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Abstract

WestudytheproblemoflearningamixtureoftwosubspacesoverFn2.Thegoalistorecover
theindividualsubspacesA0,A1,givensamplesfroma(weighted)mixtureofsamplesdrawn
uniformlyfromthesubspacesA0andA1. Thisproblemiscomputationallychallenging,
asitcapturesthenotoriousproblemof“learningparitieswithnoise”inthedegenerate
settingwhenA1⊆A0.Thisisincontrasttotheanalogousproblemovertherealsthatcan
besolvedinpolynomialtime(Vidal’03).Thisleadstothefollowingnaturalquestion:is
LearningParitieswithNoisetheonlycomputationalbarrierinobtainingefficientalgorithms
forlearningmixturesofsubspacesoverFn2?
Themainresultofthispaperisanaffirmativeanswertotheabovequestion.Namely,

weshowthefollowingresults:

1. WhenthesubspacesA0andA1areincomparable,i.e.,A0⊆A1andA1⊆A0,thenthereisa
polynomialtimealgorithmtorecoverthesubspacesA0andA1.

2.InthecasewhenA1⊆A0suchthatdim(A1)≤α·dim(A0)forα<1,thereisan
O(1/(1−α))

timealgorithmtorecoverthesubspacesA0andA1.

Thus,ouralgorithmsimplycomputationaltractabilityoftheproblemoflearningmix-
turesoftwosubspaces,exceptinthedegeneratesettingcapturedbylearningparitieswith
noise.

Keywords: mixturemodels,subspaces,learningparitieswithnoise

1.Introduction

Mixturemodelsformanexpressiveclassofprobabilisticmodelsthatarewidelyusedtofind
structureinunlabeleddatafromaheterogeneouspopulation. Eachofthekcomponents
inamixturemodelrepresentsoneoftheksub-populations(assumedtobehomogeneous)
thatconstitutetheoverallheterogeneouspopulation. Avarietyofmixturemodelsrang-
ingfromGaussianmixturemodelsandmixturesofproductdistributionsovercontinuous
domains,tomixturesofrankingmodels,mixturesofsubcubesoverdiscretedomainsare
usedtocapturedataindifferentdomains.Thereisanextensiveliteratureinstatisticsand
computersciencethatgivesefficientpolynomialtimealgorithmsforlearningmanymixture
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Learning a mixture of two subspaces over finite fields

models with a constant number of mixture components (Feldman et al., 2006; Kalai et al.,
2010; Moitra and Valiant, 2010; Belkin and Sinha, 2010; Rabani et al., 2014; Li et al., 2015;
Awasthi et al., 2010; Liu and Moitra, 2018; Chen and Moitra, 2019).

A common assumption in high-dimensional data analysis is to assume that the given data
belong to a collection of lower dimensional subspaces. A prominent line of work in machine
learning, computer vision and computational geometry (Vidal, 2003; Elhamifar and Vidal,
2013; Soltanolkotabi et al., 2014; Park et al., 2014) that formalizes this intuition is the prob-
lem of learning a mixture of subspaces (or subspace clustering). Given a set of points in
n dimensions that belong to a union of k ≥ 2 subspaces, the goal is to find the individual
subspaces that contain all the points. When the points belong to R

n, a beautiful result of
Vidal (2003) shows that for any mixture of k subspaces, under some mild general-position
assumption of the points in the subspaces,1 there is an algorithm that runs in time nO(k)

that recovers the k individual subspaces. Very recently, subspace clustering has also been
studied with outlier noise, in the special case when the points in each cluster is drawn from
a Gaussian supported on a subspace (Raghavendra and Yau, 2020; Bakshi and Kothari,
2020). However these guarantees are specific to the real domain. A natural question is
whether such algorithmic guarantees also extend to other domains like F2.

Can we efficiently learn a mixture of subspaces over finite fields?

The algorithmic problem has a very different flavor over finite fields and becomes compu-
tationally challenging even in simple settings. In the simplest setting, we are given samples
from a mixture of k = 2 unknown subspaces A0, A1 ⊆ F

n
2 of dimension d0, d1 (respectively),

with unknown mixing weights w0, w1 ∈ [0, 1] that add up to 1. Each sample is drawn in-
dependently as follows: with probability w0, the sample is drawn from UA0

, the uniform
distribution over subspace A0 ⊆ F

n
2 , and with w1 the sample is drawn from the uniform

distribution UA1
over A1 ⊆ F

n
2 . The goal is to learn the individual subspaces A0, A1 from

independent samples generated from this model. We refer the reader to Definition 4 for the
formal definition of the model.

Learning mixtures of subspaces over F2 essentially generalizes the problem of learning
mixtures of subcubes that was studied in (Chen and Moitra, 2019). In particular, subcubes
correspond to (affine) subspaces where the constraints are given by standard unit vectors.
On the other hand, in this work, we consider arbitrary subspaces of F

n
2 (though we do not

allow for affine subspaces). Our work can also be through the framework of learning from
positive examples Denis et al. (2005); De et al. (2014); Canonne et al. (2020); Ernst et al.
(2015) which studies the learnability of supervised concept classes (in this case subspaces)
when the algorithm only gets positive samples.

More interestingly, the simple setting of k = 2 already captures the notorious problem
of learning parities with noise (LPN) as a special case. One can encode LPN as learning
a mixture of two subspaces A0, A1 where the subspaces A1 ⊂ A0 ⊆ F

n
2 and dim(A1) =

dim(A0) − 1 (see Proposition 21 and Proposition 20). The best known algorithm for LPN
runs in time exp

(

O(n/ log n)
)

(Blum et al., 2003). Moreover LPN is also used as an average-
case hardness assumption in learning theory and cryptography (Pietrzak, 2012). To avoid
this computational barrier, we will assume that we are not in the degenerate setting when
one subspace contains the other. We call the two subspaces A0 and A1 incomparable iff

1. Such an assumption is necessary, to ensure that the individual subspaces are identifiable.

2



Learning a mixture of two subspaces over finite fields

A0 * A1 and A1 * A0. This leads to the following natural question about the computational
complexity of the problem:

Question. Is LPN the only computational obstruction for learning a mixture of two sub-
spaces? Can one design faster algorithms when the subspaces A0, A1 are incomparable?

