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Abstract. Discrete integration in a high dimensional space of n
variables poses fundamental challenges. The WISH algorithm re-
duces the intractable discrete integration problem into n optimiza-
tion queries subject to randomized constraints, obtaining a constant
approximation guarantee. The optimization queries are expensive,
which limits the applicability of WISH. We propose AdaWISH,
which is able to obtain the same guarantee, but accesses only a small
subset of queries of WISH. For example, when the number of func-
tion values is bounded by a constant, AdaWISH issues only O (log n)
queries. The key idea is to query adaptively, taking advantage of the
shape of the weight function being integrated. In general, we prove
that AdaWISH has a regret of only O(log n) relative to an idealistic
oracle that issues queries at data-dependent optimal points. Experi-
mentally, AdaWISH gives precise estimates for discrete integration
problems, of the same quality as that of WISH and better than sev-
eral competing approaches, on a variety of probabilistic inference
benchmarks. At the same time, it saves substantially on the number
of optimization queries compared to WISH. On a suite of UAI infer-
ence challenge benchmarks, it saves 81.5% of WISH queries while
retaining the quality of results.

1 INTRODUCTION

Discrete integration in a high dimensional space poses fundamen-
tal challenges in scientific computing. Yet, it has numerous applica-
tions in artificial intelligence, machine learning, statistics, biology,
and physics [4, 33]. In probabilistic inference, discrete integration
is crucial for computing core quantities such as the partition function
and marginal probabilities of probabilistic graphical models. The key
challenge is the exponential growth in the volume of the space as the
dimensionality increases, commonly known as the curse of dimen-
sionality.

A fruitful line of work, based on hashing and optimization, is able
to achieve constant-factor upper and lower bounds to the discrete
integration problem [13, 5, 3, 17, 18, 23, 32]. The key idea is to
transform the discrete integration problem into optimization prob-
lems subject to additional randomly sampled parity constraints. Each
imposed parity constraint randomly cuts the original space by half.
If there is one element of interest in a subspace formed by applying
k random parity constraints, then there should be approximately 2"
elements of interest in the original space.

The WISH algorithm of Ermon et al. [13] gave the first constant-
factor approximation guarantee for integrating a weight function.
They followed a two-step approach. In the first step, they worked
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Figure 1. (Top) WISH obtains a constant approximation of
W = > w(o) by querying quantiles of w that are exponentially apart,
namely, b;, the 2%_th largest item for w. The solid and dashed curves show
the corresponding upper and lower bounds after knowing the values of these
quantiles, which form a 2-approximation. (Bottom) AdaWISH makes
queries adaptively. The set of queried points forms a subset of those of
WISH. In this example, AdaWISH does not need to query the two points
marked with squares, since their values can be approximately inferred from
their left and right neighbors.

out a logarithmic slicing schedule, which was able to obtain a con-
stant approximation guarantee by querying only the quantiles of the
weight function that are exponentially apart; i.e., the 2°-th largest el-
ement b; of the weight function, for various values of . See Figure
1 (Top) for an illustration. The second step was to obtain b; using
hashing and optimization. They completed this step by querying op-
timization oracles subject to randomized parity constraints.

We propose AdaWISH, which is able to obtain the same constant
approximation guarantees for weighted integration, but with a signif-
icantly fewer number of queries to the optimization oracle. The key
idea is to make quantile queries in an adaptive way, using divide-and-
conquer. See Figure 1 (Bottom) for the intuitive idea. Here, WISH
queries all quantiles. AdaWISH, on the other hand, skips querying
the two quantiles shown in boxes because the neighboring black
quantiles to their left and the right, which sandwich the quantiles,
are close in value. Exploiting this observation, one can prove, for in-
stance, that AdaWISH needs only O(logn) queries if the function
has a fixed number of outputs. This case coincides with the results



of [8]. While their work focused on the unweighted case, our results
apply to a more general weighted case.

We analyze the performance of AdaWISH when it accesses ora-
cles in two different approximate ways. In the first way, when queried
for one specific quantile b;, the oracle returns a value that is guar-
anteed to be bounded between neighboring quantiles b;+. with a
high probability. This setting corresponds precisely to the probabilis-
tic bound one obtains with hashing and optimization. In the second
way, we consider another natural setting where the oracle returns a
pointwise approximation, i.e., a value within a known constant fac-
tor of b;. In both settings, we are able to prove the following: (i)
(Upper bound) AdaWISH makes at most n queries, forming a sub-
set of WISH’s queries while achieving an identical constant approx-
imation guarantee; (i) (Regret bound) The number of queries of
AdaWISH cannot exceed a logarithmic factor times that of an “op-
timal” algorithm, which makes the least amount of queries for the
same guarantee, while knowing the exact shape of the weight func-
tion a-priori; (iii) (Lower bound) Any algorithm that guarantees a
constant-approximation for all weight functions must make at least
Q(n) accesses to the oracle. We thus conclude that the number of
optimization queries made by AdaWISH is close to optimal. Our
theoretical bounds apply when every approximate oracle query is-
sued by WISH is solved to optimality. When some queries are not
solved to optimality, WISH continues to provides strong empirical
estimates of practical value (without a guarantee). AdaWISH contin-
ues to match the quality of these estimates with substantially fewer
queries, thereby providing added value even in this case.

Experimentally, we test the efficacy of AdaWISH in the context of
computing the partition function of random clique-structured Ising
models, grid Ising models, and instances from the UAI inference
competitions. Our results demonstrate that AdaWISH provides pre-
cise estimates of discrete integration problems, of the same quality
as that of WISH and better than competing approaches like belief
propagation, mean field, dynamic importance sampling, HAK, etc.
Meanwhile, AdaWISH saves a vast majority of optimization oracle
queries compared to WISH. For example, it reduces the number of
queries by 47%-60% on Ising models and a median of 81.5% queries
for benchmarks from the UAI inference challenge.

