibration). A forecaster H is e-

approximately group calibrated w.r.t. distance metric d and
817"' 78]€C‘Xl.f

Vi€ [k],d (]FH[XSi](Y)aFU) <e

This can alleviate some of the shortcomings of average cali-
bration. However, the groups must be pre-specified or easy
to compute from the input features X. A much stronger
definition (Figure 2) is group calibration for any subset of
X that is sufficiently large.

Definition 4 (Adversarial Group Calibration). A forecaster
H is (¢, 6)-adversarial group calibrated (with respect to
distance metric d) if for VS C X such that Pr[X € §] > 6
we have

d (Faxs)(v):Fu) <€ (1)

2.6. Interpreting Individual Calibration

We remark that when the forecaster is stochastic, the no-
tion of calibration has a different interpretation compared

to deterministic forecasters. When the forecaster is deter-
ministic, individual calibration in Definition 1 implies that
almost surely, the forecasted distribution must be identical
to the true distribution — a much stronger requirement than
calibration for stochastic forecasters. However, as we show
in the remaining of the paper, individual calibration for de-
terministic forecasters is stronger but unverifiable, while
for stochastic forecasters is weaker but verifiable (thus can
also be optimized with a learning algorithm).

We also remark that we extend the definition of regression
calibration proposed in (Kuleshov et al., 2018). This is not
the unique reasonable definition for regression calibration.
For example, we can partition ) into bins to convert the
regression problem into a classification problem, apply the
classification calibration definition (Vovk et al., 2005; Guo
et al., 2017), and take the number of bins to infinity. This
leads to a different definition for calibration than ours (even
in the limit of infinitely many bins). Alternative definitions
have also been proposed in (Levi et al., 2019). Individual
calibration that extends these alternative definitions is be-
yond the scope of this paper.

3. Impossibility Results for Deterministic
Forecasters

We first present results showing that individual calibration
and adversarial group calibration are impossible to verify
with a deterministic forecaster. Therefore, there is no gen-
eral method to train a classifier to achieve individual cali-
bration. This motivates the need for randomized forecast-
ers.

Given a finite dataset D = {(z;,y;)} and a determinis-
tic forecaster h : X — F()), suppose some verifier
T(D,h) — {yes,no} aims to verify if h is (e, §)-PAIC. We
claim that no verifier can correctly decide it (unless ¢ > 1/4
or 6 = 1 which means the calibration is trivially bad). This
proposition is for the Wasserstein-1 distance dy;. Exam-
ples of other distances are given in the Appendix B.1.

Proposition 1. For any distribution F on X x Y such that
Fx assigns zero measure to individual points {x € X}
iid.
sample D = {(z1,y1), - ,(xn,yn)} ~ F. For any
deterministic forecaster h and any function T(D,h) —
{yes,no} such that

Pr [T(D,h) = =

PrT(D,) = yes] = 5 >0,
there exists a distribution F' such that (a) h is not (e, 9)-
PAIC w.rt T’ forany e < 1/4 and § < 1, and (b)

= S >
DP;%/ [T(D,h) =yes] > Kk

This additionally implies that no learning algorithm can
guarantee to produce an individually calibrated forecaster.
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because otherwise the learning algorithm and its guaran-
tee can serve as a verifier. Proofs of the proposition and a
similar negative result for adversarial group calibration are
in Appendix B.1. In addition to impossibility of verifica-
tion, it is also known (in the conformal prediction setup)
that no forecaster can guarantee individual calibration in a
non-trivial way (Barber et al., 2019). For a discussion see
related works.

In light of these negative results, there are two options: one
can make additional assumptions about the true distribution
Fxvy, such as Lipschitzness. However, these assumptions
are usually hard to verify, and their usefulness diminishes
as the dimensionality of X" increases. We propose an al-
ternative: in contrast to deterministic forecasters, there is a
sufficient condition for individual calibration for random-
ized forecasters. The sufficient condition is verifiable can
be conveniently converted into a training objective.

4. Individual Calibration with Randomized
Forecasting

4.1. Reparameterized Randomized Forecaster

We will consider randomized forecasters that are determin-
istic functions applied on the input feature vector z and
some fixed random seeds R. (For readers familiar with
variational Bayesian inference (Kingma & Welling, 2013),
this is reminiscent of the reparameterization trick.) Con-
cretely, we choose a deterministic function A : X' x [0, 1] —
F(Y), and let R ~ Fy. Define the randomized forecaster
H]z] as

H[z] = h[z,R] 2)

In addition, we would like h[z,7] to be a monotonic func-
tion of r for all . Any continuous function that is not
monotonic can be transformed into one by shuffling r.

