


rather than learning, to guide language generation.

In fact, there is no task-specific training in our

approach. Our approach is highly flexible since

constraints can be switched quickly to be adapted

to a different task, even faster than fine-tuning. It

also allows us to leverage the latest developments

of automated reasoning for language generation.

Although the field of language generation is domi-

nated by learning, reasoning should play an equally

important role. Human beings can write beautiful

words from reasoning over what is needed in the

specific writing task, without learning from previ-

ous examples.

To better handle the combinatorial constraints, a

tree search is embedded into the proposal process

of the Markov chain Monte Carlo (MCMC) for con-

strained language generation, which suggests candi-

date proposals that satisfy more constraints. Our ap-

proach is motivated by Sample-Search (Gogate and

Dechter, 2007a,b, 2011), which integrates back-

track search into importance sampling. Making

multiple word-level changes within one proposal

step of MCMC allows the direct transition between

legitimate sentences, while previous approaches

must go through infeasible intermediate states.

Such moves are typically rejected by MCMC and

therefore result in a slow mixing rate (See Fig-

ure 1(b) and Section 3.1).

In literature, constrained language generation

has been attacked in a supervised way in (Sutskever

et al., 2014; Berglund et al., 2015; Hu et al., 2017;

Zhang et al., 2019; Miao et al., 2020). There are

also multiple works of literature which model lan-

guage rules as decomposed tree structures (Lee

et al., 2019) or sentiment tags (Su et al., 2018).

Markov Logic network (Richardson and Domin-

gos, 2006; Khot et al., 2015) are also used to for-

mulate grammar rules. The distance between vec-

tors representing sentences meaning is considered

as soft constraints in (Prabhumoye et al., 2018;

Belanger and McCallum, 2016; Amato and Mac-

Donald, 2010). In a nutshell, we summarize our

contributions as follows:

1. We define the problem of constraint satisfac-

tion driven natural language generation, and

propose a sampling-based approach to tackle

the problem with combinatorial constraints.

2. We propose a Tree Search enhanced

Metropolis-Hastings approach (TSMH)

for the proposed task, which mixes faster

than standard MCMC in the presence of

combinatorial constraints.

3. Experiment results on generating interroga-

tive, imperative sentences with keywords, and

sentences with given sentiments demonstrate

that our TSMH is able to generate sentences

that satisfy more hard and soft constraints as

well as retain good quality.

2 Language Generation via

Combinatorial Constraint Satisfaction

We provide a general framework for the constrained

natural language generation. In this framework,

sentences are generated by sampling from a proba-

bility distribution that is proportional to the score of

a pre-trained language model times the constraint

score. Formally, let x be a sentence, π(x) be the

probability that x is sampled, then π(x) should be:

π(x) ∝ PLM(x) · Constraint(x). (1)

Here, PLM(x) is the score of a language model

(Sundermeyer et al., 2012; Radford et al., 2019),

which measures the quality of sentence x. Higher

PLM(x) means the sentence x is better in quality.

Constraint(x) is a task-specific penalty term.

For example, in interrogative sentences generation,

we would enforce Constraint(x) to guarantee that

only sentences in the interrogative form receive

high scores. Constraints are composed of hard and

soft constraint terms:

Constraint(x) = Φhard(x) · Φsoft(x). (2)

Both the hard constraint score Φhard(x) and the

soft constraint score Φsoft(x) are float values rang-

ing from 0 to 1. The closer to 1, the more satisfied

the constraints are.

Unlike supervised methods which need to be

trained with paired input-output data, our frame-

work can solve language generation tasks without

task-specific training. PLM(x) comes from a lan-

guage model, only trained on general-purpose lan-

guage tasks. There is no fine-tuning of PLM(x) on

the specific task. Φhard(x) is based on crafted con-

straints. Φsoft(x) comes from either user-defined

functions, or pre-trained neural networks, which

again is not fine-tuned on the specific task. The

overall formulation composed of the language

model and the task-specific constraints allows us

to sample sentences which are close to natural lan-

guage while satisfying constraints.



