Language Generation via Combinatorial Constraint Satisfaction:
A Tree Search Enhanced Monte-Carlo Approach

Maosen Zhang', Nan Jiang', Lei Li‘, and Yexiang Xue'
TDepartment of Computer Science, Purdue University, Indiana, USA

‘ByteDance Al Lab
{maosen, jiang631l, yexiang}@purdue.edu, lileilab@bytedance.com

Abstract

Generating natural language under complex
constraints is a principled formulation towards
controllable text generation. We present a
framework to allow specification of combina-
torial constraints for sentence generation. We
propose TSMH!, an efficient method to gen-
erate high likelihood sentences with respect
to a pre-trained language model while sat-
isfying the constraints. Our approach is
highly flexible, requires no task-specific train-
ing, and leverages efficient constraint satisfac-
tion solving techniques. To better handle the
combinatorial constraints, a tree search algo-
rithm is embedded into the proposal process
of the Markov chain Monte Carlo (MCMC)
to explore candidates that satisfy more con-
straints. Compared to existing MCMC ap-
proaches, our sampling approach has a bet-
ter mixing performance. Experiments show
that TSMH achieves consistent and significant
improvement on multiple language generation
tasks.

1 Introduction

Supervised techniques still dominate in natural lan-
guage generation tasks. Despite its success, super-
vised approaches need to be trained with massive
datasets of input-output pairs, which is non-trivial
to acquire. In addition, it is hard to guarantee that
the output sentences satisfy constraints. Recent
approaches first pre-train a language model on a
general-purpose dataset, then fine-tune the neural
net on a task-specific dataset (Devlin et al., 2019;
Radford et al., 2019). These approaches partially
mitigate data hunger in training large and flexible
neural networks. Nevertheless, they still require
carefully crafted datasets for fine-tuning.

We present a constraint satisfaction driven ap-
proach for language generation. In particular, we

"https://github.com/Milozms/TSMH

Supervised

ST |
l
{Input—outpu?_’[supervisedHTrained Output)
dataset training neural net sentence :
NLG via Constraint Satisfaction

|

: Hard/soft constraints
: guide
|
|
§

Pretrained LM Sampling

Output
sentence,

(a)
(D Paris is located in France. - Deletion
() Paris'is located in France.
(® Paris located in France.
@ Is Paris located in France?
A Accepted

- TSMH
é /
<l @
2
."_5'
<
el
o
$—
(=W

Rejected _

Sentence edit space
(b)

Figure 1: (a) Natural language generation via con-
straint satisfaction (bottom), comparing to supervised
approach (up). (b) Our proposed tree search enhanced
MCMC (TSMH, pink line) traverses the probabilistic
space of high-quality sentences more effectively than
the baseline (blue line).

sample sentences that attain high likelihoods from
a language model and satisfy task-specific con-
straints. Sampling sentences that attain high likeli-
hoods in the language model ensures the quality of
the generated sentence. Constraints guarantee that
the sentences fit the specific language task. The
constraints can be hard ones such as the grammar
rules, or soft ones such as attaining positive senti-
ment scores.

Our method harnesses constraint satisfaction,

rather than learning, to guide language generation.
In fact, there is no task-specific training in our
approach. Our approach is highly flexible since
constraints can be switched quickly to be adapted
to a different task, even faster than fine-tuning. It
also allows us to leverage the latest developments
of automated reasoning for language generation.
Although the field of language generation is domi-
nated by learning, reasoning should play an equally
important role. Human beings can write beautiful
words from reasoning over what is needed in the
specific writing task, without learning from previ-
ous examples.

To better handle the combinatorial constraints, a
tree search is embedded into the proposal process
of the Markov chain Monte Carlo (MCMC) for con-
strained language generation, which suggests candi-
date proposals that satisfy more constraints. Our ap-
proach is motivated by Sample-Search (Gogate and
Dechter, 2007a,b, 2011), which integrates back-
track search into importance sampling. Making
multiple word-level changes within one proposal
step of MCMC allows the direct transition between
legitimate sentences, while previous approaches
must go through infeasible intermediate states.
Such moves are typically rejected by MCMC and
therefore result in a slow mixing rate (See Fig-
ure 1(b) and Section 3.1).

In literature, constrained language generation
has been attacked in a supervised way in (Sutskever
et al., 2014; Berglund et al., 2015; Hu et al., 2017;
Zhang et al., 2019; Miao et al., 2020). There are
also multiple works of literature which model lan-
guage rules as decomposed tree structures (Lee
et al., 2019) or sentiment tags (Su et al., 2018).
Markov Logic network (Richardson and Domin-
gos, 2006; Khot et al., 2015) are also used to for-
mulate grammar rules. The distance between vec-
tors representing sentences meaning is considered
as soft constraints in (Prabhumoye et al., 2018;
Belanger and McCallum, 2016; Amato and Mac-
Donald, 2010). In a nutshell, we summarize our
contributions as follows:

1. We define the problem of constraint satisfac-
tion driven natural language generation, and
propose a sampling-based approach to tackle
the problem with combinatorial constraints.

2. We propose a Tree Search enhanced
Metropolis-Hastings approach (TSMH)
for the proposed task, which mixes faster
than standard MCMC in the presence of

combinatorial constraints.

3. Experiment results on generating interroga-
tive, imperative sentences with keywords, and
sentences with given sentiments demonstrate
that our TSMH is able to generate sentences
that satisfy more hard and soft constraints as
well as retain good quality.