Our first result shows that one can indeed design a polynomial time algorithm when the
two subspaces are incomparable.

Theorem 1 There is an algorithm Incomparable-Subspace-Recovery with the fol-
lowing guarantee: given oracle access to O(A0, A1, w0, w1) (for unknown A0, A1, w0, w1),
wmin > 0 (such that wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

1. Incomparable-Subspace-Recovery runs in sample and time complexity poly(n/wmin)·
log(1/δ)

2. With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates the
weights w0, w1 up to any desired inverse polynomial accuracy.

Hence the above result gives a significantly faster polynomial time algorithm if we are
not in the degenerate comparable setting when one subspace contains the other. In contrast,
when A1 ⊂ A0 and dim(A1) = dim(A0)− 1 (or vice versa), the best known algorithm takes
exp(O(n/ log n)) time. We remark that the algorithm succeeds in uniquely identifying and
recovering the individual subspaces, as opposed to just finding a mixture of two subspaces
that fits the data. In the parlance of statistics, our algorithm recovers the underlying model
(sometimes referred to as parameter estimation) as opposed to just doing density estimation.

Next, observe that the (presumed) hardness of LPN only implies hardness of the sub-
space recovery problem when (i) A1 ⊆ A0 and (ii) dim(A1) = dim(A0) − 1. This natu-
rally prompts the question whether subspace recovery remains hard if (say) A1 ⊆ A0 but
dim(A1) ≪ dim(A0). In other words, we ask the following question:

Question. Can we design fast algorithms for subspace recovery when dim(A0) and dim(A1)
are substantially different? Note that we are not imposing any conditions on the compara-
bility of the hidden subspaces A0 and A1.

Our next result provides an affirmative answer to this question.

Theorem 2 Let wmin ≥ 1/100. Let d0 ≥ d1 and suppose α := d1/d0 < 1 − log d0√
d0

.

There is an algorithm Subspace-Recover-Large-Diff with the following guarantee:
given oracle access to O(A0, A1, w0, w1)(for unknown A0, A1, w0, w1), wmin > 0 (such that
wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

1. Subspace-Recover-Large-Diff runs in sample and time complexity

log(1/δ)poly(n) · dO(1)/(1−α)
0 .

2. With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates the
mixing weights up to any desired inverse polynomial accuracy.

Informally speaking, if the ratio of dimensions α is bounded away from 1, the running
time is polynomial. In general, the running time of the algorithm has a dependence of
O(1/(1 − α)) in the exponent.
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1.1. Overview of Techniques.

We now briefly describe the algorithmic ideas and techniques used to prove our results. The
algorithms that establish Theorem 1 and Theorem 2 use very different ideas. We begin with
an overview of Theorem 1.

Incomparable Setting (Theorem 1). The main component of the polynomial time
algorithm in the incomparable setting is a careful procedure for dimension reduction that
reduces the subspace clustering problem to O(1) dimensions. We will construct a matrix
M ∈ F

r×n
2 where r = O(1) (in the actual proof, we set r = 10), and solve the clustering

problem given samples of the form y = Mx where x is drawn from the original mixture.
Note that a subspace under any linear map M also gives a subspace; hence the samples in
R
r are drawn from a mixture of subspaces MA0 and MA1. Any algorithm for learning a

mixture of subspaces in r = O(1) dimensions will allow us to cluster the points, and recover
the individual subspaces A0, A1.

How do we choose the linear map M? A key property that we require of M is that if A0

and A1 are incomparable, then MA0 and MA1 should also remain incomparable. While it
is not hard to see that such a M exists (even when r = O(1)), it is far from clear how to
find it given that we do not have A0 and A1 explicitly. A natural choice for M is a random
matrix, where every entry is chosen independently from F2. Random linear maps are often
used for dimension reduction in the real domain to approximately preserve inner products
and pairwise distances. However, a random map does not work in our setting, particularly
when the target dimension r ≪ d1. This is because with high probability the subspaces
collapse and MA0 = MA1 = F

r
2, thereby making it impossible to recover the individual

subspaces MA0,MA1.
Our approach instead proceeds in multiple rounds, where in each round, we reduce

the dimension by one while preserving the property that the projected subspaces remain

incomparable. More precisely, one can show that for a random linear mapMn−1 ∈ F
(n−1)×n
2 ,

with constant probability, Mn−1A0 and Mn−1A1 are incomparable if A0, A1 are originally
incomparable. However, this does not suffice per se, since we want to apply this for Ω(n)
rounds (and thus, the probability of success becomes exponentially small). The crucial
component of our algorithm is a testing procedure that runs in polynomial time, which
given samples from a mixture of subspaces U, V , w.h.p. outputs whether U and V are
comparable or incomparable. With such a procedure, in every phase we can reduce the
dimension by 1, by sampling several random linear maps, running our testing procedure
on each of them, and picking one that preserves incomparability of the subspaces. The
guarantee of the testing procedure is given below.

Theorem 3 There is an algorithm Test-Comparability with the following guarantee:
Given oracle access to O(U, V,wU , wV ) (for unknown U, V,wU , wV ), wmin > 0 (such that
min{wU , wV } ≥ wmin) and confidence parameter δ > 0,

1. Test-comparability runs in sample and time complexity 1/wmin
2 ·poly(n) log(1/δ).

2. With probability 1−δ, the algorithm outputs True if U and V are comparable and False

otherwise.

4
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The testing procedure uses the following main insight. Suppose for simplicity the span
span(U ∪ V ) = F

n
2 . We prove that the subspaces U and V are incomparable if and only if

there exists a non-zero polynomial p of degree 2 that vanishes on A = U ∪V . In fact, it will
suffice to choose A to be a randomly chosen set of polynomial size sampled from the mixture
of subspaces U and V . The set of feasible degree-2 polynomials can then be obtained by
setting up a system of linear equations where the unknowns correspond to co-efficients of p.