2.1 Hard Constraints

In this paper, we use propositional logic to define

hard constraints Φhard(x). Nevertheless, our sam-

pling approach generalizes to other logic forms. We

leave the generalization to first-order logic as future

work. For hard constraints, we define Φhard(x) as

Φhard(x) = βM−
∑

i ci(x) (3)

where ci(x) is an indicator variable which takes 1 if

the sentence x satisfies the i-th constraint, and M is

the total number of hard constraints. β is between

0 and 1. We use quite small β values in our experi-

ments, which put a large penalty on violating one

hard constraint. We also define Constraint Error

C(x) as the number of hard constraints a sentence

violates, i.e., C(x) = M −
∑

i ci(x). Constraints

are defined in the logical form of word categories.

Word Category Division We divide the en-

tire vocabulary into several categories of words.

Given vocabulary set U , we partition U into non-

overlapping subsets: V = {V1, V2, . . . , V|V|}, sat-

isfying: (i) all Vi are subsets of U : Vi ⊆ U, ∀Vi ∈
V; (ii) categories are non-overlapping: Vi ∩ Vj =
∅, ∀Vi, Vj ∈ V , i 6= j; (iii) Vi together cover the

whole vocabulary:
⋃|V|

i Vi = U .

The word category division strategy varies for

different tasks. For example, we split the whole

vocabulary into V = {[QWH],[AUX],[OTH]}
for generating interrogative sentences. Here,

V1 =[QWH] represents the set of wh-words lead-

ing a question: what, when, where, which, who,

whom, whose, why, how. V2 =[AUX] repre-

sents the set of auxiliary verbs and copula words:

do, does, did, be, am, are, is, . . . , etc. V3 =
[OTH] means all other words in the vocabulary.

We may use another division in, e.g., generat-

ing imperative sentences. Sometimes we need

to generate sentences with keywords. We let

each keyword forms a category. For example,

to generate interrogative sentences with the key-

word learning, the division would be: V =
{[QWH],[AUX], [learning],[OTH]}.

Hard Constraints Given a sentence with length

m 2, let w
Vj

i ∈ {true, false} be an indicator vari-

able that the i-th word in the sentence is in category

Vj . For example, variable w[QWH]

1 = true if and

only if the first word in sentence is a wh-like word.

For sentence-level constraints, we can define them

2As we conduct sampling for the sentence, sentence length
is pre-known and we set m as the length of the longest one.

using propositional logic over w
Vj

i (and (∧), or

(∨), not (¬)). We give a few examples below.

Enforcing Keywords in a Sentence Given one

keyword K, we can enforce its existence in the

sentence using the following constraint:

w[K]

1 ∨ w[K]

2 ∨ · · · ∨ w[K]
m .

here [K] is a set containing the keyword K. We for-

mulate this constraint assuming a known sentence

length m. Indeed, length m is a variable and can

vary over the sampling procedure. Nevertheless,

as we can see shortly in the sampling process, the

lengths are known for both sentences when transit-

ing from one sentence to another. Therefore, the

semantic meaning of m is clear during sampling.

Details on the sampling process is in Section 3.2.

Enforcing Imperative Sentence According to the

definition in (Aarts, 1989), the starting word of

an imperative sentence should be either a verb:

w[VERB]

1 or an adverb followed by a verb: w[ADV]

1 ∧
w[VERB]

2 . We encode such constraint as:

w[VERB]

1 ∨ (w[ADV]

1 ∧ w[VERB]

2 ).

Enforcing Interrogative Sentence We use the fol-

lowing two constraints to enforce the sentence to

be interrogative: (i) The first word is in [QWH].

(ii) The second or third word in the sentence is in

[AUX]. (i, ii) can be written together as:

w[QWH]

1
∧((w[AUX]

2
∧¬w[AUX]

3
)∨(w[AUX]

3
∧¬w[AUX]

2
)).

This constraint is similar to the definition in

(Zhang et al., 2017). We acknowledge that this

is a relaxed constraint. Nevertheless, our sampling

approach also consider the score from language

model. These constraints accompanied with the

language model guide us to good interrogative sen-

tences in practice.

2.2 Soft Constraints

A soft constraint assigns a float value between 0
and 1 to indicate how the constraint is satisfied.

