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Abstract. Discrete integration in a high dimensional space of n
variables poses fundamental challenges. The WISH algorithm re-

duces the intractable discrete integration problem into n optimiza-

tion queries subject to randomized constraints, obtaining a constant

approximation guarantee. The optimization queries are expensive,

which limits the applicability of WISH. We propose AdaWISH,

which is able to obtain the same guarantee, but accesses only a small

subset of queries of WISH. For example, when the number of func-

tion values is bounded by a constant, AdaWISH issues only O(log n)
queries. The key idea is to query adaptively, taking advantage of the

shape of the weight function being integrated. In general, we prove

that AdaWISH has a regret of only O(log n) relative to an idealistic

oracle that issues queries at data-dependent optimal points. Experi-

mentally, AdaWISH gives precise estimates for discrete integration

problems, of the same quality as that of WISH and better than sev-

eral competing approaches, on a variety of probabilistic inference

benchmarks. At the same time, it saves substantially on the number

of optimization queries compared to WISH. On a suite of UAI infer-

ence challenge benchmarks, it saves 81.5% of WISH queries while

retaining the quality of results.

1 INTRODUCTION

Discrete integration in a high dimensional space poses fundamen-

tal challenges in scientific computing. Yet, it has numerous applica-

tions in artificial intelligence, machine learning, statistics, biology,

and physics [4, 33]. In probabilistic inference, discrete integration

is crucial for computing core quantities such as the partition function

and marginal probabilities of probabilistic graphical models. The key

challenge is the exponential growth in the volume of the space as the

dimensionality increases, commonly known as the curse of dimen-

sionality.

A fruitful line of work, based on hashing and optimization, is able

to achieve constant-factor upper and lower bounds to the discrete

integration problem [13, 5, 3, 17, 18, 23, 32]. The key idea is to

transform the discrete integration problem into optimization prob-

lems subject to additional randomly sampled parity constraints. Each

imposed parity constraint randomly cuts the original space by half.

If there is one element of interest in a subspace formed by applying

k random parity constraints, then there should be approximately 2k

elements of interest in the original space.

The WISH algorithm of Ermon et al. [13] gave the first constant-

factor approximation guarantee for integrating a weight function.

They followed a two-step approach. In the first step, they worked
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Figure 1. (Top) WISH obtains a constant approximation of
W =

∑
w(σ) by querying quantiles of w that are exponentially apart,

namely, bi, the 2i-th largest item for w. The solid and dashed curves show
the corresponding upper and lower bounds after knowing the values of these

quantiles, which form a 2-approximation. (Bottom) AdaWISH makes
queries adaptively. The set of queried points forms a subset of those of

WISH. In this example, AdaWISH does not need to query the two points
marked with squares, since their values can be approximately inferred from

their left and right neighbors.

out a logarithmic slicing schedule, which was able to obtain a con-

stant approximation guarantee by querying only the quantiles of the

weight function that are exponentially apart; i.e., the 2i-th largest el-

ement bi of the weight function, for various values of i. See Figure

1 (Top) for an illustration. The second step was to obtain bi using

hashing and optimization. They completed this step by querying op-

timization oracles subject to randomized parity constraints.

We propose AdaWISH, which is able to obtain the same constant

approximation guarantees for weighted integration, but with a signif-

icantly fewer number of queries to the optimization oracle. The key

idea is to make quantile queries in an adaptive way, using divide-and-

conquer. See Figure 1 (Bottom) for the intuitive idea. Here, WISH

queries all quantiles. AdaWISH, on the other hand, skips querying

the two quantiles shown in boxes because the neighboring black

quantiles to their left and the right, which sandwich the quantiles,

are close in value. Exploiting this observation, one can prove, for in-

stance, that AdaWISH needs only O(log n) queries if the function

has a fixed number of outputs. This case coincides with the results



of [8]. While their work focused on the unweighted case, our results

apply to a more general weighted case.

We analyze the performance of AdaWISH when it accesses ora-

cles in two different approximate ways. In the first way, when queried

for one specific quantile bi, the oracle returns a value that is guar-

anteed to be bounded between neighboring quantiles bi±c with a

high probability. This setting corresponds precisely to the probabilis-

tic bound one obtains with hashing and optimization. In the second

way, we consider another natural setting where the oracle returns a

pointwise approximation, i.e., a value within a known constant fac-

tor of bi. In both settings, we are able to prove the following: (i)

(Upper bound) AdaWISH makes at most n queries, forming a sub-

set of WISH’s queries while achieving an identical constant approx-

imation guarantee; (ii) (Regret bound) The number of queries of

AdaWISH cannot exceed a logarithmic factor times that of an “op-

timal” algorithm, which makes the least amount of queries for the

same guarantee, while knowing the exact shape of the weight func-

tion a-priori; (iii) (Lower bound) Any algorithm that guarantees a

constant-approximation for all weight functions must make at least

Ω(n) accesses to the oracle. We thus conclude that the number of

optimization queries made by AdaWISH is close to optimal. Our

theoretical bounds apply when every approximate oracle query is-

sued by WISH is solved to optimality. When some queries are not

solved to optimality, WISH continues to provides strong empirical

estimates of practical value (without a guarantee). AdaWISH contin-

ues to match the quality of these estimates with substantially fewer

queries, thereby providing added value even in this case.