Let us define M ∈ F
O(1)×n
2 as M = Mr · Mr+1 · . . . · Mn−1 – in other words, M

is the linear map obtained by composing the dimension reduction maps over the n − r
rounds. Once the dimension is reduced to r = O(1), we use a brute-force algorithm to
recover MA0,MA1. Finally, once we know MA0,MA1, we can draw uniform samples from
A0\{x ∈ A0 : Mx ∈ MA1} to recover A0; we can recover A1 similarly (see Lemma 16).

Significant dimension difference (Theorem 2). When the dimension of the subspaces
are substantially different, we use algebraic ideas inspired from techniques in the real domain
to recover the subspaces. The main algorithmic idea is by adapting ideas from related
problem of subspace recovery over the reals (Hardt and Moitra, 2013; Bhaskara et al., 2019).
To explain the idea, consider the setting with equal mixing weights of 1/2, d0 ≈ n, and
suppose α = 1 − Ω(1). If we consider a random subsample of d0 points from the data set,
we expect to have roughly d0/2 points from subspace A0 and d0/2 points from subspace
A1. Suppose α < 1/2 (referred to as the “large gap case”)i.e., d1 < d0/2, then with high
probability there is a linear dependence in this sub-sample. Further, this linear dependence
is (entirely) among points lying in the subspace A1. This can be used to recover the subspace
A1 (and consequently, the subspace A0 as well).

To see why this idea does not work in general, consider the case when the weights
w0 = 0.9, w1 = 0.1 and d1 = 0.8d0. Then, to see a linear dependence among the points
in A1, we need to sample at least d1 points from A1. However, on an average, this will
mean sampling around (w0/w1) · d1 = 9d1 many points from A0. As 9d1 is much larger
than the ambient dimension and thus, we will find many spurious linear dependencies –
i.e., dependencies which do not come from points belonging to A1. Thus, this strategy will
fail to identify A1.

Instead, when α ≥ 1/2, we will adopt a dimension gap amplification strategy. In partic-

ular, we consider a non-linear map φ : F
d0
2 → F

d′0
2 where d′0 =

∑ℓ
j=0

(d0
j

)

for an appropriately
chosen ℓ. Further, for a set B, let us define φ(B) as the set {φ(x) : x ∈ B}. Roughly speak-
ing, we want to choose an appropriate ℓ such that dim(span(φ(A1)))/dim(span(φ(A0))) <
1/2. For such an ℓ, we can now apply the strategy for the large gap case to recover A1 and
A0. We note that the idea of such a dimension gap amplification was also applied in the
related subspace recovery problem over reals (Bhaskara et al., 2019) – there, the goal was
recover one subspace S of dimension d ≤ n containing o(d/n) fraction of the points, while
the rest of the points are drawn in general position from the whole of R

n. While in spirit
our idea is similar, it is challenging to get a handle on the dimensions of span(φ(A1)) and
span(φ(A0)). In particular, the techniques of Bhaskara et al. (2019) which are meant for the
reals, do not seem to be applicable in the finite field setting. Fortunately for us, some pow-
erful results from additive combinatorics (Keevash and Sudakov, 2005; Ben-Eliezer et al.,
2012) let us get precise estimates for dim(span(φ(A0))) and dim(span(φ(A1))). Roughly
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speaking, we show that for ℓ ≈ 1/(1 − α), dim(span(φ(A1)))/dim(span(φ(A0))) < 1/2, thus
reducing to the large gap case.

2. Preliminaries

We start by defining the subspace recovery problem formally.

Definition 4 The Subspace-Recovery problem is instantiated by two subspaces of F
n
2 - A0

and A1 of dimensions d0 and d1 respectively. In addition, we also have weights w0 and w1

such that w0 + w1 = 1.
The subspaces A0, A1, dimensions d0, d1 as well as the weights w0 and w1 are unknown.

For this instance, we define the sampling oracle O(A0, A1, w0, w1) is defined as follows:
sample b ∈ {0, 1} where Pr[b = 0] = w0 and Pr[b = 1] = w1. If b = 0, O(A0, A1, w0, w1)
outputs a uniformly random element from A0 and if b = 1, O(A0, A1, w0, w1) outputs a
uniformly random element from A1.

In the Subspace-Recovery problem, the algorithm is given access to the sampling oracle
O(A0, A1, w0, w1), an error parameter ǫ > 0 and a weight parameter wmin > 0 with the
promise that wmin ≤ min{w0, w1}. The goal of the algorithm is to output subspaces A0, A1

and estimates ŵ0, ŵ1 such that |w0 − ŵ0|+ |w1 − ŵ1| ≤ ǫ.
Without loss of generality, we will assume d0 ≥ d1 from now on.

Remark 5 Note that once A0, A1 is found, estimating w0, w1 is not hard, this is because
Px∼O(A0,A1,w0,w1)[x ∈ A0 \ A1] = w0

|A0\A1|
|A0| . Formally, there is an algorithm with the

following guarantee: given oracle access to O(A0, A1, w0, w1) (for unknown w0, w1), A0, A1

and confidence parameter δ > 0,

1. this algorithm runs in sample and time complexity poly(n) · 1/ǫ2 · log(1/δ)

2. With probability 1−δ, the algorithm outputs ŵ0, ŵ1 such that |w0−ŵ0|+|w1−ŵ1| ≤ ǫ.

By this observation, we can focus on finding A0, A1 from now on.

We next define the concept of incomparable subspaces.

Definition 6 We define two subspaces A,B to be incomparable if and only if A * B and
B * A.

2.0.1. Some useful notation

1. For any f : F
n
2 → F2, we use zero(f) to denote the set {x : f(x) = 0}.

2. For integers n, d ∈ N, we use RM(n, d) to denote the set of polynomials of degree at
most d over F

n
2 .

3. For integers n, k ∈ N with n ≥ k, we use
( n
≤k

)

to denote
∑k

i=0

(n
i

)

.

4. For a sample oracle O which return samples in F
n
2 , matrix D ∈ F

k×n
2 , we use DO to

denote a new sample oracle which each time returns Dx where x is sampled from O.

5. For an index set S, we use xS to denote the set {xi : i ∈ S}.

6. For a set S of vectors, we use rank(S) to denote dim(span(S)).

6
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2.0.2. Some useful facts regarding polynomials

We next list some useful facts regarding polynomials over the field F2. While most of these
are easy and standard, we list them here for the sake of completeness.