Related work. Over the years, many exact and approximate ap-
proaches have been proposed to tackle the discrete integration prob-
lem. Variational methods [22, 35] search for a tractable variational
form to approximate the otherwise intractable integration. These
methods are fast but often cannot provide tight bounds on the qual-
ity of the outcome. Approximate sampling techniques [21, 27, 30]
are popular, but the number of samples required to obtain a reliable
estimate often grows exponentially in the problem size. Importance
sampling approaches such as SampleSearch [16, 25] and methods
based on knowledge compilation [9] have also achieved a fundamen-
tal breakthrough in performance [19, 24, 26, 15].

There have been recent developments on the use of short parity
constraints to speed up computation in WISH style methods [14, 3,
2, 1], and on a dual variant of WISH called SWITCH [10]. While
these approaches reduce the empirical complexity of answering indi-
vidual optimization oracle queries, our method reduces the number
of queries itself, complementing these approaches.

Only a handful of hashing based approaches provide guarantees
for weighted functions [7, 12]. Using the tilt parameter of a weighted
Boolean formula is an alternative [6] that allows relying only on NP
oracles, which can be more efficient in practice than the MAP oracles
used by WISH and AdaWISH. However, in typical applications and

Algorithm 1: XorQuery(i, %, w,T)

1 if the 2°-th largest item b; has been queried before then
2 L return b;;

3 else

4 fort=1,...,T do

5 Sample hash function H} from #; and d € {0,1}"
uniformly at random

6 w! < max, w(o) subject to H () = d

7 M + Median(w}, ..., w¥)

3 return M as the estimate I;i;

benchmarks including UAI instances, tilt can be impractically large.

The adaptive approach of AdaWISH is motivated by the work of
[31], who addressed the problem of reducing the number of human
annotations needed to reliably estimate the precision-recall curve of
massive noisy datasets. Our application domain, namely discrete in-
tegration, differs in a number of aspects, such as our space being
exponential and thus too large to enumerate (they operated on an ex-
plicitly stored dataset), our query oracles being NP-hard (their query
was human annotation of a data point), and our weight function not
being guaranteed to not increase/decrease too fast (PR curves, on
the other hand, must necessarily be relatively stable for large enough
ranks). These differences necessitate new proof techniques.

2 PRELIMINARIES

We consider a weighted model with n binary variables z1,...,xn
where z; € {0,1}. = (@1,...,2,)7 is a vector which takes
values from the space ¥ = {0,1}". Define a weighted function
w : ¥ — RY that assigns a non-negative weight to each element o
in 3. The discrete integration problem is to compute the total weight:
W =73 csw(o).

The discrete integration problem is an important but challenging
problem in machine learning. A recently proposed method Weight-
Integral-And-Sum-By-Hashing (WISH) [13] provides a constant-
approximation guarantee to this problem. A careful analysis of
WISH reveals that the constant approximation guarantee is achieved
via two main ingredients: (i) a logarithmic slicing schedule; (ii)
counting via hashing and optimization.

Logarithmic slicing schedule. We fix an ordering for all 0 € X
such that w(o;) > w(oj4+1) holds forall j,1 < j < 2" — 1 and
let b; be the 2°-th largest element, i.e., b; = w(oqi ). The first contri-
bution of [13] is a constant approximation scheme constructed from
knowing only n 4 1 points of function w, namely, bo, . . ., by,.

Lemma 1 (Ermonetal. [13]). LB =bo+ Y1 b:i(2"' —2" ") isa
lower bound and a 2-approximation to W . In other words,

LB <W <2LB.

Counting via hashing and optimization. In order to estimate W,
the next step is to estimate b; = w(oy:) fori =0, ..., n. The work
of [13] translates this problem into optimization problems subject
to randomized hashing (parity) constraints. The high-level idea is as
follows. To compute b,,, the 2™-th largest item, consider 2" buck-
ets, each of which is labeled with one vector from {0, 1}™. Suppose
we hash all elements in 3 uniformly at random into these 2" buck-
ets. Then we use an optimization oracle to compute the largest item



in a given bucket. Because elements are hashed randomly, if we re-
peat this process multiple times and consistently find that the largest
item in one bucket is larger than w™, then we can conclude that there
must be more than 2™ items larger than w™, hence b,,, > w™. Fol-
lowing the same argument, if there are more than 2™ items larger
than W > w™, then the optimization oracle should return w, larger
than w*. Combining these two points, if we repeat this experiment
multiple times, the median value of the largest item in the repeated
bucket experiments should reflect the actual value of b,,,. In practice,
we form the buckets with pairwise independent hashing functions:

Definition 1. A function family H., = {Hm : {0,1}" — {0,1}™}
is pairwise independent if the following conditions hold when H,, is
chosen uniformly at random from H,. 1)Vx € {0,1}", the random
variable Hp, () is uniformly distributed in {0,1}™. 2) V1,22 €
{0,1}™ and ©1 # x2, random variables H,(x1) and H,,(z2) are

independent.