Experimentally, we test the efficacy of AdaWISH in the context of

computing the partition function of random clique-structured Ising

models, grid Ising models, and instances from the UAI inference

competitions. Our results demonstrate that AdaWISH provides pre-

cise estimates of discrete integration problems, of the same quality

as that of WISH and better than competing approaches like belief

propagation, mean field, dynamic importance sampling, HAK, etc.

Meanwhile, AdaWISH saves a vast majority of optimization oracle

queries compared to WISH. For example, it reduces the number of

queries by 47%-60% on Ising models and a median of 81.5% queries

for benchmarks from the UAI inference challenge.

Related work. Over the years, many exact and approximate ap-

proaches have been proposed to tackle the discrete integration prob-

lem. Variational methods [22, 35] search for a tractable variational

form to approximate the otherwise intractable integration. These

methods are fast but often cannot provide tight bounds on the qual-

ity of the outcome. Approximate sampling techniques [21, 27, 30]

are popular, but the number of samples required to obtain a reliable

estimate often grows exponentially in the problem size. Importance

sampling approaches such as SampleSearch [16, 25] and methods

based on knowledge compilation [9] have also achieved a fundamen-

tal breakthrough in performance [19, 24, 26, 15].

There have been recent developments on the use of short parity

constraints to speed up computation in WISH style methods [14, 3,

2, 1], and on a dual variant of WISH called SWITCH [10]. While

these approaches reduce the empirical complexity of answering indi-

vidual optimization oracle queries, our method reduces the number

of queries itself, complementing these approaches.

Only a handful of hashing based approaches provide guarantees

for weighted functions [7, 12]. Using the tilt parameter of a weighted

Boolean formula is an alternative [6] that allows relying only on NP

oracles, which can be more efficient in practice than the MAP oracles

used by WISH and AdaWISH. However, in typical applications and

Algorithm 1: XorQuery(i,Σ, w, T )

1 if the 2i-th largest item b̃i has been queried before then

2 return b̃i;

3 else

4 for t = 1, ..., T do

5 Sample hash function Ht
i fromHi and d ∈ {0, 1}i

uniformly at random

6 wt
i ← maxσ w(σ) subject to Ht

i (σ) = d

7 M ←Median(w1
i , ..., w

T
i )

8 return M as the estimate b̃i;

benchmarks including UAI instances, tilt can be impractically large.

The adaptive approach of AdaWISH is motivated by the work of

[31], who addressed the problem of reducing the number of human

annotations needed to reliably estimate the precision-recall curve of

massive noisy datasets. Our application domain, namely discrete in-

tegration, differs in a number of aspects, such as our space being

exponential and thus too large to enumerate (they operated on an ex-

plicitly stored dataset), our query oracles being NP-hard (their query

was human annotation of a data point), and our weight function not

being guaranteed to not increase/decrease too fast (PR curves, on

the other hand, must necessarily be relatively stable for large enough

ranks). These differences necessitate new proof techniques.

2 PRELIMINARIES

We consider a weighted model with n binary variables x1, . . . , xn

where xi ∈ {0, 1}. x = (x1, . . . , xn)
T is a vector which takes

values from the space Σ = {0, 1}n. Define a weighted function

w : Σ → R
+ that assigns a non-negative weight to each element σ

in Σ. The discrete integration problem is to compute the total weight:

W =
∑

σ∈Σ w(σ).
The discrete integration problem is an important but challenging

problem in machine learning. A recently proposed method Weight-

Integral-And-Sum-By-Hashing (WISH) [13] provides a constant-

approximation guarantee to this problem. A careful analysis of

WISH reveals that the constant approximation guarantee is achieved

via two main ingredients: (i) a logarithmic slicing schedule; (ii)

counting via hashing and optimization.

Logarithmic slicing schedule. We fix an ordering for all σ ∈ Σ
such that w(σj) ≥ w(σj+1) holds for all j, 1 ≤ j ≤ 2n − 1 and

let bi be the 2i-th largest element, i.e., bi = w(σ2i). The first contri-

bution of [13] is a constant approximation scheme constructed from

knowing only n+ 1 points of function w, namely, b0, . . . , bn.

Lemma 1 (Ermon et al. [13]). LB = b0 +
∑n

i=1 bi(2
i − 2i−1) is a

lower bound and a 2-approximation to W . In other words,

LB ≤W ≤ 2LB.

Counting via hashing and optimization. In order to estimate W ,

the next step is to estimate bi = w(σ2i) for i = 0, . . . , n. The work

of [13] translates this problem into optimization problems subject

to randomized hashing (parity) constraints. The high-level idea is as

follows. To compute bm, the 2m-th largest item, consider 2m buck-

ets, each of which is labeled with one vector from {0, 1}m. Suppose

we hash all elements in Σ uniformly at random into these 2m buck-

ets. Then we use an optimization oracle to compute the largest item



in a given bucket. Because elements are hashed randomly, if we re-

peat this process multiple times and consistently find that the largest

item in one bucket is larger than w∗, then we can conclude that there

must be more than 2m items larger than w∗, hence bm ≥ w∗. Fol-

lowing the same argument, if there are more than 2m items larger

than ŵ > w∗, then the optimization oracle should return ŵ, larger

than w∗. Combining these two points, if we repeat this experiment

multiple times, the median value of the largest item in the repeated

bucket experiments should reflect the actual value of bm. In practice,

we form the buckets with pairwise independent hashing functions:

Definition 1. A function familyHm = {Hm : {0, 1}n → {0, 1}m}
is pairwise independent if the following conditions hold when Hm is

chosen uniformly at random fromHm. 1) ∀x ∈ {0, 1}n, the random

variable Hm(x) is uniformly distributed in {0, 1}m. 2) ∀x1, x2 ∈
{0, 1}n and x1 6= x2, random variables Hm(x1) and Hm(x2) are

independent.

