
Optimization Theory for ReLU Neural Networks

Trained with Normalization Layers

Yonatan Dukler
1

Quanquan Gu
2

Guido Montúfar
1 3 4

Abstract

The success of deep neural networks is in part
due to the use of normalization layers. Normaliza-
tion layers like Batch Normalization, Layer Nor-
malization and Weight Normalization are ubiqui-
tous in practice, as they improve generalization
performance and speed up training significantly.
Nonetheless, the vast majority of current deep
learning theory and non-convex optimization liter-
ature focuses on the un-normalized setting, where
the functions under consideration do not exhibit
the properties of commonly normalized neural net-
works. In this paper, we bridge this gap by giving
the first global convergence result for two-layer
neural networks with ReLU activations trained
with a normalization layer, namely Weight Nor-
malization. Our analysis shows how the introduc-
tion of normalization layers changes the optimiza-
tion landscape and can enable faster convergence
as compared with un-normalized neural networks.

1. Introduction

Dynamic normalization in the training of neural networks
amounts to the application of an intermediate normaliza-
tion procedure between layers of the network. Such meth-
ods have become ubiquitous in the training of neural nets
since in practice they significantly improve the convergence
speed and stability. This type of approach was popular-
ized with the introduction of Batch Normalization (BN)
(Ioffe and Szegedy, 2015) which implements a dynamic
re-parametrization normalizing the first two moments of
the outputs at each layer over mini-batches. A plethora

1Department of Mathematics, UCLA, Los Angeles, CA 90095.
2Department of Computer Science, UCLA, Los Angeles, CA
90095. 3Department of Statistics, UCLA, Los Angeles, CA 90095.
4Max Planck Institute for Mathematics in the Sciences, 04103
Leipzig, Germany. Correspondence to: Yonatan Dukler <yduk-
ler@math.ucla.edu>, Quanquan Gu <qgu@cs.ucla.edu>, Guido
Montúfar <montufar@math.ucla.edu>.

Proceedings of the 37 th
International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

of additional normalization methods followed BN, notably
including Layer Normalization (LN) (Ba et al., 2016) and
Weight Normalization (WN) (Salimans and Kingma, 2016).
Despite the impressive empirical results and massive popu-
larity of dynamic normalization methods, explaining their
utility and proving that they converge when training with
non-smooth, non-convex loss functions has remained an
unsolved problem. In this paper we provide sufficient con-
ditions on the data, initialization, and over-parametrization
for dynamically normalized ReLU networks to converge
to a global minimum of the loss function. For the theory
we present we focus on WN, which is a widely used nor-
malization layer in training of neural networks. WN was
proposed as a method that emulates BN. It normalizes the
input weight vector of each unit and separates the scale into
an independent parameter. The WN re-parametrization is
very similar to BN (see Section 2) and benefits from similar
stability and convergence properties. Moreover, WN has the
advantage of not requiring a batch setting, therefore consid-
erably reducing the computational overhead that is imposed
by BN (Gitman and Ginsburg, 2017).

When introducing normalization methods, the function
parametrization defined by the network becomes scale in-
variant in the sense that re-scaling of the weights does not
change the represented function. This re-scaling invari-
ance changes the geometry of the optimization landscape
drastically. To better understand this we analyze weight
normalization in a given layer.

We consider the class of 2-layer ReLU neural networks
which represent functions f : Rd ! R parameterized by
(W, c) 2 Rm⇥d ⇥ Rm as

f(x;W, c) =
1p
m

mX

k=1

ck�(w
>
k x). (1.1)

Here we use the ReLU activation function �(s) =
max{s, 0} (Nair and Hinton, 2010),m denotes the width of
the hidden layer, and the output is normalized accordingly
by a factor

p
m. We investigate gradient descent training

with WN for (1.1), which re-parametrizes the functions in



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

terms of (V,g, c) 2 Rm⇥d ⇥ Rm ⇥ Rm as

f(x;V,g, c) =
1p
m

mX

k=1

ck�

✓
gk · v

>
k x

kvkk2

◆
. (1.2)

This gives a similar parametrization to (Du et al., 2018) that
study convergence of gradient optimization of convolutional
filters on Gaussian data. We consider a regression task, the
L
2 loss, a random parameter initialization, and focus on the

over-parametrized regime, meaning that m > n, where n is
the number of training samples. Further, we make little to
no assumptions about the data.

The neural network function class (1.1) has been studied in
many papers including (Arora et al., 2019a; Du et al., 2019b;
Wu et al., 2019; Zhang et al., 2019) along with other similar
over-parameterized architectures (Allen-Zhu et al., 2019a;
Du et al., 2018; Li and Liang, 2018). An exuberant series
of recent works prove that feed-forward ReLU networks
converge to zero training error when trained with gradient
descent from random initialization. Nonetheless, to the
best of our knowledge, there are no proofs that ReLU net-
works trained with normalization on general data converge
to a global minimum. This is in part because normaliza-
tion methods completely change the optimization landscape
during training. Here we show that neural networks of
the form given above converge at linear rate when trained
with gradient descent and WN. The analysis is based on
the over-parametrization of the networks, which allows for
guaranteed descent while the gradient is non-zero.

