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Abstract

Robustness is a key requirement for widespread deployment of machine learning algorithms,
and has received much attention in both statistics and computer science. We study a natural
model of robustness for high-dimensional statistical estimation problems that we call the adver-
sarial perturbation model. An adversary can perturb every sample arbitrarily up to a specified
magnitude § measured in some £, norm, say {oo. Our model is motivated by emerging paradigms
such as low precision machine learning and adversarial training.

We study the classical problem of estimating the top-r principal subspace of the Gaussian
covariance matrix in high dimensions, under the adversarial perturbation model. We design
a computationally efficient algorithm that given corrupted data, recovers an estimate of the
top-r principal subspace with error that depends on a robustness parameter x that we identify.
This parameter corresponds to the ¢ — 2 operator norm of the projector onto the principal
subspace, and generalizes well-studied analytic notions of sparsity. Additionally, in the absence
of corruptions, our algorithmic guarantees recover existing bounds for problems such as sparse
PCA and its higher rank analogs. We also prove that the above dependence on the parameter x
is almost optimal asymptotically, not just in a minimax sense, but remarkably for every instance
of the problem. This instance-optimal guarantee shows that the ¢ — 2 operator norm of the
subspace essentially characterizes the estimation error under adversarial perturbations.

1 Introduction

An important and active area of research in machine learning is the design of algorithms that
are robust to modeling errors, noise and adversarial corruptions of different kinds. There is a
rich body of work in the field of statistics, machine learning and theoretical computer science
studying different models of robustness and the associated tradeoffs (e.g. Huber, 2011; Tukey,
1975; Hampel et al., 1986; Diakonikolas et al., 2019; Lai et al., 2016). In the context of statistical
estimation problems the most widely studied model is Huber’s e-contamination model (Huber,
2011). In Huber’s model it is assumed that a small e fraction of the data set is corrupted arbitrarily.
The remaining portion of the dataset that is left uncorrupted is assumed to be generated from a
structured distribution such as a Gaussian. Other notions of robustness that have been explored
in unsupervised learning include distribution closeness of different kinds (Gao et al., 2019) and
different semi-random models (Blum and Spencer, 1995; Feige and Kilian, 2001; Makarychev et al.,
2012). Please see Section A for more detailed comparisons.
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However there are several existing and emerging scenarios, where the data corruptions are
not captured by these existing models of robustness. In many practical settings every data point
is likely to perturbed with some small amount of noise, arising from various complex sources of
errors. The reliability and security of learning algorithms could also be compromised by small im-
perceptible perturbations to the samples that are adversarial in nature (data poisoning). Moreover,
adversarial training has emerged as a popular training paradigm where at each stage, the given
training set is corrupted by adding (imperceptible) adversarial perturbations (typically measured
in {5 or ¢ norm) (Madry et al., 2017), before performing stochastic gradient descent updates.
This is empirically known to lead to more robust algorithms and also has implications for fair
classification (Madras et al., 2018).

Data corruptions also arise naturally in popular emerging paradigms like low-precision machine
learning (De Sa et al., 2017, 2018). Low precision computation gives substantial savings in time
and energy costs by storing and processing only a few most significant bits e.g., 8-bit arithmetic is
a popular choice. The lower memory utilization from low precision allows for processing of more
training examples at the cost of quantization noise. This quantization noise is naturally captured as
a small adversarial perturbation to every co-ordinate of the data point to an amount that depends
on the number of bits used in the arithmetic (an ¢, norm bound). These adversarial perturbations
lead to new tradeoffs in the estimation accuracy that are not well understood for many basic
statistical tasks. In this work we take a step in this direction by studying a model of adversarial
perturbations aimed at capturing the above scenarios.

Adversarial Perturbation model. We consider a natural model of robustness where every
sample can be perturbed adversarially up to a bounded amount §, say in /o, norm (more generally,
in ¢, norm where ¢ € (2,00] ). In our model the input data A e Rm*n consisting of m samples in
R"™ is generated as follows:

1. The uncorrupted samples Aq,..., A, € R™ are drawn i.i.d. from a Gaussian N (u,X), with
unknown mean p € R” and ¥ € R"*"™.

2. An adversary can observe the samples Aq,...,A,,, and perturb them arbitrarily to form
Ay, ..., Ay € R" such that for each j € [m], |A; — Aj||q < 6. These adversarial perturbations
can be correlated.

We study the classical unsupervised learning problem of estimating the top-r principal subspace
of the covariance matrix ¥, and the best rank-r approximation to X, for a specified r € [n]. For
r = 1, this corresponds to recovering the principal component of X.

In the above model, the adversarial perturbations are measured in ¢, norm where ¢ € (2, c0].
As g goes to 0o, the perturbations become larger in magnitude and less constrained. When ¢ = oo,
every co-ordinate of every point can get perturbed adversarially up to § in magnitude. For the sake
of exposition, we will focus on the case of ¢ = oo and present results for general ¢ € (2, 00] in the
respective sections.

Our algorithms and guarantees will depend on certain quantity that we will call the robustness
parameter r, which captures the ¢ — 2 operator norm of the projector on to the target rank-r
subspace, and generalizes analytic notions of sparsity. Surprisingly, we will see that this robustness
parameter will be crucial in characterizing the estimation error under our model. To understand why
sparsity (and the oo — 2 operator norm) is related to robustness under adversarial perturbations,
let us first consider the simpler setting of mean estimation.



Warm up: Mean Estimation. Consider the problem of mean estimation where the uncorrupted
data in R™ is generated from N (u,I). A valid { adversarial perturbation is moving each of the
samples by the same vector z = §(1,1,...,1), thereby moving the mean to u' with ||’ — ul3 = 6%n.
In this case no estimator can tell apart u, ' from the data, hence this error of 6%n is unavoidable
in the worst-case. Suppose however that mean p was k-sparse i.e., it is supported on the set S of
size at most k < n. If the support .S is known beforehand, then by taking the empirical mean after
projecting all the samples onto the support S, we can find an estimate fi with ||i—u||3 < 6%k < 6%n
asymptotically (as the number of samples goes to infinity). While we do not know the the sparse
support of u beforehand!. the following proposition shows that one can indeed achieve the above
improved rate when the mean is sparse in an analytic sense (the ratio of norms ¢1 /05 ).

Proposition 1.1 (Mean Estimation under Adversarial Perturbations). Suppose we have m samples
drawn according to the Adversarial Perturbation model with mean p, covariance ¥ < oI and q = oo.
There is a polynomial time algorithm (Algorithm 3) that outputs an estimate i for the (unknown)
mean p such that with probability at least (1 — 1/n),

It = pll3 < 4min {|[]1(5 +n), n(8 +m)?}, where 5 := 204/ (log n) /m. (1)

See Proposition H.1 for general statement for all ¢, norms. If we use kK = ”Z H; to denote the
analytic sparsity of p, the first error term becomes k- (0 + 1) - ||u/2. In fact, the above error of
Q(kd]||p]|2) is unavoidable for every instance for a broad range of parameters i.e., for every instance
of the problem, there exists an adversarial perturbation that makes it statistically impossible to

recover the mean with error o(d||u||1) (see Proposition H.3).

Robustness Parameter k. Similarly the estimation rates for finding the top-r principal subspace
(or best rank-r approximation) of ¥ will be characterized by the robustness parameter s that is
given by the co — 2 operator norm:

[Mloome = max_ [[Iyll2,
yillylloe<1

where IT is the (orthogonal) projection matrix onto the subspace spanned by the top-r eigenvectors
of ¥ (for general g, the robustness parameter will correspond to ||II|;—2 operator norm). This
robustness parameter generalizes analytic notions of sparsity (the ratio of ¢1/¢3 norms) to projec-
tion matrices of subspaces?. Note that s takes values in [1,/n]. The oo — 2 operator norm is
also related to the famous Grothendieck inequality from functional analysis (Grothendieck, 1952;
Alon and Naor, 2004). These parameters have also been used recently to characterize robustness to
adversarial perturbations at test-time (Awasthi et al., 2019a) (see Section A for more discussion).
Similar to mean estimation, the case of r = 1 for covariance estimation corresponds to the well
studied sparse PCA problem (Johnstone et al., 2001; Amini and Wainwright, 2009; Ma et al., 2013;
Vu and Lei, 2012, 2013; Berthet and Rigollet, 2013). Extensions of sparse PCA to estimating top

!This estimation problem is interesting even in the absence of adversarial perturbations, and corresponds to the
sparse mean estimation problem that has been studied extensively in high-dimensional statistics Johnstone et al.
(1994); Donoho et al. (1992); Donoho and Johnstone (1994).

2For the special case of a 1-dimensional subspace along the vector v, the orthogonal projector II; = %UUT
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llv]
satisfies ||II]|oo—2 = ||II||2—1 = ||v||1/||v]]2. See Fact B.3 for details.



r “sparse” subspaces have also been widely studied in the statistics community (Vu and Lei, 2013;
Wang et al., 2014) .

As we will see soon, our guarantees are not only minimax optimal in terms of these parameters,
but they are essentially instance-optimall Our upper bound and lower bound guarantees will work
for every instance and will be tight up to logarithmic factors asymptotically (as number of samples
becomes large). Hence our results give a surprising characterization of the estimation error under
adversarial perturbations in terms of these robustness parameters (measured in co — 2 norm), and
highlight new robustness benefits of sparsity in high dimensional estimation.

1.1 Owur Results

We now state our main results on recovering the principal subspace (and the best rank-r approx-
imation) of the covariance ¥* in terms of the co — 2 operator norm of the corresponding rank-r
projection matrix. The samples are drawn from the Adversarial Perturbation model where the
covariance of the uncorrupted samples ¥* has eigenvalues A\ > Ay > --- > A\, > 0. The unknown
covariance matrix is split into ¥ = Yrop + Xgor, Where YX1op corresponds to the best rank-r ap-
proximation of ¥ i.e., the truncation of the SVD to the top-r eigenvalues Ay, ..., \.. Let II* be the
orthogonal projection matrix onto the span of Y1op. We will assume that ||[IT*||cc—2 < k. We will
measure the estimation error in squared Frobenius norm. For the case of projection matrices, this
is equivalent (up to a factor of 2) to the standard notion of subspace sin © distance (see Section B).

Theorem 1.2. [Algorithm] Suppose we have m samples drawn according to the the above Ad-
versarial Perturbation model with (unknown) covariance ¥* satisfying ||I*||com2 < k. Assum-

ing that ko < O0r=Ari1)

T there exists an algorithm (Algorithm 2) that for any € > 0 uses m >

2 ~ ~
Cr%ﬂm) logn/e? samples and outputs a rank-r projection I with ||1l||c—o = O(k), and

an estimate Yrop (restricted to the subspace I ) such that

T — T} < &1 = By - O(Vr - #6) + & and [|Sror — Srop|[F < O(Afer + \ir20%).

See Theorem 3.1 for the general statement for ¢ > 2 and the proof. To interpret the results let’s
consider the case when $* = IT* + I (hence Syop = (1+6)IT*), and § = O(1).3 The above theorem
shows that there is an efficient algorithm that obtains a rank-r projection II that is O(\/TK0)
close to IT* in squared Frobenius norm, for sufficiently large polynomial m (ﬁ also has robustness
parameter O(k)). On the other hand, a random subspace of rank r will incur an error of Q(r). Our
algorithm can achieve an error of o(1) while tolerating an additive perturbation that is as large as
§ = o(1/(\/rk)) (which could be n=%21/\/r if kK = n%2). On the other hand, if the top-r subspace
has no special structure (robustness parameter x & /n), then one requires § = o(n~/2/\/7) for
achieving similar error rates.

Next, we give a computational inefficient algorithm that achieves a better statistical rate in
terms of the sample complexity.

Theorem 1.3. [Statistical upper bound] Given m samples drawn according to the Adversarial
Perturbation model with covariance X* satisfying |I1*||co—2 < K, there exists an algorithm that for

3When r = 1, this special case is the sparse PCA setting where the principal component has ¢; sparsity .



2 ~
any € > 0 uses m > CT%%W) logn/e? samples and outputs a rank-r projection I with

I||ccms2 < K, and an estimate Syop (restricted to the subspace I1) s.t.