For one configuration σ ∈ Σ, we say σ is hashed to the bucket

labeled with d ∈ {0, 1}m by function Hm if Hm(σ) = d. In prac-

tice, pairwise independent hash functions are constructed with ran-

dom parity functions. Let matrix A ∈ {0, 1}m×n be a randomly

sampled 0-1 matrix. One can prove that function family {hA(x) =
Ax mod 2} is pairwise independent. XorQuery(i,Σ, w, T ) (Algo-

rithm 1) demonstrates the actual implementation to compute the 2i-
th largest item bi. The formal mathematical result in [13] bounds

the returned value M of the algorithm between bmin{i+c,n} and

bmax{i−c,0} for any c ≥ 2, a small range around bi:

Lemma 2. [Ermon et al. [13]] Let M be the value returned by

XorQuery(i,Σ, w, T ). Then for any c ≥ 2, there exists an α∗(c) >
0 such that for 0 < α < α∗(c),

Pr
(

M ∈ [bmin{i+c,n}, bmax{i−c,0}]
)

≥ 1− exp(−αT )

Combining Lemma 2 with the logarithmic slicing schedule, the

authors of [13] are able to provide a constant approximation algo-

rithm for the discrete integration problem with at most a logarithmic

number of accesses to the optimization queries:

Theorem 1 (Ermon et al. [13]). For δ > 0, WISH algorithm makes

Θ(n log n log(1/δ)) MAP queries and with probability at least 1−δ,

outputs a 16-approximation of W .

3 AdaWISH: ADAPTIVE DISCRETE
INTEGRATION

In WISH, we query all the n + 1 quantiles b0, b1, . . . , bn. In prac-

tice, the number of queries can be reduced due to the shape of the

w function. For example, the two quantiles in Figure 1 (Bottom) are

sandwiched between the left and right quantile in black, which are

close in values. From this observation, we do not need to query the

two blue quantiles and instead can use the values of the neighboring

quantiles to replace their values.

Motivated by this example, we propose Adaptive-Weight-

Integral-And-Sum-By-Hashing (AdaWISH), an algorithm which

makes queries adaptively using divide-and-conquer. The detailed

AdaWISH algorithm is shown in Algorithm 2, where the algorithm

starts with estimating the quantiles b0, . . . , bn in the entire range

(SEARCH (Σ, w, β, 0, n)), and recursively breaks the range by the

middle point (geometric mean) using divide-and-conquer (shown as

SEARCH (Σ, w, β, l,m) and SEARCH (Σ, w, β,m, r)) until the

stopping condition is met. In this algorithm, β > 1 is a user-

defined parameter for trade-off. The larger β is, the worse the ap-

proximation guarantee, but the fewer number of queries that AdaW-

ISH has to make. AdaWISH also depends on three query functions,

ApproxQuery , LowerBound , and UpperBound , which are imple-

mented differently assuming different types of oracles, which will

be introduced shortly. The detailed implementation of these func-

tions will be discussed together with the specific oracle. Here, at

a high level, ApproxQuery(i,Σ, w) outputs a point estimate of

quantile bi, while LowerBound(i,Σ, w) (UpperBound(i,Σ, w))
outputs a lower (upper) bound of the quantile bi, respectively. In

SEARCH (Σ, w, β, l, r), there are two stopping conditions once we

have queried the left point b̃l and right point b̃r . The first is r = l+1,

in which there is no point to query between the two quantiles. The

second condition is that the values of b̃l and b̃r are close: b̃l ≤ βb̃r .

This suggests that the w function stays roughly flat between bl and

br . If one of these two conditions is met, we stop and replace all the

bi between b̃l and b̃r with the value of b̃r . Otherwise, we break the

range l . . . r through the middle point m = b r+l
2
c then recursively

calls SEARCH on two sub-partitions.

We analyze the performance of AdaWISH, when it accesses quan-

tile oracles in two different ways. In the first way, when queried

with one quantile, the oracle returns a value that is guaranteed to be

bounded between neighboring quantiles with high probability. This

type of oracle corresponds the case of using hashing and random-

ization, i.e., using XorQuery in algorithm 1. In another way, we

consider a natural case where every oracle access returns a quantile

in its point-wise bound, e.g., the multiplicative distance between the

returned and the exact values are within a constant range.

3.1 Neighboring query oracle

We focus mainly on the NeighborQuery oracle. When we query

a particular quantile bi, NeighborQuery returns a value that is

guaranteed to be bounded between neighboring quantiles with high

probability. To be precise, given c ≥ 2 and δ > 0, for all i,
NeighborQuery(i,Σ, w) returns an estimation of bi that is guaran-

teed to be in the range [bmax {i−c,0}, bmin {i+c,n}] with probability

at least 1 − δ. Notice that we can use hashing and optimization to

build NeighborQuery oracles. According to Lemma 2, if we set

T = d ln(1/δ)
α(c)

lnne, then the output of XorQuery(i,Σ, β, w, T )
(Algorithm 1) satisfies the conditions of a NeighborQuery oracle.