For regression training, a group of papers studied the tra-
jectory of the networks’ predictions and showed that they
evolve via a “neural tangent kernel” (NTK) as introduced by
Jacot et al. (2018). The latter paper studies neural network
convergence in the continuous limit of infinite width over-
parametrization, while the works of (Arora et al., 2019a; Du
et al., 2019b; Oymak and Soltanolkotabi, 2019; Wu et al.,
2019; Zhang et al., 2019) analyze the finite width setting.
For finite-width over-parameterized networks, the training
evolution also exhibits a kernel that takes the form of a Gram
matrix. In these works, the convergence rate is dictated by
the least eigenvalue of the kernel. We build on this fact, and
also on the general ideas of the proof of (Du et al., 2019b)
and the refined work of (Arora et al., 2019a).

In this work we analyze neural network optimization with
weight normalization layers. We rigorously derive the dy-
namics of weight normalization training and its convergence
from the perspective of the neural tangent kernel. Com-
pared with un-normalized training, we prove that normal-
ized networks follow a modified kernel evolution that fea-
tures a “length-direction” decomposition of the NTK. This
leads to two convergence regimes in WN training and ex-
plains the utility of WN from the perspective of the NTK.
In the settings considered, WN significantly reduces the

amount of over-parametrization needed for provable conver-
gence, as compared with un-normalized settings. Further,
we present a more careful analysis that leads to improved
over-parametrization bounds as compared with (Du et al.,
2019b).

The main contributions of this work are:

• We prove the first general convergence result for 2-layer
ReLU networks trained with a normalization layer and
gradient descent. Our formulation does not assume the
existence of a teacher network and has only very mild
assumptions on the training data.

• We hypothesize the utility of normalization methods via
a decomposition of the neural tangent kernel. In the
analysis we highlight two distinct convergence regimes
and show how Weight Normalization can be related to
natural gradients and enable faster convergence.

• We show that finite-step gradient descent converges for
all weight magnitudes at initialization. Further, we sig-
nificantly reduce the amount of over-parametrization re-
quired for provable convergence as compared with un-
normalized training.

The paper is organized as follows. In Section 2 we provide
background on WN and derive key evolution dynamics of
training in Section 3. We present and discuss our main
results, alongside with the idea of the proof, in Section 4.
We discuss related work in Section 5, and offer a discussion
of our results and analysis in Section 6. Proofs are presented
in the Appendix.

2. Weight Normalization

Here we give an overview of the WN procedure and review
some known properties of normalization methods.

Notation We use lowercase, lowercase boldface, and up-
percase boldface letters to denote scalars, vectors and ma-
trices respectively. We denote the Rademacher distribu-
tion as U{1,�1} and write N(µ,⌃) for a Gaussian with
mean µ and covariance ⌃. Training points are denoted
by x1, . . . ,xn 2 Rd and parameters of the first layer by
vk 2 Rd, k = 1, . . . ,m. We use �(x) := max{x, 0}, and
write k · k2, k · kF for the spectral and Frobenius norms for
matrices. �min(A) is used to denote the minimum eigen-
value of a matrix A and h·, ·i denotes the Euclidean inner
product. For a vector v denote the `2 vector norm as kvk2
and for a positive definite matrix S define the induced vec-
tor norm kvkS :=

p
v>Sv. The projections of x onto u

and u
? are defined as xu := uu>x

kuk2
2
, xu?

:=
�
I � uu>

kuk2
2

�
x.

Denote the indicator function of event A as 1A and for a



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

weight vector at time t, vk(t), and data point xi we denote
1ik(t) := 1{vk(t)>xi� 0}.

WN procedure For a single neuron �(w>
x), WN re-

parametrizes the weightw 2 Rd in terms of v 2 Rd, g 2 R
as

w(v, g) = g · v

kvk2
, �

✓
g · v

>
x

kvk2

◆
. (2.1)

This decouples the magnitude and direction of each weight
vector (referred as the “length-direction” decomposition).
In comparison, for BN each output w>

x is normalized
according to the average statistics in a batch. We can draw
the following analogy between WN and BN if the inputs xi

are centered (Ex = 0) and the covariance matrix is known
(Exx> = S). In this case, batch training with BN amounts
to

�

 
� · w

>
xq

Ex

�
w>xx>w

�

!
= �

✓
� · w

>
xp

w>Sw

◆
(2.2)

= �

✓
� · w

>
x

kwkS

◆
.

From this prospective, WN is a special case of (2.2) with
S = I (Kohler et al., 2019; Salimans and Kingma, 2016).

Properties of WN We start by giving an overview of
known properties of WN that will be used to derive the
gradient flow dynamics of WN training.

For re-parametrization (2.1) of a network function f that is
initially parameterized with a weightw, the gradientrwf

relates to the gradients rvf,
@f
@g by the identities

rvf =
g

kvk2
(rwf)v

?
,

@f

@g
= (rwf)v.

This implies thatrvf ·v = 0 for each input x and parameter
v. For gradient flow, this orthogonality results in kv(0)k2 =
kv(t)k2 for all t. For gradient descent (with step size ⌘)
the discretization in conjunction with orthogonality leads
to increasing parameter magnitudes during training (Arora
et al., 2019b; Hoffer et al., 2018; Salimans and Kingma,
2016), as illustrated in Figure 1,

kv(s+ 1)k22 = kv(s)k22 + ⌘
2krvfk22 � kv(s)k22. (2.3)

vk(0)

dvk
dt (0)

vk(t)

↵↵

vk(0)

�rvkL

vk(s)

Figure 1.WN updates for gradient flow and gradient descent.
For gradient flow, the norm of the weights are preserved, i.e.,
kvk(0)k2 = kvk(t)k2 for all t > 0. For gradient descent, the
norm of the weights kvk(s)k2 is increasing with s.