2 Language Generation via
Combinatorial Constraint Satisfaction

We provide a general framework for the constrained
natural language generation. In this framework,
sentences are generated by sampling from a proba-
bility distribution that is proportional to the score of
a pre-trained language model times the constraint
score. Formally, let = be a sentence, 7(x) be the
probability that x is sampled, then 7(x) should be:

m(x) o< Pry(x) - Constraint(z). (1)

Here, Pri(z) is the score of a language model
(Sundermeyer et al., 2012; Radford et al., 2019),
which measures the quality of sentence x. Higher
Pri(x) means the sentence x is better in quality.

Constraint(z) is a task-specific penalty term.
For example, in interrogative sentences generation,
we would enforce Constraint(x) to guarantee that
only sentences in the interrogative form receive
high scores. Constraints are composed of hard and
soft constraint terms:

Constraint(z) = Ppapq(x) - Peos(x). (2)

Both the hard constraint score ®y,,,q(z) and the
soft constraint score @, () are float values rang-
ing from O to 1. The closer to 1, the more satisfied
the constraints are.

Unlike supervised methods which need to be
trained with paired input-output data, our frame-
work can solve language generation tasks without
task-specific training. Ppyi(x) comes from a lan-
guage model, only trained on general-purpose lan-
guage tasks. There is no fine-tuning of Pp(z) on
the specific task. ®pq(z) is based on crafted con-
straints. Pgg(x) comes from either user-defined
functions, or pre-trained neural networks, which
again is not fine-tuned on the specific task. The
overall formulation composed of the language
model and the task-specific constraints allows us
to sample sentences which are close to natural lan-
guage while satisfying constraints.

2.1 Hard Constraints

In this paper, we use propositional logic to define
hard constraints @y, (). Nevertheless, our sam-
pling approach generalizes to other logic forms. We
leave the generalization to first-order logic as future
work. For hard constraints, we define ®y,,.q(2) as

(I)hard(x) = ﬁM_ZZ i) (3)

where ¢; () is an indicator variable which takes 1 if
the sentence x satisfies the ¢-th constraint, and M is
the total number of hard constraints. (3 is between
0 and 1. We use quite small 8 values in our experi-
ments, which put a large penalty on violating one
hard constraint. We also define Constraint Error
C'(z) as the number of hard constraints a sentence
violates, i.e., C(x) = M —), ¢;(x). Constraints
are defined in the logical form of word categories.
Word Category Division We divide the en-
tire vocabulary into several categories of words.
Given vocabulary set U, we partition U into non-
overlapping subsets: V = {V1,Va,..., Vjy}, sat-
isfying: (i) all V; are subsets of U: V; C U, VV; €
V; (ii) categories are non-overlapping: V; NV} =
@, YV;,V; € V,i # j; (iii) V; together cover the
whole vocabulary: U‘iv| V,=U.

The word category division strategy varies for
different tasks. For example, we split the whole
vocabulary into V = {[QWH], [AUX], [OTH] }
for generating interrogative sentences. Here,
V1 =[QWH] represents the set of wh-words lead-
ing a question: what, when, where, which, who,
whom, whose, why, how. V, =[AUX] repre-
sents the set of auxiliary verbs and copula words:
do, does, did, be, am, are, is, ..., etc. V3 =
[OTH] means all other words in the vocabulary.
We may use another division in, e.g., generat-
ing imperative sentences. Sometimes we need
to generate sentences with keywords. We let
each keyword forms a category. For example,
to generate interrogative sentences with the key-
word learning, the division would be: V =
{[owH], [AUX], [learning], [OTH] }.

Hard Constraints Given a sentence with length
m 2, let lej € {true, false} be an indicator vari-
able that the 7-th word in the sentence is in category
V;. For example, variable w{*"™ = true if and
only if the first word in sentence is a wh-like word.
For sentence-level constraints, we can define them

2As we conduct sampling for the sentence, sentence length
is pre-known and we set m as the length of the longest one.

using propositional logic over wZVJ (and (M), or
(V), not (—)). We give a few examples below.
Enforcing Keywords in a Sentence Given one
keyword K, we can enforce its existence in the
sentence using the following constraint:

VoK

[K] [K]
’LUI \/w2 \/ cte m

here [K] is a set containing the keyword K. We for-
mulate this constraint assuming a known sentence
length m. Indeed, length m is a variable and can
vary over the sampling procedure. Nevertheless,
as we can see shortly in the sampling process, the
lengths are known for both sentences when transit-
ing from one sentence to another. Therefore, the
semantic meaning of m is clear during sampling.
Details on the sampling process is in Section 3.2.
Enforcing Imperative Sentence According to the
definition in (Aarts, 1989), the starting word of
an imperative sentence should be either a verb:
[VERE] or an adverb followed by a verb: wl[ADV] A

w
1
w4 "*¥B) We encode such constraint as:

[VERB] [ADV] [VERB]
wy V (wy A wy)

Enforcing Interrogative Sentence We use the fol-
lowing two constraints to enforce the sentence to
be interrogative: (i) The first word is in [QWH].
(i1) The second or third word in the sentence is in
[AUX]. (i, ii) can be written together as:

wl[QWH]/\((wQ[AUX]/_‘wZEAUX])V(w:EAUX] /_‘w2[AUX]))‘

This constraint is similar to the definition in
(Zhang et al., 2017). We acknowledge that this
is a relaxed constraint. Nevertheless, our sampling
approach also consider the score from language
model. These constraints accompanied with the
language model guide us to good interrogative sen-
tences in practice.