T =T} < &1 1= 2B - O(Vr - 6) + € and [|Srop — SroplF < O(Afer + \ir26%).

See Theorem G.1 for the guarantees for general ¢ > 2. The dominant error of O(y/rxd) is the
same for both Theorems 1.2 and 1.3, and represents the asymptotic error (error as m — o). The
main difference however is the number of samples m needed as a function of k to drive the error
to within ¢ of this asymptotic error. This gap of k* vs k2 represents a computational vs statistical
tradeoff that is unavoidable even when r = 1 (and ¢ = o0), assuming the hardness of the Planted
Clique problem. This follows directly from computational lower bounds for sparse PCA with a k =
k2-sparse vector (combinatorial sparsity) assuming Planted Clique hardness (Berthet and Rigollet,
2013; Gao et al., 2017). For smaller ¢ € (2,00), there is an extra polynomial factor gap of n2/4
in the sample complexity between Theorem 3.1 and Theorem G.1 that would be interesting to
resolve. Finally the estimation error in the absence of any adversarial errors is comparable to the
existing state of the art results that are known to be tight (minimax optimal) (Vu and Lei, 2013;
Awasthi et al., 2019a).

The following lower bound shows that our asymptotic error guarantees are almost optimal for
every instance.

Theorem 1.4. [Lower Bound] Suppose we are given parameters r € N,k > 2r and 6 > 0. In the
notation of Theorem 1.3, for any ¥*, given m samples Ay, ..., Ay, generated i.i.d. from N(0,%*)
with k = ||IT*|| o2 satisfying vrA1(k/n) < 6 < \/rAi/k, there exists a covariance matriz X' with
a projector 11" onto its top-r principal subspace, and an alternate dataset A}, ..., Al drawn i.i.d.
from N(0,%) satisfying |[1I']|cc—2 < (1 +0(1))k, and [|A; — Ajllec <6 Vj € [m],

* Q1 A2 22 *
but | T = 0[5 > (Syotyiors) - VRS and  [Shop — Sropllf > B2 I — 117

In particular, when Yrop = (1 4+ 0)I1* then X, = (1 + 6" with 8" = (1 + o(1))6.

See Section 4 for more details and proof of the construction, and Theorem F.7 for the extension
to general ¢, norms. Consider the previous setting where A\, — A, y1 = Q(A;) and think of m as
being any large polynomial in 7. The above lower bound on the error ||[TI' —IT*||% = Q(/rxd) nearly
matches the error bound obtain by our algorithm in Theorem 1.2 (as m becomes a sufficiently large
polynomial and hence € & 0) up to logarithmic factors, for every instance (i.e., every IT*, ¥*) i.e., our
bounds are nearly instance-optimal. Note that this is much stronger than minimax optimality, which
only requires the lower bounds to be tight for a specific choice of ¥* II*. Hence, Theorem 1.2 and
Theorem 1.4 together show that the co — 2 norm of the projection matrix essentially characterizes
the robustness to training errors bounded in £, norm.

Discussion of the characterization. Our characterization of the robustness to adversarial
perturbations is in terms of the robustness parameter £ = ||II*|| o2 (||IT*||4—2 for general ¢), which
generalizes analytic notions of sparsity. For a r = 1-dimensional subspace, this exactly corresponds
to the ¢; sparsity of the unit vector v in that subspace. For higher-dimensional subspaces, there
are several other notions of sparsity that have been explored (Vu and Lei, 2013; Wang et al., 2014).
For a fixed orthonormal basis V € R™ " of the subspace (so II* = VVT), some of the notions



that have been considered include the entry-wise norm ||V|; (the sum of the ¢; norms of the basis
vectors), the maximum ¢; norm among the columns of V', the sparsity of the diagonal of IT* and the
sum of the row £5 norms of V', among other quantities. Many of these quantities are the same for
r = 1 but may vary by factors of y/r or more depending on the quantity. On the other hand, our
robustness parameter £ is a property only of the subspace and is basis independent. The ||TT*||co—2
of a projector is the largest /1 norm among unit vectors (in f3 norm) that belong to the subspace.

Consider three different subspaces (or projectors) given by the orthonormal basis Vi, Vs, V3 €
R™ " of the following form (think of x = vk, r < k); assume that the signs of the entries are
chosen randomly in a way that also satisfies the necessary orthogonality properties (e.g., random
Fourier characters over { +1}%).

+/r
vbov N : .
VE vE Tk =SV 0 11 41 11 41
: Vk Vror Vi Yk
: Oi\/F 0 0 0 =L
Vi = | £ £1 £1 Vo — VE Va — vk
L VRV vl . AE o
+1
0 0 0 O:I:\/\KF.O 0 0 0o =
g 0
0 0 0

The main difference between Vi, V5 is that in V5 the sparse basis vectors have disjoint support,
whereas in V; they are commonly supported. However, there is an alternate basis for the subspace
Vo which looks like Vq, but basis dependent quantities like the maximum ¢; norm among columns
get very different values for V7, Va. In the third example, the first » — 1 basis vectors are extremely
sparse with ¢; norm O(+/r), whereas only one of the basis vectors has £ sparsity vk. Many
aggregate notions of sparsity like ||[V||; or sum of the row ¢ norms have very different values for
V1 and V3 that differ by a /7 factor. On the other hand, our robustness parameter x ~ Vk; this is
because each of these subspaces are supported on at most k co-ordinates (and a spread out vector
of this form exists), so the maximum /; length among unit fo norm vector is vk. Hence, while our
robustness parameter ||II*||oo—2 characterizes the asymptotic error that can be obtained in all of
these different cases (using Theorem 1.2 and Theorem 1.4), many other natural notions of sparsity
are off by factors of \/r or more in at least one of these cases.

Finally, our robustness parameter  also satisfies other useful properties like monotonicity (see
Lemma B.2), that will be very useful in the algorithm and analysis (this is not satisfied by various
other norms like ||-||; etc.). While the co — 2 operator norm is NP-hard to compute for PSD
matrices, there exists polynomial time algorithms that can compute it up to a small constant

factor (that corresponds to the Grothendieck constant for PSD matrices) (see Nesterov, 1998;
Alon and Naor, 2004).

Comparison to Prior Work and Related Work. There are several other notions of robustness
that have been explored in both unsupervised and supervised learning. We place our work in the
context of these existing works in Section A. The work that is closest to this paper is the recent
work of Awasthi et al. (2019a). Our work is inspired by Awasthi et al. (2019a) and builds on some
of those techniques. However, our work differs significantly from Awasthi et al. (2019a) both in



terms of the problem focus, and the nature of the results, as we explain below. The main problem
considered in Awasthi et al. (2019a) is finding a low-rank projection of a given data matrix A that
achieves low approximation error, and is also robust to adversarial perturbations at testing time.
Robustness at test time naturally places an upper bound constraint on the ¢ — 2 operator norm
of the projection matrix. The paper also consider this problem under adversarial perturbations at
training-time, and use these results as a black-box to obtain some guarantees for mean estimation
and clustering in the presence of adversarial perturbations. The paper mainly studies the worst-case
setting which is computationally hard, and hence focus on multiplicative approximation guarantees
for an objective (like low-rank approximation error), as opposed to estimation or recovery.

On the other hand, the main focus of this paper is adversarial perturbations at training time;
there is no requirement of robustness at testing-time. Hence, it is not clear why x = ||II||;—2
is a relevant parameter at all. The main message of this paper is that this parameter s indeed
characterizes the robustness to adversarial perturbations at training time as well (this is even if
test-time robustness is not a consideration)! Moreover we focus on high-dimensional statistical
estimation tasks where there is an underlying distribution for the uncorrupted data, and allows
us to obtain the strong statistically optimal recovery guarantees. Hence the guarantees in the two
works are incomparable.

2 Preliminaries

Norms. For a vector v € R" and any ¢ > 1, we use ||v||, to denote the g-norm: (Y7, \v(z’)lq)l/q.

For any fixed ¢ > 1, we use {4« to denote the dual of ¢;, where 1/¢q + 1/¢* = 1. We also apply
Holder’s inequality extensively: Vg > 1 and u,v € R",|(u,v)| < [Jul|g|[v]lq- A direct corollary is
that |[v||, < |support(v)|"/9=Y/P . ||v||,, for any vector v and any ¢ < p. In particular, ||v|j; < vk for
a unit vector v of sparsity k.

For a matrix A € R"™ and ¢ > 1, we will use ||Al|; to denote the entry-wise ¢, norm of A:
(X |A(i,j)|q)l/q. When ¢ = 2, we will also use the Frobenius norm ||A|| ¢ def |All2 equipped with
trace inner product (A, B) = tr(A' B).

p — g norms. For any p and ¢, we define the operator p — ¢ norm for a matrix A € R™*™:

[Alg = _max  (Av]o/ ol

For convenience, let ||A| denote the operator norm ||A|[2—2. A variational definition of the
operator norm is as follows (See Section 4 in Awasthi et al. (2019a) for proofs).

Fact 2.1. For any p and q, ||Alp—q = ueRn\{gr}l%}éRm\{o}UTAv/(Hqu*”UHp)' Also, [|Allp—q =

IAT llg=—p= and [|AT Allgosq= = |All52. In particular, |[Mljscse = [Mll21 and [[Ilg-q- = T30
for projection matrices.

Due to the space constraint, we defer a few properties of the operator norm to Appendix B.

3 Computational Upper Bound

In this section we present our computationally efficient algorithm for estimating the top-r principal
subspace. We state our main claim regarding the error guarantees associated with the algorithm



and describe the key ideas used in the analysis. All the proofs are deferred to Appendices D
and E. A key subroutine in our algorithm is the following convex program that was proposed in
Awasthi et al. (2019a). We use the program will be run on the corrupted data A and the bulk of our
analysis will involve showing that the solution output by the program can be used for estimation
in spite of adversarial perturbations. The program takes in as parameters the rank r» and an upper
bound for the robustness parameter x, whose target solution is the projection IT* of X*.

1 1
in —||A|% — —(AAT, X
min [ Al} (44T, X) 8
subject to tr(X) <r (3)
0<X <T (4)
1Xllgr < s ()
X lgmsqs < A7 (6)

One can use the Ellipsoid algorithm to efficiently solve the program above via an efficient separation
oracle (See Lemma C.1). We briefly discuss the last two constraints in the above program and refer
to Awasthi et al. (2019a) for a more detailed discussion: The constraint (5) comes from the fact
that the projection IT* = Y7 v;v,] where each ||v;||,+ < k. At the same time, the last constraint (6)
is based on the monotonicity of ¢ — ¢* norms from Lemma B.2.

Below is the algorithm that uses the SDP solution above to outputs a robust projection matrix
II of rank at most 7.

Algorithm 1 Finding Robust Low-Rank Projection

1: function ROBUSTPROJECTION(data matrix A € R™™ rank r, robustness &, norm gq)

Solve (2) on A with parameters x, ¢, to find a solution X = 0 (see Lemma C.1).

3: Use SVD on X to find the subspace spanned by the top-r eigenvectors of X. Output H the
orthogonal projection matrix onto this subspace.

4: end function

v

Finally, our algorithm for estimating the principal components of the covariance matrix in the
presence of adversarial perturbations, described below, just uses ROBUSTPROJECTION as an addi-
tional pre-processing step to find a suitable robust subspace for computing the empirical covariance.

Algorithm 2 Principal Subspace Estimation under Adversarial Perturbations

: function ADVROBUSTPCA (4m samples Ay, ..., Ay € R™, rank r, robustness &, q)
Split samples into two equal parts. Let A, A denote these two datasets.

For each j € [m], let A} = %(flj — Ay j) and let Af = %(Agmﬂ- — Azmij)-

1
2
3
4: Run ROBUSTPROJECTION(A', 7, K, q) to find a r-dimensional projection matrix II.
5 Output 3, to be empirical covariance of [1A”.

6: end function

Next, we state our main theorem regarding the estimation error associated with the algorithm
above. We state the guarantee for a general ¢ > 2. Substituting ¢ = oo recovers the guarantee
stated in Theorem 1.2.