Problem Setup We analyze (1.1) with WN training (1.2),
so that

f(x;V, c,g) =
1p
m

mX

k=1

ck�

✓
gk · v

>
k x

kvkk2

◆
.

We take an initialization in the spirit of (Salimans and
Kingma, 2016):

vk(0) ⇠ N(0,↵2
I), ck ⇠ U{�1, 1},

and gk(0) = kvk(0)k2/↵.
(2.4)

Where ↵
2 is the variance of vk at initialization. The

initialization of gk(0) is therefore taken to be indepen-
dent of ↵. We remark that the initialization (2.4) gives
the same initial output distribution as in methods that
study the un-normalized network class (1.1). The param-
eters of the network are optimized using the training data
{(x1, y1), . . . , (xn, yn)} with respect to the square loss

L(f) =
1

2

nX

i=1

(f(xi)� yi)
2 =

1

2
kf � yk22, (2.5)

where f = (f1, . . . , fn)> = (f(x1), . . . , f(xn))> and y =
(y1, . . . , yn)>.

3. Evolution Dynamics

We present the gradient flow dynamics of training (2.5) to
illuminate the modified dynamics of WN as compared with
vanilla gradient descent. In Appendix C we tackle gradient
descent training with WN where the predictions’ evolution
vector df

dt is replaced by the finite difference f(s+1)� f(s).



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

For gradient flow, each parameter is updated in the negative
direction of the partial derivative of the loss with respect to
that parameter. The optimization dynamics give

dvk

dt
= � @L

@vk
,

dgk

dt
= � @L

@gk
. (3.1)

We consider the case where we fix the top layer parameters
ck during training. In the over-parameterized settings we
consider, the dynamics of ck and gk turn out to be equiva-
lent.
To quantify convergence, we monitor the time derivative of
the i-th prediction, which is computed via the chain rule as

@fi

@t
=

mX

k=1

@fi

@vk

dvk

dt
+

@fi

@gk

dgk

dt
.

Substituting (3.1) into the i-th prediction evolution and
grouping terms yields

@fi

@t
= �

mX

k=1

@fi

@vk

@L

@vk
| {z }

T i
v

�
mX

k=1

@fi

@gk

@L

@gk
| {z }

T i
g

. (3.2)

The gradients of fi and L with respect to vk are written
explicitly as

@fi

@vk
(t) =

1p
m

ck · gk(t)
kvk(t)k2

· xvk(t)
?

i 1ik(t),

@L

@vk
(t) =

1p
m

nX

i=1

(fi(t)� yi)
ck · gk(t)
kvk(t)k2

x
vk(t)

?

i 1ik(t).

Defining the v-orthogonal Gram matrix V(t) as

Vij(t) =

1

m

mX

k=1

✓
↵ck · gk(t)
kvk(t)k2

◆2⌦
x
vk(t)

?

i , x
vk(t)

?

j

↵
1ik(t)1jk(t),

(3.3)

we can compute T i
v as

T
i
v(t) =

nX

j=1

Vij(t)

↵2
(fj(t)� yj).

Note thatV(t) is the induced neural tangent kernel (Jacot
et al., 2018) for the parameters v of WN training. While
it resembles the Gram matrixH(t) studied in (Arora et al.,
2019a), here we obtain a matrix that is not piece-wise con-
stant in v since the data points are projected onto the orthog-
onal component of v. We compute T i

g in (3.2) analogously.
The associated derivatives with respect to gk are

@fi

@gk
(t) =

1p
m

ck

kvk(t)k2
�(vk(t)

>
xi),

@L

@gk
(t) =

1p
m

nX

j=1

(fj(t)� yj)
ck

kvk(t)k2
�(vk(t)

>
xj),

and we obtain

T
i
g(t) =
mX

k=1

1

m

nX

j=1

c
2
k(fj(t)� yj)

kvk(t)k22
�(vk(t)

>
xj)�(vk(t)

>
xi).

Given that c2k = 1, defineG(t) as

Gij(t) =
1

m

mX

k=1

�(vk(t)>xi)�(vk(t)>xj)

kvk(t)k22
(3.4)

hence we can write

T
i
g(t) =

nX

j=1

Gij(t)(fj(t)� yj).

Combining Tv and Tg, the full evolution dynamics are given
by

df

dt
= �

✓
V(t)

↵2
+G(t)

◆
(f(t)� y). (3.5)

Denote⇤(t) := V(t)
↵2 +G(t) and write df

dt = �⇤(t)(f(t)�
y). We note that V(0),G(0), defined in (3.3), (3.4), are
independent of ↵:

Observation 1 (↵ independence). For initialization (2.4)
and ↵ > 0 the Gram matrices V(0),G(0) are independent
of ↵.

This fact is proved in Appendix A. When training the neural
network in (1.1) without WN (see Arora et al., 2019a; Du
et al., 2019b; Zhang et al., 2019), the corresponding neural
tangent kernel H(t) is defined by @fi

@t =
Pm

k=1
@fi
@wk

dwk
dt =

�
Pm

k=1
@fi
@wk

@L
@wk

= �
Pn

j=1 Hij(t)(fj � yj) and takes
the form

Hij(t) =
1

m

mX

k=1

x
>
i xj1ik(t)1jk(t). (3.6)

The analysis presented above shows that vanilla and WN
gradient descent are related as follows.