For one configuration 0 € X, we say o is hashed to the bucket
labeled with d € {0,1}™ by function H,, if Hy (o) = d. In prac-
tice, pairwise independent hash functions are constructed with ran-
dom parity functions. Let matrix A € {0,1}"*™ be a randomly
sampled 0-1 matrix. One can prove that function family {ha(z) =
Az mod 2} is pairwise independent. XorQuery(i, X, w,T) (Algo-
rithm 1) demonstrates the actual implementation to compute the 2°-
th largest item b;. The formal mathematical result in [13] bounds
the returned value M of the algorithm between bpingitcn) and
bmax{i—c,0} for any ¢ > 2, a small range around b;:

Lemma 2. [Ermon et al. [13]] Let M be the value returned by
XorQuery(i, X, w,T). Then for any ¢ > 2, there exists an o™ (c) >
0 such that for 0 < a < a*(c),

Pr (M € [bmin{i+c,n}7bmax{ifc,o}]) > 1- exp(—aT)

Combining Lemma 2 with the logarithmic slicing schedule, the
authors of [13] are able to provide a constant approximation algo-
rithm for the discrete integration problem with at most a logarithmic
number of accesses to the optimization queries:

Theorem 1 (Ermon et al. [13]). For § > 0, WISH algorithm makes
O(nlognlog(1/0)) MAP queries and with probability at least 1—9,
outputs a 16-approximation of W.

3 AdaWISH: ADAPTIVE DISCRETE
INTEGRATION

In WISH, we query all the n 4+ 1 quantiles bg, b1, ..., b,. In prac-
tice, the number of queries can be reduced due to the shape of the
w function. For example, the two quantiles in Figure 1 (Bottom) are
sandwiched between the left and right quantile in black, which are
close in values. From this observation, we do not need to query the
two blue quantiles and instead can use the values of the neighboring
quantiles to replace their values.

Motivated by this example, we propose Adaptive-Weight-
Integral-And-Sum-By-Hashing (AdaWISH), an algorithm which
makes queries adaptively using divide-and-conquer. The detailed
AdaWISH algorithm is shown in Algorithm 2, where the algorithm
starts with estimating the quantiles bo, ..., b, in the entire range
(SEARCH (%, w, 3,0,n)), and recursively breaks the range by the
middle point (geometric mean) using divide-and-conquer (shown as
SEARCH (¥, w, 8,l,m) and SEARCH (X, w, 8, m,r)) until the

stopping condition is met. In this algorithm, 5 > 1 is a user-
defined parameter for trade-off. The larger § is, the worse the ap-
proximation guarantee, but the fewer number of queries that AdaW-
ISH has to make. AdaWISH also depends on three query functions,
ApproxQuery, LowerBound, and UpperBound, which are imple-
mented differently assuming different types of oracles, which will
be introduced shortly. The detailed implementation of these func-
tions will be discussed together with the specific oracle. Here, at
a high level, ApprozQuery(i, X, w) outputs a point estimate of
quantile b;, while LowerBound(i,%,w) (UpperBound (i, 3, w))
outputs a lower (upper) bound of the quantile b;, respectively. In
SEARCH (X, w, 8,1, r), there are two stopping conditions once we
have queried the left point by and right point by The firstis 7 = {+1,
in which there is no point to query between the two quantiles. The
second condition is that the values of I;l and l~)r are close: l;l < ﬁl;r.
This suggests that the w function stays roughly flat between b; and
br. If one of these two conditions is met, we stop and replace all the
b; between b; and b, with the value of b,. Otherwise, we break the
range [ ... r through the middle point m = [~} | then recursively
calls SEARCH on two sub-partitions.

We analyze the performance of AdaWISH, when it accesses quan-
tile oracles in two different ways. In the first way, when queried
with one quantile, the oracle returns a value that is guaranteed to be
bounded between neighboring quantiles with high probability. This
type of oracle corresponds the case of using hashing and random-
ization, i.e., using XorQuery in algorithm 1. In another way, we
consider a natural case where every oracle access returns a quantile
in its point-wise bound, e.g., the multiplicative distance between the
returned and the exact values are within a constant range.

3.1 Neighboring query oracle

We focus mainly on the NeighborQuery oracle. When we query
a particular quantile b;, NeighborQuery returns a value that is
guaranteed to be bounded between neighboring quantiles with high
probability. To be precise, given ¢ > 2 and § > 0, for all ¢,
NeighborQuery(i, 3, w) returns an estimation of b; that is guaran-
teed to be in the range [bmax {i—c,0} Dmin {i+c,n}] With probability
at least 1 — §. Notice that we can use hashing and optimization to
build NeighborQuery oracles. According to Lemma 2, if we set
T = [1"0(4155) Inn], then the output of XorQuery(i,X%, 3, w,T)
(Algorithm 1) satisfies the conditions of a NeighborQuery oracle.

We  implement the AdaWISH algorithm as  fol-
lows: for all i, ApproxQuery(i,3,w) returns exactly
NeighborQuery(i, 3, w). LowerBound(i, %, w) returns the value
of NeighborQuery(min{i+c,n}, ¥, w), which with high probabil-
ity is a lower bound for b; based on Lemma 2. UpperBound (i, 3, w)
returns NeighborQuery(max{i — ¢,0},3, w), which with high
probability is an upper bound for b;. We implement a look-up table
within NeighborQuery. If NeighborQuery(i, X, w) is called twice
with the same parameters, then the second time NeighborQuery
directly returns the result without re-computing. We can prove that
the AdaWISH algorithm implemented in this way gives a constant
factor approximation:

Theorem 2. (Constant Approximation) Let w, ., 5, and ¢ > 2 be
as defined earlier. For any k > 2°°, the output of AdaWISH (Algo-
rithm 2) on input (2, w, k/(22°)), assuming oracles with neighbor-
ing bound, is a k-approximation of W with probability 1 — 6.

At a high level, the two stopping conditions guarantees the con-
stant approximation guarantee of Theorem 2. The first stopping con-



dition is r = [ 4 1, in which AdaWISH queries all the quantiles
within the range from [ to r. The approximation guarantee can be
enforced with the same argument in the proof of WISH. The sec-
ond stopping condition is by < Bb,, which suggests that function w
decreases very slowly in the range from [ to r. In this case, we can
approximate the values of w in between with the queried value from
either end, without losing much accuracy.