We implement the AdaWISH algorithm as fol-

lows: for all i, ApproxQuery(i,Σ, w) returns exactly

NeighborQuery(i,Σ, w). LowerBound(i,Σ, w) returns the value

of NeighborQuery(min{i+c, n},Σ, w), which with high probabil-

ity is a lower bound for bi based on Lemma 2. UpperBound(i,Σ, w)
returns NeighborQuery(max{i − c, 0},Σ, w), which with high

probability is an upper bound for bi. We implement a look-up table

within NeighborQuery . If NeighborQuery(i,Σ, w) is called twice

with the same parameters, then the second time NeighborQuery

directly returns the result without re-computing. We can prove that

the AdaWISH algorithm implemented in this way gives a constant

factor approximation:

Theorem 2. (Constant Approximation) Let w,Σ, δ, and c ≥ 2 be

as defined earlier. For any κ > 22c, the output of AdaWISH (Algo-

rithm 2) on input (Σ, w, κ/(22c)), assuming oracles with neighbor-

ing bound, is a κ-approximation of W with probability 1− δ.

At a high level, the two stopping conditions guarantees the con-

stant approximation guarantee of Theorem 2. The first stopping con-



dition is r = l + 1, in which AdaWISH queries all the quantiles

within the range from l to r. The approximation guarantee can be

enforced with the same argument in the proof of WISH. The sec-

ond stopping condition is b̃l ≤ βb̃r , which suggests that function w
decreases very slowly in the range from l to r. In this case, we can

approximate the values of w in between with the queried value from

either end, without losing much accuracy.

Proof. (Theorem 2) The approximation W̃ given by AdaWISH is

W̃ = b̃0 +
∑n−1

i=0 b̃i2
i. Define L′ = b0 +

∑n−1
i=0 bmin{i+c,n}2

i and

U ′ = b0 +
∑n−1

i=0 bmax{i−c,0}2
i. From Lemma 2 in [13], we have

L′ ≤ W ≤ U ′ (1) and U ′ ≤ 22cL′ (2). We are going to prove

W̃ satisfies L′/β ≤ W̃ ≤ βU ′ (3) with high probability. Combin-

ing (2) and (3), we have L′/β ≤ W̃ ≤ β22cL′ (4). Combining

(1) (2) and (4), we can have W ≤ U ′ ≤ 22cL′ ≤ 22cβW̃ . In

short, W ≤ 22cβW̃ (5). Combining (1) and (4), we have W̃ ≤
β22cL′ ≤ β22cW (6). Together (5) and (6) imply that W̃ is a

β22c-approximation. Under the condition of this theorem, β is set

to κ/22c. Therefore, the overall approximation factor is κ.

We are left to prove (3): L′/β ≤ W̃ ≤ βU ′. Comparing the

corresponding terms of L′, W̃ , and U ′, it is sufficient to prove that

for all i, the following Inequality (7) holds:

bmin{i+c,n}/β ≤ b̃i ≤ βbmax{i−c,0}.

Consider the two stopping conditions for AdaWISH. If stopping

condition 1 is met, b̃l and b̃r are from ApproxQuery , hence (7)

holds because of Lemma 2. If stopping condition 2 is met for a

range from l to r, we have b̃l ≤ βb̃r (8) Here, b̃l is the result

from XorQuery(max{l − c, 0},Σ, w, T ). According to Lemma 2,

b̃l ≥ bl (9) with high probability. For the same reason, b̃r ≤ br (10)

with high probability. The estimation of b̃i in between are replaced

with b̃r . Hence, b̃i = b̃r ≤ br ≤ bmax{i−c,0} ≤ βbmax{i−c,0} (11).

Here, the first inequality is due to (10), the second due to monotic-

ity of the quantiles. Similarly, we have b̃i = b̃r ≥ b̃l/β ≥ bl/β ≥
bmin{i+c,n}/β (12), where the first inequality is due to the stopping

condition. With (11, 12), we also get (7).

To understand AdaWISH in terms of the number of calls to

NeighborQuery , we analyze the upper bound, regret bound and

asymptotic lower bound respectively.

Theorem 3. (Upper Bound) Under the conditions of Theorem 2, the

number of NeighborQuery calls is at most n + 1, which is only a

subset of that of WISH.

To prove Theorem 3, in the worst case AdaWISH has to query all

b0, . . . , bn, which is exact the case of WISH. The lookup table imple-

mented in the oracle guarantees the same query will not be computed

twice. In practice, AdaWISH can save a lot of queries. For example:

Observation 1. If function w(σ) only has a fixed set of k dif-

ferent values, then AdaWISH makes only O(log n) accesses to

NeighborQuery .

Intuitively, since function w(σ) only has a fixed set of k values,

it requires AdaWISH to search for the k − 1 quantiles, where the

function values change from one value to another. AdaWISH uses bi-

nary search. Therefore, it requires O(log n) queries to determine one

point. Since k is a constant, the total number of queries is O(log n)
to determine the entire w function.