Claim 7 Let p be a polynomial over F
n
2 . If the polynomial p is not identically zero (as a

formal expression) and its degree is at most c, then

P
x∼F

n

2

[p(x) 6= 0] ≥ 1/2c.

Proof The proof is by induction on degree. If c = 0, then p is identically 1 and thus the
claim follows trivially.

Now, as an inductive hypothesis, assume that the claim is true for all polynomials of
degree at most c − 1. Let p be a polynomial of degree c. Since p is not identically zero,
there exists i such that p can be expressed as

p(x1, · · · , xn) = q(x1, . . . , xi−1, xi+1, . . . , xn) · xi + r(x1, . . . , xi−1, xi+1, . . . , xn), (1)

where degree of q is at most c − 1 and q is not identically zero. The above formulation
uses the fact that polynomials over F2 are multilinear. Observe that any choice of x−i =
(x1, . . . ,xi−1,xi+1, . . . ,xn) such that q(x−i) 6= 0,

Pr
xi∼F2

[p(x1, . . . ,xi−1,xi,xi+1, . . . ,xn) 6= 0] ≥ 1

2
. (2)

Now, applying the induction hypothesis on the polynomial q(x1, . . . , xi−1, xi+1, . . . , xn), we
have that

Pr
x∼F

n
2

[q(x1, . . . ,xi−1,xi+1, . . . ,xn) 6= 0] ≥ 1

2c−1
.

Combining this with (1) and (2), we get the claim.

Claim 8 There is an efficient algorithm Size-system-polynomial which given a set of
points as input z1, . . . , zR ∈ F

n
2 , determines the size of the set T = |{p ∈ RM(n, 2) : p(z1) =

p(z2) = · · · = p(zr) = 0}|.

Proof Observe that p can be expressed as linear system of equations (i) where the unknowns
are the coefficients of p and (ii) the equations are given by the constraints {p(zi) = 0}1≤i≤R.
Using Gaussian elimination, we can determine the rank r of this system. Observe that the
size of T is just 2r, thus proving the claim.

2.0.3. Some useful facts regarding subspaces of F
n
2

We now list some useful facts about subspaces of F
n
2 .

Claim 9 Let k, d, n ∈ N such that k ≥ 100d. Let V ⊆ F
n
2 be a subspace of dimension d.

Let x1, · · · ,xk be k vectors sampled uniformly at random from V . Then,

Px1,··· ,xk
[∀S ⊆ [k] such that |S| ≥ 0.9k, we have span(xS) = V ] ≥ 1− 20.4k. (3)
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Proof We know that there always exist a linear bijection between V and F
d
2. Without loss

of generality, we assume n = d, V = F
d
2. Without loss of generality, assume 0.9k is a integer.

For a fixed S with |S| = 0.9k

P[span(xS) = F
d
2]

=

d−1
∏

j=0

(

1− 2−0.9k+j
)

See (Ferreira et al., 2012, Equation (2))

≥ 1−
d−1
∑

j=0

2−0.9k+j ≥ 1− 2−0.9k+d ≥ 1− 2−0.89k.

The number of choice of S is at most
( k
0.1k

)

≤ (10e)0.1k ≤ 20.48k. Then the proof is completed
by a union bound.

The next claim says that a union of two proper subspaces of F
n
2 must differ substantially

from any subspace of F
n
2 .

Claim 10 Let S be a subspace of F
n
2 and of dimension d. Let U, V ( S be two proper

subspaces. Then |S\(U ∪ V )| ≥ 2d−2.

Proof Notice that the size of subspace in F2 is always a power of 2. There are two cases:
Case 1: dim(U) = dim(V ) = d− 1.
Observe that dim(U ∩ V ) ≥ d− 2 and hence |U ∪ V | = |U |+ |V | − |U ∩ V | ≤ 3 · 2d−2.
Case 2: At least one of dim(U) or dim(V ) ≤ d− 2.
In this case, |U∪V | ≤ |U |+|V | ≤ 2d−1+2d−2 ≤ 3·2d−2. Thus, in either case, |U∪V | ≤ 3·2d−2

which implies that |S\(U ∪ V )| ≥ 2d−2.

Claim 11 Let b1, · · · , bt ∈ F
n
2 be linearly independent. Sample M ∈ F

m×n
2 uniformly at

random. Then Mb1, · · · ,Mbt are independent and identically distributed. In other words,
the joint distribution of Mb1, · · · ,Mbt is the uniform distribution over F

m×t
2 .

Proof Let us first add vectors bt+1, . . . , bn such that {b1, . . . , bn} is a basis of F
n
2 . Let B be

the matrix whose ith column is bi. Now, observe that the map Ψ : F
m×n
2 → F

m×n
2 defined

as Ψ : M 7→ M · B is a bijection. Thus, if the random variable M is uniform over F
m×n
2 ,

then so is M · B. Consequently, the first t columns of M · B, namely, Mb1, . . . ,Mbt are
independent and identically distributed.

The following theorem gives a hypothesis testing routine for mixtures of subspaces over F
n
2 .

The proof of this theorem is deferred to Appendix A.

Theorem 12 Let D be a distribution of a mixture of two incomparable subspaces A,B ⊆ F
n
2

with mixing weights wA, wB ≥ w0. Let {Aj , Bj}Nj=1 be a collection of N sets of hypothe-
sis with the property that there exists i such that {Ai, Bi} = {A,B}. There is an al-
gorithm Choose-The-Right-Hypothesis which is given a confidence parameter δ, w0,
{Aj , Bj}Nj=1 and a sampler for D. Every subspace of {Aj , Bj}Nj=1 will be represented by a
basis of that subspace, and the algorithm will have the access to the basis. This algorithm
has the following behavior,

8
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1. It runs in poly(N, 1/w0) log(1/δ) time.

2. With the probability 1− δ outputs the index i such that {Ai, Bi} = {A,B}.

3. Testing Comparability of the Subspaces

In this section, the main goal is to prove Theorem 3 (restated below for the convenience of
the reader). We recall that Theorem 3 gives an efficient algorithm which given samples from
a mixture of two subspaces U, V , decides whether U and V are comparable. This result in
turn is an important piece in our subspace recovery algorithm in the “incomparable” case.
The algorithm Test-comparability is described in Figure 1.