Theorem 3.1. Given q¢ > 2, r, and K, let A e R™™ pe g d-perturbation (in £, norm) of data
points generated from N(0,X*). Let Ay > Ao > -+ > )\, be the eigenvalues of the covariance matriz
¥* and II* be the projection matrix on to the top r eigenspace of ¥*. There exists a universal

constant C' such that for any € > 0, and kd < ’\5_7\/’%?, Algorithm 2 when provided with m >

samples, outputs with probability at least 0.99 iTop of rank r and the

nt/a

)\2
Crikt. 71)2 logn - "

(>\r—>\r+1 . -
projector onto its subspace 11 that satisfies ||II||4—2 = O(kK),

VAT - KO

I-1I|% <0
I -1 < (55—

)+ and [Sror = Sropl[F < O(AF|T — T} + A1k262).
Before the proof of Theorem 3.1, We describe the key ideas and supporting claims that are
used in our analysis. The proof consists of three main steps. We first argue about the error of the
estimated projection matrix II with respect to IT*. One can show that the optimal solution to the
convex program (2) (that we will refer to as the SDP) on the ideal instance E[AAT] in fact recovers
the projection IT*. However the SDP is solved on the given instance E[AAT ]+ E where E is the error
matrix defined as E := %AAT —E[AAT] involving both the adversarial perturbations and sampling
errors. The first part of the argument for the robustness of the SDP to adversarial perturbations
is by providing an upper bound on [(E, X)| over all feasible SDP solutions X. Lemma 3.2 that is
stated below crucially uses the constraints on ||X ||, and || X||4 to provide the required bound.

Lemma 3.2. Let 1{1 be a §-perturbation (in £, norm) of the original data matriz A where E[AAT] =
¥*. Let E:= L AAT —E[AAT] denote the error matriz and define

Pe(g) = {X € RV tr(X) = 1,0 2 X 2L | X|lg <767, [| X lgg- < e(a) - 57}

as the set of all solutions that can be obtained by solving the SDP in (2) via the Ellipsoid Algo-
rithm (see Lemma C.1). With high probability, A := SUpxep, [(E, X)| satisfies

. * . n2/a
Ago( A (D)0 4 1267 4 Amax(z\/)m\/@ n )

A key technical lemma that helps to establish the above bound is stated below.

Lemma 3.3. Let Ay, As,..., Ay € R be generated i.i.d. from N(p,X*). Let A be the n x m
matriz with the columns being the points A;. Let X be a solution to the SDP in program (2) and
let B be any matriz, potentially chosen based on A, with ||Bj|lq < 6 Vj € [m]. Then with probability

1
at least 1 — Soly(y We have that

rr2||S*||v/Togn - n2/q) 1)
— .

vm

We defer the proof of Lemma 3.2 to Section D.1. The second step of the proof lower bounds
the correlation of the SDP solution to II* in terms of the value obtained by the SDP solution on
the ideal instance ¥* = E[AAT]. This is established in following claim whose proof is deferred to
Section D.2.

(A~ BLADB", X)| < O /rlI*Inb) + O(s*3) + O(



Claim 3.4. Given a PSD matriz X%, let II* be the projection matriz on to the top r eigenspace of
¥*. For any matriz X with tr(X) =7 and 0 < X <1, it holds that

(II*, E[AAT]) — (X,E[AAT]) . (IT*, ©*) — (X, 2*>‘

X, %) > r — —
< > " /\r - /\r+1 /\r - /\r+1

where A, and 11 denote the rth and the (r 4+ 1)th largest eigenvalues of 3* respectively.

The above claim helps us argue that by truncating X to its top-r subspace we get a good
approximation to II*. Finally, in the theorem below we show how to recover the top-r principal
component X* given II that is a good estimate of IT*.

Theorem 3.5. Let Ay, ..., Ay, be data points drawn independently from N (0,%*) where the covari-
ance matriz X =Y /\iviviT with A\ > Xog > >\, Let Zpop = D iy /\iviviT and IT* denote the
projection matriz on to the eigenspace of Yirop. Furthermore, let 11 be a rank r projection matrix
with |IT — IT*||% < e. Then given a delta perturbation Ay, ..., A, with probability at least 0.99
(over Ay, ..., Ap), the matriz Yrop = HL(ZZ 1 A; AT)H satisfies

~ /\2
”ZTOP - ETOPH%' = O()\IE + —+ /14(54 -+ )\1 252) when m = Q(}\%ﬁ)'

We end the section with the proof of our main theorem (Theorem 3.1) using the supporting
claims discussed. We defer all other proofs to Appendix D and Appendix E.

Proof of Theorem 3.1.  Recall that we define £ = %AJT —E[AAT]. Let X be the solution to
the SDP in (2). From the optimality of X we have that

(X, 2"+ E) > (II", X"+ E).

We bound (X, E) and (II*, E) by A := O(\/FmS\/)\_l + K262 4 mylognn?/t W) using Lemma 3.2.

Hence we get that (X, X*) > (IT*, ¥*) — 2A. Then we apply Claim 3.4 to obtain
(X, II*) > 1 —2A /(N — A\pg1) =17 —2A/0, (8)

where 6 := A\, — A\ppq. Let X =30 M(X )ulu be the eigendecomposition of X with A;(X) >
Ao(X) > - > A\p(X) and let IT = 37, wsu; . Since IT* is a projection matrix, equation (8) implies
that

(I, X) = 3 A(X) - [[ITw]|3 > r — 2A/6 and (I, T1 ZHH*U,HQ

i=1
Similarly since (I, X) > (IT*, X) > r — 2A/6, we have that
Z i I, X) >r—2A/6.

At the same time from the constraints of the SDP > ; A\;(X) = tr(X) = r. Hence

D0 ONX) - T w3 < Y0 M(X) <24/6.

i=r+1 i=r+1
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Using the above we get

Z g 3 > ZA )T s 3

% X 4A
—ZA )T w3 ZA T w3 > r = —=.

i=r+1

This establishes ||[TT-1T*(|% = 5 LIITT — I1*[| is at most 4A/6.
Finally we note A.(X) > 1 — 2A/6 since Y20, (1 — \i(X)) < 2A/6, which implies |||,z <
| X|g—2/(1 —2A/0) = O(k). The correctness of Srop then follows from Theorem 3.5. Note that
32 /m and k16* are always less than A\2c and \; - k262 separately given our parameters. O

4 Statistical Lower Bound and Instance-Optimality

We now describe the construction that establishes Theorem 1.4, the instance-optimal lower bound
for recovering the principal subspace of a covariance matrix under adversarial perturbations. Recall
that we have an arbitrary covariance matrix %* with eigendecomposition ¥* = > | A\;v;v,] and
I = Y71, vy, T being the projection matrix onto its top-r subspace We construct based on II
another rank-r prOJectlon matrix IT" (and a corresponding ¥') s

rKo

VA1 log(rm)logn

and [|TI'||co—2 < (14 o(1))k. Moreover, for any data matrix A composed of m samples generated
from N(0,3), we prove that with high probability, 3 a coupled data matrix A" € R"*™ generated
from N(0,%') satisfying [|A; — A%l < 9.

We remark that our construction also extends in a straightforward fashion to general ¢, norms
to also give the same asymptotic lower bound of Q(y/7 /] - k6), where the Q hides polylogarithmic
factors. We sketch the differences in the intermediate claims between the f, and general £, norm
in the appendix (see Section F.3.1). To interpret the results, let \y = O(1), and let k > r (say
0-2 and r = n%1). The theorem gives a lower bound of Q(,/rxéd), which is meaningful when
k0 < /7 also § can not be too small. The range of § is quite natural (for e.g., it is [n =082 n=015] for
the above setting). Theorem 1.4 shows that the upper bounds are optimal up to poly-logarithmic
factors for every principal subspace II* with ||II*||oc2 = . The lower bound does not have
the optimal dependence in terms of the gap between the eigenvalues (A, — A,41)/A1. Please also
see Theorem F.3 in the appendix for a simpler minimax lower bounds that achieves the correct
dependence on the eigengap as well.

M4+ 2
T

o — 13 > and || Sror — Shop [} = 2 1),

KR=n

Construction. To construct II' we take the basis vectors vy,...,v, and add carefully chosen
small perturbations us,...,u, to them to get a new basis v{,...,v.. Set k' := \/% - (%£) and

W(ém/\/r)\ ) for a small constant ¢ > 0. Note that ¢ € [0, 1) and 2r < k¥’ < n/r from

our choice of parameters. Let S1,Ss,...,5, C {1,...,n} be arbitrary disjoint subsets of size k'
each. Let for each ¢ € [r], T; denote the subspace of dimension dy > k' —r >k’ /2 that corresponds
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to the subspace of R that is orthogonal to IT* and let HZl € R™*™ be its projector. Then we define

the eigenvectors v1, ..., v, of ¥, while v, | = v,41,...,v), = vp.
1 .
Ve e [r], up= (E)Hfgg, where gy ~ N(0, I,,x,,) independently. (9)
V2 — &2
Define, V£ € [r], vp = (1 —¢&)vp + (ﬁ) Up. (10)
2112

Let II' be the orthogonal projector on the subspace spanned by v1,...,v;. Recall Vj € [m], A; =
> Clg])\/)\—g - vg where Cé]) ~ N(0,1). We construct the alternate dataset A’:

V&
Z .(’Ug—i— (M) ) é;l z Uy (11)

(Note that the randomness in A; and A’; are coupled using the random variables { Céj Vit e [r]},5 €
[m].) Observe that each sample A’ is also drawn independently from A/(0,%") with

V2€-—€2 v@gijgi T n
Z)\z(’ue—i- 1_5)HW||2) )(w—i—(m)uz) + Z v,

l=r+1

Its best rank-r approximation is X!, := ﬁ S Aevj(v)) T, where v is defined in (10). More-
over vf,...,v. are orthonormal (since uy,...,u, are mutually orthonormal and orthogonal to IT*).
Hence II" = 3)_, v)(v)) T, and the top r eigenvalues of X' are { \p/(1 — €)% : £ € [r] }.

For our construction to work the u; vectors must simultaneously satisfy a few properties. They
must be (i) orthogonal to the given IT*, (ii) have disjoint support, (iii) be sufficiently sparse, and
(iv) and have sufficiently small /o, norm. Ensuring these properties requires a careful balancing act,
and the following lemma gives an appropriate random distribution that satisfies these properties.

Lemma 4.1. The vectors uj,us,...,u, € R™ have disjoint supports Si,Sa2,...,S, C [n], and
Muy = M*ug = -+ = [T*u, = 0. Moreover given k' > 2r, for any n < 1, with probability at least
(1 —n) we have

veelr], [l - 1] < 3y/log(r/n)/k + 4log(r/m) /K (12)

lwelloo < 3y/log(rk!/n) /K. and |ugl|y < VK. (13)

The final hurdle in the construction comes from arguing that ||II'|| o2 is comparable to ||IT||so—2.
We argue this by analyzing the related ||1I'||.o—1 norm instead which is known to have good
monotonicity properties (see Lemma B.2), and by using properties of vy, ..., v, that follow from
|III*||coc—2 = k. Please see Section F.3 for the proof of the theorem, and Section F.1 for proofs of
the related lemmas.

Acknowledgement

The authors would like to think Sivaraman Balakrishnan for several helpful discussions, and for
suggesting the thresholding algorithm for mean estimation.

12



References

Alon, N. and Naor, A. (2004). Approximating the cut-norm via grothendieck’s inequality. In
Proceedings of the thirty-sizth annual ACM symposium on Theory of computing, pages 72—80.
ACM.

Amini, A. A. and Wainwright, M. J. (2009). High-dimensional analysis of semidefinite relaxations
for sparse principal components. Ann. Statist., 37:2877-2921.

Angluin, D. and Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4):343-370.

Awasthi, P., Balcan, M. F., and Long, P. M. (2014). The power of localization for efficiently learning
linear separators with noise. In Proceedings of the forty-sizth annual ACM symposium on Theory
of computing, pages 449-458. ACM.

Awasthi, P., Chatziafratis, V., Chen, X., and Vijayaraghavan, A. (2019a). Adversarially robust low
dimensional representations. arXiv preprint arXiv:1911.13268.

Awasthi, P., Dutta, A., and Vijayaraghavan, A. (2019b). On robustness to adversarial examples
and polynomial optimization. In Advances in Neural Information Processing Systems, pages
13737-13747.