Proof (Theorem 2) The approximation W glven by AdaWISH is
=bo+ > b 2'. Define L’ = bo + ZZ o bmin{ite,n2’ and
=bo+ > 1 no1 o bmax{i—c,012". From Lemma 2 in [13], we have

L' <WwW<U (l) and U’ < 22°L’ (2). We are going to prove

W satisfies L'/3 < W < BU’ (3) with high probability. Combin-

ing (2) and (3), we have L'/B < W < 2°°L’ (4). Combining

(1) (2) and (4), we can have W < U’ < 2%°L' < 22°6W. In

short, W < 22cﬂW (5). Combining (1) and (4), we have W <

522CL’ < B22°W (6). Together (5) and (6) imply that W is a

(2%¢-approximation. Under the condition of this theorem, 3 is set

to x,/2%¢. Therefore, the overall approximation factor is .

We are left to prove 3): L'/8 < W < BU’. Comparing the
corresponding terms of L', W, and U’, it is sufficient to prove that
for all ¢, the following Inequality (7) holds:

bmin{iJrc,n} /B < Bz < ﬁbmax{ifc,()}

Consider the two stopping conditions for AdaWISH. If stopping
condition 1 is met, &; and b, are from ApproxQuery, hence (7)
holds because of Lemma 2. If stopping condition 2 is met for a
range from [ to r, we have 5; < ﬂi)r (8) Here, l;l is the result
from XorQuery(max{l — ¢,0}, 2, w,T). According to Lemma 2,
by > b; (9) with high probability. For the same reason, by < b, (10)
with high probability. The estimation of b; in between are replaced
with b,.. Hence, b; = b, < br < bmax{i—c,0} < Bbmax{i—c,0y (11).
Here, the first inequality is due to (10), the second due to monotic-
ity of the quantiles. Similarly, we have b; = b, > b /B> b8 >
bmm{lﬂ,n}/ﬁ (12), where the first inequality is due to the stopping
condition. With (11, 12), we also get (7). O

To understand AdaWISH in terms of the number of calls to
NeighborQuery, we analyze the upper bound, regret bound and
asymptotic lower bound respectively.

Theorem 3. (Upper Bound) Under the conditions of Theorem 2, the
number of NeighborQuery calls is at most n + 1, which is only a
subset of that of WISH.

To prove Theorem 3, in the worst case AdaWISH has to query all
bo, . . ., bn, which is exact the case of WISH. The lookup table imple-
mented in the oracle guarantees the same query will not be computed
twice. In practice, AdaWISH can save a lot of queries. For example:

Observation 1. [f function w(o) only has a fixed set of k dif-
ferent values, then AdaWISH makes only O(logn) accesses to
NeighborQuery.

Intuitively, since function w(o) only has a fixed set of k values,
it requires AdaWISH to search for the k¥ — 1 quantiles, where the
function values change from one value to another. AdaWISH uses bi-
nary search. Therefore, it requires O(log n) queries to determine one
point. Since k is a constant, the total number of queries is O(log n)
to determine the entire w function.

Regret bound. We consider an “optimal” algorithm, which is guar-
anteed to produce a xk-approximation by issuing the least number

Algorithm 2: AdaWISH(X, w, 3)

1 n=log, |X|;

2 bo,....,bp < SEARCH (S, w, 3,0,n);
3 W bo+ 30 2

4 return W

Algorithm 3: SEARCH (¥, w, 8,1,r)
1 ifr == 1+ 1 then

2 /1 stopping condition 1 met

3 by ApprozQuery(l, X, w)

s | by ApprozQuery(r, X, w)

5 else

6 by UpperBound(l, %, w)
7 b, < LowerBound(r, 2, w)
3 if Bl < Bl;,« then

9

/I stopping condition 2 is met
10 %forie{l,..wr—l}dogﬂ—i)r
11 else
12 m < | =t | // bisect the interval
3 bi,... by — SEARCH(Z,w, 3,1, m)
14 L By br SEARCH (2, w, 8, m,r)

15 return by, ..., b,

of accesses to an FErxactQuery oracle. When queried on a partic-
ular b;, EzactQuery returns the exact value of b;. We allow the
optimal algorithm to know the shape of the w function a priori.
The optimal algorithm issues EzactQuery very smartly. Let B =

{bo,biy, ..., bi,,bn} be the set of points the optimal algorithm is-
sues ExactQuery on. We can bound the sum W between the up-

per bound UB = by + bo(211 — 2°) 4+ o0} bi,(2il+‘1 —20) 4
by, (2" — 2°%) and the lower bound LB = by + b;, (2" — 20) +
Zf:z by, (2°F — 2"-1) + b, (2™ — 2'F). We require the optimal al-

gorithm to obtain a x-approximation, i.e., LB < UB < kLB must
hold. The mathematical definition of the optimal algorithm is the
one that minimizes the size of B, i.e., the set of queried points, while
enforcing LB < UB < kLB. We call the number of accesses to
EzactQuery of this optimal algorithm, i.e., the size of B, OPT. We
compare the number of QUERY accesses of AdaWISH against O PT'
and show the difference is within a multiplicative O(log n) factor:

Theorem 4. (Regret Bound) Suppose k = 267>, AdaWISH in al-
gorithm 2 on input (X, w, 3), assuming neighboring query oracle,
calls NeighborQuery at most (OPT — 1)(2 + log, n) + 1 times.