2.2 Soft Constraints

A soft constraint assigns a float value between 0
and 1 to indicate how the constraint is satisfied.
For tasks with only hard constraints, ®gg () is
set to 1.0. Soft constraints can be derived quite
flexibly. It can be from a user-defined function (see
“sentence similarity” for an example), or from a
pre-trained neural network (see “sentiment score”):
Sentence Similarity We can define a soft constraint
function ensuring that the generated sentence x
is close to the reference sentence y in semantic
meaning. For one word in sentence x, we first find

the closest word in sentence y by computing their
cosine similarity. Then either the minimum or the
average of these words’ cosine similarity is taken
as the similarity score for sentence x and y.
Sentiment Score We can enforce that the generated
sentence must have a given sentiment by enforcing
the value for the sentence from a sentiment analysis
model. The output score of a sentiment analysis
neural net represents whether the sentence has a
positive or negative sentiment. We use this score
as a soft constraint to control the sentiment of gen-
erated sentence with positive or negative attitude.
Notice that the sentiment analysis neural net is pre-
trained on a separate dataset and remains intact in
our framework.

This setup gives us additional flexibility. To
be specific, if we need to generate sentences that
contain keywords while having a given sentiment,
it is difficult to find a large dataset of this type and
the performance of a pure learning approach may
be limited. To summarize, the main attribute of
the constraint satisfaction framework is allowing
a formulation using both hard and soft constraints,
without the need of task-specific training or tuning.

3 Tree Search Enhanced MCMC

Markov chain Monte Carlo (MCMC) is a classical
approach to sample sentences from probability dis-
tribution 7(z) as defined in Equation 1. Starting
from one sentence x, MCMC moves to the next
sentence z* by first generating a sample z* from
the proposal distribution @ (x*|x) and then accept
x* with the following acceptance rate A(z*|x):

o [T@Q)
et =i 1. TEGE

If sentence x* is rejected, then the sample remains
at . The distribution of samples will converge
to the sentence stationary distribution of Markov
chain 7(x). Previous work (Miao et al., 2019) pro-
poses to use MCMC for constrained sentence gen-
eration, namely CGMH algorithm. Their proposal
distribution only suggests sentences with one-word
modification. Nevertheless, CGMH cannot handle
the combinatorial constraints in our problem def-
inition, because of the low acceptance ratio prob-
lem caused by the locality of the proposal distri-
bution. In other words, the sampling process can
only visit a limited number of neighbors, thus the
Markov chain will easily be trapped at one infeasi-
ble state, resulting in a lot of rejections. We illus-
trate this problem in detail and hence motivate our

tree search embedded MCMC approach using the
following example.

3.1 Motivation: Breaking the low acceptance
barrier

Suppose we need to generate a question, whose an-
swer comes from an underlined part of a sentence.
For example, suppose we underline France in the
sentence:

A: Paris is located in France.

The question we would like to generate is:

B: Which country is Paris located in?

Under our constraint satisfaction framework, we
define Constraint(x) so that real interrogative sen-
tences such as question B would receive high prob-
ability in the defined (). Our constraints are: (i)
the whole sentence is in the interrogative form. (ii)
Paris and located must appear in the sentence. We
run MCMC starting from sentence A.

It is hard for MCMC without tree search to gen-
erate question B in a reasonable time starting from
A. Because the edit distance between sentence A
and B is larger than 2, we cannot generate B from
A with one step of word insertion, removal, or re-
placement. In order for CGMH to reach B from A,
it has to encounter a few intermediate steps. With-
out loss of generality, suppose CGMH proposes
sentence C in one MCMC step by removing is:

C: Faris #s located in France.

Notice that C is not a legitimate English sen-
tence, so its language model score Ppyi(x) be-
comes much smaller compared to the original sen-
tence A. In addition, C violates more constraints
than A, which decreases its Constraint(z) score
as well. In MCMC, the probability to accept the
move from A to sentence C is given by Equa-
tion 4, in which the dominating term is =e) —

m(A) T
%x%i; ggﬁ:giiﬂsgg Because both P (C) and

Constraint(C') are smaller, the acceptance ratio
becomes really small. In fact, we found the accep-
tance ratio to be 5.93 x 10~!2 in our experiment.
This means that it will take CGMH many steps (on
the order of 10'2) to move one step from sentence
A to C. Figure 2 (left) demonstrates this. It is easy
to verify that barriers of low acceptance rate exist
on every path from sentence A to C and thus the
rejection problem exists.

On the other hand, if we allow the proposal dis-
tribution to suggest sentences with multiple word-
level changes, one can transit from sentence A to
B through all legitimate sentences as intermediate

CGMH (highly likely to
reject intermediate states)

‘ Paris is located in France. ‘

Tree Search Enhanced MCMC (k—step, k > 2)

Paris is located in France. ‘

D
sep ! ; e — R\ |~ p
‘ Paris located in France. ‘ R i \ ~
" Accept rate ~ 10712 A Vo
R 1 D / ‘ Which city is located in France? ‘ \
Step 2 e j Lo ‘What is located in France? ‘ // x
* — ¥ ‘ Is Paris located in France?
Is Paris located in France? | | | -

(A Single Proposal by Tree Search)

—=====""Accept rate: 100%

‘ Which country is Paris located in? ‘

Figure 2: Our method, tree search embedded MCMC (TSMH), outperforms CGMH in generating sentences with
complex combinatorial constraints. (Left) CGMH must pass intermediate sentence states (highlighted in red),
which have very low acceptance rate to reach the intermediate sentence Is Paris located in France? starting from
sentence Paris is located in France. This results in the poor performance of CGMH when handling combinatorial
constraints. (Right) By embedding a tree search into MCMC, TSMH can reach the an intermediate sentence from
the starting sentence in one step, and with an acceptance rate of 100%. R, I, D mean replace, insert, delete. See

Section 3.1 for a detailed discussion.

steps. Consider the following two-step change:

1. First delete is and insert is before Paris. This
changes sentence A to D:
Is Paris located in France?

2. Delete France and insert Which and country.
This changes sentence D to B.

Because the intermediate step sentence D is a
legitimate English sentence and Constraint(D)

Constraint(A), %

is close to 1, resulting in a
100% acceptance ratio in this step. When changing
from D to B, notice that B is also a legitimate
sentence and it satisfies more constraints than D.
In fact, the acceptance ratio is also 100%. Figure 2
(right) demonstrates this case.