For tasks with only hard constraints, Φsoft(x) is

set to 1.0. Soft constraints can be derived quite

flexibly. It can be from a user-defined function (see

“sentence similarity” for an example), or from a

pre-trained neural network (see “sentiment score”):

Sentence Similarity We can define a soft constraint

function ensuring that the generated sentence x

is close to the reference sentence y in semantic

meaning. For one word in sentence x, we first find



the closest word in sentence y by computing their

cosine similarity. Then either the minimum or the

average of these words’ cosine similarity is taken

as the similarity score for sentence x and y.

Sentiment Score We can enforce that the generated

sentence must have a given sentiment by enforcing

the value for the sentence from a sentiment analysis

model. The output score of a sentiment analysis

neural net represents whether the sentence has a

positive or negative sentiment. We use this score

as a soft constraint to control the sentiment of gen-

erated sentence with positive or negative attitude.

Notice that the sentiment analysis neural net is pre-

trained on a separate dataset and remains intact in

our framework.

This setup gives us additional flexibility. To

be specific, if we need to generate sentences that

contain keywords while having a given sentiment,

it is difficult to find a large dataset of this type and

the performance of a pure learning approach may

be limited. To summarize, the main attribute of

the constraint satisfaction framework is allowing

a formulation using both hard and soft constraints,

without the need of task-specific training or tuning.

3 Tree Search Enhanced MCMC

Markov chain Monte Carlo (MCMC) is a classical

approach to sample sentences from probability dis-

tribution π(x) as defined in Equation 1. Starting

from one sentence x, MCMC moves to the next

sentence x∗ by first generating a sample x∗ from

the proposal distribution Q(x∗|x) and then accept

x∗ with the following acceptance rate A(x∗|x):

A(x∗|x) = min

{

1,
π(x∗)Q(x|x∗)

π(x)Q(x∗|x)

}

, (4)

If sentence x∗ is rejected, then the sample remains

at x. The distribution of samples will converge

to the sentence stationary distribution of Markov

chain π(x). Previous work (Miao et al., 2019) pro-

poses to use MCMC for constrained sentence gen-

eration, namely CGMH algorithm. Their proposal

distribution only suggests sentences with one-word

modification. Nevertheless, CGMH cannot handle

the combinatorial constraints in our problem def-

inition, because of the low acceptance ratio prob-

lem caused by the locality of the proposal distri-

bution. In other words, the sampling process can

only visit a limited number of neighbors, thus the

Markov chain will easily be trapped at one infeasi-

ble state, resulting in a lot of rejections. We illus-

trate this problem in detail and hence motivate our

tree search embedded MCMC approach using the

following example.

3.1 Motivation: Breaking the low acceptance

barrier

Suppose we need to generate a question, whose an-

swer comes from an underlined part of a sentence.

For example, suppose we underline France in the

sentence:

A: Paris is located in France.

The question we would like to generate is:

B: Which country is Paris located in?

Under our constraint satisfaction framework, we

define Constraint(x) so that real interrogative sen-

tences such as question B would receive high prob-

ability in the defined π(x). Our constraints are: (i)

the whole sentence is in the interrogative form. (ii)

Paris and located must appear in the sentence. We

run MCMC starting from sentence A.

It is hard for MCMC without tree search to gen-

erate question B in a reasonable time starting from

A. Because the edit distance between sentence A

and B is larger than 2, we cannot generate B from

A with one step of word insertion, removal, or re-

placement. In order for CGMH to reach B from A,

it has to encounter a few intermediate steps. With-

out loss of generality, suppose CGMH proposes

sentence C in one MCMC step by removing is:

C: Paris is located in France.

Notice that C is not a legitimate English sen-

tence, so its language model score PLM(x) be-

comes much smaller compared to the original sen-

tence A. In addition, C violates more constraints

than A, which decreases its Constraint(x) score

as well. In MCMC, the probability to accept the

move from A to sentence C is given by Equa-

tion 4, in which the dominating term is
π(C)
π(A) =

PLM(C) Constraint(C)
PLM(A) Constraint(A) . Because both PLM(C) and

Constraint(C) are smaller, the acceptance ratio

becomes really small. In fact, we found the accep-

tance ratio to be 5.93 × 10−12 in our experiment.