Regret bound. We consider an “optimal” algorithm, which is guar-

anteed to produce a κ-approximation by issuing the least number

Algorithm 2: AdaWISH(Σ, w, β)

1 n = log2 |Σ|;

2 b̃0, . . . ., b̃n ← SEARCH (Σ, w, β, 0, n);

3 W̃ ← b̃0 +
∑n−1

i=0 2ib̃i;

4 return W̃

Algorithm 3: SEARCH (Σ, w, β, l, r)

1 if r == l + 1 then

2 // stopping condition 1 met

3 b̃l ← ApproxQuery(l,Σ, w)

4 b̃r ← ApproxQuery(r,Σ, w)

5 else

6 b̃l ← UpperBound(l,Σ, w)

7 b̃r ← LowerBound(r,Σ, w)

8 if b̃l ≤ βb̃r then

9 // stopping condition 2 is met

10 for i ∈ {l, . . . , r − 1} do b̃i ← b̃r

11 else

12 m← b r+l
2
c // bisect the interval

13 b̃l, . . . , b̃m ← SEARCH (Σ, w, β, l,m)

14 b̃m, . . . , b̃r ← SEARCH (Σ, w, β,m, r)

15 return b̃l, ..., b̃r

of accesses to an ExactQuery oracle. When queried on a partic-

ular bi, ExactQuery returns the exact value of bi. We allow the

optimal algorithm to know the shape of the w function a priori.

The optimal algorithm issues ExactQuery very smartly. Let B =
{b̃0, b̃i1 , . . . , b̃ik , b̃n} be the set of points the optimal algorithm is-

sues ExactQuery on. We can bound the sum W between the up-

per bound UB = b0 + b0(2
i1 − 20) +

∑k−1
l=1 bil(2

il+1 − 2il) +
bik (2

n − 2ik ) and the lower bound LB = b0 + bi1(2
i1 − 20) +

∑k
l=2 bil(2

il − 2il−1) + bn(2
n − 2ik ). We require the optimal al-

gorithm to obtain a κ-approximation, i.e., LB ≤ UB ≤ κLB must

hold. The mathematical definition of the optimal algorithm is the

one that minimizes the size of B, i.e., the set of queried points, while

enforcing LB ≤ UB ≤ κLB. We call the number of accesses to

ExactQuery of this optimal algorithm, i.e., the size of B, OPT . We

compare the number of QUERY accesses of AdaWISH against OPT
and show the difference is within a multiplicative O(log n) factor:

Theorem 4. (Regret Bound) Suppose κ = 2βγ2, AdaWISH in al-

gorithm 2 on input (Σ, w, β), assuming neighboring query oracle,

calls NeighborQuery at most (OPT − 1)(2 + log2 n) + 1 times.

This says that the number of QUERY calls made by AdaW-

ISH is roughly O(OPT · log2 n). Theorem 4 is a strong re-

sult in the following sense: first, the “optimal” algorithm has ac-

cess to the ExactQuery oracle, while AdaWISH only accesses

NeighborQuery which returns approximations to bi’s. Even with ap-

proximate oracles, the number of queries AdaWISH needs is within a

logarithmic factor of that of WISH. Second, the “optimal” algorithm

does not need to follow the query schedule of WISH or AdaWISH.

We give the algorithm the privilege of accessing ExactQuery ora-

cles. It is at the “optimal” algorithm’s discretion how to make use

of such a privilege. The high level idea to prove Theorem 4 is as fol-

lows. Suppose q1, ..., qOPT are the actual query points of the optimal

algorithm. Because AdaWISH uses a binary search, i.e., it always al-



most splits an interval at its geometrical middle point. Then it takes

AdaWISH roughly O(log2 n) splits to “locate” one query point qi of

the optimal algorithm (more precisely, find a point that is sufficiently

close to qi that guarantees the approximation bound). Hence, the to-

tal number of queries of AdaWISH is bounded by OPT times log2 n.

Our accurate proof to Theorem 4 is based on walking through the ac-

tual calling map of the function SEARCH , where each node in this

map represents an actual interval that SEARCH is called.

Proof. (Theorem 4) Suppose the optimal algorithm calls

ExactQuery at points q1, ..., qOPT as above. These points

split the entire range between [σ20 , σ2n ] into OPT-1 segments. We

call one segment of this type an opt-segment. We also define the

following tuple 〈σ2l , σ2r , d, SMALL/BIG〉, where (σ2l , σ2r ) is

an interval on which the function SEARCH is called during the

execution of AdaWISH, d is the depth of this recursive call, and

the forth entry is either SMALL or BIG. It is BIG if and only if the

interval (σ2l , σ2r ) covers at least one complete opt-segment. The

log distance of a tuple is measured as r − l. Two tuples are treated

as cousins if they are called by a single ORACLE function as two

children calls(i.e.,one is (σ2l , σ2m), while the other is (σ2m , σ2r )).

We can merge two cousin tuples. The result of merging is the tuple

representing the parent function that called the functions represented

by these two cousin tuples. Notice that the log distance of the

merged tuple is between 2 times of those of the two cousin tuples.

We start with the set Φ, made of tuples

〈σ2l , σ2r , d, SMALL/BIG〉 such that (σ2l , σ2r ) enters the

stopping condition of function SEARCH during the execution of the

algorithm. We repeat the following merge operation on tuples in Φ
until no tuple in Φ is tagged with SMALL:

1. Choose a tuple from Φ that has the largest depth d among those

tagged with SMALL.

2. Merge this tuple with its cousin tuple.

3. Add the merged tuple back into Φ.

We refer to the set Φ obtained after merging all SMALL tuples as

ΦE . First, all tuples in ΦE are tagged BIG. Therefore, each of them

contains an opt-segment. Second, since the tuples in ΦE are still from

the SEARCH function, these tuples must be non-overlapping. Based

on these two observations, the number of tuples in ΦE is bounded by

the number of opt-segment, which is OPT-1. We should notice that

the merge operations that each tuple in ΦE have gone through must

be bounded by O(log2 n), since the largest possible log distance is

no more than log2 2
n = n (the entire range), and each merge op-

eration nearly doubles the log distance. Considering that there are

some interval whose log distance is odd, we need to perform at most

dlog2 ne ≤ log2 n+ 1 merge operations.