For tasks with soft constraints, there are also sim-
ilar rejection problems for CGMH. For example,
“Nothing is impossible” is a sentence with positive
sentiment. If we insert, replace or delete one word,
it is hard to keep the sentence valid and preserve
the positive sentiment.

Motivated by these examples, we propose the
embed a tree search into the proposal process of
MCMC to solve the rejection problem, which sug-
gests candidate sentences with multiple word-level
changes and satisfy more constraints.

3.2 TSMH Algorithm Implementation

Our Tree Search enhanced Metropolis-Hastings
(TSMH) still follows the classical MCMC proce-
dure. The only difference is a new proposal distri-

bution Q(x*|x) generated from a tree search pro-
cess. The tree search defines a probability distri-
bution over femplates of sentence moves. Each
template defines a subset of possible moves. The
sentences within the same template satisfy the same
hard constraints score ®p,.q(z). The proposal
probability distribution induced by the tree search
algorithm biases towards templates that have high
Constraint(z) scores.

A template defines a set of sentences where
each word is either given or specified by
a word category. For example, a template
[[QWH],[AUX],[OTH],[OTH]] restricts that
the first word must be a wh-word, the second word
must be an auxiliary verb and the last two words
must be other words.

Notice that we can decide how many hard
constraints a sentence satisfies at the template
level, since the indicator variables in the con-
straints defined in this paper only restrict the cat-
egories of words. For example, the template
[[OWH], [AUX], [OTH], [OTH]] satisfies the
constraints of being an interrogative sentence de-
fined in Section 2. Our proposal procedure first
sample a template and then fills in this template
with words based on a language model.

Overview of the Proposal Process During the
sampling process, suppose we are at one sentence
x. We will sample a new sentence x* from the pro-
posal distribution as follows. First, our algorithm
will decide the positions of the words to change

by random selection. Typically, our algorithm will
change more than one word. Then we use a tree
search, which enumerates all possible operations
on the selected words. This includes deciding the
operation on each word (insert, delete, or replace)
as well as the associated word category in case of
insert and replacement. In this case, every leaf
branch of the search tree will be a sentence tem-
plate. Because the number of word categories is
limited, the tree search procedure is often cheap.
As discussed, we can infer the number of hard con-
straints satisfied based on the template associated
with each tree leaf. We then rank these templates
based on the number of constraints satisfied and
sample one template based on a geometric series,
favoring templates that satisfy more constraints. Fi-
nally, we fill in the sampled template with words
suggested by a language model, and then select one
filled sentence & as proposal, according to the lan-
guage model score times the soft constraint score
Prai(Z) - Peopt (). Soft constraints Py () give
us a real number, which is similar to the language
model Ppy(x). We treat them together with the
language model in the proposal process.

Our approach alleviates the rejection problem
of MCMC by enumerating all possibilities in the
space of multiple word change at the template
level, based on the analysis in section 3.1. This
process enables us to handle combinatorial con-
straints. Tree search also allows us to prune useless
branches.

3.2.1 Detailed Search Procedure

The procedure of searching proposals in our tree
search embedded MCMC is as follows and shown
in Figure 3.

Position Randomly select k positions {¢1, ..., ¢k}
to perform word-level operations with uniform
probabilities, where k is the size of the search steps.
The probability of getting each combination of po-
sitions is: Pyos = 1/('}), where m is the length of
the sentence.

Search Search and iterate all different operations
and all different word categories (mentioned in Sec-
tion 2.1) for each selected position. For example, if
we have |V| word categories and the operation set
{replace, insert, delete, none} , we need to enumer-
ate (2|V|+2)* different combinations of operations
and word categories. We use word placeholders
[MASK] to represent the unknown inserted or re-
placed words. We keep track of all the generated
templates and their corresponding numbers of vio-

Paris is located in France
X1 X2 X3 Xy X5

Input

Randomly select k positions to operate

PDsition[Paris is located in France | ay, a; € {I,R,D,N}
(insert, replace, delete, none)

Wy W, € V = {{[QWH].[AUX].[OTH]}

Search (new words to be insert or replace)
a, | a, X1 X2 Template C(x)
I (1 |[QWH] |[OTH] | [QWH] Paris [OTH] is located in France | 1
I |R |[QWH] | [OTH] | [QWH] Paris [OTH] located in France 1
I |D [[QWH] |- [QWH] Paris located in France 2
R |T [QWH] [[OTH] | [QWH] [OTH] is located in France 0
R |N [[QWH] |- [QWH] is located in France 0
Rank Rank by C(x) (#Constraint Errors)
Group | Template Pgroup
0 [QWH] [OTH] is located in France 1-p)p°
[QWH] is located in France Selected
Group
1 [QWH] Paris [OTH] is located in France | (1 — f)g*
[QWH] Paris [OTH] located in France
2 [QWH] Paris located in France 1-p)p?

Group Selection: Select Group i with probability (1 —)
Template Selection (in the selected group)

Fill Sentence with BERT Py * @Pgope
Which city is located in France? 1.9+1071°
What is located in France? 251071

Randomly select one as proposal

Proposal: Which city is located in France?