Awasthi, P. and Vijayaraghavan, A. (2018). Towards learning sparsely used dictionaries with
arbitrary supports. In 2018 IEEFE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 283-296. IEEE.

Balakrishnan, S., Du, S. S., Li, J., and Singh, A. (2017). Computationally efficient robust sparse
estimation in high dimensions. In Conference on Learning Theory, pages 169-212.

Berthet, Q. and Rigollet, P. (2013). Complexity theoretic lower bounds for sparse principal com-
ponent detection. In COLT, pages 1046—1066.

Blum, A., Frieze, A., Kannan, R., and Vempala, S. (1998). A polynomial-time algorithm for
learning noisy linear threshold functions. Algorithmica, 22(1-2):35-52.

Blum, A. and Spencer, J. (1995). Coloring random and semi-random k-colorable graphs. J. Algo-
rithms, 19:204-234.

Candes, E. J., Li, X., Ma, Y., and Wright, J. (2011). Robust principal component analysis? Journal
of the ACM (JACM), 58(3):11.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. (2011). Rank-sparsity incoher-
ence for matrix decomposition. SIAM Journal on Optimization, 21(2):572-596.

Charikar, M., Steinhardt, J., and Valiant, G. (2017). Learning from untrusted data. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 47-60. ACM.

Chen, M., Gao, C., Ren, Z., et al. (2016). A general decision theory for huber’s e-contamination
model. Electronic Journal of Statistics, 10(2):3752-3774.

13



Cheng, Y. and Ge, R. (2018). Non-convex matrix completion against a semi-random adversary. In
Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018, pages 1362—
1394.

d’Aspremont, A., Ghaoui, L. E., Jordan, M. 1., and Lanckriet, G. R. (2005). A direct formulation
for sparse pca using semidefinite programming. In Advances in neural information processing
systems, pages 41-48.

De La Torre, F. and Black, M. J. (2003). A framework for robust subspace learning. International
Journal of Computer Vision, 54(1-3):117-142.

De Sa, C., Feldman, M., Ré, C., and Olukotun, K. (2017). Understanding and optimizing asyn-
chronous low-precision stochastic gradient descent. In ACM SIGARCH Computer Architecture
News, volume 45, pages 561-574. ACM.

De Sa, C., Leszczynski, M., Zhang, J., Marzoev, A., Aberger, C. R., Olukotun, K., and Ré, C.
(2018). High-accuracy low-precision training. arXiv preprint arXiv:1803.03383.

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A., and Stewart, A. (2019). Robust estima-
tors in high-dimensions without the computational intractability. SIAM Journal on Computing,
48(2):742-864.

Diakonikolas, 1., Kamath, G., Kane, D. M., Li, J., Moitra, A., and Stewart, A. (2018a). Robustly
learning a gaussian: Getting optimal error, efficiently. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2683-2702. Society for Industrial and
Applied Mathematics.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Steinhardt, J., and Stewart, A. (2018b). Sever:
A robust meta-algorithm for stochastic optimization. arXiv preprint arXiv:1803.02815.

Diakonikolas, 1., Kane, D. M., and Stewart, A. (2018c). Learning geometric concepts with nasty
noise. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1061-1073. ACM.

Donoho, D. L. and Johnstone, I. M. (1994). Minimax risk overl p-balls forl p-error. Probability
Theory and Related Fields, 99(2):277-303.

Donoho, D. L., Johnstone, I. M., Hoch, J. C.; and Stern, A. S. (1992). Maximum entropy and
the nearly black object. Journal of the Royal Statistical Society: Series B (Methodological),
54(1):41-67.

Dunagan, J. and Vempala, S. (2008). A simple polynomial-time rescaling algorithm for solving
linear programs. Mathematical Programming, 114(1):101-114.

Dutta, A., Vijayaraghavan, A., and Wang, A. (2017). Clustering stable instances of euclidean
k-means. In Proceedings of the 81st International Conference on Neural Information Processing
Systems, NIPS’17, page 65036512, Red Hook, NY, USA.

Feige, U. and Kilian, J. (2001). Heuristics for semirandom graph problems. J. Comput. Syst. Sci.,
63:639-673.

14



Gao, C., Liu, J., Yao, Y., and Zhu, W. (2019). Robust estimation via generative adversarial
networks. In International Conference on Learning Representations.

Gao, C., Ma, Z., Zhou, H. H., et al. (2017). Sparse cca: Adaptive estimation and computational
barriers. The Annals of Statistics, 45(5):2074-2101.

Grothendieck, A. (1952). Résumé des résultats essentiels dans la théorie des produits tensoriels
topologiques et des espaces nucléaires. In Annales de institut Fourier, volume 4, pages 73-112.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust Statistics:
The Approach Based on Influence Functions. John Wiley & Sons, Inc.

Huber, P. J. (2011). Robust statistics. Springer.

Johnstone, I. M. et al. (1994). On minimax estimation of a sparse normal mean vector. The Annals
of Statistics, 22(1):271-289.

Johnstone, I. M. et al. (2001). On the distribution of the largest eigenvalue in principal components
analysis. The Annals of statistics, 29(2):295-327.

Kalai, A. T., Kanade, V., and Mansour, Y. (2012). Reliable agnostic learning. Journal of Computer
and System Sciences, 78(5):1481-1495.

Kalai, A. T., Klivans, A. R., Mansour, Y., and Servedio, R. A. (2008a). Agnostically learning
halfspaces. SIAM Journal on Computing, 37(6):1777-1805.

Kalai, A. T., Mansour, Y., and Verbin, E. (2008b). On agnostic boosting and parity learning.
In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 629-638.
ACM.

Kearns, M. (1998). Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983-1006.

Kearns, M. and Li, M. (1993). Learning in the presence of malicious errors. SIAM Journal on
Computing, 22(4):807-837.

Kearns, M. J., Schapire, R. E., and Sellie, L. M. (1994). Toward efficient agnostic learning. Machine
Learning, 17(2-3):115-141.

Khim, J. and Loh, P.-L. (2018). Adversarial risk bounds for binary classification via function
transformation. arXiv preprint arXiv:1810.09519.

Klivans, A., Kothari, P. K., and Meka, R. (2018). Efficient algorithms for outlier-robust regression.
arXiv preprint arXiv:1805.03241.

Klivans, A. R., Long, P. M., and Servedio, R. A. (2009). Learning halfspaces with malicious noise.
Journal of Machine Learning Research, 10(Dec):2715-2740.

Lai, K. A., Rao, A. B., and Vempala, S. (2016). Agnostic estimation of mean and covariance.
In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), pages
665—-674. IEEE.

15



Li, J. (2017). Robust sparse estimation tasks in high dimensions. arXiv preprint arXiv:1702.05860.

Ma, Z. et al. (2013). Sparse principal component analysis and iterative thresholding. The Annals
of Statistics, 41(2):772-801.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. (2018). Learning adversarially fair and trans-
ferable representations. arXiv preprint arXiv:1802.06309.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2017). Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

Makarychev, K., Makarychev, Y., and Vijayaraghavan, A. (2012). Approximation algorithms for
semi-random partitioning problems. In Proceedings of the 44th Symposium on Theory of Com-
puting (STOC), pages 367-384. ACM.

Mendelson, S. (2010). Empirical processes with a bounded 11 diameter. Geometric and Functional
Analysis, 20(4):988-1027.

Moitra, A., Perry, W., and Wein, A. S. (2015). How robust are reconstruction thresholds for
community detection. CoRR, abs/1511.01473.

Nakkiran, P. (2019). Adversarial robustness may be at odds with simplicity. arXiv preprint
arXiv:1901.00532.

Nesterov, Y. (1998). Semidefinite relaxation and nonconvex quadratic optimization. Optimization
methods and software, 9(1-3):141-160.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar, P. (2018). Robust estimation via
robust gradient estimation. arXiv preprint arXiv:1802.06485.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. (2018). Adversarially robust
generalization requires more data. In Advances in Neural Information Processing Systems, pages
5014-5026.

Steinberg, D. (2005). Computation of matrix norms with applications to robust optimization.
Research thesis, Technion-Israel University of Technology.

Steinhardt, J., Charikar, M., and Valiant, G. (2017). Resilience: A criterion for learning in the
presence of arbitrary outliers. arXiv preprint arXiv:1703.04940.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry, A. (2018). Robustness may be at
odds with accuracy. arXiv preprint arXiv:1805.12152.

Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the International
Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523-531.

Vershynin, R. (2018). High-Dimensional Probability. Cambridge University Press.

Vijayaraghavan, A. and Awasthi, P. (2018). Clustering semi-random mixtures of gaussians. In
International Conference on Machine Learning, pages 5055-5064.

16



Vu, V. and Lei, J. (2012). Squared-norm empirical process in banach space.
https://arxiv.org/abs/1312.1005.

Vu, V. and Lei, J. (2013). Minimax sparse principal subspace estimation in high dimensions. In:
Ann. Statist., pages 2905-2947.

Wang, Z., Lu, H., and Liu, H. (2014). Tighten after relax: Minimax-optimal sparse PCA in
polynomial time. In Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3383-3391.

Yatracos, Y. G. (1985). Rates of convergence of minimum distance estimators and kolmogorov’s
entropy. The Annals of Statistics, pages 768-774.

Yin, D., Ramchandran, K., and Bartlett, P. (2018). Rademacher complexity for adversarially robust
generalization. arXiv preprint arXiv:1810.1191}.

A Related Work

Robustness in Supervised Learning. In the context of supervised learning problems such as
classification and regression various models of robustness have been studied in the literature. These
include the classical random classification noise model (Angluin and Laird, 1988), the statistical
query model (Kearns, 1998), and the agnostic learning (Kearns et al., 1994) framework for modeling
corruptions to the training labels. Model such as malicious noise (Kearns and Li, 1993) and nasty
noise (Diakonikolas et al., 2018¢) study settings where both the training data and the training labels
could be corrupted. Typically these models assume that only a small € fraction of the training data
can be corrupted by an adversary. The study of these models has been very fruitful leading to a
variety of algorithmic insights (Blum et al., 1998; Dunagan and Vempala, 2008; Kalai et al., 2008a;
Klivans et al., 2009; Kalai et al., 2008b, 2012; Awasthi et al., 2014; Diakonikolas et al., 2018c).

Recently, motivated from properties of deep neural networks, there has also been a lot in
interest in modeling robustness to adversarial perturbations of the test input (Madry et al., 2017;
Schmidt et al., 2018; Nakkiran, 2019; Khim and Loh, 2018; Yin et al., 2018; Tsipras et al., 2018;
Awasthi et al., 2019b). While these works also model the noise as ¢, perturbations to the input,
the theory of test time robustness is poorly understood and we lack provably robust algorithms for
many fundamental tasks.

Robustness in Unsupervised Learning. There is a large body of literature in the machine
learning and statistics community on the design and study of robust algorithms for unsupervised
learning tasks. Perhaps the most popular and widely studied model in this context is Huber’s
e-contamination model (Huber, 2011). Here is it assumed that a given data set is generated from
a mixture: (1 —¢)P +e@Q where P is the true distribution about which we want to reason and @ is
an arbitrary distribution. Various works have studied the computational and statistical tradeoffs
under Huber’s model for fundamental tasks such as mean/covariance estimation (Yatracos, 1985;
Chen et al., 2016; Diakonikolas et al., 2019, 2018a; Charikar et al., 2017; Steinhardt et al., 2017;
Balakrishnan et al., 2017; Li, 2017), regression (Prasad et al., 2018; Klivans et al., 2018) and more
general stochastic convex optimization (Prasad et al., 2018; Diakonikolas et al., 2018b). Dutta et
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al. Dutta et al. (2017) consider a notion of additive perturbation stability for Euclidean k-means
clustering, where the optimal clustering is stable even when each point is perturbed by a small
amount in 5 norm. Our results together indicate that the co — 2 norm of the principal may anal-
ogously capture a notion of stability for the subspace estimation problem when the perturbations
are measured in ¢, norm (or ¢, for ¢ > 2).