4.2. Sufficient Condition for Individual Calibration

In this subsection, we introduce sufficient (but not nec-
essary) conditions of individual calibration for random-
ized forecasters defined in Eq. (2). First, recall that the
definition of individual calibration requires H[z](Y) :=
h[z, R](Y) to be a uniform distribution for most of x € X
sampled from Fx. This condition is hard to verify given
samples, because for each x in the training (or test) set,
we typically only observe a single corresponding label

As an alternative, we propose to verify whether Az, R](y)
is uniformly distributed (for the unique sample y). There-
fore we introduce a stronger but verifiable condition:

hlz, R)(y) is uniformly distributed (3)

for most (random) choices of x, y under F xy.

The benefit is that the condition — h[z, R](y) is uniformly
distributed — can be written in an equivalent form when

h[z, r] is a monotonic function in 7 (proved in Theorem 1)

hlz,r])(y) = r,Vr € [0,1],

We formalize a relaxed version of this condition (allowing
for approximation errors) as follows:

Definition 5. A forecaster h is (e, )-monotonically prob-
ably approximately individually calibrated (mPAIC) if

Pr[|h[X,R|(Y)-R| >€] <0

Note that even though we want to achieve h[z,7](y) =
r,Vr, this does not mean that h ignores the input 2 —
h[z,7](.) has the special form of a CDF, so h[z,r] must
output a CDF concentrated around the observed label y to
satisfy mPAIC.

The following theorem formalizes our previous intuition
that monotonic individual calibration (mPAIC) is obtained
by imposing additional restrictions on individual calibra-
tion (PAIC) — mPAIC is a sufficient condition for PAIC.

Theorem 1. If h is (¢, 8)-mPAIC, then for any € > ¢
it is (¢/,6(1 — €)/(¢' — €))-PAIC with respect to the I-
Wasserstein distance.

Proof can be found in Appendix B.2. This theorem shows
that mPAIC implies PAIC (up to different constants €, d).
In particular, if a forecaster achieves mPAIC perfectly (i.e.
€ = 0,9 = 0), it is also perfectly PAIC.

The benefit of Definition 5 is that it can be verified with a
finite number of validation samples, and is amenable to uni-
form convergence bounds, so that we can train it following
the standard empirical risk minimization framework.

Proposition 2. [Concentration] Let h be any (e,6)-
mPAIC forecaster, and (x1,y1), -+, (Tn,Yn) Hid Fxv,
IETRRE ,rnl'fl'vd'IFU, then with probability 1 —

n

ZH(VL[JH’W](%) —ri| >€) <+

=1

—log~y
2n

1
n

4.3. Learning Calibrated Randomized Forecasters

Given training data (z;, yi)lk‘} ‘Fxv we would like to learn
a forecaster that satisfy mPAIC. We propose a concrete set
of forecasters and a learning algorithm we will use in all of
our experiments.

We will model uncertainty with Gaussian distributions
{N(p,0%),p € R, € RT}. We parameterize h = hy
as a deep neural network with parameters 6. The neural
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networks takes in concatenation of x and r and outputs the
1, o that decides the returned CDF.

Inspired by Proposition 2, we optimize the mPAIC objec-
tive on the training data defined as !

1~ -
Leaic(0) = -~ Z|h9[3«"i7ri](3ﬁ) =i
i=1

Practically, this objective enforces the calibration but does
not take into account the sharpness of the forecaster. For
example, a simple h can be constructed that trivially out-
puts  (Appendix A.1.2). We would also like to mini-
mize the variance o of the predicted Gaussian distribution.
Therefore we also regularize with the log likelihood (i.e.
log derivative of the CDF) objective which encourages the
sharpness of the prediction

1< d -
L (0) = - > log @h[xi, ril(ys)
i=1

Because we model uncertainty with Gaussian distributions,
the Ly objective is equivalent to the standard squared er-
ror (MSE) objective typically used in regression (Myers &
Myers, 1990) literature. We use a hyper-parameter a to
trade-off between the two objectives:

La(ﬁ) = (1 - Q)LPAIC<9) -+ aENLL(H) 4)

In other words, when o = 0 the objective is almost exclu-
sively PAIC, while when o = 1 we reduce to the standard
log likelihood maximization (i.e. MSE) objective.