Proposition 1. Define V(0), G(0), and H(0) as in (3.3),
(3.4), and (3.6) respectively. then for all ↵ > 0,

V(0) +G(0) = H(0).

Thus, for ↵ = 1,

@f

@t
= �⇤(0)(f(0)� y) = �H(0)(f(0)� y).

That is, WN decomposes the NTK in each layer into a length
and a direction component. We refer to this as the “length-
direction decoupling” of the NTK, in analogy to (2.1). From



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

the proposition, normalized and un-normalized training ker-
nels initially coincide if ↵ = 1. We hypothesize that the
utility of normalization methods can be attributed to the
modified NTK ⇤(t) that occurs when the WN coefficient,
↵, deviates from 1. For ↵ � 1 the kernel⇤(t) is dominated
by G(t), and for ↵ ⌧ 1 the kernel ⇤(t) is dominated by
V(t). We elaborate on the details of this in the next section.
In our analysis we will study the two regimes ↵ > 1 and
↵ < 1 in turn.

4. Main Convergence Theory

In this section we discuss our convergence theory and main
results. From the continuous flow (3.5), we observe that
the convergence behavior is described by V(t) and G(t).
The matricesV(t) andG(t) are positive semi-definite since
they can be shown to be covariance matrices. This implies
that the least eigenvalue of the evolution matrix ⇤(t) =
1
↵2V(t) +G(t) is bounded below by the least eigenvalue
of each kernel matrix,

�min(⇤(t)) � max{�min(V(t))/↵2
,�min(G(t))}.

For finite-step gradient descent, a discrete analog of evolu-
tion (3.5) holds. However, the discrete case requires addi-
tional care in ensuring dominance of the driving gradient
terms. For gradient flow, it is relatively easy to see linear
convergence is attained by relating the rate of change of the
loss to the magnitude of the loss. Suppose that for all t � 0,

�min

�
⇤(t)

�
� !/2, with ! > 0. (4.1)

Then the change in the regression loss is written as

d

dt
kf(t)� yk22 = 2(f(t)� y)>

df(t)

dt

= �2(f(t)� y)>⇤(t)(f(t)� y)

(4.1)
 �!kf(t)� yk22.

Integrating this time derivative and using the initial condi-
tions yields

kf(t)� yk22  exp(�!t)kf(0)� yk22,

which gives linear convergence. The focus of our proof is
therefore showing that (4.1) holds throughout training.

By Observation 1 we have thatV andG are independent of
the WN coefficient ↵ (↵ only appears in the 1/↵2 scaling of
⇤). This suggests that the kernel ⇤(t) = 1

↵2V(t) +G(t)
can be split into two regimes: When ↵ < 1 the kernel is
dominated by the first term 1

↵2V, and when ↵ > 1 the
kernel is dominated by the second term G. We divide our
convergence result based on these two regimes.

In each regime, (4.1) holds if the corresponding dominant
kernel, V(t) or G(t), maintains a positive least eigenvalue.

Having a least eigenvalue that is bounded from 0 gives a
convex-like property that allows us to prove convergence.
To ensure that condition (4.1) is satisfied, for each regime we
show that the corresponding dominant kernel is “anchored”
(remains close) to an auxiliary Gram matrix which we define
in the following for V andG.

Define the auxiliary v-orthogonal and v-aligned Gram ma-
tricesV1

,G
1 as

V
1
ij := Ev⇠N(0,↵2I) hxv?

i ,x
v?

j i1ik(0)1jk(0), (4.2)

G
1
ij := Ev⇠N(0,↵2I) hxv

i ,x
v
j i1ik(0)1jk(0). (4.3)

For now, assume thatV1 andG1 are positive definite with
a least eigenvalue bounded below by ! (we give a proof
sketch below). In the convergence proof we will utilize over-
parametrization to ensure that V(t),G(t) concentrate to
their auxiliary versions so that they are also positive definite
with a least eigenvalue that is greater than !/2. The precise
formulations are presented in Lemmas B.4 and B.5 that are
relegated to Appendix B.

To prove our convergence results we make the assumption
that the xis have bounded norm and are not parallel.
Assumption 1 (Normalized non-parallel data). The data

points (x1, y1), . . . , (xn, yn) satisfy kxik2  1 and for

each index pair i 6= j, xi 6= � · xj for all � 2 R \ {0}.

In order to simplify the presentation of our results, we as-
sume that the input dimension d is not too small, whereby
d � 50 suffices. This is not essential for the proof. Specific
details are provided in Appendix A.
Assumption 2. For data xi 2 Rd

assume that d � 50.

Both assumptions can be easily satisfied by pre-processing,
e.g., normalizing and shifting the data, and adding zero
coordinates if needed.

Given Assumption 1, V1
,G

1 are shown to be positive
definite.
Lemma 4.1. Fix training data {(x1, y1), . . . , (xn, yn)} sat-
isfying Assumption 1. Then the v-orthogonal and v-aligned

Gram matricesV
1

andG
1
, defined as in (4.2) and (4.3),

are strictly positive definite. We denote the least eigenvalues

�min(V1) =: �0, �min(G1) =: µ0.