Now we count the number of QUERY calls that AdaWISH makes.

It is easy to see that

#QUERY = |ΦE |+#MERGE + 1 (1)

where #MERGE is the total number of merge operations performed.

This number is bounded by

|ΦE |+ |ΦE | ·max{#MERGE for one tuple in ΦE}+ 1 (2)

Combined with the fact that |ΦE | ≤ OPT − 1 and #MERGE for

one tuple in ΦE ≤ log2 n+ 1, we obtain the claimed bound.

Asymptotic lower bound. What is the minimum number of calls

to the oracle in order to guarantee a constant factor approxima-

tion to W , let’s say, a κ-approximation? In this section, assum-

ing ExactQuery(i) returns the exact value of bi, we prove that

at least (1 − ε) n
κ2 accesses to ExactQuery is needed to obtain a

κ-approximation in the worst case, even for the optimal algorithm,

which knows the shape of the w function a-priori (Corollary 1), let-

ting alone randomized algorithms. This confirms the asymptotically

optimality of AdaWISH. Notice that the lower bound is proved as-

suming the optimal algorithm has access to the ExactQuery. Even

given such a privilege, in the worst case the optimal algorithm has to

make the number of queries that is in the same order of magnitude

as that of AdaWISH assuming either neighboring or pointwise query

oracles. Our proof does not depend on a specific querying scheme.

The optimal algorithm is free to choose any scheme that minimizes

the number of queries.

Our proof sketch is as follows. Prove by contradiction. Suppose

one algorithm A queries less than (1 − ε) n
κ2 times and obtain a

κ-approximation, then we can construct two functions w1(σ) and

w2(σ), such that (i) both w1 and w2 match on all the queried

points of algorithm A, but (ii) the sum W1 =
∑

σ w1(σ) and

W2 =
∑

σ w2(σ) differ more than a multiplicative factor of κ2

(see Theorem 5). This suggests that algorithm A cannot give a κ-

approximation, which contradicts with the assumption.

Theorem 5. For κ ≥ 1 and 0 < ε < 1, given any (1 − ε) n
κ2

queried points on w, there always exists two functions w1(σ) and

w2(σ) which match on the queried points, but their corresponding

sums W1 and W2 satisfy W2 > κ2W1.

The proof to theorem 5 is a careful mathematical construction,

which is made available in [11]. With theorem 5, we are able to show

Corollary 1 which is the asymptotic lower bound.

Corollary 1. (Lower Bound) Let A be any algorithm that accesses

w(σ) via the ExactQuery oracle. For any κ ≥ 1 and 0 < ε < 1, A
cannot guarantee a κ-approximation of W =

∑

σ w(σ) for all w if

A only issues (1− ε) n
κ2 ExactQuery calls.

This shows that any algorithm that guarantees a κ-approximation

for all w must issue more than (1 − ε) n
k2 queries on some input.

Further, since this lower bound applies even to algorithms that have

access to ExactQuery , it also applies to weaker algorithms that only

have access to ApproxQuery , and irrespective of whether they use a

deterministic or randomized method to compute ApproxQuery . We

leave to future work an extension of this lower bound to the general

case of randomized algorithms that guarantee a κ-approximation on

only, say, 99% of weight functions w.

Interestingly, the T parameter in XorQuery can also be reduced

adaptively. In WISH, T scales with log n because of the need for a

union bound on estimation error introduced in each of the n oracle

queries. If AdaWISH makes only k ≤ n queries, then T only needs

to scale as log k, thus reducing the amount of repetitions.

3.2 Point-wise query oracle

Besides NeighborQuery , we also consider point-wise approxima-

tion, which is also a natural relaxation. We define PointQuery

as an oracle that has a pointwise approximation ratio γ: let b̃i
be the returned value of PointQuery(i,Σ, w). Then for all

i = 0, . . . , n, we must have bi/γ ≤ b̃i ≤ biγ. Given a point-

wise query oracle, we are able to obtain a variant of AdaWISH

which yields a 2βγ2-approximation of W . In our implementation,

ApproxQuery(i,Σ, w) returns exactly PointQuery(i,Σ, w),
UpperBound(i,Σ, w) returns γPointQuery(i,Σ, w), and

LowerBound(i,Σ, w) returns PointQuery(i,Σ, w)/γ. Notice that





nal precision. The inference problem we consider is to compute the

partition function.

Our main result is shown in Figure 2. In a nutshell, on all three

sets of benchmarks, AdaWISH gives precise estimation to the parti-

tion function with estimated curves overlapping with those of WISH

algorithm, better than competing approaches. Meanwhile, AdaWISH

saves plenty of queries.