Principal Subspace Estimation in High Dimensions. The results of our paper characterize
the robustness to adversarial perturbations for estimating the top r-principal subspace of the co-
variance matrix in terms of the sparsity of the subspace. In the area of high dimensional statistics
questions of estimating mean and covariance with rates depending on various notions of sparsity
have been widely studied. These works however assume that the dataset is indeed generated from
the idealized model. There is a long line work on the classical problem of sparse mean estimation
in high dimensions (Donoho et al., 1992; Donoho and Johnstone, 1994). For the case of covariance
estimation the sparse PCA formulation has been well studied and essentially corresponds to es-
timating the top principal component assuming that it is ¢y or ¢; sparse (Johnstone et al., 2001;
Berthet and Rigollet, 2013; Amini and Wainwright, 2009). The works of Vu and Lei (2012, 2013);
Ma et al. (2013); Wang et al. (2014) extend this to estimating the top-r principal subspace with
rates depending on certain notions of sparsity of the subspace. Similar to our work, semidefinite
programming (SDP) based approaches have been proposed for such sparse estimation problems
(d’Aspremont et al., 2005).

Another related setting is the robust PCA formulation that has received significant interest
in recent years (De La Torre and Black, 2003; Candes et al., 2011; Chandrasekaran et al., 2011).
Here one assumes that a given data matrix is the sum of a low rank matrix and a sparse matrix,
i.e., the one with very few non-zero entries. In this case it can be shown that if true signal (the
low rank component) is well spread out then estimation is possible. In contrast, in our setting
every data point could be corrupted and hence the data matrix A cannot be written as the sum of
low rank plus a sparse component. In fact, our characterization implies that under our model of
perturbations, estimation is possible if and only if the signal is localized, i.e., is sparse.

Robustness in Combinatorial Settings. There is also a large body of work in the theoretical
computer science community studying robust algorithm design for various combinatorial problems
such as graph partitioning, independent set etc. A popular framework that is used in such contexts
is semi-random models (Blum and Spencer, 1995). Semi-random models assume that the input is
generated from an ideal distribution and then perturbed by an adversary in a non-worst case manner.
The study of such models has led to the design of robust algorithms for many problems such as
coloring (Blum and Spencer, 1995), independent set (Feige and Kilian, 2001), graph partitioning
(Makarychev et al., 2012) and lately for machine learning problems as well (Moitra et al., 2015;
Vijayaraghavan and Awasthi, 2018; Cheng and Ge, 2018; Awasthi and Vijayaraghavan, 2018).

B Preliminaries

We discuss a few properties about the operator p — ¢ norm, robust projections, and sin © distance
between subspaces and projections in this section.
A useful fact of the operator norms is the efficient approximation algorithms.
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Lemma B.1 (Nesterov (1998); Steinberg (2005)). For any q < 2 < p, there exists an efficient
randomized algorithm with an input matriz A that approzimates || A||p,—q within a constant factor
Cpq < 3. Moreover for any q > 2, and for PSD matrices M, there exists polynomial time algorithms
that approximates || M ||q—q+ within a 1/73* factor where v+ is the expected L4+ norm of a standard
normal r.v. In particular for ¢ = oo, this gives a 7/2 approzimation.

One crucial property in the rounding algorithm of the convex program (2) is the monotonicity
of ¢ — ¢* norm stated below (See Section 5 in Awasthi et al. (2019a) for a proof, and counter
examples for other norms).

Lemma B.2. For any q > 2, ¢ — ¢* norm is monotone for PSD matrices: for any A,B = 0,
”A + BHq—HJ* > HA”q—>q*-

Robust projections. We show basic properties of a projection matrix II in terms of its ¢ — 2
norm.

Fact B.3. Given any projection matriz I1 with ||II|,—2 < k for ¢ > 2, we have the following
properties.

1. For any § and vectors uw and v with |ju — vy <9, ||Iu — IIv||2 < K.
¢/

Proof. The first property follows from the definition of ¢ — 2 norm.
For the second property, ||v||, = ||Hv||; < k||v||2 by definition. Morever, we could choose a
orthonormal basis v1, . .., v, for I such that ||TI||;« = || Sy viv] |lgr < S0y i) |l = r&?. O

o < rank(Tl) - K2.

2. Any vector v in this subspace has ||v |v]|e < k. Moreover ||IT

The constraint (5) in the convex program essentially comes from the 2nd property in the above
fact.

sin © distance of subspaces. Given two subspaces S and S* of the same dimension, we always
measure their distance in terms of the Frobenius norm of the sin ©(S, S*) matrix, where © corre-
sponds to the principal angles between the subspaces. This has a simple expression in terms of the
projection matrices II, II* when both have the same rank:

5in ©(S, 5*) = IITIT". Hence [sin ©(S, 5*)||7 = [TIT[7 = |[TT*|F — (IL,11%) = 3|TT — I1||3.

In particular, when we measure the distance between two projection matrices IT and IT* of rank r,
we will also use the following form

Isin ©(IL, 11%) | % = II | = r — (ILIT"). (14)

C Solving the convex program (2)

Lemma C.1. For any q > 2, there exists a constant ¢ = c¢(q) > 1 such that the following holds.
There is a randomized polynomial time algorithm that given an instance A € R™ ™ with an optimal
solution X* to the relaxation (2)-(6), with high probability finds a solution X that is arbitrarily
close in objective value compared to X* such that | X|g—q < k2.

19



Proof. We first observe that the feasible set of the program is convex. We now show how to use
the Ellipsoid algorithm to approximately it. We will design an approximate hyperplane separation
oracle for (6) and (5). The constraint (6) can be rewritten as (yz', X) < x? for all y,z € R?
such that ||y|/q, ||z]l < 1. As described in Lemma B.1, there exists SDP-based polynomial time
algorithms that give constant factor ¢ = ¢(¢q) approximations for computing the ¢ — ¢* matrix
operator norm. Such an approximation algorithm immediately gives a ¢(q)-factor approximate sep-
aration oracle; when || X ||g—q > ck?, the solution ¢/, 2/ output by the algorithm gives a separating
hyperplane of the form (y/(2')"7,X) < k2. Finally, the constraint (5) is also convex and can be
efficiently separated using the gradient at the given point X. O

D Computational Upper Bounds

In this section we provide proofs of the supporting clams that were used in establishing our main
theorem (Theorem 3.1). We start with proving claims regarding the error term over all SDP
solutions.

D.1 Bounding Error over SDP Solutions

Here we provide the proof of Lemma 3.2. We first state and prove a few useful claims.

Claim D.1. For any X in P and let A be an d-perturbation of A. Then we always have that

IXV2(A = A)||p < \Jelg)m - kb

(A= A)(A-A)T, X) < c(q)m - 262,

and

Proof. Define B = (A — A). The norm bound || X||,s < ¢(g)x? along with the fact that for any
matrix M, [|[M " M||g—q- = [|M]2_,,, implies that HX%Hq_g < y/c(q) - k. Denoting B; to be the ith
column of B, we get that ||B;|l; < ¢ and that

IX2B|7 =Y [IX2Bi|* < Y cla) - 76% = m- c(q)*5™.
i=1 i=1
Next, note that (A — A)(A— A)T,X) = (BB",X) = |X'2B|% < ¢(q) - mr262. O
We will also use the following standard fact extensively.
Fact D.2. For any two PSD matrices A and B, Apin(A) - tr(B) < (A, B) < Amax(A) - tr(B).

Proof. We rewrite (A, B) = ||AY2B/2||2,) which is sandwiched by Amin(AY?)2-||BY2||Z = Auin(A)-
tr(B) and Amax(AY%)? - | BV2[[3 = Anax(A) - tr(B). O

We will use the following standard concentration bound on the moments of the covariance
matrix of Gaussian random variables (see Lemma 8.12 in Awasthi et al. (2019a) for a proof).
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Lemma D.3. Let Ay, As,..., Ay € R™ be generated i.i.d. from N(0,X*). Let A be the n x m

matriz with the columns being the points A;. Then with probability at least 1 — m
1 I12]]v/log n 1 |2 - n?/1/Tog n
—AAT —E[AAT]| <o —AAT -3, < : 1
|~ AT s =T and | lo < = (15)
We now proceed to the proof of the main lemma that upper bounds [(E, X)|.
Proof of Lemma 3.2.  Using that fact that E[A] =0 and B = A — A we rewrite
E=L(A+B)(A+B)T —E[44T]
m
1
= — (BBT + B(A—E[A])T + (A —E[A) BT + AAT) —E[4AT].
Hence we get that
1 T 2 T LT T
(B.X)| < —(BBT,X)+— ((A-E[A)B ,X>‘+‘<EAA ~E[AATLX)|.  (16)
Ty T> Ts

Next we separately bound each of the terms above. Using Claim D.1,

1
Ty = —(BB", X) = —||X'/?B|[} < c(q)s”.

1
- m

Using the concentration bound from Lemma D.3 on || AAT — E[AAT]|,, t3 can be bounded
as

1 1
Ty = (- AAT ~E[AAT], X) < |- AT ~ B[AAT] ;- | X]],

_ O()\max(E*) -n?/1/Togn - 7‘/12)
T .

The second term T3 in (16) is the crucial term to upper bound, and contributes the dominant
term of v/A1rkd in the guarantees of Theorem 3.1. A naive upper bound on 75 can be obtained
by [(My, Ma)| < || Mi||g||M2l|q as we did for T3, but this leads to sub-optimal bounds that are off
by factors involving r. The following technical claim which is a restatement of Lemma 3.3 from
Section 3 crucially uses the constraint on || X||4—4+. Its proof is deferred to Appendix E.

Lemma D.4. Let Ay, As,..., Ay € R™ be generated i.i.d. from N(u,X*). Let A be the n x m
matriz with the columns being the points A;. Let X be a solution to the SDP in program (2) and
let B be any matriz, potentially chosen based on A, with || Bj|lq < 6 Vj € [m]. Then with probability

at least 1 — m we have that
1 T N 99 Tﬁ2|]2*|]\/logn-n2/q
— (A~ E[A) B, X)| < O/rl|=*|w8) + O(x78%) + O N ). an
Combining the above bounds and using the fact that || X ||;—q+ < c(q)r? we get that
2 X max (%) /1 .n2/a
A < c(g) - O(K26% + \/rAma (5918 + ( \/)m L.
U
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D.2 Bounding Correlation with the Subspace [Proof of Claim 3.4]

In this section we provide the proof of Claim 3.4. For convenience, let £ denote the gap ¢ :=
r — (X, IT*). Hence the goal is to show ¢ < ((IT*, ¥*) — (X, ¥*))/(Ar — Ar—1). To show this we will
obtain an upper bound (X, 3*) in terms of ¢, (A, — A\p11) and (IT*, X*).

Given the eigen-decomposition ¥* = "% )\iviv; with Ay > -+ > \,, we define Yop =
S A, and Sgpor = i1 Avv . Note (IT*, $*) = (IT*, Xyop) = tr(Xrop). We will upper
bound (X, ¥*) as (X, Xrop + Zpor) given (X,II*) = r —e. Let V = [v1,...,v,] denote the matrix
with columns being the eigenvectors of X*. For convenience, we rewrite

S =" Nju, = Vdiag[Ar, ... AV T
j=1

Yrop = Vdiag[Ai, ..., A, 0,.., VT,
IT* = Vdiag[l,...,1,0,...,]V " .

The above implies that
r—e=(X,II") = (X, Vdiag[l,...,1,0,...,]V") = (X', diag[1,...,1,0,...,])

where X’ = VXV, Similarly, (X,2*) = (X’ ,diag[A1,...,A,0,...]). Since X' also satisfies
0 < X’ =< I, we have that

(X, Srop) = (X', diag[A1, ..., A 0,...]) < tr(Srop) — €+ Ar
as (X', diag[l,...,1,0,...,0]) = r — e. Similarly, we have (X’ diag[0,...,0,1,...,1]) =¢, so
(X, Ypor) = (X', diag[0,...,0, \rs1, ..., An]) <& Ay
The above two bounds show that
(X, 2") <tr(Zrop) — A + X141
Hence we get that

(X,57) < (I, 57) —e(Ar = Arga),
(3, 11%) — (X*, X)
)\r - )\r—i-l .