Proof sketch Here we sketch the proof of Lemma 4.1.
The main idea, is the same as (Du et al., 2019b), is to regard
the auxiliary matrices V1

,G
1 as the covariance matrices

of linearly independent operators. For each data point xi,
define �i(v) := x

v?

i 1{x>
i v�0}. The Gram matrix V

1 is
the covariance matrix of {�i}i=1:n taken over Rd with the
measure N(0,↵2

I). Hence showing that V1 is strictly
positive definite is equivalent to showing that {�i}i=1,...n

are linearly independent. Unlike (Du et al., 2019b), the



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

functionals under consideration are not piecewise constant
so a different construction is used to prove independence.
Analogously, a new set of operators, ✓i(v) := �(xv

i ), is
constructed forG1. Interestingly, each �i corresponds to
d✓i
dv . The full proof is presented in Appendix D. As already
observed from evolution (3.5), different magnitudes of ↵
can lead to two distinct regimes that are discussed below.
We present the main results for each regime.

V-dominated convergence

For ↵ < 1 convergence is dominated by V(t) and
�min(⇤(t)) � 1

↵2�min(V(t)). We present the convergence
theorem for the V-dominated regime here.

Theorem 4.1 (V-dominated convergence). Suppose a neu-

ral network of the form (1.2) is initialized as in (2.4)
with ↵  1 and that Assumptions 1,2 hold. In addition,

suppose the neural network is trained via the regression

loss (2.5) with targets y satisfying kyk1 = O(1). If

m = ⌦
�
n
4 log(n/�)/�4

0

�
, then with probability 1� �,

1. For iterations s = 0, 1, . . ., the evolution matrix ⇤(s)
satisfies �min(⇤(s)) � �0

2↵2 .

2. WN training with gradient descent of step-size ⌘ =

O

⇣
↵2

kV1k2

⌘
converges linearly as

kf(s)� yk22 
⇣
1� ⌘�0

2↵2

⌘s
kf(0)� yk22.

The proof of Theorem 4.1 is presented in Appendix C. We
will provide a sketch below. We make the following obser-
vations about our V-dominated convergence result.

The required over-parametrization m is independent of ↵.
Further, the dependence of m on the failure probability
is log(1/�). This improves previous results that require
polynomial dependence of order �3. Additionally, we reduce
the dependence on the sample size from n

6 (as appears in
(Arora et al., 2019a)) to n4 log(n).

In Theorem 4.1, smaller ↵ leads to faster convergence, since
the convergence is dictated by �0/↵

2. Nonetheless, smaller
↵ is also at the cost of smaller allowed step-sizes, since
⌘ = O(↵2

/kV1k2). The trade-off between step-size and
convergence speed is typical. For example, this is implied
in Chizat et al. (Chizat et al., 2019), where nonetheless
the authors point out that for gradient flow training, the
increased convergence rate is not balanced by a limitation
on the step-size. The works (Arora et al., 2019b; Hoffer
et al., 2018; Wu et al., 2018) define an effective step-size
(adaptive step-size) ⌘0 = ⌘/↵

2 to avoid the dependence of
⌘ on ↵.

G-dominated convergence

For ↵ > 1 our convergence result for the class (1.2) is based
on monitoring the least eigenvalue of G(t). Unlike V-
dominated convergence, ↵ does not affect the convergence
speed in this regime.
Theorem 4.2 (G-dominated convergence). Suppose a net-
work of the form (1.2) is initialized as in (2.4) with ↵ �
1 and that Assumptions 1, 2 hold. In addition, sup-

pose the neural network is trained via the regression loss

(2.5) with targets y satisfying kyk1 = O(1). If m =
⌦
�
max

�
n
4 log(n/�)/↵4

µ
4
0, n

2 log(n/�)/µ2
0

 �
, then with

probability 1� �,

1. For iterations s = 0, 1, . . ., the evolution matrix ⇤(s)
satisfies �min(⇤(s)) � µ0

2 .

2. WN training with gradient descent of step-size ⌘ =

O

⇣
1

k⇤(t)k

⌘
converges linearly as

kf(s)� yk22 
⇣
1� ⌘µ0

2

⌘s
kf(0)� yk22.

Wemake the following observations about ourG-dominated
convergence result, and provide a proof sketch further be-
low.

Theorem 4.2 holds for ↵ � 1 so long as m =
⌦
�
max

�
n
4 log(n/�)/µ4

0↵
4
, n

2 log(n/�)/µ2
0

 �
. Taking

↵ =
p
n/µ0 gives an optimal required over-parametrization

of order m = ⌦
�
n
2 log(n/�)/µ2

0

�
. This significantly

improves on previous results (Du et al., 2019b) for un-
normalized training that have dependencies of order 4 in
the least eigenvalue, cubic dependence in 1/�, and n

6 de-
pendence in the number of samples n. In contrast to V-
dominated convergence, here the rate of convergence µ0

is independent of ↵ but the over-parametrization m is ↵-
dependent. We elaborate on this curious behavior in the
next sections.

Proof sketch of main results The proof of Theorems 4.1
and 4.2 is inspired by a series of works including (Arora
et al., 2019a; Du et al., 2019a;b; Wu et al., 2019; Zhang et al.,
2019). The proof has the following steps: (I) We show that
at initializationV(0),G(0) can be viewed as empirical esti-
mates of averaged data-dependent kernelsV1

,G
1 that are

strictly positive definite under Assumption 1. (II) For each
regime, we prove that the corresponding kernel remains pos-
itive definite if vk(t) and gk(t) remain near initialization for
each 1  k  m. (III) Given a uniformly positive definite
evolution matrix ⇤(t) and sufficient over-parametrization
we show that each neuron, vk(t), gk(t) remains close to its
initialization. The full proof is presented in Appendix B
for gradient flow and Appendix C for finite-step gradient
descent. Next we interpret the main results and discuss how



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

the modified NTK in WN can be viewed as a form of natural
gradient.