Figure 3: The proposal process of Tree Search Embed-
ded MCMC. The input is the current sentence (state)
and the output is the proposed sentence. This proposal
process favors sentences satisfying a large number of
constraints.

lated constraints.

Rank and Group Selection We define a group as
the set of templates which violate the same number
of constraints. We sort all templates by its number
of violated constraints (constraint error) C' in as-
cending order, and put templates with the same C'
into one group. We then randomly select group %
with probability: Pyroup = (1 —) - fCi—miIn €5
where C} is the constraint error of group ¢, and 3
is a very small float value (like 10~19). In this way,
we favor choosing the group satisfying the largest
amount of constraints, while also ensuring the ir-
reducibility of the Markov chain. Let the chosen
group at this step be Gj;.

Fill and Template Selection In this step we will
first fill every template with words in the selected
group (5, then we select one filled template as the
proposal. Because the template restricts the masked
word to be chosen only from the corresponding

word category, we fill it by selecting words from
the given word category. The probability of select-
ing the ¢;-th word Py, is the conditional proba-
bility of filling words at this locations given con-
texts: Prav(xy, |21, ooy Tt,—1, Tt; 41, oo, Tm). The
probability of getting one sampled sentence is:
Py = Hle Pxyy,, where ¢ means the word level
action for ¢-th position we selected. If the operation
in t; is delete or none, then Py, = 1. We sample
one template within the group (together with the
corresponding sampled sentence) according to the

sentence probability times soft constraint score:
P _ __Pom(@) Qoo (z)
template 2seq; PLm(2) Psost (2)

The proposal distribution Q(z*|x) leading from
sentence state z to x* in this procedure is

Q(:c*]m) = Ppospgrouppﬁllptemplate-

4 Experiments

We evaluate our approach on three applications:
interrogative, imperative, and fixed sentiment sen-
tences generation. In each task, we construct the
specified type of sentences by sampling starting
from keywords and enforcing task-specific con-
straints. For each task, we run our TSMH algo-
rithm for 100 steps, with 100 candidate sentences
generated. k is set to 3. Since the tree search in
TSMH considers changing 3 words at each iter-
ation, we run the baseline CGMH for 300 steps
as a comparison. We select the sentence with the
highest 7(z) value among the sentences generated
by each algorithm as the output. Our results are
summarized in Table 1.

In general, our method TSMH outperforms base-
lines and generates sentences that satisfy more con-
straints, are of good quality and are likely to be
close to the natural language. Our main results are
summarized in Table 1, in which Valid% denotes
the percentage of generated sentences that satisfy
all constraints. 7(x) is the value of the stationary
probability Pry(z) - Constraint(x). Popr—2(2)
is language model probability estimated by a pre-
trained GPT-2 model, which measures the quality
of the sentences. Accept% means the acceptance
rate of MCMC. Detailed experiment settings can
be reviewed in appendix A.1.

4.1 Interrogative Sentence Generation

In the interrogative sentence generation, we con-
struct interrogative sentences by sampling starting
from the keywords. We enforce that sentences with
a high probability to be sampled must satisfy gram-

mar constraints of being interrogative and contain
a few given keywords. The constraint definition for
interrogative sentences is in section 2.1.

According to the results, in the experiment with
keywords, 92.67% of the output sentences of our
TSMH algorithm satisfy all the constraints, while
merely 18.33% satisfy constraints for the baseline.
The numbers are 83.17% and 45.50% for the exper-
iment without keywords, respectively. This demon-
strates that our TSMH generates sentences with
more constraints satisfied. In addition, our method
has a higher 7 (z) (stationary probability value) and
acceptance rate, suggesting that the tree search em-
bedded help MCMC to mix faster. Overall, our
method TSMH can handle more complicated con-
straints in language generation tasks.

Human Evaluation We conduct human evalu-
ation for interrogative sentences generated with
keywords. We present human participants from
the Amazon Mechanical Turk with a pair of sen-
tences at a time. One sentence is generated by
our TSMH model and the other one is from the
baseline CGMH. We ask human participants which
sentence is better in terms of fluency and grammar.
In terms of the experimental setting, we use 100
sentence pairs generated by CGMH and TSMH
with the same keyword inputs. We randomly split
these 100 test sentence pairs into 5 survey groups,
and then deploy them on the Amazon Mechanical
Turk. We randomly assign human participants to
survey groups. When showing the sentence pairs,
we also provide the keywords that the sentences
must contain. We ask human participants to vote
which sentence in the pair is better in terms of gram-
mar coherence, keyword coverage and fluency. We
use a gold-standard question to detect if the voter
is randomly doing the survey. Every valid survey
contains a randomized set of 20 questions. We
received in all 580 votes. Each question pair re-
ceives votes ranging from 5 to 11. As shown in
Table 2, sentences from our model receive almost
twice times of votes than the baseline, which sug-
gests that the sentences generated by our approach
is better in human evaluation.

Case Studies As shown in Table 3, we compare
some output sentences of our method with the base-
line using the same inputs and keywords. More
examples can be seen in the appendix A.2. From
these cases, we can see that our method generates
sentences with better quality.

Comparison with Other Methods We compare

Tasks ‘ Methods #sample step Valid% m(x) Pgopr—2(x) Accept%

Interroeative CGMH 300 1 18.33% 2.60E-04 1.78E-18 5.45%

£ TSMH (Ours) 100 3 92.67% 1.44E-03 5.51E-18 24.50%

. CGMH 300 1 91.32% 0.0004 9.86E-16 5.49%
Imperative

TSMH (Ours) 100 3 97.75% 0.0060 6.60E-15 15.66%

Sentiment CGMH 300 1 9633% 4.93E-19 4.57E-22 6.72%

TSMH (Ours) 100 3 96.67% 7.94E-04 1.82E-18 11.09%

Table 1: Our method TSMH outperforms CGMH by generating sentences that satisfy more constraints, are of
good quality and are likely to be natural language. Column Valid% shows the percentage of generated sentences
that satisfy all constraints, which TSMH clearly leads baselines. In addition, TSMH has better acceptance rates
(Accept%). The language generated by TSMH is also of good quality, because it matches other models in language

model scores Pgpr—2(x).