Theorem 3 There is an algorithm Test-Comparability with the following guarantee:
Given oracle access to O(U, V,wU , wV ) (for unknown U, V,wU , wV ), wmin > 0 (such that
min{wU , wV } ≥ wmin) and confidence parameter δ > 0,

1. Test-comparability runs in sample and time complexity 1/wmin
2 ·poly(n) log(1/δ).

2. With probability 1−δ, the algorithm outputs True if U and V are comparable and False

otherwise.

The main idea of the algorithm is the following. First we take a few samples from
the mixture to get span(U ∪ V ). By dimension reduction, it suffices to deal with the case
span(U ∪ V ) = F

n
2 . The crucial property we use is the following: If span(U ∪ V ) = F

n
2 , U, V

are incomparable iff there exists non-zero p ∈ RM(n, 2) such that p vanishes on the entire
set U ∪V . The proof of Theorem 3 is deferred to the end of the section – to start, we prove
some auxiliary lemmas.

Claim 13 Assume s ≥ 8n/wmin. Let x1,x2, · · · ,xs be sampled from a mixture of two
subspaces U, V ⊆ F

n
2 (potentially comparable) of dimension at most d with mixing weights

wU , wV ≥ wmin. Then, with probability at least 1 − exp(−swmin
2/32), span(x1, · · · ,xs) =

span(U ∪ V ).

Proof For fixed x1, · · · , xi such that span(x1, · · · , xi) ( span(U ∪ V ), we will show

Pxi+1
[xi+1 /∈ span(x1, · · · , xi)] ≥ wmin/2. (4)

Define W = span(x1, · · · , xi). By our assumption, either U * W or V * W . Let us assume
that it is the former (the other case is symmetric). Under this assumption, U ∩ W is a
proper subset of U . Since both are linear subspaces and the size of any linear space over
F2 is always a power of 2, |U ∩W | ≤ 0.5|U |. Hence

P[xi+1 ∈ U\W ] ≥ wU
|U\W |
|U | ≥ wmin · 0.5.

In other words, rank(x1, · · · ,xi+1) = rank(x1, · · · , xi) + 1 will hold with probability at
least wmin/2, thus proving (4). Define yi = rank(x1, · · · ,xi) − rank(x1, · · · ,xi−1), then
y1, · · · ,ys satisfy the condition of Lemma 25 with γ = wmin/2, d = rank(U ∪ V ), k = s.
Claim 13 now follows by applying Lemma 25.
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Algorithm 1: Test-Comparability

Input:
n – ambient dimension
O(U, V,wU , wV ) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: True (if comparable) or False (if incomparable)

1 Set t = 16n/(wmin
2);

2 Sample x1, · · · ,xt from O(U, V,wU , wV );
3 Set S = span(x1, · · · ,xt), v = dim(S);
4 Find y1, · · · , yv such that they form a basis of S = span(x1, · · · ,xt).;
5 Find a matrix D ∈ F

v×n
2 such that Dyi = ei for all i, where ei is the ith element of the

standard basis of F
v
2.;

6 Set O′ = DO(U, V,wU , wV ) = O(DU,DV,wU , wV );
7 Set r = 8n2/wmin;
8 Sample z1, · · · , zr from O′ = O(DU,DV,wU , wV );
9 Use algorithm Size-System-Polynomial to compute

T = |{p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0}|;
// See Claim 8

10 . if T = 1 then
11 return True;
12 else
13 return False;
14 end

10



Learning a mixture of two subspaces over finite fields

The next (easy) claim says that suppose the distribution Z (over F
d
2) is not too concentrated

on any single element. Then, a randomly chosen set of size roughly quadratic in d is a
hitting set for quadratic polynomials over F

d
2. In other words, any non-zero element of

RM(d, 2) is non-zero on at least one element of this set.

Claim 14 Let Z be a distribution over F
d
2 such that the probability weight of every element

is at least w∗/2d. Let x1,x2, . . . ,xt be independent sampled from Z. Then, we have

P

[

∀q ∈ RM(d, 2) \ {0},∃j ∈ [t] s.t. q(xj) 6= 0
]

≥ 1− exp

(

−tw∗/4 +

(

d

≤ 2

)

log 2

)

.

Proof Fix q ∈ RM(d, 2) such that q 6= 0. By Claim 7,

P
x∼uFd

2
[q(x) = 1] ≥ 1/4.

As a consequence,

Px∼Z [q(x) = 0] ≤ 1− w∗

4
.

Hence

P[q(x1) = · · · = q(xt) = 0] ≤ (1− w∗/4)t ≤ exp(−tw∗/4).

Notice that |RM(d, 2)| = 2(
d

≤2). Using the union bound, we get the claim.

We are now ready to finish the proof of Theorem 3.
Proof of Theorem 3. Without loss of generality, we assume δ = 0.1, since we can always
boost the probability at a multiplicative cost of log(1/δ). By Claim 13, we know that
S = span(U ∪ V ) (defined in Step 3 of the algorithm) with probability 0.999. Henceforth,
we assume that S = span(U ∪ V ) holds.

By definition, D (defined in Step 5 of the algorithm) is a linear bijection between S and
F
v
2. Hence DU,DV are incomparable if and only if U, V are incomparable. Now observe

that, O′ = O(DU,DV,wU , wV ) will give samples from mixture of two subspaces DU,DV
with mixing weights wU , wV ≥ wmin. Notice that span(DU ∪DV ) = F

v
2. We divide the rest

of the analysis into two cases.
Case 1: DU,DV are comparable.
We have DU = F

v
2 or DV = F

v
2. By Claim 14, with probability 0.999, there will only be one

polynomial (the zero polynomial) in the set {p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) =
0}. In this case, T = 1. Thus, overall, with probability 0.998, algorithm returns the correct
answer in this case.
Case 2: DU,DV are incomparable.
In this case, dim(DU) ≤ v − 1 (and dim(DV ) ≤ v − 1). Thus, there exists non-zero vector
bU (resp. bV ) such that 〈bU ,DU〉 = {0} (resp. 〈bV ,DV 〉 = {0}). Now, consider the non-
zero polynomial p(x) = 〈bU , x〉〈bV , x〉. By definition it satisfies p(DU ∪DV ) = {0}. Thus,
in this case, the set {p ∈ RM(v, 2) : p(z1) = p(z2) = · · · = p(zr) = 0} has at least two
elements. Thus, overall, with probability 0.999, the algorithm returns the correct answer in
this case. �
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4. Learning Mixtures of Incomparable Subspaces

In this section, we give a polynomial time algorithm (Algorithm 2: Incomparable-Subspace-
Recovery) for recovering the subspaces A0, A1 when given access to samples from a mix-
ture of two subspaces that are incomparable. We prove the following theorem.