5. Application I: Fairness

Individual calibration provides guarantees on the perfor-
mance of a machine learning model on individual samples.
As we will show, this has numerous applications. We begin
discussing its use in settings where fairness is important.

5.1. From Individual Calibration to Group Calibration

In high-stakes applications of machine learning (e.g.,
healthcare and criminal justice), it is imperative that pre-
dictions are fair. Many definitions of fairness are possible
(see related work section), and calibration is a commonly
used one. For example, in a healthcare application we
would like to prevent a systematic overestimation or under-
estimation of a predicted risk for different socio-economic
groups (Pfohl et al., 2019). One natural requirement is that
predictions for every group are calibrated, that is, the true
value below the % quantile exactly r% of the times.

If the protected groups are known at training time, we could
enforce group calibration as in Definition 3. However, it

'In practice we always sample a new r; for each training step.

can be difficult to specify which groups to protect a priori.
Some groups are also defined by features that are unob-
served e.g. due to personal privacy.

We propose to address the problem by requiring a stronger
notion of calibration, adversarial group calibration, where
any group of sufficiently large size needs to be protected.
Moreover, we can achieve this stronger notion of calibra-
tion because it is implied by individual calibration.

Theorem 2. If a forecaster is (€, 9)-PAIC with respect to
distance metric W, then ¥6' € [0,1], 6" > 0, it is (e +
§/¢',8")-adversarial group calibrated with respect to W,

We prove a stronger version of this theorem in Ap-
pendix B.3. We know from theory that a forecaster trained
on the individual calibration objective Eq.(4) can achieve
good individual calibration (and thus group calibration) on
the training data. We will now experimentally verify that
the benefit generalizes to test data.

5.2. Experiments

Experiment Details. We use the UCI crime and communi-
ties dataset (Dua & Graff, 2017) and we predict the crime
rate based on features of the neighborhood (such as racial
composition). For training details and network architecture
see Appendix B.3. 2

Recalibration. Post training recalibration is a common
technique to improve calibration. For completeness we ad-
ditionally report all results when combined with recalibra-
tion by isotonic regression as in (Kuleshov et al., 2018).
Post training recalibration improves average calibration,
but as we show in the experiments, has limited effect on
individual or adversarial group calibration.

5.2.1. PERFORMANCE METRICS

1) Sharpness metrics: Sharpness measures whether the
prediction H[z] is concentrated around the ground truth la-
bel y. We will use two metrics: negative log likelihood on
the test data E [— log (X, R)(Y)], and expected standard

deviation of the predicted CDFs E {\/Var[ﬁ(X, R)]] . Be-

cause forecaster outputs Gaussian distributions to represent
uncertainty, this is simply the average standard deviation o
predicted by the forecaster.

2) Calibration metrics: we will measure the (e, d)-
adversarial group calibration (with 1-Wasserstein distance)
defined in Definition 4 and Eq.(1). In particular, we mea-
sure € as a function of § — for a smaller group (smaller &)
the e should be larger (worse calibration), and vice versa.
A better forecaster should have a smaller € for any given
value of 6. We show in Appendix A.1.1 that measuring €

Zhttps://github.com/ShengjiaZhao/Individual-Calibration
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has better calibration on adversarially chosen groups. Left:
Without recalibration. Right With post training recalibra-
tion. Post training recalibration improves average calibra-
tion (i.e. group size = 1.0) but does not improve adversarial
group calibration (group size < 1.0).

is identical to the commonly used ECE (Guo et al., 2017)
metric for miscalibration.

The worst adversarial group may be an uninterpretable set,
which is argurably less important than interpretable groups.
Therefore, we also measure group calibration with respect
to a set of known and interpretable groups. In particular,
for each input feature we compute its the median value in
the test data, and consider the groups that are above/below
the median. For example, if the input feature is income,
we considers the group with above median income, and the
group with below median income. We also consider the
intersection of any two groups.

5.2.2. RESULTS

The results are shown in Figure 3 and 4. We compare dif-
ferent values of o (with o ~ 0 we learn with Lpaic, and
with o =~ 1 we learn with Lnpp).

The main observation is forecasters learned with smaller «
almost always achieve better group calibration (both adver-
sarial group and interpretable group) and worse sharpness
(log likelihood and variance of predicted distribution). This
shows a trade-off between calibration and sharpness. De-
pending on the application, a practitioner can adjust « and
find the appropriate trade-off, e.g. given some constraint
on fairness (maximum calibration error) achieve the best
sharpness (log likelihood).