3

IN

D.3 Covariance Matrix Recovery

We end the section by showing how to recover a good approximation to the top-r subspace of
>* given a good approximation to II*. As stated before this is formalized in Theorem 3.5 which
we prove below. We first state the following standard fact to bound the Frobenius error of the
covariance estimation (see Theorem 4.7.1 in Vershynin (2018) for a proof).

Fact D.5. Let ¥* be a covariance matriz of rank r and largest eigenvalue \y. For any m, and
vectors Ay, ..., Ay ~ N(0,5%), it holds with probability at least 1 — 1073, that Hi =X = A -
O(/r[m + r/m) for & = LS AJAT . Moreover, if m = O(M}r?/B) then with prob. at least
1-1073, |Z =22 < B for B <.
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We also use the following lemma showing how to recover a good approximation to the top-r
subspace of X* in the absence of noise.

Lemma D.6. For any covariance matriz ¥* = i )\iviv; with eigenvalues Ay > Ao > --- > Ay,
let YXpop = >y )\wiv; and IT* be the projection matriz on to the top r eigenspace of X*. Given any
rank r projection matriz 11 with |IT* — I1||% < < and m = Q(\? - r2), we have that with probability
at least 1 — 1073, || — Syop||% = O(\] - € + - ) for ¥ = (L Sm, AADI and Ay, ..., Ay, are
generated i.i.d. from N(0,3%).

The above lemma is an extension of Lemma 8.2 in (Awasthi et al., 2019a). For completeness,
we provide the proof in Appendix E. Next we establish Theorem 3.5 showing covariance recovery
in the presence of adversarial perturbations.

Proof of Theorem 3.5. For the estimate H(% Yoty ﬁlﬁj )IT output by the algorithm we have that

m

1 * *
(| TI( —Z DI — 211 | %

mi4

1~ 1
szun(g AZ-AZ-T)H—H(EZAZ-AZT)HH%+2HH ZA AN — 5411 |2

=1 =1 =1

L& 5 5T T 2 )\17"2

<2|]H(EZAZ-AZ- VI — TI(— ZAA JI|[Z + O(Me - ),

=1 =1

where we use Lemma D.6 in the last step. Let A; = A; + B; such that B; is the perturbation of
the ith data point. We can rewrite the first term above as

1 & T AT\T _ T
I > AT - ;AA i

1 m
:HH(EZ(AZ-+B,-)(A,-+BZ-)TH—H ZA AN 7
=1 =1

1 & 1 &
< BB S aBN e+ ek S BT
i=1 i=1 i=1

Now we bound each Frobenius norm separately. For the first term we have

1 & 1 &
IS BB < — S [UB BT = 0(26?)
=1 i=1

where we have used the fact that IIB; is a vector of norm at most O(kd). We bound the second
term ||II(X >, 4;B])II||F (and similary for the third one), by

1 - 1
EHHAH B || p < o VAim - O(1 + \/r/m) - vVmrd = /A1 - O(y/r/m + 1)Ko

where we bound ||BTII||3. < \/mkd from the above bound on [|II(X Y7, B;B;" )II||r and |[ILA|| <
VAim - (1 + y/r/m) as follows: rank(ITA) = r and Fact D.5 implies that with probability at least
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1-1073, |TX AATTI-E[(TTA) - (TA) T]|| < O(\1-+/r/m). Since || E[(TIA)-(TTA)T]|| < || E[AAT]|| <
M TR AATT < A+ M- Oy /r/m).
Combining the above bounds we get that [[II(L >, A; AT — IT*S*IT* | % can be bounded by

OMe+ 2372 /m) + O(k*6") + O(\1 - (1 +7/m) - K262%).

E Additional Proofs from Section 3

Proof of Lemma D.4. We use the fact that for matrices My, My, ()1, and @9, it holds that

(M1 Ms, Q1Q2) < [|M Q1| r||M2Qg ||

to rewrite
1

—~ (A—E[A])BT,X3X?3)

(A~ E[A])B", X) =

3[=3|=

1 1
< —[I(A-E[A]) " X2 |rlIX2B|F

By Claim D.1, | X2B||y < /mrd. Note that [|(A — E[A])T X2|2 = (AAT, X) given E[A] = 0.
Then we split it into

(AAT, X) = (AAT=m-E[AAT], X)+ (m-E[AAT], X) = O (r? - | 2| Vogn - /7 - /i + ||| - vm)

where the first bound comes from the above proof of Lemma 3.2 for the last term in (16) and the
second bound comes from Fact D.2.
We finish the proof by combining the above bounds:

%((A _E[A))B”, X) < % s -0 (S]] rm 4 v - 57| logn - w0 /)

1/2
B N |=*||rk2y/Tog n - n2/
= O(y/7]|Z*||kd) + ko O( NG

T 2 1 L m2/q
gO(,/ruz*uﬁa)+0(ﬁ252)+o<” = \/%g” n )

E.1 Proof of Lemma D.6
We will use the following fact to apply triangle inequality.

Fact E.1. Given a rank r covariance matriz X* with all eigenvalues upper bounded by Amax and
projection matriz IT*, for any rank r projection II with ||IT* — HH% < e and any 5 (not necessarily
rank r), we have

|2 — TISI||% < 8A2

max

e+ 2|IIS I — X%,
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Proof. At first, we have ||[S* — TISTI|% < 2||2* — IIZ*TI||% + 2||TIS*TT — [IT0)|%.
Since IT* is the projection matrix of %*, we have

[=F = IZ*|7 = IS — I3 < 2([[ITF ST — IS |7 + (TSI — IS,

Since |AB|% < ||A\|gp -||B||%, we further simplify it as

max

2([|T1% = I - 13715, + 15715, - I = TJE) < 4X3. e

We finish the proof of Lemma D.6.

Proof of Lemma D.6. Given A; ~ N(0,X*), we know ITA; is a random vector generated by
N (0,II2*II). So we apply Fact D.5 to bound |[IISIT—TI(L S, 4;AT)1I||% < 6. Then we consider
Yrop:

[ — IEropll || = [TEgor ][ 7 < |(IT — IT°) Spor || + I Epor | 7.

Since II* is the projection matrix of Yiop, II*Yzor = 0 such that the second term becomes 0. For
the first term ||(II — IT*) X501 11|| 7, we upper bound it by

[T = 1) Zpor || p < [T =TI - [[Eporflop - [Tlop < A1 - Ve

From the above discussion, we have

1 & 1 & .
[T 0 TT—TI(— Y AADI|E < 2 IS -TI(— > AADTE 42 (IT-11%) Spo, 1|7 = O(3+ATe).
i=1 =1

The final bound follows from Fact E.1 with ¥* = X1op there. O

F Statistical Lower Bound on the Error and Instance-Optimality

F.1 Auxiliary claims and Proofs.

Proof of Lemma 4.1. By construction uq, ..., u, have disjoint supports, and for each £ € [r], H*HZl =
0; hence IT*uy = 0. We now show (12). Note that II; g, is distributed according to the Gaussian
N(0,11}). Hence E[||TT} g¢||3] = tr(II}) = dy. For a fixed ¢ € [r], using concentration bounds for y?
distributions we have for any ¢t > 0

t t
) Tl

2_
P [llcllf — 1] > 2/ - + 2

| =P [T gel13 — de] > 2v/det + 2t] < exp(—t).
Substituting ¢t = log(r/n), along with d; > k'—r > k’/2 and a union bound over all £ € [r] establishes
(12). Then the last property of |[us||1 < 2v/& follows from the Cauchy-Schwartz inequality with
the fact that the support size of uy, is at most &'

Now we upper bound ||uy||s. For each coordinate i and ¢,

up(i) = (I7 (i, ), g¢) where II+(i,:) represents the ith row of II; .

—
S
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This is a Gaussian random variable. Hence for a fixed ¢ € [r], with probability at least 1 — 7,

_ 1 Lg: . max; ey 17 (3, )| 1
[[uelloo = N (M7 (i, :), ge)| < 24/log(rE’ /) - Vi < 2y/log(rk’/n) - 5

since I} is an orthogonal projection matrix. After a union bound over ¢ € [r], (13) follows. O

Proof of Lemma F.2. The proof just uses norm duality and relations between different norms.

T
HZWUZH = max Z(x,uz Ve, Y
l

q—q* :c,y:||:c||q§1£:1
lylla<1

v Sl = IglagHWHq* AV e

||V||q—>q* sr

Lelr]

The last inequality follows since ||[Vy|,~ < r'/2719||Vy|ly for any y € R™ since V has r columns
(see Section 2).

For the second statement, we have ||[UUT||,_q+ = ||UT||2_>2 = ||U||%_>q* using the variational
characterization of operator norms and norm duality (see Section 2). We now upper bound ||U||2—¢+-

Consider any y € R™ with |ly|]la = 1. Then because of the disjoint supports of the columns of U

|Uy|g = ( (i) < el
Uyl < . . < pl/ar=1/2 . . <
1Uyllg < Hqu gé?g](HWHq =T te] ¢ ST
Hence the lemma holds. O

The following simple lemma will be in upper bounding the magnitude of the perturbation for
each sample point.

Lemma F.1. Given any u1,...,u, € R™ with disjoint support, and any aq,...,a, € R, we have

H ZagUgH < rl/a max lave || wel|q-
/=1

Proof. Since uy,...,u, have disjoint support,
HZ@WH Zrag\ el < r(max el as required.

O

The following lemma is also useful to upper bound the co — 2 operator norm of the alternate
subspace projector IT'.
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Lemma F.2. Given any vectors uq,...,u, and vectors vi,...,v, that form the columns of U,V €
R™ " separately, then for any ¢ > 1

T § § 1/2—1/q §
[TV = Wl (maicliuellr ) < 2200V o () (18)
Moreover if uy, ..., u, have disjoint support then
T _ 2 1-2 2
[0 Ngosgr = 013 < 7/ (el ). (19)

F.2 Warmup: Min-max lower bound

We now give a min-max optimal lower bound. While Theorem 1.4 is much more general, we include
this argument since it is simpler and helps build intuition, and also gives the correct dependence
on the eigengap. The lower bound will apply for ¥* = 0II* + I; hence Yop = (1 4+ 0)II* and
Ypor = (I —II*) = (IT*)+,

Theorem F.3. Suppose we are given parameters n, m, 0 > 0, r € N, s, and § > 0 satisfying
VrAi(£) < 6 < Vr0/k. There exist orthogonal projection matrices II*,II' both of rank r with
ITT*||co—2 < & and ||IU||co—2 < K such that:

o We have the coupling data matrices A and A" € R™™ with their columns generated i.i.d. from
N(0,I+ 611*) and N (0,1 + 611') respectively, such that |A — A’|| < & with high probability.

o [T = I3 = (L - v/7ok/ log nm).

We now prove the above theorem. We first show the constructions of II' and A’. Choose k to be
a power of 2 in [k?/3,2k%/3]. Let S := {1,2,--- ,k} C [n] and v1,vs,--- ,v, be any 7 orthonormal
vectors of the form w,(i) = +1/vk if i € S and 0 otherwise. For example, there are k Fourier
characters vy in {0,1}1°8* that are orthogonal to each other with |lvg||oo < 1/vk: For each i € [k],
let 7 € {0, 1}!°¢* be its binary form. Then each Fourier character is vy (i) = (—1)<7’7>/\/E.

Let k' € [1,3]-VOr/(61/T) be a power of 2 to denote the support size of the perturbation vector.

Let ug,...,u, be unit vectors supported on a disjoint set of &’ coordinates each from [n]\ S with
luelloo = 1/VE for each ¢ € [r] using the same construction of vy, ...,v,. Set & := qm

for some small constant ¢4 > 0 such that ¢ < 1/10 from the parameters given in the statement.
Finally, let

Ve e r], vp:=(1—¢)vy+ V2 — e2uy,
/

and let II' be the orthogonal projection onto the subspace spanned by v}, ..., v.. Now the original
data point A; and its coupling data point A’ (for j € [m]) for matrices A, A" are drawn i.i.d. as

follows:

Aj = Cui+g, and A5 =" (up+ g, (20)
=1 =1
where V¢ € [r], (¢ ~N(0,0) and g ~ N(0,1). (21)

Then we bound the oo — 2 norm of IT* and IT'.