Table 1. The benchmarks from UAI 2011 and 2014 inference competition
used in the evaluation in Figure 2(c) and 2(f). The first (third) column shows
the abbreviations used in Figure 2(c) and 2(f) and the second (fourth) shows

the names of the benchmarks.

a rbm 40 q Segmentation 229
b rbm 42 r Segmentation 231
c rbm 44 s Segmentation 232
d rbm ferro 40 t Segmentation 235
e rbm ferro 42 u 226binary
f rbm ferro 44 v 228binary
g Grids100f0 w 229binary
h Grids100f1 x 231binary
i Grids100f2 y 232binary
j Grids100f3 z 235binary
k Grids100f4 A Promedus 200
l Grids100f5 B Promedus 306
m smokers 120 C Promedus 374
n or chain 200 D Promedus 378
o Segmentation 226 E Promedus 385
p Segmentation 228 F Promedus 400

Clique Ising model. We first consider random Clique-structured

Ising models with n binary variables xi ∈ {0, 1} for i ∈ {1, .., n}.
Let σ = (x1, . . . , xn). The Ising model is to sum over w(σ) =
exp(−

∑

i,j wijxixj), where wij = 0 if i = j, otherwise uni-

formly sampled from [0, w
√

|i− j|]. The coupling strength w is set

to be 0.1. We introduce two closed chains of strong repulsive in-

teractions with a length of 0.3n. The strengths of interactions are

uniformly sampled from [0, 100w]. Note that Clique Ising models

have treewidth n and therefore those with more than 31 variables can

not be solved exactly (The curve for ground truth terminates at the

case of 31 variables in Figure 2(a)). In our experiments, each MAP

query is carried out using CPLEX on a single core, and experiment

is carried out on a cluster, where each node has 24 cores and 96GB

memory. We follow the design that each ApproxQuery issued by

AdaWISH consists of a batch of MAP queries that can be executed

in parallel. ApproxQuery with the same binary search depth can be

issued and executed simultaneously. The time of AdaWISH is there-

fore the sum of maximum time taken by a single MAP query of each

binary search depth.

In this experiment, we run both WISH and AdaWISH to give re-

sults with provable guarantees. Let β, c, δ as defined before, then

both of WISH and AdaWISH use the settings of c = 5, δ =
0.01, α(c) = 0.078, where α is a function of c as in [13]. And the

trade-off parameter is set to be β = 105 for AdaWISH. In this bench-

mark, we set T = ln 1/δ
α

lnn and execute AdaWISH/WISH to op-

timality to get results with theoretical guarantees based on Theorem

2. As a fair comparison, all competing approaches are also executed

to their optimality. With the current parameter setting, we guarantee

that with the probability at least (1−δ) the error of AdaWISH/WISH

is no larger than 8 in log 10 scale.

Figure 2(a) reports the performance of all the methods on gener-

ated random Clique Ising models. The theoretical guarantee provided

by Theorem 2 holds since all optimizations are solved to optimality.

Note that it plots their estimations rather than errors since we can

only get the ground truth for models with less than 31 variables. We

can see that the estimations given by WISH and AdaWISH are vi-

sually overlapping with the plots of ground truth, outperforming the

second best method BP in stability. As for other methods, TRWBP

and MF diverge from the ground truth. HAK fails to return valid re-

sults therefore is absent in the graph. We also note that the empirical

result of AdaWISH is much better than the worst-case theoretical

guarantee. AdaWISH also saves 47.7% in median on the number of

queries when compared to WISH (figure 2(d)).

Grid Ising model. We next investigate the performance of AdaW-

ISH on large instances. In the following two experiments, we fo-

cus on the empirical performance, therefore relaxing the theo-

retic guarantees, which are extremely expensive to obtain. Note

only WISH/AdaWISH is able to obtain constant approximation

guarantees among all approaches in the experiment. Let σ =
(x1, x2...xn) ∈ {−1, 1}

n. The grid Ising model is to sum over

w(σ) = exp(
∑

i fixi +
∑

(i,j)∈grid wijxixj). Here, fi is sampled

uniformly from [−0.1, 0.1], wij is sampled from [−w,w], where w
is called the coupling strength, and is shown in the horizontal axis of

Figure 2(b). We insert structures in the grids by introducing a rect-

angle of strong interactions, inside which the coupling strength is

amplified by 10.

Both of WISH and AdaWISH use the settings of c = 5, T =
10, and AdaWISH uses β = 100. In these two experiments, we set

a timeout of 4 hours for all algorithms and force each MAP query

issued by WISH/AdaWISH to stop in 15 minutes, so not all the query

oracles of WISH/AdaWISH are solved up to optimality. For each

coupling strength we generate 10 instances and report the median

error in the log10 partition function estimation.

From Figure 2(b), we can see that AdaWISH and WISH are com-

petitive with the state-of-the-art method DIS, outperform other meth-

ods. DIS works well on Ising models, but not well on UAI instances

as we show in the next section. When coupling strength is larger than

2.5, WISH and AdaWISH can give near-optimal estimations, with

an error of roughly 0.8 in the log10 partition function, while a strong

competing approach, BP, has an log10 error of 6. Meanwhile, in Fig-

ure 2(e), AdaWISH reduces approximately 60% queries from WISH,

while giving the same or even better estimations.

UAI inference. We also test AdaWISH on open datasets in the UAI

Approximate Inference Challenge.4 The same settings of c, β and

T are adopted as those for grid Ising models but the timeout is in-

creased to 30 minutes for each MAP query due to the difficulty of

the problems. Figure 2(c) reports the estimation error of the log10-

partition function for various methods. Inference benchmark names

corresponding to the abbreviations used in Figures 2(c) and 2(f) can

be found in Table 1. While we used all instances, due to limited space

on the x-axis, we only labelled every other instance in Figures 2(c)

and 2(f).