This says that the number of QUERY calls made by AdaW-
ISH is roughly O(OPT - log,n). Theorem 4 is a strong re-
sult in the following sense: first, the “optimal” algorithm has ac-
cess to the FzactQuery oracle, while AdaWISH only accesses
NeighborQuery which returns approximations to b;’s. Even with ap-
proximate oracles, the number of queries AdaWISH needs is within a
logarithmic factor of that of WISH. Second, the “optimal” algorithm
does not need to follow the query schedule of WISH or AdaWISH.
We give the algorithm the privilege of accessing ExactQuery ora-
cles. It is at the “optimal” algorithm’s discretion how to make use
of such a privilege. The high level idea to prove Theorem 4 is as fol-
lows. Suppose q1, ..., go pr are the actual query points of the optimal
algorithm. Because AdaWISH uses a binary search, i.e., it always al-



most splits an interval at its geometrical middle point. Then it takes
AdaWISH roughly O(log, n) splits to “locate” one query point g; of
the optimal algorithm (more precisely, find a point that is sufficiently
close to ¢; that guarantees the approximation bound). Hence, the to-
tal number of queries of AdaWISH is bounded by OPT times log,, n.
Our accurate proof to Theorem 4 is based on walking through the ac-
tual calling map of the function SEARCH , where each node in this
map represents an actual interval that SEARCH is called.

Proof. (Theorem 4) Suppose the optimal algorithm calls
EzactQuery at points gqi,...,qopr as above. These points
split the entire range between [o40,02»] into OPT-1 segments. We
call one segment of this type an opt-segment. We also define the
following tuple (o4, 02r,d, SMALL/BIG), where (o,:,02r) is
an interval on which the function SEARCH is called during the
execution of AdaWISH, d is the depth of this recursive call, and
the forth entry is either SMALL or BIG. It is BIG if and only if the
interval (o4, 02r) covers at least one complete opt-segment. The
log distance of a tuple is measured as r — [. Two tuples are treated
as cousins if they are called by a single ORACLE function as two
children calls(i.e.,one is (041, 02m ), while the other is (oam , oar)).
We can merge two cousin tuples. The result of merging is the tuple
representing the parent function that called the functions represented
by these two cousin tuples. Notice that the log distance of the
merged tuple is between 2 times of those of the two cousin tuples.

We start with the set @, made of tuples
(091,097, d, SMALL/BIG) such that (o4 ,02r) enters the
stopping condition of function SEARCH during the execution of the
algorithm. We repeat the following merge operation on tuples in ®
until no tuple in ® is tagged with SMALL.:

1. Choose a tuple from & that has the largest depth d among those
tagged with SMALL.

2. Merge this tuple with its cousin tuple.

3. Add the merged tuple back into .

We refer to the set ¢ obtained after merging all SMALL tuples as
®F First, all tuples in ®F are tagged BIG. Therefore, each of them
contains an opt-segment. Second, since the tuples in &% are still from
the SEARCH function, these tuples must be non-overlapping. Based
on these two observations, the number of tuples in ®% is bounded by
the number of opt-segment, which is OPT-1. We should notice that
the merge operations that each tuple in ®Z have gone through must
be bounded by O(log, 1), since the largest possible log distance is
no more than log, 2" = n (the entire range), and each merge op-
eration nearly doubles the log distance. Considering that there are
some interval whose log distance is odd, we need to perform at most
[log, n] < log, n + 1 merge operations.

Now we count the number of QUERY calls that AdaWISH makes.
It is easy to see that

#QUERY = || + #MERGE + 1 1)

where #MERGE is the total number of merge operations performed.
This number is bounded by

|®F| 4 |®7| - maz{#MERGE for one tuple in "} +1  (2)

Combined with the fact that |®¥| < OPT — 1 and # M ERGE for
one tuple in ®¥ < log, n + 1, we obtain the claimed bound. O

Asymptotic lower bound. What is the minimum number of calls
to the oracle in order to guarantee a constant factor approxima-
tion to W, let’s say, a k-approximation? In this section, assum-
ing EzactQuery(i) returns the exact value of b;, we prove that

at least (1 — €)% accesses to EzactQuery is needed to obtain a
Kk-approximation in the worst case, even for the optimal algorithm,
which knows the shape of the w function a-priori (Corollary 1), let-
ting alone randomized algorithms. This confirms the asymptotically
optimality of AdaWISH. Notice that the lower bound is proved as-
suming the optimal algorithm has access to the FxactQuery. Even
given such a privilege, in the worst case the optimal algorithm has to
make the number of queries that is in the same order of magnitude
as that of AdaWISH assuming either neighboring or pointwise query
oracles. Our proof does not depend on a specific querying scheme.
The optimal algorithm is free to choose any scheme that minimizes
the number of queries.

Our proof sketch is as follows. Prove by contradiction. Suppose
one algorithm A queries less than (1 — €)% times and obtain a
K-approximation, then we can construct two functions w1 (o) and
wa (o), such that (i) both w; and ws match on all the queried
points of algorithm A, but (ii) the sum W1 = > wi(o) and
W2 = > ws(o) differ more than a multiplicative factor of x>
(see Theorem 5). This suggests that algorithm A cannot give a x-
approximation, which contradicts with the assumption.

Theorem 5. For x > land 0 < ¢ < 1, given any (1 — €) 5
queried points on w, there always exists two functions w1 (o) and
wa (o) which match on the queried points, but their corresponding
sums W1 and Wy satisfy Wa > K2W1.

The proof to theorem 5 is a careful mathematical construction,
which is made available in [11]. With theorem 5, we are able to show
Corollary 1 which is the asymptotic lower bound.