This means that it will take CGMH many steps (on

the order of 1012) to move one step from sentence

A to C. Figure 2 (left) demonstrates this. It is easy

to verify that barriers of low acceptance rate exist

on every path from sentence A to C and thus the

rejection problem exists.

On the other hand, if we allow the proposal dis-

tribution to suggest sentences with multiple word-

level changes, one can transit from sentence A to

B through all legitimate sentences as intermediate



Paris is located in France.

Paris located in France.

R DI

Is Paris located in France?

R DI
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(A Single Proposal by Tree Search)

What is located in France?
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Figure 2: Our method, tree search embedded MCMC (TSMH), outperforms CGMH in generating sentences with

complex combinatorial constraints. (Left) CGMH must pass intermediate sentence states (highlighted in red),

which have very low acceptance rate to reach the intermediate sentence Is Paris located in France? starting from

sentence Paris is located in France. This results in the poor performance of CGMH when handling combinatorial

constraints. (Right) By embedding a tree search into MCMC, TSMH can reach the an intermediate sentence from

the starting sentence in one step, and with an acceptance rate of 100%. R, I, D mean replace, insert, delete. See

Section 3.1 for a detailed discussion.

steps. Consider the following two-step change:

1. First delete is and insert is before Paris. This

changes sentence A to D:

Is Paris located in France?

2. Delete France and insert Which and country.

This changes sentence D to B.

Because the intermediate step sentence D is a

legitimate English sentence and Constraint(D) =

Constraint(A), π(D)
π(A) is close to 1, resulting in a

100% acceptance ratio in this step. When changing

from D to B, notice that B is also a legitimate

sentence and it satisfies more constraints than D.

In fact, the acceptance ratio is also 100%. Figure 2

(right) demonstrates this case.

For tasks with soft constraints, there are also sim-

ilar rejection problems for CGMH. For example,

“Nothing is impossible” is a sentence with positive

sentiment. If we insert, replace or delete one word,

it is hard to keep the sentence valid and preserve

the positive sentiment.

Motivated by these examples, we propose the

embed a tree search into the proposal process of

MCMC to solve the rejection problem, which sug-

gests candidate sentences with multiple word-level

changes and satisfy more constraints.

3.2 TSMH Algorithm Implementation

Our Tree Search enhanced Metropolis-Hastings

(TSMH) still follows the classical MCMC proce-

dure. The only difference is a new proposal distri-

bution Q(x∗|x) generated from a tree search pro-

cess. The tree search defines a probability distri-

bution over templates of sentence moves. Each

template defines a subset of possible moves. The

sentences within the same template satisfy the same

hard constraints score Φhard(x). The proposal

probability distribution induced by the tree search

algorithm biases towards templates that have high

Constraint(x) scores.

A template defines a set of sentences where

each word is either given or specified by

a word category. For example, a template

[[QWH],[AUX],[OTH],[OTH]] restricts that

the first word must be a wh-word, the second word

must be an auxiliary verb and the last two words

must be other words.

Notice that we can decide how many hard

constraints a sentence satisfies at the template

level, since the indicator variables in the con-

straints defined in this paper only restrict the cat-

egories of words. For example, the template

[[QWH],[AUX],[OTH],[OTH]] satisfies the

constraints of being an interrogative sentence de-

fined in Section 2. Our proposal procedure first

sample a template and then fills in this template

with words based on a language model.

Overview of the Proposal Process During the

sampling process, suppose we are at one sentence

x. We will sample a new sentence x∗ from the pro-

posal distribution as follows. First, our algorithm

will decide the positions of the words to change





word category, we fill it by selecting words from

the given word category. The probability of select-

ing the ti-th word PFilli is the conditional proba-

bility of filling words at this locations given con-

texts: PLM(xti |x1, ..., xti−1, xti+1, ..., xm). The

probability of getting one sampled sentence is:

Pfill =
∏k

i=1 Pfilli , where i means the word level

action for i-th position we selected. If the operation

in ti is delete or none, then Pfilli = 1. We sample

one template within the group (together with the

corresponding sampled sentence) according to the

sentence probability times soft constraint score:

Ptemplate =
PLM(x∗)·Φsoft(x

∗)∑
x̂∈Gi

PLM(x̂)·Φsoft(x̂)
.