Here, we see that AdaWISH and WISH have small errors in es-

timating the partition functions of all instances, outperforming other

methods in accuracy. A few points are missing for several approaches

(for example, TRWBP and HAK) because their errors are too big or

failing to complete within the time given. Meanwhile, as shown in

Figure 2(f), the number of queries of AdaWISH is stable at around

400 over different benchmarks, saving 81.5% queries in median

when compared to WISH.

4 http://auai.org/uai2014/competition.shtml



5 CONCLUSION

We introduced AdaWISH, an algorithm based on hashing and op-

timization that provides a constant-factor approximation of the dis-

crete integration problem. AdaWISH significantly reduces the num-

ber of optimization queries needed by WISH via an adaptive binary

search, while continuing to provide equally precise results for dis-

crete integration. The number of queries made by AdaWISH is, in

fact, provably no more than a logarithmic factor of that of an optimal

algorithm that knows the shape of the function apriori. In addition,

the number of optimization queries made by AdaWISH is asymptot-

ically optimal because even the optimal algorithm has to make the

same order of magnititude number of queries as AdaWISH in the

worst case. We evaluate the performance of AdaWISH on a collec-

tion of challenging benchmarks. Empirically, AdaWISH gives pre-

cise estimations, of the same quality as that of WISH, significantly

outperforming competing approaches. Meanwhile, AdaWISH issues

47%-60% fewer queries on Ising models, and saves in median 81.5%

of the queries on benchmarks in the UAI inference challenge.
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A SUPPLEMENTARY MATERIAL

A.1 Proofs

A.1.1 Proof of Lemma 1

Proof. (Lemma 1) We have bi ≥ w(σk) ≥ bi+1 for all k ∈
{2i, . . . , 2i+1}. Therefore, a lower bound can be obtained by replac-

ing w(σk) with bi+1 in the summation, while an upper bound can

be obtained by replacing each w(σk) with bi. This yields a lower

bound of LB = b0 +
∑n

i=1 bi(2
i − 2i−1) and an upper bound of

UB = b0 +
∑n

i=1 bi−1(2
i − 2i−1). That LB ≤ W ≤ UB follows

from the construction. Further, we have:

UB = b0 +
n
∑

i=1

bi−1(2
i − 2i−1)

= b0 + b0 +

n−1
∑

i=1

2bi(2
i − 2i−1)

≤ 2b0 +

n−1
∑

i=1

2bi(2
i − 2i−1)

≤ 2(b0 +

n−1
∑

i=1

bi(2
i − 2i−1))

≤ 2LB

This finishes the proof.

A.1.2 Proof of Theorem 5

Proof. (Theorem 5) Our proof works by constructing two weight

functions w1(σ) and w2(σ) passing through the shared (1 − ε) n
κ2

queried points such that their discrete integrals W1 and W2, re-

spectively, are a factor of at least κ2 apart. To achieve this, w1(σ)
and w2(σ) are constructed such that w(σj) = br in w1(σ) and

w(σj) = bl in w2(σ) for all j ∈ {2l, 2r}, where bl and br are the

neighbor queried points among those (1 − ε) n
κ2 points. If we query

all of these n+1 points, W1 is b0 +
∑n−1

i=0 bi+1(2
i+1− 2i) and W2

is b0 +
∑n−1

i=0 bi(2
i+1 − 2i).

First consider the case of ε = 0. Here we construct a special series

of bi, namely bi =
1
2i

, such that each interval is of the same impor-

tance in terms of its contribution to the integral of the weight func-

tion. Intuitively, this means we should keep the n
κ2 queried points as

scattered as possible. We accomplish this by querying every other κ2

apart point. This makes W1 the largest and W2 the smallest possible,

leading to the least possible W2

W1
. We claim that even in this situation,

W2

W1
is still larger than κ2.

Firstly, we simplify the expression for W1 to obtain:

W1 = 1 +

n/κ2

∑

i=0

((κ2)i+1 − (κ2)i)
1

(κ2)i+1

= 1 +
n

κ2
(1−

1

κ2
)

Meanwhile, W2 can be written as

W2 = 1 +

n/κ2

∑

i=0

((κ2)i+1 − (κ2)i)
1

(κ2)i

= 1 +
n

κ2
(κ2 − 1)

Therefore, we can calculate the limit of W2

W1
as n tends to infinity:

lim
n→∞

W2

W1
= κ2

Returning to the case of ε being a fixed, non-zero constant, we

make the following observation: if we do not omit ε in the above

calculation, W2 would increase by O(n) and W1 would decrease by

O(n), leading to:

W2

W1
> κ2

Therefore, W2 > κ2W1 holds if we only allow (1− ε)( n
κ2 ) accesses

to QUERY. This finishes the proof.

A.1.3 Proof of Corollary 1

Proof. (Corollary 1) Consider any algorithmA with only (1− ε) n
κ2

accesses to ExactQuery, which outputs W̃ . Given these queried

points, Theorem 5 implies that there exist two function w1(σ) and

w2(σ) matching on these queried points with corresponding discrete

integral W1 and W2 where W2 > κ2W1. Therefore, algorithm A
output W̃ as the estimate for both W1 and W2.

Assume, for the sake of contradiction, that W̃ is a κ-

approximation of both W1 and W2. Then we have:

W̃

κ
≤W1 ≤ κW̃

and
W̃

κ
≤W2 ≤ κW̃

Together, these imply W2 ≤ κ2W1, which contradicts the above

conclusion W2 > κ2W1 from Theorem 5. Hence, W̃ could not have

been a κ-approximation of at least one of W1 and W2.