Multiplying both the language model score and the constraint score, the sentences

generated by TSMH tend to attain higher stationary probability 7(x).

Methods ‘ #Votes Votes%
CGMH 196 33.64%
TSMH (Ours) 384 66.36%

Table 2: Human evaluation of the quality of the gen-
erated interrogative sentences from keywords in terms
of fluency and grammar. Most human participants (na-
tive speakers) agree that the sentences generated by our
TSMH are better in quality compared to CGMH.

Keys waste heat water

CGMH | what waste is there, it seems now?

TSMH | where was the waste - water heater?

Keys responses protect lungs

CGMH | how can immune responses also occur by
not only infecting pathogens in the
central nervous system?

TSMH | what responses do your lungs have to protect
you from pathogenic bacteria?

Keys median temperature winter

CGMH | what do you mean we have median temperature
winter and spring, anyways?

TSMH | what is the median temperature range in the
winter months?

Keys catholics concentrated france

CGMH | the catholics are now mainly concentrated there.

TSMH | why are the french roman catholics so densely
concentrated in southern france?

Table 3: Case study of generating interrogative sen-
tences with keywords, where Keys stands for keywords.
Full case study is in the supplementary materials.

our TSMH method with UQA (Lewis et al., 2019).
The setting of UQA is different from us: it takes a
paragraph as input and generates a corresponding
question. Although this comparison is not fair, the
baseline is the most similar and the best framework

that we can compare with. To run UQA, we use
the corresponding original sentences from which
the keywords of TSMH are extracted as the input.
In other words, for TSMH, the inputs are keywords
extracted from the SQuAD 2.0 (Rajpurkar et al.,
2018) questions. For UQA, we take the correspond-
ing paragraphs of the selected questions as input.
This also gives UQA additional advantage because
it has access to a paragraph, rather than keywords.
To make it more comparable, we remove the key-
word constraints in this experiment. In Table 4, we
compare the language model scores log Pp,\p of the
generated sentences that reflect the naturalness and
fluency, and the stationary probability 7(x) and
valid percentage Valid% that show how good it sat-
isfies our pre-defined constraints. We pointed out
that UQA was trained on the specific interrogative
sentences while our method was not trained at all.

Methods | () Valid% log Py
UQA 0.0024 50% -92.75
TSMH | 0.0063 83.17% -58.27

Table 4: Comparison with UQA. Our TSMH outper-
forms UQA in terms of the percentage of satisfying
the interrogative sentence constraints, and has a higher
score predicted by a language model, despite UQA is
trained on specific interrogative sentences while our
method is not trained at all.

4.2 Imperative Sentence Generation

We generate imperative sentences via sampling
starting from the keywords. We enforce grammar
constraints of being an imperative sentence: the
starting word should be either a verb w{"**®! or

an adverb followed by a verb w """} A w,FRE

We also enforce keyword constraints in this task.
As shown in Table 1, our method has a higher
valid percentage of 97.75% compared to 91.32%
of the baseline, showing that the sentences gener-
ated by our method can satisfy more constraints.
Our method has a higher 7(x) (stationary proba-
bility value) and acceptance rate, suggesting our
approach has a better mixing behavior. Overall,
results show that our method using Tree Search
Embedded MCMC can handle more complicated
combinatorial constraints in language generation.

4.3 Sentence Generation with Given
Sentiments

In this task, we require the sentences to contain
the specified keywords and have positive senti-
ments (Fu et al., 2019). We enforce the sentences
to attain high scores from a sentiment analysis neu-
ral network. We also enforce keyword constraints
as hard constraints. We need to emphasize that,
our method uses a model pre-trained on a sepa-
rate dataset for sentiment analysis, which is kept
intact in our experiment. No additional fine-tuning
to the sentiment analysis model was performed.
we consider two sub-tasks in Table 5: (i) positive
sentiment to positive sentiment (P2P), where the
input keywords are extracted from sentences which
originally have positive sentiments; (ii) negative
sentiment to positive sentiment (N2P), where the
keywords are extracted from sentences with nega-
tive sentiments. N2P is more difficult as it requires
transforming the sentiment.

Our method has a higher sentiment score, sug-
gesting that our method generates sentences with
more positive sentiments (better aligned with the
target of this experiment). The increase against
CGMH is bigger on the more difficult N2P task,
which requires flipping the sentiment. Our model
also leads in terms of language model scores, sug-
gesting the language quality is better.

Tasks | Method w(x) Popra Accept% Senti
PP CGMH 9E-19 8E-22 8.16% 0.8647
TSMH 4E-04 2E-18 12.23% 0.8801
N2P CGMH 5E-20 6E-23 5.65% 0.3470
TSMH 1E-03 7E-19 991% 0.5254

Table 5: Generate sentences with positive sentiment.
Half of the input are extracted from positive sentences
(P2P), and the other half are from negative (N2P),
which are harder to transform to positive sentences.

Methods ‘ m(x) Pgpra(z) Sentiment
CtrlGen | 3.19E-07 4.64E-22 0.4614
TSMH 1.16E-03 7.07E-19 0.5254

Table 6: Compare with CtrlGen (Hu et al., 2017) over
the N2P subtask with acceptance rate, language score
and sentiment score metrics.