Corollary 1. (Lower Bound) Let A be any algorithm that accesses
w(o) via the ExactQuery oracle. Forany k > 1land 0 < e < 1, A
cannot guarantee a k-approximation of W = > _w(o) for all w if
A only issues (1 — €) =5 EzactQuery calls.

This shows that any algorithm that guarantees a x-approximation
for all w must issue more than (1 — €)% queries on some input.
Further, since this lower bound applies even to algorithms that have
access to FractQuery, it also applies to weaker algorithms that only
have access to ApproxQuery, and irrespective of whether they use a
deterministic or randomized method to compute ApprozQuery. We
leave to future work an extension of this lower bound to the general
case of randomized algorithms that guarantee a x-approximation on
only, say, 99% of weight functions w.

Interestingly, the 1" parameter in XorQuery can also be reduced
adaptively. In WISH, 7T scales with log n because of the need for a
union bound on estimation error introduced in each of the n oracle
queries. If AdaWISH makes only £ < n queries, then 7" only needs
to scale as log k, thus reducing the amount of repetitions.

3.2 Point-wise query oracle

Besides NeighborQuery, we also consider point-wise approxima-
tion, which is also a natural relaxation. We define PointQuery
as an oracle that has a pointwise approximation ratio ~: let b;
be the returned value of PointQuery(i, 3, w). Then for all
i = 0,...,n, we must have b; /vy < b; < biy. Given a point-
wise query oracle, we are able to obtain a variant of AdaWISH
which yields a 23~2-approximation of . In our implementation,
ApprozQuery(i, X, w) returns exactly PointQuery(i, 32, w),
UpperBound (i, 3, w) returns ~yPointQuery(i, X, w), and
LowerBound (i, 3, w) returns PointQuery(i, 2, w)/~. Notice that
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Figure 2. (Top) The errors in log partition function estimation for various methods on different benchmarks. (Bottom) The number of queries needed by

WISH and AdaWISH. We can see that both WISH and AdaWISH provide good quality estimations. They are competetive with best benchmark methods on
various tasks, much better than traditional methods such as MF, BP and TRWBP. AdaWISH needs much less number of queries than WISH (saving 47.7% in
median on Clique Ising models in the left column, 60% of WISH queries on Mixed Grid Ising models in the middle column, and 81.5% in median on UAI
inference benchmarks in the right column)(bottom figures).

we also implement a lookup table within PointQuery in this case,
so the same query is not computed more than once.

Theorem 6. Let w, X, v be as defined earlier. For any k > 2+, the
output of AdaWISH (Algorithm 2) on input (X, w, k/(2v?)), assum-
ing point-wise query oracle, is a k-approximation of W.

(Proof sketch) We already know from Lemma 1 that there is a lower
bound LB = bo+ 31" bi1(2"" —2") and a upper bound UB =
bo + 370 bi(27F! — 27) of W which satisfy LB < W < UB <
2L B if we query all b;. That is to say, LB is a 2-approximation of
W. Since here we don’t query all quantiles, we can find a relaxed
lower bound L B’ and an upper bound U B” of W. We construct L B’
and UB' by replacing each b; in LB and UB with other values.
For each b; returned from ApproxQuery, we use its returned value
divided by -y (times ) as its new value in L B’ (U B’). In this case, the
replacements of b; in LB’ and U B’ differ by v°. Because & > ~°
(condition of theorem 6), the difference is less than g Otherwise, b;
is contained in an interval satisfying stopping condition 2. We use
the output of LowerBound on b;’s immediate righthand side as its
replacement in forming L B’; and use the output of UpperBound on
b;’s immediate lefthand side as its replacement in forming U B’. In
this case, the difference of the replacements of b; in LB’ and U B’ is
given by 32 (stopping condition 2), which is 8+? = #72 = 3.
Originally, LB < UB < 2L B (Lemma 1). The replacement of each
quantile b; in LB’ and U B’ further broaden the distance by another
factor of &. Therefore, now LB’ < UB’ < $2LB’ = kLB'. Since
LB’ and UB’ are still relaxed bounds, we must have LB’ < W <
UB’ < kL B'. This concludes the proof.

AdaWISH also satisfies the upper bound, the regret bound, and
the asymptotic lower bound assuming the point-wise query oracle. In
terms of the upper bound, it is worth noting that we also use a look-up

table to save all the previous queried points as for NeighborQuery.
Therefore, our algorithm queries no more points than WISH. We can
also analyze the regret bound in a similar way as that assuming the
NeighborQuery. Our definition of the optimal algorithm is the same,
which accesses an FzactQuery oracle, and we can also prove a
regret bound of O(logn) of OPT. In terms of asymptotic lower
bound, Corollary 1 states that even the optimal algorithm, which has
access to ExzactQuery, has to query {2(n) times in the worst case
for a constant-approximation. AdaWISH, in this case, accesses the
pointwise approximate oracle the same order of magnititude of times
as the optimal algorithm accessing the ExactQuery oracle, con-
firming its optimality.

4 EXPERIMENTS

In our experiments, we mainly focus on NeighborQuery ora-
cles which uses XorQuery technique (algorithm 1). We imple-
ment AdaWISH using IBM ILOG CPLEX Optimizer 12.9 for MAP
queries. We adopt the implementation of WISH [13] augmented with
randomized low-density parity constraints [14]. For comparison, we
consider Junction Tree (JT), which provides exact inference results
as ground truth, Tree-Reweighted Belief propagation (TRWBP) [34],
which provides an upper bound on the partition function, Mean Field
(MF) [35], which provides a lower bound, Loopy Belief Propagation
(BP) [29], which has no guarantees, and Double-loop GBP (HAK)
[20], which is a winning solver in the UAI inference challenge. We
use the implementations of these algorithms available in LibDAI
[28]. We also compare with Dynamic Importance Sampling (DIS)
[26, 25], a recently proposed strong baseline. While we use JT here
for ground truth, ACE is a faster alternative for exact inference and,
in our tests, provided estimates that agree with JT up to the inter-



nal precision. The inference problem we consider is to compute the
partition function.