The proposal distribution Q(x∗|x) leading from

sentence state x to x∗ in this procedure is

Q(x∗|x) = PposPgroupPfillPtemplate.

4 Experiments

We evaluate our approach on three applications:

interrogative, imperative, and fixed sentiment sen-

tences generation. In each task, we construct the

specified type of sentences by sampling starting

from keywords and enforcing task-specific con-

straints. For each task, we run our TSMH algo-

rithm for 100 steps, with 100 candidate sentences

generated. k is set to 3. Since the tree search in

TSMH considers changing 3 words at each iter-

ation, we run the baseline CGMH for 300 steps

as a comparison. We select the sentence with the

highest π(x) value among the sentences generated

by each algorithm as the output. Our results are

summarized in Table 1.

In general, our method TSMH outperforms base-

lines and generates sentences that satisfy more con-

straints, are of good quality and are likely to be

close to the natural language. Our main results are

summarized in Table 1, in which Valid% denotes

the percentage of generated sentences that satisfy

all constraints. π(x) is the value of the stationary

probability PLM(x) · Constraint(x). PGPT−2(x)
is language model probability estimated by a pre-

trained GPT-2 model, which measures the quality

of the sentences. Accept% means the acceptance

rate of MCMC. Detailed experiment settings can

be reviewed in appendix A.1.

4.1 Interrogative Sentence Generation

In the interrogative sentence generation, we con-

struct interrogative sentences by sampling starting

from the keywords. We enforce that sentences with

a high probability to be sampled must satisfy gram-

mar constraints of being interrogative and contain

a few given keywords. The constraint definition for

interrogative sentences is in section 2.1.

According to the results, in the experiment with

keywords, 92.67% of the output sentences of our

TSMH algorithm satisfy all the constraints, while

merely 18.33% satisfy constraints for the baseline.

The numbers are 83.17% and 45.50% for the exper-

iment without keywords, respectively. This demon-

strates that our TSMH generates sentences with

more constraints satisfied. In addition, our method

has a higher π(x) (stationary probability value) and

acceptance rate, suggesting that the tree search em-

bedded help MCMC to mix faster. Overall, our

method TSMH can handle more complicated con-

straints in language generation tasks.

Human Evaluation We conduct human evalu-

ation for interrogative sentences generated with

keywords. We present human participants from

the Amazon Mechanical Turk with a pair of sen-

tences at a time. One sentence is generated by

our TSMH model and the other one is from the

baseline CGMH. We ask human participants which

sentence is better in terms of fluency and grammar.

In terms of the experimental setting, we use 100

sentence pairs generated by CGMH and TSMH

with the same keyword inputs. We randomly split

these 100 test sentence pairs into 5 survey groups,

and then deploy them on the Amazon Mechanical

Turk. We randomly assign human participants to

survey groups. When showing the sentence pairs,

we also provide the keywords that the sentences

must contain. We ask human participants to vote

which sentence in the pair is better in terms of gram-

mar coherence, keyword coverage and fluency. We

use a gold-standard question to detect if the voter

is randomly doing the survey. Every valid survey

contains a randomized set of 20 questions. We

received in all 580 votes. Each question pair re-

ceives votes ranging from 5 to 11. As shown in

Table 2, sentences from our model receive almost

twice times of votes than the baseline, which sug-

gests that the sentences generated by our approach

is better in human evaluation.

Case Studies As shown in Table 3, we compare

some output sentences of our method with the base-

line using the same inputs and keywords. More

examples can be seen in the appendix A.2. From

these cases, we can see that our method generates

sentences with better quality.