Claim F.A4. |[II*]|oom2 < & and ||| o2 < K.
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Proof of Claim F.4. We have IT* = Y7)_; ’U[UZ—, since vq,...,v, is an orthonormal basis for the
subspace given by II*, and

* * * * 2
T oz = Iy = [Tyl < VIl < Vi < Ve
Ylyll2=

where the first inequality follows from Cauchy-Schwartz inequality and the support size being
bounded by k. Now we compute the oo — 1 norm of IT'.

H*+Z —2 + D] + (26 — €2) ZU@UZ + V2 — 2(1 — &) (veug + up,)
¢

T floo—1 < HH*Hoo—>1 +2e] D upug floost +2V2e D uevf |, (22)
l )4

due to triangle inequality and using the monotonicity of the co — 1 norm (Lemma B.2).
For the second term, we note || >, U[UZHQ_>1 < V/r-maxy |luglly < VK.
We now bound the third term using (18) of Lemma F.2.

2 1 K
) . . N —(re)/4, 2.
H Eg upvy HOO_>1 <V IV loos2 m?xHung <Vrk \/;/1 < \/3(7‘9) 5

given k' < 3 - (\5(/— Hence substituting in (22), and using (19) we have

2 K
T o1 < §/€2 + 2¢ - rm?waH% + max”ung NV o1 < K2+ 2 1K + \/8/3 - (97”)1/4\/; K

242 0K
<—+2O T +4/8/ VTl - k)8 -k < K2,
( Vrflog nm) 25\/_ \/\/ 0 log nm /
given € = @(ﬁgnm). Hence ||IT'||co2 < K. O

. * 9
Claim F.5. ||[II* — IT'||2 = Q(ﬂfoigf;n)'

Proof of Claim F.5.  We lower bound the distance between the projections using the orthogonality
between uq,...,u, and vy,..., U

ZUE Uz —U[Ug
= Z —2e +%)vvy + (2 — %) D wpu + V2 — e2(1 — ) (veu] + upy)

¢

ok
So, I — IT*||% > r(4e — 2¢2) = Q _Vrok .
o, || |7 = r( ) (ﬂlognm

Claim F.6. With high probability, the coupling data matriz A" satisfies ||A — A'||oo < 4.

28



Proof. Note that Y, (v, is a Gaussian with co-variance N (0, 0IT*), and each co-ordinate of this
vector is a normal R.V. with mean 0 and variance at most [jv; |2, 3=, (7.

[4; — Al < EH XT:QU@HOO + V2 — E2H XT:CZWHOO
/=1 =1

First, eH iQWH < 2e4/ 6 - rlog(nm) m?XHWHoo
=1 &

when ¢4 in € is a small constant, and since ||vy|l < 1/k. Bounding the second term uses the fact
that the uq, ..., u, have disjoint support, along with the upper bounds for ||ug||so-

V=2 Y G| < 2/ logom) maxul«
(=1

o ENGY:
SO<\/610g(nm)-m.10gnm> Vor — =3

Combining the two bounds, we see that ||A — A’|| < ¢ with high probability. O

The correctness of Theorem F.3 now follows from Claim F.4, Claim F.5 and Claim F.6.

F.3 Asymptotic Instance-Optimal Lower Bound: Proof of Theorem 1.4

Proof of Theorem 1.4.  We now establish the required properties of II'. Firstly uq,...,u, are
orthogonal to each other and to IT* (i.e., v1,...,v;). So, v],vh,...,v, are orthonormal. Hence

T
= > vi(vp) " —vev/
(=1

r (1-e)v/2e — &2
=y —(2c-¢ Yoev, + Z E Z €|WH§ c (uz’uér + vzu}) (23)
(=1 4

Since each of the terms in (23) are orthogonal (W.r.t. the trace inner product) we have

T
TV — IT*(|3 = (2 +Z +Z22s—a2 (—cy

P Pt ||W\|4 uell3
)
> re = Q VK ), with probability at least 1 —n~“(), (24)
VAL

for our choice of parameters (here we used (12)). Then we lower bound the distance between %
and X'

2e — &2 2e — &2 T T
A —_ — A
Z Z(”Z"" 1—€)HU£|’2) )(Ug+ ((1—€)HUg”Q)uZ) 2UpVy
V2 —e? T T 2¢ — g2 T
A N—s .
Z = el ) TN T g
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Because vy and uy are orthogonal and using (12), ||£* — ¥/||% is with high probability at least

ZAZ - (A A g,

We now show that A’ is a valid d-perturbation of A. Recall the definition of Aj, A’ in (11)
respectively. For each fixed j € [m], by Lemma F.1, we have with probability at least 1 — m™2

(over the randomness in {Cg 2 € [r] }) that

145 = Ao = | Z VA %WHW

wm e el

=T (1-e el [|well2

where the second term uses the fact that uq,...,u, are disjoint and the concentration of Gaussian
random variables (over QSJ )). See also Lemma F.1 for general q. After a union bound over all
j € [m], and using our bounds on ||us||2 and ||ug|| from Lemma 4.1 along with our definition of ¢,
we get with probability at least 1 —n — +

m?

2+/log(rm log(rk'n 1
2%\\AJ—A§\\WS%))'\/2€M-2 (g( )

(- - 12

:O(\/log(z‘/nglogn'@)gd

since € = cd?k’ /(A1 log(rm)logn) for a small constant ¢ (and & < 1/2).

Upper bound on |1 ||co—2: The proof will follow the same outline as for Theorem F.3. We compute
the co — 1 norm of IT'; recall that the oo — 1 norm satisfies the matrix norm monotone property
(Lemma B.2). From (23), triangle inequality and monotonicity,

I floomst < I oo +2| Zz—:uéug |+ %: Vae —Supf| (25)

equal to K2

bound using (19) bound using (18)
We first bound the third term using (18) of Lemma F.2.

H Z V2 — E2Ug?}2—H . < V2T ||V]|cos2 - m?XHUng < KV 2rk'e
I oco—

K2

~ (lognlogm)t/2’

by substituting the values for k', ¢ and using 7k’e = O(x2/(log nlogm)). Hence substituting in (25)
and using (19),

1
r < 12 4+ 2| U2 " Gognlog )12
I lloss < 07+ 22Ul + 47 - oy
1
2 2 2 (log nlog m)1/2
< K2+ 27‘6111?XHU£H1 + R ((10gnlogm)l/2)

< K24+ 4r-ek 4+ o(k?) < (1+0(1))x%
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F.3.1 Extension to general /;, norm

Theorem 1.4 extends in a straightforward fashion to also hold for ¢, norms.

Theorem F.7. Suppose we are given parameters r € N,q > 1,k > 2r'=2/%7 qnd § > 0. In the
notation of Theorem 1.3, for any 3*, given m samples A1, ..., Ay, generated i.i.d. from N(0,%*)
with k = ||T1*||2 satisfying /rAi(k/n'=2/7) < § < \/rXi/k, there exists a covariance matriz X'
with a projector 1" onto its top-r principal subspace, and an alternate dataset AY,..., Al drawn
i.i.d. from N(0,%) satisfying [[1I'|[g~2 < (14 o(1))k, and [|A} — Ajll; <6 Vi € [m],

* Q@ A4 A2 *
but | T = 0|3 > (Jxotyiors) - VRS and  [Shop — Sropllf > B2 I — 117
In particular, when Yrop = (1 4 0)I1* then X, = (1 + 6T with 8" = (1 + o(1))6.

In fact the same construction holds using u, ..., u, that are picked randomly but with disjoint

support. However, there is a minor change in the parameters of the construction. We will set ¢ as
before (and hence this will give the same lower bound on ||[II’ — IT*||% and ||%' — $*||%). We will set

B cKO
~ VrAqlog(rm) logn

for some constant ¢ > 0. The assumptions of the theorem ensure that 2r < &/ < n/r as required
for the construction.
We will need an additional simple claim that just extends Lemma 4.1.

3

2/ag)\
nN1-2/q ._ rTEA
and (¥') o (52 log(rm) logn)’

Lemma F.8. In the notation of Lemma 4.1 for any n < 1, with probability at least (1 —n) we have

Veelr],  uelly < 3y/log(rk!/m) (k') =21/, (26)

o < 20KV, (27)

(e

The proof follows directly from Lemma 4.1 and using the relation between the ¢, /o, norms,
and {4+, {1 norms.

Completing the proof of Theorem F.7. The proof follows the same argument as the proof
of Theorem 1.4. As mentioned before, since we choose the same e, it suffices to argue about
max e[| A; — A;'Hq and [[II'[|g—q~-

To establish the upper bound on ||II'||;—4+ we use the bounds in Lemma F.2 and (26). We have
from Lemma F.2

I lgsg+ < 1T oot + 26TV [lgosgs +2v/26 = 2|[UV T |-

2
2 1-2/q . 1/2-1/q L)
< K° + 2er (Iglé?:](”?u”q ) + 2¢/er (Iglé?:](”?u”q ) IV ]lg—2

< /{2 + 267‘1_2/q(k7/)1_2/q + 2\/57’1/2_1/(](]{3/)1/1_1/[1 K
< K24 o(k%) +o(k) -k = K2(1 +0(1)),

since from our choice of parameter &/, we have er!'=2/¢ max||u, 2, = (e*rA1)/(6%log(rm)logn) =

o(K?).

31



Finally, for the upper bound on max ;e[| A; — A’[l; < ¢ we use Lemma F.1 and (27). For each
fixed j € [m], by Lemma F.1, we have with probability at least 1 —m ™2 (over the randomness in

{90 er]y) that

o G, V22—
145 = 4l = [ VR TS

< Tl/qQ\/log(rm) ,maxmllw\lq

B (1—¢e)  relr] [|uell2

< rMa.\ flog(rm)(K)~Y/2 11 < g,

for our choice of parameters and k’. This establishes the statement of Theorem F.7 for general q.

G Statistical Upper bounds (computationally inefficient algorithm)

We show the statistical upper bounds on the recovery of principle components in this section. By
symmetrization (shown in Algorithm 2), we assume all data points are generated from N(0,X*)
rather than N (u, ¥*) in this section.

Theorem G.1. Given ¢ > 2, n, r, and k, let P = {projection matriz Il|rank = r and ||II||4—2 <
/{}. Let ¥ be an unknown covariance matriz with eigenvalues A\ > Ay > -+ > X\, whose projection
matriz II* of the top r eigenspace is in P.

Let A € R™™ be the §-perturbed (in £, norm) data matriz where each original column comes
from N(0,%*) for any § >0, ¢ >0 and m > C - A} - r2k%logn - n?9/e2. Then

~ d f . ~ ~
II = arg min{|| A|f — [TLA|7}
I1eP
satisfies | I1T*)|% < Ar_l)\r'+1 O (6262 + /A7 - 0k + €) with probability 0.99. Moreover, one can

obtain Srop satisfying || Srop — Sropl|% < O - |[TTHIT* |2 4 Ay 5262 + £40%) where || TT-IT||2 is upper
bounded above.

Remark G.2. Comparing to the computational upper bound in Theorem 3.1, the main difference
is the dependency of m on k: it becomes x? here.

We state the direct corollary in the spiked covariance model with ¢ = oo.

Corollary G.3. Given n, r, and k, let P = {I|rank = r and ||l|jco—2 < k}. For any 0 and

" € P, let A € R™™ e the d-perturbed data matriz where each original column comes from
N(0,I +011*). For any § >0, >0 andm > C - (1+6)?-r2x?logn/e?,

~ d f . ~ ~
I1 = arg min{|| A|F — [ILA|7}
ImeP

satisfies ||TTHIT*]|% < -0 (52/42 + (1402 /r -6k + 6) with probability 0.99.

We show two technical results to prove the main theorem. The first one bounds the deviation of
the inner product between all projection matrices and the original data matrix (before perturbation),
whose proof is defered to Section G.1.
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Lemma G.4. For any covariance matriz ¥.* whose eigenvalues are at most Amax, let A € R?*™

be a data matriz where each column is generated from N(0,%*).
Given n, q, r and k, let P = {U|rank = r and |II|4—2 < k}. Then for any m > CA?

max

k2logn - n?/1 with a sufficiently large constant C, we have that with probability 0.99,

N .nl/q
'<iAAT—z*,H>’:r.0<Ama" roviegn-n ) for all T € P.
m v/ m

Then we bound the deviation of the inner product between all projection matrices and the
actual data matrix (after perturbation) from the expectation.