We also observe that post training recalibration improves
average calibration (i.e. when the size of adversarial group
is 100% in Figure 4). However, we cannot expect recalibra-
tion to improve individual or adversarial group calibration
— we empirically confirm this in Figure 4.

In Table 1 in Appendix B.3 we also report the worst in-
terpretable groups that are miscalibrated. These do cor-
respond to groups that we might want to protect, such as
percent of immigrants, or racial composition.

6. Application II: Decision under Uncertainty

Machine learning predictions are often used to make deci-
sions. With good uncertainty quantification, the agent can
consider different plausible outcomes, and pick the best ac-
tion in expectation.

More formally, suppose there is a set of actions a € A,
and some loss function [ : X x V) x A — R. If we had a
perfect forecaster (i.e. H[z] = Fy|,), then given input x,
Bayesian decision theory would suggest to take the action
that minimizes expected loss (Fishburn & Kochenberger,
1979) under the predicted probability.

S
(6)

Iu(x) € minEg g, [l(z, Y, a)]

o ()

&f argmin By g1z, Y, a)]
a

However, perfect forecaster is almost never possible in
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Figure 5: Comparison between individual calibration (« ~
0) and baseline (o« = 1). Left: Each dot represents a ran-
dom roll-out for different values of a, where we plot the
bank’s average utility when the customers either decide to
apply randomly or rationally. Individually calibrated fore-
caster perform worse than baseline when the customers are
random, but better when customers are rational. Middle
Left: Proportion of exploitative customers (customers with
y < 1o but decide to apply). Random forecasters have less
systematic bias and discourages exploitative customers.

practice. Nevertheless, calibration provides some guaran-
tee on the decision rule in Eq.(6) for certain loss func-
tions. In particular, we consider loss functions [(x, -, a)
that, for each z, a, are either monotonically non-increasing
or non-decreasing in y. We call these loss functions mono-
tonic. For example, if y represents stock prices and a €
{buy, sell}, then when a = buy, loss is decreasing in y;
when a = sell, loss is increasing in y.

In the following theorem (proof in Appendix B.4) we show
that the actual loss cannot exceed the expected loss in
Eq.(5) too often. This would be Markov’s inequality if
Eq.(5) takes expectation under the true distribution Fy|,.
Interestingly the inequality is still true when the expecta-
tion is under the predicted distribution H[z] # Fy|,.

Theorem 3. Supposel: X x Y x A — R is a monotonic
non-negative loss, let pyx and lyy be defined as in Eq.(6)

1. If H is 0-average calibrated, then Yk > 0
Pri(X, Y, ¢u(X)) = kla(X)] < 2/k
2. IfHis (0,0)-PAIC, thenVx € X,k >0
Pr[i(z, Y, pu(x)) > kig(z)] < 1/k

6.1. Case Study: Credit Prediction

Suppose customers of a financial institution are represented
with a feature vector x and a real-valued credit worthiness
score y € ). The bank has a financial product (e.g. credit
card or loan) with a minimum threshold y9 € R for credit
worthiness. If a customer chooses to apply for the product,
the bank observes x, and uses forecaster H to predict their
true credit worthiness y. There is a positive utility for say-
ing ’yes’ to a qualified customer, and a negative utility for

saying ’yes’ to a disqualified customer. More specifically,
the utility (negative loss) for the bank is

| y>w0 ¥ <o
‘yes’ 1 -3
‘no’ 0 0

Guarantees from Average Calibration: Suppose the
bank uses the Bayesian decision rule in Eq.(6). If H is
average calibrated, Theorem 3 would imply that when the
bank says “yes’, at most 25% will be to unqualified cus-
tomers (when customers truly come from the distribution
Fx). For details see Appendix A.4.

The Bayesian decision rule in Eq.(6) is fragile when H is
only average calibrated because the guarantee above is void
if the customers do not come from the distribution Fx.
For example, suppose some unqualified customers know
that their credit scores are overestimated by the bank, then
these customers are more likely to apply. More concretely,
if only the customers who would be mistakenly approved
ended up applying, then the bank is guaranteed to lose (it
will suffer a loss of -3 for each customer).

Guarantees from Individual Calibration: If H is indi-
vidually calibrated (and hence also calibrated with respect
to any adversarial subgroup), the bank cannot be exploited
— no matter which subgroup of customers choose to apply,
the fraction of unqualified approvals is at most 25%.