Comparison with Other Methods We compare



Tasks Methods #sample step Valid% π(x) PGPT−2(x) Accept%

Interrogative
CGMH 300 1 18.33% 2.60E-04 1.78E-18 5.45%

TSMH (Ours) 100 3 92.67% 1.44E-03 5.51E-18 24.50%

Imperative
CGMH 300 1 91.32% 0.0004 9.86E-16 5.49%

TSMH (Ours) 100 3 97.75% 0.0060 6.60E-15 15.66%

Sentiment
CGMH 300 1 96.33% 4.93E-19 4.57E-22 6.72%

TSMH (Ours) 100 3 96.67% 7.94E-04 1.82E-18 11.09%

Table 1: Our method TSMH outperforms CGMH by generating sentences that satisfy more constraints, are of

good quality and are likely to be natural language. Column Valid% shows the percentage of generated sentences

that satisfy all constraints, which TSMH clearly leads baselines. In addition, TSMH has better acceptance rates

(Accept%). The language generated by TSMH is also of good quality, because it matches other models in language

model scores PGPT−2(x). Multiplying both the language model score and the constraint score, the sentences

generated by TSMH tend to attain higher stationary probability π(x).

Methods #Votes Votes%

CGMH 196 33.64%

TSMH (Ours) 384 66.36%

Table 2: Human evaluation of the quality of the gen-

erated interrogative sentences from keywords in terms

of fluency and grammar. Most human participants (na-

tive speakers) agree that the sentences generated by our

TSMH are better in quality compared to CGMH.

Keys waste heat water
CGMH what waste is there, it seems now?
TSMH where was the waste - water heater?

Keys responses protect lungs
CGMH how can immune responses also occur by

not only infecting pathogens in the
central nervous system?

TSMH what responses do your lungs have to protect
you from pathogenic bacteria?

Keys median temperature winter
CGMH what do you mean we have median temperature

winter and spring, anyways?
TSMH what is the median temperature range in the

winter months?

Keys catholics concentrated france
CGMH the catholics are now mainly concentrated there.
TSMH why are the french roman catholics so densely

concentrated in southern france?

Table 3: Case study of generating interrogative sen-

tences with keywords, where Keys stands for keywords.

Full case study is in the supplementary materials.

our TSMH method with UQA (Lewis et al., 2019).

The setting of UQA is different from us: it takes a

paragraph as input and generates a corresponding

question. Although this comparison is not fair, the

baseline is the most similar and the best framework

that we can compare with. To run UQA, we use

the corresponding original sentences from which

the keywords of TSMH are extracted as the input.

In other words, for TSMH, the inputs are keywords

extracted from the SQuAD 2.0 (Rajpurkar et al.,

2018) questions. For UQA, we take the correspond-

ing paragraphs of the selected questions as input.

This also gives UQA additional advantage because

it has access to a paragraph, rather than keywords.

To make it more comparable, we remove the key-

word constraints in this experiment. In Table 4, we

compare the language model scores logPLM of the

generated sentences that reflect the naturalness and

fluency, and the stationary probability π(x) and

valid percentage Valid% that show how good it sat-

isfies our pre-defined constraints. We pointed out

that UQA was trained on the specific interrogative

sentences while our method was not trained at all.

Methods π(x) Valid% logPLM

UQA 0.0024 50% -92.75

TSMH 0.0063 83.17% -58.27

Table 4: Comparison with UQA. Our TSMH outper-

forms UQA in terms of the percentage of satisfying

the interrogative sentence constraints, and has a higher

score predicted by a language model, despite UQA is

trained on specific interrogative sentences while our

method is not trained at all.

4.2 Imperative Sentence Generation

We generate imperative sentences via sampling

starting from the keywords. We enforce grammar

constraints of being an imperative sentence: the

starting word should be either a verb w[VERB]

1 or



an adverb followed by a verb w[ADV]

1 ∧ w[VERB]

2 .

We also enforce keyword constraints in this task.

As shown in Table 1, our method has a higher

valid percentage of 97.75% compared to 91.32%

of the baseline, showing that the sentences gener-

ated by our method can satisfy more constraints.

Our method has a higher π(x) (stationary proba-

bility value) and acceptance rate, suggesting our

approach has a better mixing behavior. Overall,

results show that our method using Tree Search

Embedded MCMC can handle more complicated

combinatorial constraints in language generation.