Theorem 1 There is an algorithm Incomparable-Subspace-Recovery with the fol-
lowing guarantee: given oracle access to O(A0, A1, w0, w1) (for unknown A0, A1, w0, w1),
wmin > 0 (such that wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

1. Incomparable-Subspace-Recovery runs in sample and time complexity poly(n/wmin)·
log(1/δ)

2. With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates the
weights w0, w1 up to any desired inverse polynomial accuracy.

The main idea is a new procedure for dimension reduction that reduces the subspace
clustering problem to O(1) dimensions. We will construct a linear map M ∈ F

10×n
2 such

that after projecting using M , the subspaces obtained MA0 = {Mx : x ∈ A0} and MA1 =
{Mx : x ∈ A1} are incomparable. The construction of M involves multiple rounds. In
each round, we use Algorithm Test-Comparability (and Theorem 3) as a black-box,
and find a projection that brings down the dimension by one with high probability, while
maintaining incomparability of the subspaces. Once we recover the subspaces MA0,MA1

in O(1) dimensions (using a brute force algorithm: enumerate all possible pairs of subspace,
then use Theorem ??), we can then recover the original subspaces A0, A1 by considering
samples in A0 ∪ A1 which are not mapped to MA0 ∩ MA1 by M . We defer the proof of
Theorem 1 to the end of section.

Algorithm 2: Incomparable-Subspace-Recovery

Input:
n – ambient dimension.
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: two subspaces.

1 M=Find-A-Good-Projector(n,O(A0, A1, w0, w1), wmin);
2 Use brute force to solve

Incomparable-Subspace-Recovery(10,MO(A0, A1, w0, w1), wmin), let U, V be
the output ;

3 Set t = 100n/wmin;
4 Sample x1, · · · ,xt from O(A0, A1, w0, w1);
5 return span({xi : Mxi /∈ V }), span({xi : Mxi /∈ U});

The following lemma is crucial in establishing Theorem 1. The lemma proves that
with high probability, Algorithm Find-A-Good-Projector (Algorithm 3) reduces the
dimension to r = 10 while preserving the incomparability of the subspaces. If M is randomly
chosen from F

10×n
2 , then MA1 ⊆ MA0 since MA0 collapses to F

10
2 with high probability.

12
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Algorithm Find-A-Good-Projector instead proceeds in multiple rounds, and reduces
the dimension one per round. If the projector M′ is chosen uniformly at random from

F
(n−1)×n
2 , with constant probability M′A0,M

′A1 ∈ F
n−1
2 remain incomparable. We can now

use Algorithm Test-Comparability (and Theorem 3) to boost the success probability
in each round by repeatedly sampling M ′ and rejecting it if the resulting subspaces are
comparable.

Lemma 15 Given samples from a mixture of two incomparable subspaces A0, A1 ⊆ F
n
2

with mixing weights w0, w1 ≥ wmin. There exists M ∈ F
10×n
2 such that MA0,MA1 are

incomparable subspaces. Moreover, there is an algorithm Find-A-Good-Projector that
runs in time 1/wmin · poly(n) and find such a M with probability at least 0.999.

Algorithm 3: Find-A-Good-Projector

Input:
n – ambient dimension
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – lower bound of two mixture weights.
Output: a matrix M ∈ F

10×n
2 .

1 Set M = In, where In ∈ F
n×n
2 is the identity matrix;

2 for i = n; i > 10; i = i− 1 do

3 Sample T ∈ F
(i−1)×i
2 uniformly at random;

4 while Test-Comparability(i,TMO(A0, A1, w0, w1), wmin, 1/n
2) // the last

parameter is the failure probability we want.

5 do

6 Sample T ∈ F
(i−1)×i
2 uniformly at random;

7 end
8 M = TM ;

9 end
10 return M ;

Proof We now show that Algorithm Find-A-Good-Projector runs in polynomial time
and finds a required projector M with high probability. Observe that from Theorem 3,
every call of Test-Comparability (in step 4 of Algorithm 3) fails with probability at
most δ = O(1/n2). We will prove that at any iteration i ∈ {n, n − 1, . . . , 11}, a randomly

chosen matrix T ∈ F
(i−1)×i
2 (in step 3) succeeds with constant probability in preserving the

incomparability of the subspaces. This ensures that it will suffice to sample O(log n) many
random T per round before we succeed in that round (and hence O(n log n) overall).

Fix an iteration i ∈ {n, n − 1, . . . , 11}, and let M ∈ F
i×n
2 be the current projector. Let

U := MA0, V := MA1, and assume U, V are incomparable. We show the following claim.

Claim: For a random T ∈ F
(i−1)×i
2 chosen in step 3,

PT[TU,TV are incomparable] ≥ 9/128. (5)

We now prove the claim by considering two cases depending on the rank of U ∪ V i.e., the
dimension of the span of U ∪ V .

13
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Case 1: rank(U ∪ V ) ≤ i− 1.
Let v = rank(U ∪ V ) and b1, · · · , bv be a basis of span(U ∪ V ). By Claim 11, Tb1, · · · ,Tbv
can be viewed as being sampled independently from F

i−1
2 . A uniformly random matrix from

F
(i−1)×(i−1)
2 is full-rank with probability at least

∏

j≥1(1− 2−j) ≥ 1/4. Hence,

P[Tb1, · · · ,Tbv are linearly independent] ≥ 1/4.