Connection with natural gradient Natural gradient
methods define the steepest descent direction in the parame-
ter space of a model from the perspective of function space.
This amounts to introducing a particular geometry into the
parameter space which is reflective of the geometry of the
corresponding functions. A re-parametrization of a model,
and WN in particular, can also be interpreted as choosing a
particular geometry for the parameter space. This gives us
a perspective from which to study the effects of WN. The
recent work of (Zhang et al., 2019) studies the effects of nat-
ural gradient methods from the lens of the NTK and shows
that when optimizing with the natural gradient, one is able
to get significantly improved training speed. In particular,
using the popular natural gradient method K-FAC improves
the convergence speed considerably.

Natural gradients transform the NTK from JJ
> to JG†

J
>,

where J is the Jacobian with respect to the parameters and
G is the metric. The WN re-parametrization transforms the
NTK from JJ

> to JS>
SJ

>. To be more precise, denote the
un-normalized NTK asH = JJ

>, where J is the Jacobian
matrix for x1, . . .xn written in a compact tensor as J =
⇥
J1, . . .Jn

⇤> with Ji =


@f(xi)
@w1

. . .
@f(xi)
@wm

�
, where matrix

multiplication is a slight abuse of notation. Namely J 2
Rn⇥m⇥d and we define multiplication ofA 2 Rn⇥m⇥d ⇥
B 2 Rd⇥m⇥p ! AB 2 Rn⇥p as

(AB)ij =
mX

k=1

hAik:,B:kji.

For any re-parametrization w(r), we have that

⇤ = KK
>
,

whereK = JS
> and S corresponds to the Jacobian of the

re-parametrization w(r). By introducing WN layers the
reparameterized NTK is compactly written as

⇤ = JS
>
SJ

>
.

Here S = [S1, . . . , tSm] with

Sk =


gk

kvkk2

✓
I� vkv

>
k

kvkk2

◆
,

vk

kvkk2

�
.

The term N(↵) := SS
> leads to a family of different

gradient re-parametrizations depending on ↵. The above
representation of the WN NTK is equivalent to ⇤(↵) =
1
↵2V + G = JN(↵)J>. For different initialization mag-
nitudes ↵, N(↵) leads to different NTKs with modified
properties.

For ↵ = 1 the term corresponds to training without nor-
malization, yet over ↵ 2 (0,1), N(↵) leads to a family
NTKs with different properties. In addition there exists
an ↵

⇤ that maximizes the convergence rate. Such ↵
⇤ is

either a proper global maximum or is attained at one of
↵ ! 0,↵ ! 1. For the latter, one may fix ↵⇤ with ↵⇤ ⌧ 1
or ↵⇤ � 1 respectively so that there exists ↵⇤ that outpaces
un-normalized convergence (↵ = 1). This leads to equal or
faster convergence of WN as compared with un-normalized
training:

Proposition 2 (Fast Convergence of WN). Suppose a neu-
ral network of the form (1.2) is initialized as in (2.4) and
that Assumptions 1,2 hold. In addition, suppose the net-

work is trained via the regression loss (2.5) with targets

y satisfying kyk1 = O(1). Then, with probability 1 � �

over the initialization, there exists ↵
⇤
such that WN train-

ing with ↵
⇤
initialization leads to faster convergence: If

m = ⌦
�
n
4 log(n/�)/min{�4

0, µ
4
0}
�
,

1. WN training with gradient descent of step-size ⌘↵⇤ =

O

⇣
1

kV1/(↵⇤)2+G1k2

⌘
converges linearly as

kf(s)� yk22 
✓
1� ⌘↵⇤

�
�0/2(↵

⇤)2 + µ0/2
�◆s

kf(0)� yk22.

2. The convergence rate of WN is faster than un-

normalized convergence,

�
1� ⌘↵⇤�min(⇤(s))

�

�
1� ⌘�min(H(s))

�
.

This illustrates the utility of WN from the perspective of the
NTK, guaranteeing that there exists an ↵⇤ that leads to faster
convergence in finite-step gradient descent as compared with
un-normalized training.

5. Related Work

Normalization methods theory A number of recent
works attempt to explain the dynamics and utility of vari-
ous normalization methods in deep learning. The original
works on BN (Ioffe and Szegedy, 2015) and WN (Salimans
and Kingma, 2016) suggest that normalization procedures
improve training by fixing the intermediate layers’ output
distributions. The works of Bjorck et al. (2018) and San-
turkar et al. (2018) argue that BN may improve optimization
by improving smoothness of the Hessian of the loss, there-
fore allowing for larger step-sizes with reduced instability.
Hoffer et al. (2017) showed that the effective step-size in
BN is divided by the magnitude of the weights. This fol-
lowed the work on WNgrad (Wu et al., 2018) that introduces
an adaptive step-size algorithm based on this fact. Follow-
ing the intuition of WNGrad, Arora et al. (2019b) proved