4.3 Sentence Generation with Given

Sentiments

In this task, we require the sentences to contain

the specified keywords and have positive senti-

ments (Fu et al., 2019). We enforce the sentences

to attain high scores from a sentiment analysis neu-

ral network. We also enforce keyword constraints

as hard constraints. We need to emphasize that,

our method uses a model pre-trained on a sepa-

rate dataset for sentiment analysis, which is kept

intact in our experiment. No additional fine-tuning

to the sentiment analysis model was performed.

we consider two sub-tasks in Table 5: (i) positive

sentiment to positive sentiment (P2P), where the

input keywords are extracted from sentences which

originally have positive sentiments; (ii) negative

sentiment to positive sentiment (N2P), where the

keywords are extracted from sentences with nega-

tive sentiments. N2P is more difficult as it requires

transforming the sentiment.

Our method has a higher sentiment score, sug-

gesting that our method generates sentences with

more positive sentiments (better aligned with the

target of this experiment). The increase against

CGMH is bigger on the more difficult N2P task,

which requires flipping the sentiment. Our model

also leads in terms of language model scores, sug-

gesting the language quality is better.

Tasks Method π(x) PGPT-2 Accept% Senti

P2P
CGMH 9E-19 8E-22 8.16% 0.8647
TSMH 4E-04 2E-18 12.23% 0.8801

N2P
CGMH 5E-20 6E-23 5.65% 0.3470
TSMH 1E-03 7E-19 9.91% 0.5254

Table 5: Generate sentences with positive sentiment.

Half of the input are extracted from positive sentences

(P2P), and the other half are from negative (N2P),

which are harder to transform to positive sentences.

Methods π(x) PGPT-2(x) Sentiment

CtrlGen 3.19E-07 4.64E-22 0.4614

TSMH 1.16E-03 7.07E-19 0.5254

Table 6: Compare with CtrlGen (Hu et al., 2017) over

the N2P subtask with acceptance rate, language score

and sentiment score metrics.

Comparison with Other Methods We compare

our method with CtrlGen (Hu et al., 2017). The

setting is a little different from ours: it takes a

sentence with a negative sentiment as input and

transforms it to positive, without the guarantee of

satisfying keyword constraints. Our method takes

a set of keywords as input. To make the outputs

comparable, we select the same set of negative

sentences as the input of CtrlGen and extract the

keywords of those sentences as the input of TSMH.

Our method requires no additional training besides

a pre-trained sentiment analysis model and a pre-

trained language model, while CtrlGen requires

training the auto-encoder.

The results in Table 6 show that our method out-

performs CtrlGen in terms of both sentence quality

and sentiment, as the sentences generated by our

method receive higher language model scores and

sentiment scores.

5 Conclusions

We propose a framework for constraint-driven lan-

guage generation via sampling and combinatorial

constraint satisfaction. Our solution strategy is to

sample sentences from the constrained space with

probability proportional to the scores of the lan-

guage model. To better handle the combinatorial

constraints, a tree search is embedded into the pro-

posal process of MCMC to suggest candidate pro-

posals that satisfy more constraints. Experiments

demonstrate that our approach generates sentences

that satisfy more constraints, are of good quality

and are likely to be close in quality to the natural

language.
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A Appendix

A.1 Detailed Experiment Settings

In this section, we detail our experimental settings

for interrogative, imperative, and sentimental sen-

tence generation tasks, along with the process of

human evaluation.

In the expression of stationary distribution

Eq.(1), the first term PLM(x) is evaluated by the

BERT model, which is based on the huggingface’s

BERT implementation (Wolf et al., 2019). We

use BERT-base in our experiments, with hyper-

parameters: L=12, H=768, A=12, Total Param-

eters=110M. To evaluate the term PLM(x) with

BERT model, we multiply the BERT score of mask-

ing and querying the conditional probability of each

word in sentence x, close in form of the pseudo-

likelihood (Wolfinger and O’connell, 1993). Since

we only requires π(x) to be proportional to PLM(x)
times the constraint score, PLM(x) does not need

to be normalized.