When Tb1, · · · ,Tbv are linearly independent, TU,TV are incomparable as required. This
establishes (5) in Case 1.
Case 2: rank(U ∪ V ) = i.
Let b1, . . . , bdim(U∩V ) be a basis of U ∩ V . We extend the basis such that
b1, . . . , bdim(U∩V ), c1, . . . , cdim(U)−dim(U∩V ) is a basis of U , and similarly we extend the basis
so that b1, . . . , bdim(U∩V ), d1, . . . , ddim(V )−dim(U∩V ) is a basis of V . Observe that
b1, . . . , bdim(U∩V ), c1, . . . , cdim(U)−dim(U∩V ), d1, . . . , ddim(V )−dim(U∩V ) is a basis of span(U ∪
V ). Reorder this basis to get a1, . . . , ai such that ai−1 = c1, ai = d1. Let tj denote Taj. By
Claim 11, t1, · · · , ti are independent and identically distributed. Let E be the event

E =























tj /∈ span(t1, · · · , tj−1) ∀1 ≤ j ≤ i− 3

ti−2 ∈ span(t1, · · · , ti−3)

ti−1 /∈ span(t1, · · · , ti−2)

ti /∈ span(t1, · · · , ti−1)

Then,

PT[E ] = (
i−3
∏

j=1

(1− 2j−1/2i−1)) · 1/4 · 3/4 · 1/2 ≥ 3/4 · 3/32 = 9/128.

Condition on E . We now show that TU,TV are incomparable as required. We will show
TU * TV , the other direction is similar. By definition ti−1 = Tai−1 = Tc1 ∈ TU , and
ti−1 /∈ span(t1, t2, · · · , ti−2, ti). However TV ⊆ span(t1, t2, · · · , ti−2, ti), hence ti−1 /∈ TV ,
TU * TV . This establishes (5). Hence the lemma follows.

The following lemma shows that a few samples drawn uniformly from S \ T suffice to
recover S with high probability. This will allow us to recover A0 and A1 after clustering
the points in MA0 ∪MA1.

Lemma 16 Let S be a subspace of F
n
2 and of dimension d. Let T be a proper subspace

of S. Let t ≥ 8n be a integer. x1, · · · ,xt are independently uniformly sampled from S\T .
Then,

P[span(x1, · · · ,xt) = S] ≥ 1− e−t/128.

Proof Let V ( S be a fixed subspace. Then by Claim 10, |S\(T ∪ V )| ≥ 2d−2, which is at
least 1/4 of |S|. We have

Px∼uS\T [x /∈ V ] ≥ 1/4.
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In other words, if span(x1, · · · ,xk) 6= S, then rank(x1, · · · ,xk+1) = rank(x1, · · · xk) + 1
will hold with probability at least 1/4. Define the random variables yi = rank(x1, · · · ,xi)−
rank(x1, · · · ,xi−1) for i ∈ {1, 2, . . . , t}. Note that y1, · · · ,yt are not quite independent (since
the probability the rank increases at step i depends on the random choices of x1, . . . ,xi−1

in previous iterations). But they satisfy the condition of Lemma 25 with γ = 1/4, d =
dim(S), k = t. The proof is completed after applying Lemma 25.

We are now ready to complete the proof of Theorem 1.
Proof of Theorem 1. Without loss of generality, we assume δ = 0.1, since we can
always boost the probability at a multiplicative cost of log(1/δ). By Lemma 15, M satisfies
the property that MA0,MA1 are incomparable with high probability (probability at least
0.999, say). Moreover assuming MA0,MA1 are incomparable, the brute force algorithm
will return them with high probability.

Let U = MA0, V = MA1. We will show that span({xi : Mxi /∈ V } = A0 with
probability 0.998. Observe that W = {x ∈ A0 : Mx ∈ MA1} is a proper subspace of A0.
Hence if x is drawn uniformly from A0, x will not in W with probability at least 1/2. By
Chernoff bound, we expect to see at least 20n samples in {xi : Mxi /∈ V } with probability
0.999 and all these samples can be viewed as uniformly drawn from A0\W . By Lemma 16,
span({xi : Mxi /∈ MA1} = A0 with probability 0.998. A similar argument shows that the
algorithm also recovers A1 with high probability. Finally, after recovering A0, A1 it is also
easy to estimate the weights w0, w1 to inverse polynomial accuracy (see Remark 5). �

5. Mixtures of two subspaces with signficant dimension difference

In this section, we prove Theorem 2 (restated below for convenience of the reader) which
shows that there is a computationally efficient algorithm for learning a mixture of two
subspaces with significantly different dimensions. Note that the following theorem does not
assume that the two subspaces are incomparable.

Theorem 2 Let wmin ≥ 1/100. Let d0 ≥ d1 and suppose α := d1/d0 < 1 − log d0√
d0

.

There is an algorithm Subspace-Recover-Large-Diff with the following guarantee:
given oracle access to O(A0, A1, w0, w1)(for unknown A0, A1, w0, w1), wmin > 0 (such that
wmin ≤ min{w0, w1}) and confidence parameter δ > 0,

1. Subspace-Recover-Large-Diff runs in sample and time complexity

log(1/δ)poly(n) · dO(1)/(1−α)
0 .

2. With probability 1− δ, the algorithm outputs the subspaces A0, A1, and estimates the
mixing weights up to any desired inverse polynomial accuracy.

The algorithm recover-subspace-large-diff is described in Figure 4. Before proving
Theorem 2, we will make some simplifying assumptions (with their justifications given
below) followed by some useful notation.

Remark 17 Without loss of generality, we can assume
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1. n = d0. This is because we can first use Theorem 3 to test whether the underlying
subspaces are incomparable. If they are incomparable, we can use Theorem 1 to re-
cover the subspaces. If not, we can take O(n/wmin) samples from the mixture to get
span(A0 ∪ A1) with high probability (see Claim 13). We can then construct a linear
bijection, say D, between span(A0∪A1) and F

d0
2 . Applying the map D to every sample

from the mixture, we can now assume that n = d0.

2. The algorithm knows d0, d1. This is because we can enumerate all the possible values
of d0, d1 and run the algorithm Subspace-Recover-Large-Diff to get a list of
candidate hypothesis. We can then use the hypothesis testing algorithm in Theorem ??
to identify the correct one with high probability.