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

that for smooth loss and network functions, the diminish-
ing “effective step-size” of normalization methods leads to
convergence with optimal convergence rate for properly ini-
tialized step-sizes. The work of Kohler et al. (2019) explains
the accelerated convergence of BN from a “length-direction
decoupling” perspective. The authors along with Cai et al.
(2019) analyze the linear least squares regime, with Kohler
et al. (2019) presenting a bisection method for finding the
optimal weights. Robustness and regularization of Batch
Normalization is investigated by Luo et al. (2018) and im-
proved generalization is analyzed empirically. Shortly after
the original work of WN, (Yoshida et al., 2017) showed that
for a single precptron WN may speed-up training and em-
phasized the importance of the norm of the initial weights.
Additional stability properties were studied by Yang et al.
(2019) via mean-field analysis. The authors show that gra-
dient instability is inevitable even with BN as the number
of layers increases; this is in agreement with Balduzzi et al.
(2017) for networks with residual connections. The work of
Arpit et al. (2019) suggests initialization strategies for WN
and derives lower bounds on the width to guarantee same
order gradients across the layers.

Over-parametrized neural networks There has been a
significant amount of recent literature studying the conver-
gence of un-normalized over-parametrized neural networks.
In the majority of these works the analysis relies on the
width of the layers. These include 2-layer networks trained
with Gaussian inputs and outputs from a teacher network
(Li and Yuan, 2017; Tian, 2017) and (Du et al., 2018) (with
WN). Assumptions on the data distribution are relaxed in
(Du et al., 2019b) and the works that followed (Arora et al.,
2019a; Wu et al., 2019; Zhang et al., 2019). Our work is
inspired by the mechanism presented in this chain of works.
Wu et al. (2019) extend convergence results to adaptive step-
size methods and propose AdaLoss. Recently, the global
convergence of over-parameterized neural networks was
also extended to deep architectures (Allen-Zhu et al., 2019b;
Du et al., 2019a; Zou and Gu, 2019; Zou et al., 2020). In the
context of the NTK, Zhang et al. (2019) have proved fast
convergence of neural networks trained with natural gradi-
ent methods and the K-FAC approximation (Martens and
Grosse, 2015). In the over-parameterized regimes, Arora
et al. (2019a) develop generalization properties for the net-
works of the form (1.1). In addition, in the context of gen-
eralization, Allen-Zhu et al. (2019a) illustrates good gen-
eralization for deep neural networks trained with gradient
descent. Cao and Gu (2020) and (Cao and Gu, 2019) derive
generalization error bounds of gradient descent and stochas-
tic gradient descent for learning over-parametrization deep
ReLU neural networks.

6. Discussion

Dynamic normalization is the most common optimization
set-up of current deep learning models, yet understanding
the convergence of such optimization methods is still an
open problem. In this work we present a proof giving suffi-
cient conditions for convergence of dynamically normalized
2-layer ReLU networks trained with gradient descent. To
the best of our knowledge this is the first proof showcasing
convergence of gradient descent training of neural networks
with dynamic normalization and general data, where the
objective function is non-smooth and non-convex. To un-
derstand the canonical behavior of each normalization layer,
we study the shallow neural network case, that enables us
to focus on a single layer and illustrate the dynamics of
weight normalization. Nonetheless, we believe that using
the techniques presented in (Allen-Zhu et al., 2019b; Du
et al., 2019a) can extend the proofs to the deep network set-
tings. Through our analysis notion of “length-direction de-
coupling” is clarified by the neural tangent kernel ⇤(t) that
naturally separates in our analysis into “length”, G(t), and
“direction”, V(t)/↵2, components. For ↵ = 1 the decom-
position initially matches un-normalized training. Yet we
discover that in general, normalized training with gradient
descent leads to 2 regimes dominated by different pieces of
the neural tangent kernel. Our improved analysis is able to
reduce the amount of over-parametrization that was needed
in previous convergence works in the un-normalized set-
ting and in the G-dominated regime, we prove convergence
with a significantly lower amount of over-parametrization
as compared with un-normalized training.

Acknowledgement YD has been supported by the National
Science Foundation under Graduate Research Fellowship
Grant No. DGE-1650604. QG was supported in part by the
National Science Foundation CAREER Award IIS-1906169,
BIGDATA IIS-1855099, and Salesforce Deep Learning Re-
search Award. This project has received funding from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no 757983).

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning
and generalization in overparameterized neural networks,
going beyond two layers. In Advances in Neural Informa-
tion Processing Systems 32, pages 6158–6169. 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A conver-
gence theory for deep learning via over-parameterization.
In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 242–252. PMLR, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ru-



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

osong Wang. Fine-grained analysis of optimization and
generalization for overparameterized two-layer neural
networks. In Proceedings of the 36th International Con-

ference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 322–332. PMLR,
2019a.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical
analysis of auto rate-tuning by batch normalization. In
International Conference on Learning Representations,
2019b. URL https://openreview.net/forum?
id=rkxQ-nA9FX.

Devansh Arpit, Víctor Campos, and Yoshua Bengio. How to
initialize your network? robust initialization for weight-
norm &amp; resnets. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing

Systems 32, pages 10902–10911. Curran Associates, Inc.,
2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. Deep Learning Symposium, NIPS-
2016, 2016.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis,
Kurt Wan-Duo Ma, and Brian McWilliams. The shat-
tered gradients problem: If resnets are the answer, then
what is the question? In Proceedings of the 34th Inter-

national Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
342–350. JMLR. org, 2017.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q
Weinberger. Understanding batch normalization. In Ad-
vances in Neural Information Processing Systems 31,
pages 7694–7705. 2018.