Comparison with Other Methods We compare
our method with CtrlGen (Hu et al., 2017). The
setting is a little different from ours: it takes a
sentence with a negative sentiment as input and
transforms it to positive, without the guarantee of
satisfying keyword constraints. Our method takes
a set of keywords as input. To make the outputs
comparable, we select the same set of negative
sentences as the input of CtrlGen and extract the
keywords of those sentences as the input of TSMH.
Our method requires no additional training besides
a pre-trained sentiment analysis model and a pre-
trained language model, while CtrlGen requires
training the auto-encoder.

The results in Table 6 show that our method out-
performs CtrlGen in terms of both sentence quality
and sentiment, as the sentences generated by our
method receive higher language model scores and
sentiment scores.

5 Conclusions

We propose a framework for constraint-driven lan-
guage generation via sampling and combinatorial
constraint satisfaction. Our solution strategy is to
sample sentences from the constrained space with
probability proportional to the scores of the lan-
guage model. To better handle the combinatorial
constraints, a tree search is embedded into the pro-
posal process of MCMC to suggest candidate pro-
posals that satisfy more constraints. Experiments
demonstrate that our approach generates sentences
that satisfy more constraints, are of good quality
and are likely to be close in quality to the natural
language.

Acknowledgements

This research was supported by the National Sci-
ence Foundation (Award number IIS-1850243 and
CCF-1918327). The computing infrastructure was
partially supported by the Microsoft Al for Earth
computing award. The authors would like to thank
Mr. Ning Miao for valuable suggestions.

References

Flor Aarts. 1989. Imperative sentences in english:
semantics and pragmatics. Studia Linguistica,
43(2):119-134.

Michael S Amato and Maryellen C MacDonald. 2010.
Sentence processing in an artificial language: Learn-
ing and using combinatorial constraints. Cognition,
116(1):143-148.

David Belanger and Andrew McCallum. 2016. Struc-
tured prediction energy networks. In Proceedings
of the 33nd International Conference on Machine
Learning, pages 983-992.

Mathias Berglund, Tapani Raiko, Mikko Honkala, Leo
Kirkkiinen, Akos Vetek, and Juha Karhunen. 2015.
Bidirectional recurrent neural networks as genera-
tive models. In Advances in Neural Information Pro-
cessing Systems, pages 856—864.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171-4186. Association for Computa-
tional Linguistics.

Yao Fu, Hao Zhou, Jiaze Chen, and Lei Li. 2019. Re-
thinking text attribute transfer: A lexical analysis. In
the 12th International Conference on Natural Lan-
guage Generation (INLG).

Vibhav Gogate and Rina Dechter. 2007a. Approxi-
mate counting by sampling the backtrack-free search
space. In Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, pages 198-
203.

Vibhav Gogate and Rina Dechter. 2007b. Sample-
search: A scheme that searches for consistent sam-
ples. In Proceedings of the Eleventh International

Conference on Artificial Intelligence and Statistics,
AISTATS, pages 147-154.

Vibhav Gogate and Rina Dechter. 2011. Samplesearch:
Importance sampling in presence of determinism.
Artif. Intell., 175(2):694-729.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Toward con-
trolled generation of text. In Proceedings of the
34th International Conference on Machine Learning,
ICML, pages 1587-1596.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics, EACL 2017, Valen-
cia, Spain, April 3-7, 2017, Volume 2: Short Papers,

pages 427-431. Association for Computational Lin-
guistics.

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff,
Ashish Sabharwal, Peter Clark, and Oren Etzioni.
2015. Exploring markov logic networks for question
answering. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 685-694.

Jay Yoon Lee, Sanket Vaibhav Mehta, Michael Wick,
Jean-Baptiste Tristan, and Jaime G. Carbonell. 2019.
Gradient-based inference for networks with output
constraints. In The Thirty-Third AAAI Conference
on Artificial Intelligence, pages 4147-4154.

Patrick S. H. Lewis, Ludovic Denoyer, and Sebastian
Riedel. 2019. Unsupervised question answering by
cloze translation. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, Florence, Italy, July 28- August 2,
2019, Volume 1: Long Papers, pages 4896-4910. As-
sociation for Computational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, System Demonstrations, pages
55-60. The Association for Computer Linguistics.

Ning Miao, Yuxuan Song, Hao Zhou, and Lei Li. 2020.
Do you have the right scissors? tailoring pre-trained
language models via monte-carlo methods. In Pro-
ceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 3436-3441. Association
for Computational Linguistics.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei Li.
2019. CGMH: constrained sentence generation by
metropolis-hastings sampling. In The Thirty-Third
AAAI Conference on Artificial Intelligence, pages
6834-6842.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39-41.

Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut-
dinov, and Alan W. Black. 2018. Style transfer
through back-translation. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics, pages 866—876.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics, ACL, pages 784-789.

Matthew Richardson and Pedro M. Domingos. 2006.
Markov logic networks. Machine Learning, 62(1-
2):107-136.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1-20.

Jinyue Su, Jiacheng Xu, Xipeng Qiu, and Xuanjing
Huang. 2018. Incorporating discriminator in sen-
tence generation: a gibbs sampling method. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, pages 5496-5503.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney.
2012. LSTM neural networks for language mod-
eling. In 13th Annual Conference of the Interna-
tional Speech Communication Association, pages
194-197.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pages 3104-3112.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Russ Wolfinger and Michael O’connell. 1993. Gener-
alized linear mixed models a pseudo-likelihood ap-
proach. Journal of statistical Computation and Sim-
ulation, 48(3-4):233-243.