Our main result is shown in Figure 2. In a nutshell, on all three
sets of benchmarks, AdaWISH gives precise estimation to the parti-
tion function with estimated curves overlapping with those of WISH
algorithm, better than competing approaches. Meanwhile, AdaWISH
saves plenty of queries.

Table 1. The benchmarks from UAI 2011 and 2014 inference competition

used in the evaluation in Figure 2(c) and 2(f). The first (third) column shows

the abbreviations used in Figure 2(c) and 2(f) and the second (fourth) shows
the names of the benchmarks.

a | rbm_40 q | Segmentation_229
b | rbm.42 r | Segmentation_231
¢ | rbm44 s | Segmentation_232
d | rbm_ferro_40 t | Segmentation 235
e | rbm_ferro.42 u | 226binary

f | rbm_ferro-44 v | 228binary

g | Grids100f0 w | 229binary

h | Grids100f1 X | 231binary

i | Grids100f2 y | 232binary

j Grids100£3 z | 235binary

k | Grids100f4 A | Promedus_200

1 Grids100f5 B | Promedus_306
m | smokers_120 C | Promedus_374

n | or_chain_200 D | Promedus_378

o | Segmentation 226 E | Promedus_385

p | Segmentation 228 F | Promedus_400

Clique Ising model. We first consider random Clique-structured
Ising models with n binary variables z; € {0,1} fori € {1,..,n}.
Let 0 = (w1,...,%xn). The Ising model is to sum over w(c) =
exp(—>_,; ; wi;xix;), where wi; = 0if i = j, otherwise uni-
formly sampled from [0, w+/|¢ — j|]. The coupling strength w is set
to be 0.1. We introduce two closed chains of strong repulsive in-
teractions with a length of 0.3n. The strengths of interactions are
uniformly sampled from [0, 100w]. Note that Clique Ising models
have treewidth n and therefore those with more than 31 variables can
not be solved exactly (The curve for ground truth terminates at the
case of 31 variables in Figure 2(a)). In our experiments, each MAP
query is carried out using CPLEX on a single core, and experiment
is carried out on a cluster, where each node has 24 cores and 96GB
memory. We follow the design that each ApproxQuery issued by
AdaWISH consists of a batch of MAP queries that can be executed
in parallel. ApprozQuery with the same binary search depth can be
issued and executed simultaneously. The time of AdaWISH is there-
fore the sum of maximum time taken by a single MAP query of each
binary search depth.

In this experiment, we run both WISH and AdaWISH to give re-
sults with provable guarantees. Let 3, ¢, d as defined before, then
both of WISH and AdaWISH use the settings of ¢ = 5,6 =
0.01, a(c) = 0.078, where « is a function of ¢ as in [13]. And the
trade-off parameter is set to be 3 = 10° for AdaWISH. In this bench-
mark, we set T' = % Inn and execute AdaWISH/WISH to op-
timality to get results with theoretical guarantees based on Theorem
2. As a fair comparison, all competing approaches are also executed
to their optimality. With the current parameter setting, we guarantee
that with the probability at least (1 —¢) the error of AdaWISH/WISH
is no larger than 8 in log 10 scale.

Figure 2(a) reports the performance of all the methods on gener-
ated random Clique Ising models. The theoretical guarantee provided
by Theorem 2 holds since all optimizations are solved to optimality.

Note that it plots their estimations rather than errors since we can
only get the ground truth for models with less than 31 variables. We
can see that the estimations given by WISH and AdaWISH are vi-
sually overlapping with the plots of ground truth, outperforming the
second best method BP in stability. As for other methods, TRWBP
and MF diverge from the ground truth. HAK fails to return valid re-
sults therefore is absent in the graph. We also note that the empirical
result of AdaWISH is much better than the worst-case theoretical
guarantee. AdaWISH also saves 47.7% in median on the number of
queries when compared to WISH (figure 2(d)).

Grid Ising model. We next investigate the performance of AdaW-
ISH on large instances. In the following two experiments, we fo-
cus on the empirical performance, therefore relaxing the theo-
retic guarantees, which are extremely expensive to obtain. Note
only WISH/AdaWISH is able to obtain constant approximation
guarantees among all approaches in the experiment. Let ¢ =
(z1,22..xn) € {—1,1}". The grid Ising model is to sum over
w(o) =exp(d_, fizi + Z(z‘,,;‘)egrid w;jx;x;). Here, f; is sampled
uniformly from [—0.1, 0.1], w;; is sampled from [—w, w], where w
is called the coupling strength, and is shown in the horizontal axis of
Figure 2(b). We insert structures in the grids by introducing a rect-
angle of strong interactions, inside which the coupling strength is
amplified by 10.

Both of WISH and AdaWISH use the settings of ¢ = 5,7 =
10, and AdaWISH uses 8 = 100. In these two experiments, we set
a timeout of 4 hours for all algorithms and force each MAP query
issued by WISH/AdaWISH to stop in 15 minutes, so not all the query
oracles of WISH/AdaWISH are solved up to optimality. For each
coupling strength we generate 10 instances and report the median
error in the log10 partition function estimation.

From Figure 2(b), we can see that AdaWISH and WISH are com-
petitive with the state-of-the-art method DIS, outperform other meth-
ods. DIS works well on Ising models, but not well on UAI instances
as we show in the next section. When coupling strength is larger than
2.5, WISH and AdaWISH can give near-optimal estimations, with
an error of roughly 0.8 in the log10 partition function, while a strong
competing approach, BP, has an log10 error of 6. Meanwhile, in Fig-
ure 2(e), AdaWISH reduces approximately 60% queries from WISH,
while giving the same or even better estimations.