Yongqiang Cai, Qianxiao Li, and Zuowei Shen. A quan-
titative analysis of the effect of batch normalization on
gradient descent. In International Conference on Machine

Learning, pages 882–890, 2019.

Yuan Cao and Quanquan Gu. Generalization bounds of
stochastic gradient descent for wide and deep neural net-
works. In Advances in Neural Information Processing

Systems 32, pages 10836–10846. 2019.

Yuan Cao and Quanquan Gu. Generalization error bounds
of gradient descent for learning over-parameterized deep
ReLU networks. In AAAI, 2020.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy
training in differentiable programming. In Advances in

Neural Information Processing Systems 32, pages 2937–
2947. 2019.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu
Zhai. Gradient descent finds global minima of deep neu-
ral networks. In Proceedings of the 36th International

Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pages 1675–1685,
Long Beach, California, USA, 09–15 Jun 2019a. PMLR.

Simon S. Du, Jason D. Lee, and Yuandong Tian. When is a
convolutional filter easy to learn? In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=SkA-IE06W.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti
Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Confer-

ence on Learning Representations, 2019b. URL https:
//openreview.net/forum?id=S1eK3i09YQ.

Igor Gitman and Boris Ginsburg. Comparison of batch
normalization and weight normalization algorithms for
the large-scale image classification. arXiv preprint

arXiv:1709.08145, 2017.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer,
generalize better: closing the generalization gap in large
batch training of neural networks. In Advances in Neural

Information Processing Systems 30, pages 1731–1741.
2017.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry.
Norm matters: efficient and accurate normalization
schemes in deep networks. In Advances in Neural Infor-
mation Processing Systems 31, pages 2160–2170. 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 448–456.
PMLR, 2015.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing

Systems 31, pages 8571–8580. 2018.

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas
Hofmann, Ming Zhou, and Klaus Neymeyr. Exponential
convergence rates for batch normalization: The power
of length-direction decoupling in non-convex optimiza-
tion. In Proceedings of Machine Learning Research, vol-
ume 89 of Proceedings of Machine Learning Research,
pages 806–815. PMLR, 2019.

Yuanzhi Li and Yingyu Liang. Learning overparameterized
neural networks via stochastic gradient descent on struc-
tured data. In Advances in Neural Information Processing
Systems 31, pages 8157–8166. 2018.



Optimization Theory for ReLU Neural Networks Trained with Normalization Layers

Yuanzhi Li and Yang Yuan. Convergence analysis of two-
layer neural networks with ReLU activation. In Advances
in Neural Information Processing Systems 30, pages 597–
607. 2017.

Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin
Peng. Understanding regularization in batch normaliza-
tion. arXiv preprint arXiv:1809.00846, 2018.

James Martens and Roger Grosse. Optimizing neural net-
works with Kronecker-factored approximate curvature.
In Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine

Learning Research, pages 2408–2417. PMLR, 2015.

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted Boltzmann machines. In Proceedings

of the 27th international conference on machine learning

(ICML-10), pages 807–814, 2010.

Samet Oymak and Mahdi Soltanolkotabi. Towards mod-
erate overparameterization: global convergence guaran-
tees for training shallow neural networks. arXiv preprint
arXiv:1902.04674, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A
simple reparameterization to accelerate training of deep
neural networks. In Advances in Neural Information

Processing Systems 29, pages 901–909. 2016.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and
Aleksander Madry. How does batch normalization help
optimization? In Advances in Neural Information Pro-

cessing Systems 31, pages 2483–2493. 2018.

Yuandong Tian. An analytical formula of population gradi-
ent for two-layered ReLU network and its applications in
convergence and critical point analysis. In Proceedings of
the 34th International Conference on Machine Learning-

Volume 70, pages 3404–3413. JMLR. org, 2017.

Roman Vershynin. High-dimensional probability: An in-

troduction with applications in data science, volume 47.
Cambridge University Press, 2018.

Xiaoxia Wu, Rachel Ward, and Léon Bottou. WNGrad:
Learn the learning rate in gradient descent. arXiv preprint
arXiv:1803.02865, 2018.

Xiaoxia Wu, Simon S Du, and Rachel Ward. Global
convergence of adaptive gradient methods for an
over-parameterized neural network. arXiv preprint

arXiv:1902.07111, 2019.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-
Dickstein, and Samuel S. Schoenholz. A mean field
theory of batch normalization. In International Confer-

ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=SyMDXnCcF7.

Yuki Yoshida, Ryo Karakida, Masato Okada, and Shun-ichi
Amari. Statistical mechanical analysis of online learn-
ing with weight normalization in single layer perceptron.
Journal of the Physical Society of Japan, 86(4):044002,
2017.

Guodong Zhang, James Martens, and Roger B Grosse.
Fast convergence of natural gradient descent for over-
parameterized neural networks. In Advances in Neural

Information Processing Systems 32, pages 8082–8093.
2019.

Difan Zou and Quanquan Gu. An improved analysis of
training over-parameterized deep neural networks. In
Advances in Neural Information Processing Systems 32,
pages 2055–2064. 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan
Gu. Gradient descent optimizes over-parameterized deep
ReLU networks. Machine Learning, 109(3):467–492,
2020. doi: 10.1007/s10994-019-05839-6. URL https:
//doi.org/10.1007/s10994-019-05839-6.