Claim G.5. Given n, v, and , let P = {Il|rank = r and ||j;—2 < k}. For an unknown
covariance matrix ¥, let A1 denote the largest eigenvalue of X*.

Let A € R™ ™ be the original data matriz where each column generated from N (0,%*) and A
be its §-perturbation ({; norm in every column) for m > CA?-k?logn - n?/9 with a sufficiently large
constant C. With probability 0.98,

1~ - /1
‘<EA'AT_E*,H>‘:O(>\1'TH- %-nl/q+52li2+\/x\1r-5/{) for all 11 € P.

Proof of Claim G.5. We rewrite the left hand side as
L+ AT *

<—AA > ,H>
m

<l Eaam s LA aar+ Laa- A)T,H>‘
m

m
1
m m

<

(o
< <%AAT - 2*,H>} + }< (A - A)AT,H>’ + }<lﬁ(ﬁ— A)T,H>’
(o

AAT —E*,H>‘ +2’< (A—A)AT,H>’ + ‘{ (ﬁ—A)(ﬁ—A)T,H>‘

1 1
m m

By Lemma G.4, the first term ‘<%AAT — 2*,H>

is upper bounded by O (r “ A1k - loﬁb” -nl/q)

with probability 0.99. Since ||A; — Aillg <6 and ||II||;—2 < K, the last term is upper bounded by

(A= @ - )T 1) = DA - Ay < ot

We bound the second term here.

(A= AT = 2 - ), 1) < I - A 1A,

The first part |II(A— A)| p is always < /méx from the definition of II. For the second part, notice
that

ITIA|[2. = (AAT,II) < (m3*,II) + ‘(AAT - mE*,H}‘ <Aerm+ 0 (rh k- y/mlogn - n'/?),
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where the two bounds come from Fact D.2 and Lemma G.4 separately. So the second term is upper
bounded by

1 1/2 Joon - ntld
E-\/ﬁéﬁ-(/\l rm+Cy-1A1- K- /mlogn - nl/q) / < \/r/\1-5/£—|—)\}/2- 3/2-5%(%)”2.
So the total error is

W/ .nl/4
0 (r DSTARY loin -nl/q> + 0262 + VA1 ok + /\}/2 . 03/2 0K - (w)l/z. (28)

Jm

Finally we simplify the error terms. The last term

Viogn - n/1 oz - n/a
N2EU2 g (%)m o <52K2 s w) |

which are the first two terms in the total error (28). O

3

Finally, we finish the proof of Theorem G.1.

Proof of Theorem G.1.  Notice that the output projection II could also be defined as arg max{||TLA||%}
I1eP

and for any projection matrix II,

1.~ 1 ~~
ZITAJZ = —(AAT TI).
mll % m( ,I)

By Claim G.5, every II has %(/LZT,I_D around (¥*,IT) £ A for
logn 1/ 2 92 . .
A:=0r\ K- — 74 6°k* + /A1 -0k | (the error in Claim G.5).

Since II attains a better objective value than IT*, we have
- 1~ ~
) > (—AAT T — A
( ’ > - <m ’ >
1wy . . ~
> <EAA 11 > —A (using the definition of IT)
> (X*1017) — 2A.

Next, we apply Claim 3.4 to conclude (IT*,II) > r — )Wfifrﬂ, which upper bounds HﬁlH*H% <
>\'r_2§r'+1. Finally we use Theorem 3.5 to get Yrop satisfying HiTop — YropllF < O(N? - )\7‘_2§7“+1 +
A K262 4 K164). O

G.1 Proof of Lemma G.4

We use the following concentration result from Mendelson (2010) to bound the supremum.
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Lemma G.6 (See Corollary 4.1 in Vu and Lei (2012)). Let A1,...,An € R™ be ii.d. mean 0
random vectors with

Y =EAA] ando= sup [(A1,u
flullz=1

Hsz
For S, = % M A - Al and a symmetric subset V in R™, we have
2

o? o 2
<c —'supvg-E[supg,v} —E{supg,v]
<\/T_n’ vEVH H 9 UEV< > m 9 v6V< >

for a vector g € R™ with i.i.d. Gaussian entries and a universal constant c.

E Sy — X, 00"
[i2€< e

To use the above lemma, we first upper bound ¢? in our setting.

Claim G.7. Let X ~ N(0,%*) for a matriz ¥* with eigenvalues at most Apax. Then ||(X, u>Hw2 <
V Amax (X%) for any u with ||ulj2 = 1.

Proof. Let vy,...,v, be the eigenvectors of ¥* with eigenvalues Aq,...,\,. Then (X, u) = /A -
(v1,u)gr + - + VAn - (vp,u)gy, for ii.d. Gaussian random variable gq,...,g,. So the variance is
A{vg, u)? + -+ )\n(vn, u)? < max{\i,...,\,} and

||<X7U>H¢2 é /\max-

We apply Lemma G.6 to all vectors that could be in the basis of possible II.

Claim G.8. For any covariance matriz X* with eigenvalues at most Amax, let A1, ..., Ay € R™ be
i.i.d. vectors generated from N'(0,%*). Givenn and q, let V be the set of all vectors v with ||v||s =1
and ||v||g- < k.

Then for any m > C)A2 - k*logn - n2/1 with a sufficiently large constant C, we have that with

probability 0.99,
Amaxky/Iogn - nl/4
T * _ max
‘< E AA; =X v > —O( N

Proof. To apply Lemma G.6, we notice that sup,cy, ||v||2 = 1 and

) for allv e V.

| = Ellgl] - sup ol = OV og - ).

E [sup<g,v>] <E [sup lgllq - |
9 |vey v

Thus Lemma G.6 shows that for some absolute constant ¢ > 0

E |sup < ZA AT 5, o > _ a1+ iy fTog n - n1/9 . C’/\maxmzlogn-an‘

A17 ,Am UEV \/m m
When m > C\2_ - k?logn - n?/9, the right hand is at most twice the first term O(M‘/\/?"l/q)
Next we apply the Markov inequality to replace the expectation by probability 0.99. O
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Lemma G.4 follows as a corollary of the above claim: for any II of rank 7 and ||II||;—2 < &, we

have ||II|ja— ¢+ = ||[II||q—2 = & such that all its eigenvectors vy,...,v, are in V with ||v;||+ < & (by
k). Thus
1 m T
T O* _ T * T
(- ZAA )| = [( LAl 2w

= ]:
1M Amaxk - /1 .nl/a

Z<—ZA —2*,vjv]-T> :r-0< foVoen )

el A NZD

H Robust Mean Estimation

In this section we present an analysis of the robust mean estimation procedure sketched below,
thereby establishing Proposition 1.1.

Algorithm 3 Mean Estimation under Adversarial Perturbations

1: function ADVROBUSTMEAN(m samples Ay, ..., A, € R", norm g, perturbation 8, error n)

2: Compute the empirical mean ' of all the given samples.

3: Output fi, where f is the point in the ¢, ball of size § + 7 around g’ with the minimum £«
norm i.e.,

Z:, st flu—pllg <6+

min ||u
Rn

4: end function

We remark that the above algorithm in the case of ¢ = oo specializes to Vi € [n], (i) =
sign(p/ (7)) - max { | ¢/ (i)| — (6 +1),0}. This is the same as the soft-thresholding algorithm that
has been explored in the sparse mean estimation literature. More generally, we will prove the
statement for any ¢, norm for ¢ > 2. The main theorem of this section is the following

Proposition H.1. Fix ¢ > 2. Suppose we have m samples drawn according to the Adversarial
Perturbation model with ¢, perturbations. There is a polynomial time algorithm (Algorithm 3) that
outputs an estimate i for the (unknown) mean p such that with probability at least (1 — 1/n),

logn

-1
|72 = 13 < amin {Jlllg (5 4 m).n' =5 (5 -+ )2}, where  := 207 (29)

m

Proof. Let ji/ = mean(A). Since ||A;—A;|, < & for each j € [m], we know that ||z/ —mean(A)||, < §
Furthermore, from standard Gaussian concentration as stated in Fact H.2 below we have that with
probability at least 1 — % it holds that

logn
\w—m%M)M<n—&mﬂ/m- (30)

This implies that with probability at least 1 — %,

e —llg <0 +n (31)
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and hence is a valid solution to the convex program in Algorithm 3. Moreover the convex program
can be solved in polynomial time using the Ellipsoid method. This is because the objective is
separable over the data points, and for each constraint is of the form ||z||, < 7, where 7 is specified
and p > 1. A simple hyperplane separation oracle for a constraint of the form ||z||, < 7 is given by
the duality since

(y,z) = <H;7,z>, where 2} = sign(z;)|2(i)|P~! Vi € [n].

Hz”p =
”p*

max
yER™:[|y||« <1

Hence a hyperplane of the form (w,z) < 7 with w = 2*/||2*[|,» gives a valid separation oracle.
A similar separation oracle can also be used for the objective. (Note that one can also use the
projected sub-gradient method for a more effective algorithm).

This implies that the Algorithm outputs a vector i in polynomial time. It satisfies

- (32)

12l <l

Hence, via Holder’s inequality we get that

12— plls < A= plgli — pllg
< (i = #llg + Nl = B llg) llgs + llllg-)
<2l — 'llg + e = 1Nl lllgr [from (32)]
< 4fju — i |l4llpll g+ [from the optimality of fi.]
< 4(6 + n)|lpllg+ [from (31)] (33)

1_1
Alternately, using the fact that for any vector x € R", ||z||, < n? ™ 4|/z|, we get that

I — ul3 < n' 7 i~ pll?
<05 (= il + = 1)
< an' ||l — ,ung [from the optimality of fi.]
< 475 (8 + )? [from (31)]. (34)

Combining (33) and (34) we get the claim. Setting ¢ = oo establishes Proposition 1.1 from the
introduction. O

To complete the argument we provide a self contained proof of the fact stated below.

Fact H.2. Fir ¢ > 2. Let Ay,..., Ay, be drawn i.i.d. from N(0,%,x,) with |X| < o?. Then with
probability at least 1 — % it holds that,

H 1 iA I <2 1 [logn
— ; ond .
m = = m

Proof. Noticing that each coordinate of % i, A; is a mean Gaussian with variance bounded by
o2 /m and using union bound we get that with probability at least 1 — %,

Hl mAH <9 logn
—E ; o .
m oo = m
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Then it easily follows that with probability at least 1 — %,

1 & 1.1 &
123 Al <nd |- A
i=1 i=1
g2an5,/l°g".

m

Notice that the bound of nl_%(5 +n)? is the naive bound that is simply achieved by always
outputting the mean of the points in A. Hence, for small values of the perturbation §, the algorithm
achieves a non-trivial guarantee of |ul|¢«(6 + 7). In fact we next show that the guarantee of the
algorithm is optimal. In particular, provide an instance wise lower bound, stated below, for robust
mean estimation in our model of corruption.

O

Proposition H.3. Fizq = co. Let pu be any vector such that the analytical sparsity of u, i.e., |||ﬁlllll is
bounded by \/n/4. Then there exist 6,0 > 0 and another vector ||| such that HZ:H; = %(1—#0(1)),

and ||p — |2 = Q(y/dllully) and with high probability, i.i.d. samples A1, Ag, ... Ay, generated from
N (u,0%I) and Ay, As, ... Ay, generated from N (i, 021) satisfy |A; — Ajlleo < 8, for all j € [m].

Proof. The construction builds upon the argument presented in Awasthi et al. (2019a) with most of

the details unchanged. We provide a proof sketch here. Pick a subset S of s = (%)2 coordinates

and define ¢/ = p + dsign(us), where ug is the vector that equals p over S and 0 outside of
S. Notice that since the analytical sparsity of p is bounded by /n/4, S will be non-empty. We
will pick § such that § = o(||u/|?)/||p||1. It is easy to see that ||g/[|> > ||u||* and we also have that

il = [l +0s = {Eft

and from N (i/, 0%1) will be é-close to each other. Finally, notice that

I =l = Vs
= Q(y/ 0l ll)-

(1+0(1)). Also if o is small enough then samples generated from N (i1, 021)
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