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th Con-
ference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 5564-5569.
Association for Computational Linguistics.

Shijie Zhang, Lizhen Qu, Shaodi You, Zhenglu Yang,
and Jiawan Zhang. 2017. Automatic generation of
grounded visual questions. In Proceedings of the

Twenty-Sixth International Joint Conference on Arti-
ficial Intelligence, pages 4235-4243.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649—
657.

A Appendix
A.1 Detailed Experiment Settings

In this section, we detail our experimental settings
for interrogative, imperative, and sentimental sen-
tence generation tasks, along with the process of
human evaluation.

In the expression of stationary distribution
Eq.(1), the first term Ppy(z) is evaluated by the
BERT model, which is based on the huggingface’s
BERT implementation (Wolf et al., 2019). We
use BERT-base in our experiments, with hyper-
parameters: L=12, H=768, A=12, Total Param-
eters=110M. To evaluate the term Ppy(z) with
BERT model, we multiply the BERT score of mask-
ing and querying the conditional probability of each
word in sentence x, close in form of the pseudo-
likelihood (Wolfinger and O’connell, 1993). Since
we only requires 7(z) to be proportional to P (x)
times the constraint score, Pr\(z) does not need
to be normalized.

A.1.1 Interrogative Sentences Generation

According to the adapted definition of interrogative
sentence grammar, the first word should be a ques-
tion word, and there should be an auxiliary verb at
a suitable position. The constraint definition for in-
terrogative sentences is in section 2.1. In our actual
implementation, we also enforce that there should
be only one question word and one auxiliary verb
in the sentence in order to improve the quality of
generated sentences. The question words include
what, when, where, which, who, whom, whose, why,
how; the auxiliary verbs include do, does, did, be,
am, are, is, was, were, shall, will, should, would,
can, could, may, might, must.

For the task of generating interrogative sentences
with keywords, we also enforce the keyword only
appear once in the sentence.

The dataset of this task is based on the SQuAD
2.0 dataset (Rajpurkar et al., 2018), where we select
600 questions and removing the stop words using
the Rake toolkit (Rose et al., 2010).

A.1.2 Imperative Sentences Generation

The dataset for generating imperative sentences
is retrieved from®. We select 300 sentences and
extract the keywords from the sentences as our
input. According to the grammar of imperative
sentences, we need to verify if the word is a present
tense verb. In the implementation, we use the POS

3https://github.com/lettergram/sentence-classification

tag information in WordNet and Stanford CoreNLP
as the criterion for deciding the word POS tag of
the given word. We first select all the words with at
least one verb meaning in WordNet (Miller, 1995),
then use Stanford CoreNLP (Manning et al., 2014)
to get POS tags for each word and only preserve
the present tense form of verbs.

A.1.3 Sentiment Sentence Generation

This application requires the set of input keywords
and an external sentiment classifier, which is used
to estimate whether the sentiment of the sentence is
positive or not. To estimate the sentiment score of
the sentences, we train a sentiment analysis model
with fastText (Joulin et al., 2017) on Yelp Review
Polarity dataset (Zhang et al., 2015). The input
keywords are extracted from 300 selected sentences
in the Yelp test set. Half of the original sentences
are positive, and the other half are negative (which
is harder to transform to positive sentences).

With input keywords of positive and negative
sentiment, we enforce the model to generate sen-
tences with positive sentiment. The second sub-
task with negative sentiment keywords is much
more difficult than the sub-task with positive sen-
timent keywords, as it requires transforming from
negative to positive sentiment.

A.2 Case Studies

As shown in Table 7, we compare some output
sentences of our method with the baseline using
the same inputs and keywords. From these cases,
we can see that the baseline sometimes generates
awkward or disordered sentences. For example, the
baseline generates one sentence:*“how was lower
normandy ever truly founded?”. Although this sen-
tence seems to satisfy the constraints of an inter-
rogative sentence, its meaning is awkward. The
sentence generated by our method is “when was
the duchy of normandy founded?”, which is more
realistic. Also, the sentence from the baseline “and
please be a very very careful” does not follow
imperative grammar, and “the catholics are now
mainly concentrated there” is not a question.

Keys university warsaw established

TSMH | when was the technical university of warsaw
first formally established?

CGMH | polish polytechnical institute - university of
technology warsaw - was established here

in 1964?

Keys organization charge running

TSMH | who would charge her with running such an
organization?

CGMH | who else would charge him with running a
very profitable business?

Keys tribes khan fight

TSMH | what tribes would fight back against the
genghis khans?

CGMH | why else would tribesmen like gen. and gen.
genghis khan fight them off?

Keys european travel amazon
TSMH | why did early european explorers not travel to
amazonia?

CGMH | see below, also : did any european settlers ever
travel to build the ” first north american sailing
canoes ’?

Keys economic growth schooling

TSMH | how do economic growth rates in the united
states make children receive high - quality
schooling?

CGMH | what good is economic growth in comparison
with being among the best in public schooling?

(1) Interrogative Sentences

Keys seat
TSMH | please get up from your seat
CGMH | go on in and take your seat

Keys careful
TSMH | please be so very very careful.
CGMH | and please be a very very careful

Keys turn, lights
TSMH | turn on the lights all the time
CGMH | turn on near all the main lights

Keys close, window
TSMH | stay close enough to the window
CGMH | stick close enough to meet the window

Keys nice, weekend
TSMH | have yourself a very nice private weekend
CGMH | please be nice about spending the weekend

(2) Imperative Sentences

Table 7: Case study of generating interrogative and im-
perative sentences with keywords, where Keys stands
for keywords.