A.1.1 Interrogative Sentences Generation

According to the adapted definition of interrogative

sentence grammar, the first word should be a ques-

tion word, and there should be an auxiliary verb at

a suitable position. The constraint definition for in-

terrogative sentences is in section 2.1. In our actual

implementation, we also enforce that there should

be only one question word and one auxiliary verb

in the sentence in order to improve the quality of

generated sentences. The question words include

what, when, where, which, who, whom, whose, why,

how; the auxiliary verbs include do, does, did, be,

am, are, is, was, were, shall, will, should, would,

can, could, may, might, must.

For the task of generating interrogative sentences

with keywords, we also enforce the keyword only

appear once in the sentence.

The dataset of this task is based on the SQuAD

2.0 dataset (Rajpurkar et al., 2018), where we select

600 questions and removing the stop words using

the Rake toolkit (Rose et al., 2010).

A.1.2 Imperative Sentences Generation

The dataset for generating imperative sentences

is retrieved from3. We select 300 sentences and

extract the keywords from the sentences as our

input. According to the grammar of imperative

sentences, we need to verify if the word is a present

tense verb. In the implementation, we use the POS

3https://github.com/lettergram/sentence-classification

tag information in WordNet and Stanford CoreNLP

as the criterion for deciding the word POS tag of

the given word. We first select all the words with at

least one verb meaning in WordNet (Miller, 1995),

then use Stanford CoreNLP (Manning et al., 2014)

to get POS tags for each word and only preserve

the present tense form of verbs.

A.1.3 Sentiment Sentence Generation

This application requires the set of input keywords

and an external sentiment classifier, which is used

to estimate whether the sentiment of the sentence is

positive or not. To estimate the sentiment score of

the sentences, we train a sentiment analysis model

with fastText (Joulin et al., 2017) on Yelp Review

Polarity dataset (Zhang et al., 2015). The input

keywords are extracted from 300 selected sentences

in the Yelp test set. Half of the original sentences

are positive, and the other half are negative (which

is harder to transform to positive sentences).

With input keywords of positive and negative

sentiment, we enforce the model to generate sen-

tences with positive sentiment. The second sub-

task with negative sentiment keywords is much

more difficult than the sub-task with positive sen-

timent keywords, as it requires transforming from

negative to positive sentiment.

A.2 Case Studies

As shown in Table 7, we compare some output

sentences of our method with the baseline using

the same inputs and keywords. From these cases,

we can see that the baseline sometimes generates

awkward or disordered sentences. For example, the

baseline generates one sentence:“how was lower

normandy ever truly founded?”. Although this sen-

tence seems to satisfy the constraints of an inter-

rogative sentence, its meaning is awkward. The

sentence generated by our method is “when was

the duchy of normandy founded?”, which is more

realistic. Also, the sentence from the baseline “and

please be a very very careful” does not follow

imperative grammar, and “the catholics are now

mainly concentrated there” is not a question.



Keys university warsaw established
TSMH when was the technical university of warsaw

first formally established?
CGMH polish polytechnical institute - university of

technology warsaw - was established here
in 1964?

Keys organization charge running
TSMH who would charge her with running such an

organization?
CGMH who else would charge him with running a

very profitable business?

Keys tribes khan fight
TSMH what tribes would fight back against the

genghis khans?
CGMH why else would tribesmen like gen. and gen.

genghis khan fight them off?

Keys european travel amazon
TSMH why did early european explorers not travel to

amazonia?
CGMH see below, also : did any european settlers ever

travel to build the ” first north american sailing
canoes ”?

Keys economic growth schooling
TSMH how do economic growth rates in the united

states make children receive high - quality
schooling?

CGMH what good is economic growth in comparison
with being among the best in public schooling?

(1) Interrogative Sentences

Keys seat
TSMH please get up from your seat
CGMH go on in and take your seat

Keys careful
TSMH please be so very very careful.
CGMH and please be a very very careful

Keys turn, lights
TSMH turn on the lights all the time
CGMH turn on near all the main lights

Keys close, window
TSMH stay close enough to the window
CGMH stick close enough to meet the window

Keys nice, weekend
TSMH have yourself a very nice private weekend
CGMH please be nice about spending the weekend

(2) Imperative Sentences

Table 7: Case study of generating interrogative and im-

perative sentences with keywords, where Keys stands

for keywords.