UAI inference. We also test AdaWISH on open datasets in the UAI
Approximate Inference Challenge.* The same settings of ¢, 3 and
T are adopted as those for grid Ising models but the timeout is in-
creased to 30 minutes for each MAP query due to the difficulty of
the problems. Figure 2(c) reports the estimation error of the log10-
partition function for various methods. Inference benchmark names
corresponding to the abbreviations used in Figures 2(c) and 2(f) can
be found in Table 1. While we used all instances, due to limited space
on the x-axis, we only labelled every other instance in Figures 2(c)
and 2(f).

Here, we see that AdaWISH and WISH have small errors in es-
timating the partition functions of all instances, outperforming other
methods in accuracy. A few points are missing for several approaches
(for example, TRWBP and HAK) because their errors are too big or
failing to complete within the time given. Meanwhile, as shown in
Figure 2(f), the number of queries of AdaWISH is stable at around
400 over different benchmarks, saving 81.5% queries in median
when compared to WISH.

4 http://auai.org/uai2014/competition.shtml



5 CONCLUSION

We introduced AdaWISH, an algorithm based on hashing and op-
timization that provides a constant-factor approximation of the dis-
crete integration problem. AdaWISH significantly reduces the num-
ber of optimization queries needed by WISH via an adaptive binary
search, while continuing to provide equally precise results for dis-
crete integration. The number of queries made by AdaWISH is, in
fact, provably no more than a logarithmic factor of that of an optimal
algorithm that knows the shape of the function apriori. In addition,
the number of optimization queries made by AdaWISH is asymptot-
ically optimal because even the optimal algorithm has to make the
same order of magnititude number of queries as AdaWISH in the
worst case. We evaluate the performance of AdaWISH on a collec-
tion of challenging benchmarks. Empirically, AdaWISH gives pre-
cise estimations, of the same quality as that of WISH, significantly
outperforming competing approaches. Meanwhile, AdaWISH issues
47%-60% fewer queries on Ising models, and saves in median 81.5%
of the queries on benchmarks in the UAI inference challenge.
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A SUPPLEMENTARY MATERIAL
A.1 Proofs
A.1.1 Proof of Lemma 1

Proof. (Lemma 1) We have b; > w(or) > biyq for all k €
{2%,...,2""'}. Therefore, a lower bound can be obtained by replac-
ing w(oy) with b;11 in the summation, while an upper bound can
be obtained by replacing each w(o) with b;. This yields a lower
bound of LB = by + Y7, bi(2* — 2°~"') and an upper bound of
UB =bo+ > 1 bi—1(2° —2°"). That LB < W < UB follows
from the construction. Further, we have:

n

UB=bo+ » bi-1(2

i=1

i 2i—l)

n—1

=bo+bo+ ) 2bi(2

i=1

i giv1)
n—1

<200+ 2b:(2°

i=1

n—1
2(bo + Y _bi(2" —2"71))
=1

<2LB

_9i

This finishes the proof. O

A.1.2  Proof of Theorem 5

Proof. (Theorem 5) Our proof works by constructing two weight
functions w1 (o) and w2 (o) passing through the shared (1 — €) 75
queried points such that their discrete integrals W; and Wa, re-
spectively, are a factor of at least 2 apart. To achieve this, w1 (o)
and ws (o) are constructed such that w(o;) = by in wi(o) and
w(o;) = by in we (o) for all j € {2',27}, where b; and b, are the
neighbor queried points among those (1 — €)-% points. If we query
all of these n —|— 1 points, Wi is bo + 37— i1 (2771 —27) and W
isbo + 00 bi(27F — 27,

First consider the case of e = 0. Here we construct a special series
of b;, namely b; = 2—7, such that each interval is of the same impor-
tance in terms of its contribution to the integral of the weight func-
tion. Intuitively, this means we should keep the - queried points as
scattered as possible. We accomplish this by querying every other >
apart point. This makes W the largest and W5 the smallest possible,
leading to the least possible % We claim that even in this situation,

% is still larger than 2.
Firstly, we simplify the expression for IV to obtain:

n/k?

L1
— z+1 2\1
Wi=1+ Z w)) Gyt
1
=1+ (17§)

Meanwhile, W5 can be written as

n/r?
z i 1
W2 =1+ Z ) )(KQ)'L
=1+ ﬁ(m —1)

K2

Therefore, we can calculate the limit of as n tends to infinity:

Returning to the case of € being a fixed, non-zero constant, we
make the following observation: if we do not omit € in the above
calculation, W> would increase by O(n) and W7 would decrease by
O(n), leading to:

Wa

W, o

Therefore, W> > x*W1 holds if we only allow (1 — €) () accesses
to QUERY. This finishes the proof. O

A.1.3  Proof of Corollary 1

Proof. (Corollary 1) Consider any algorithm A with only (1 —€) 5
accesses to ExactQuery, which outputs W. Given these queried
points, Theorem 5 implies that there exist two function w1 (o) and
wa (o) matching on these queried points with corresponding discrete
integral W7 and Wo where Wo > K2W1. Therefore, algorithm A
output W as the estimate for both W3 and W.

Assume, for the sake of contradiction, that W is a k-
approximation of both W; and W5. Then we have:

< Wi < kW

=

and
< Wa < kW

=

Together, these imply W2 < x*W;, which contradicts the above
conclusion Ws > x2W; from Theorem 5. Hence, W could not have
been a k-approximation of at least one of Wy and Wa. O