6.1.1. SIMULATION

We perform simulations to verify that individual calibrated
forecasters are less exploitable and can achieve higher util-
ity in practice. We model the customers as rational agents
that predict their utility and exploit any mistake by the
bank. For detailed setup, see Appendix A.4.

The results are shown in Figure 5. We compare different
values of o € [0.1,1.0] (recall when o = 0 we almost ex-
clusive optimize Lpaic, and when o = 1 we exclusively
optimize Lnr1). We compare the average utility on ran-
dom customers (customers drawn from Fxv) and rational
customers (Appendix A.4).

The main observations is that when customers are random,
individual calibrated forecasters perform worse because av-
erage calibration is already sufficient. On the other hand,
when the customers are rational, and try to exploit any
systematic bias with the decision maker, individually cal-
ibrated forecasters perform much better.

7. Related Work

Randomized Forecast: Randomized forecast has been
used in adversarial environments. In online learning where
the true label can be adversarial, randomized forecasters
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can achieve low regret (Cesa-Bianchi & Lugosi, 2006;
Shalev-Shwartz et al., 2012). In security games / Stackel-
berg games (Tsai et al., 2010; Trejo et al., 2015), defender
needs randomization to play against attackers. (Perdomo
et al., 2020) gives a theoretical characterization of predic-
tion in (possibly adversarial) environments when the loss
function is strongly convex.

Calibration: Definitions of average calibration first ap-
peared in the statistics literature (Brier, 1950; Murphy,
1973; Dawid, 1984; Cesa-Bianchi & Lugosi, 2006). Re-
cently there has been a surge of interest in recalibrating
classifiers (Platt et al., 1999; Zadrozny & Elkan, 2001;
2002; Niculescu-Mizil & Caruana, 2005), especially deep
networks (Guo et al., 2017; Lakshminarayanan et al.,
2017). Average calibration in the regression setup has been
studied by (Gneiting et al., 2007; Kuleshov et al., 2018).

Group calibration for a small number of pre-specified
groups has been studied in (Kleinberg et al., 2016). Inter-
estingly (Hébert-Johnson et al., 2017; Kearns et al., 2017)
can achieve calibration for any group computable by a
small circuit, but is computationally difficult (likely no
polynomial time algorithm). Similarly (Barber et al., 2019)
achieve calibration for a set of groups, but only has efficient
algorithms for special sets of groups. (Kearns et al., 2019)
proposes a notion of individual calibration applicable when
there are many prediction tasks, and each individual draws
multiple prediction tasks. (Joseph et al., 2016) achieves
a notion similar to individual calibration for fairness, but
needs strong realizability assumptions that are difficult to
verify. (Liu et al., 2018) proves an upper bound on cali-
bration error for any group. However, it is unclear how to
compute the upper bound if the group labels are not pro-
vided.

(Barber et al., 2019) show that if a forecaster always out-
puts an individually calibrated confidence interval (i.e. the
true label belong to the interval with the advertised proba-
bility), then the size of the interval cannot be smaller than
a trivially constructed forecaster (with large interval size).
Our algorithm is not bound by this impossibility result be-
cause our algorithm do not always produce individually
calibrated forecasters — success of the algorithm depends
on the inductive bias and the data distribution. However,
whenever the algorithm succeeds in producing individually
calibrated forecasters, we do obtain post-training guaran-
tees by Theorem 2.

Fairness: In addition to calibration (Kleinberg et al., 2016;
Hébert-Johnson et al., 2017; Kearns et al., 2017), other def-
initions of fairness include metric based fairness (Dwork
et al., 2012), equalized odds (Hardt et al., 2016), conterfac-
tual fairness (Kusner et al., 2017; Kilbertus et al., 2017),
and representation fairness (Zemel et al., 2013; Louizos
et al., 2015; Song et al., 2018). The trade-off between

these definitions are discussed in (Pleiss et al., 2017; Klein-
berg et al., 2016; Friedler et al., 2016; Corbett-Davies et al.,
2017).

8. Conclusion and Future Work

In this paper we explore using randomization to achieve
individual calibration for regression. We show that these
individually calibrated predictions are useful for fairness
or decision making under uncertainty. One future direction
is extending our results to classification. The challenge is
that there is no natural way to define a CDF for a discrete
random variables. Another open question is a good theo-
retical characterization of the trade-off between sharpness
and individual calibration.
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