3. We set δ = 0.1. This is because we can always boost the success probability of our
algorithm at a multiplicative cost of log(1/δ).

4. d0 is at least a sufficiently large constant (which only depends on wmin). Otherwise,
we can always apply a brute force algorithm to recover the subspaces.

Notation.

1. We will use φℓ(x) ∈ F
( n

≤ℓ
)

2 to represent the vector consisting of all the monomials of
degree at most ℓ on x, including the constant term. As an example, when ℓ = 2 and
n = 2, we have φℓ(x) = (1, x1, x2, x1x2) – note that because the underlying field is
F2, all the monomials are multilinear. We will use φℓ(A) to denote {φℓ(x) : x ∈ A}.
φℓ(A) is a set of vectors in F

( n

≤ℓ
)

2 .

2. We define t := d0 − d1 = (1 − α)d0 to denote the difference between the dimensions
of the underlying subspaces A0 and A1.

3. For a sequence of vector x1, x2, · · · , xk, we define x−i := {xj : j 6= i}.

4. Let us denote by yi := φℓ(xi).

Finally, we note that for any subspace V of dimension d over F2, rank(φℓ(V )) =
( d
≤ℓ

)

.
We start with the following crucial lemma from Ben-Eliezer et al. (2012) (stated below).

An equivalent version was also proven in (Keevash and Sudakov, 2005, Theorem 1.5).

Lemma 18 (Lemma 4, Ben-Eliezer et al. (2012)) Let x1, x2, · · · , xR be R = 2r dis-
tinct points in F

n
2 . Consider the linear space of degree d polynomials restricted to these

points; that is, the space

{(p(x1), · · · , p(xR)) : p ∈ RM(n, d)}.

The linear dimension of this space is at least
(

r
≤d

)

.

As an easy corollary, we have the following claim.

Lemma 19 Let x1, x2, · · · , xR be distinct points in F
n
2 . If R ≥ 2r, then rank({φℓ(x1), · · · , φℓ(xR)}) ≥

( r
≤ℓ

)

.
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Algorithm 4: Subspace-Recover-Large-Diff

Input:
d0 – dimension of the larger subspace
α ≤ 1 – ratio of the dimensions of two subspaces
O(A0, A1, w0, w1) – oracle for random samples from mixture of subspaces.
wmin – minimum of two mixture weights.
Output: two subspaces U, V .

1 Set ℓ = 2 log(100/wmin)
1−α ;

2 Use O(A0, A1, w0, w1) to sample m =
(

d0
≤ℓ

)

vectors x1,x2, · · · ,xm;

3 Let S be the set of all i ∈ [m] such that yi := φℓ(xi) can be expressed as linear
combination of {φℓ(xj) : j 6= i};

4 return U = span({xi : i ∈ S}), V = span({xi : xi /∈ U});

Proof Without loss of generality, we can assume R = 2r, since having more points can only
increase the rank. Let t = |RM(n, ℓ)|. Say RM(n, ℓ) = {p1, · · · , pt}. Let A ∈ F

t×R
2 be defined

as Ai,j = pi(xj). Applying Lemma 18 with d = ℓ, we know the row-rank of A is at least
(

r
≤ℓ

)

. Let B ∈ F
( n

≤ℓ
)×R

2 be the matrix whose ith column is φℓ(xi). Since every polynomial

is a linear combination of monomials, there exists C ∈ F
t×( n

≤ℓ
)

2 such that A = CB, hence
rank(B) ≥ rank(A) ≥

( r
≤ℓ

)

.

Proof of Theorem 2. Let I0 (resp. I1) be the set of all i such that xi was sampled from
A0 (resp. A1). We now define the events E1, E2, E3 and E4 as follows:

1. E1: ∀i ∈ I0,yi /∈ span({y−i} ∪ φℓ(A1))

2. E2: |I1| ≥ 10
(

αd0
≤ℓ

)

3. E3: ∀T ⊆ I1 such that |T | ≥ 0.9|I1|, we have span({xj}j∈T ) = A1

4. E4: span({xj}j∈I0) = A0

Assume E1, E2, E3, E4 holds. Note that whenever E1 holds, it follows that S (defined in
line 3 of Subspace-Recover-Large-Diff) is a subset of I1. We now show that A1 can
be recovered from the span of the samples corresponding to S. Now, consider the set
{φℓ(xi) : i ∈ I1 \ S}. By definition, the elements of this set are linearly independent
(otherwise, they will belong in S). As dim(span(φℓ(A1))) ≤

(αd0
≤ℓ

)

, it follows that |{φℓ(xi) :

i ∈ I1\S}| ≤
(

αd0
≤ℓ

)

. As i 7→ φℓ(xi) is a injection on I1\S , it follows that |{i ∈ I1\S}| ≤
(

αd0
≤ℓ

)

.
Since E2 holds, |I1 \ S| ≤ 0.1|I1|, hence |S| ≥ 0.9|I1|. Since E3 holds, span ({xj}j∈S) = A1.

We now argue that the algorithm also recovers A0. We claim {j ∈ [m] : xj /∈ A1} = I0.
Fix j ∈ I0. Since E1 holds, φℓ(xj) = yj /∈ φℓ(A1), then xj /∈ A1. Hence I0 ⊆ {j : xj /∈ A1}.
It is not hard to see {j : xj /∈ A1} ⊆ I0. Finally when E4 holds, we have span({xj : xj /∈
A1}) = span({xj : j ∈ I0}) = A0.

Thus, it remains to show that E1, E2, E3 and E4 hold simultaneously with probability
0.99.
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Proof of P[E1] ≥ 0.999: First, observe that by definition, ℓ = 2 log(100/wmin)
1−α . Using the

assumption on d0 and wmin, it follows that

ℓ =
2 log(100/wmin)

1− α
= O

(
√
d0

log d0

)

; d0 ≥
2ℓ

(1− α)
. (6)

From this, applying the constraints on d0 and ℓ from (6), we get

(wmin

100

)1/ℓ
≥ 1 +

1

ℓ
· log

(wmin

100

)

≥ (1 + α)

2
≥ α+

ℓ

d0
. (7)

Now, it is not difficult to see that
(

αd0
≤ℓ

)

≤
(

αd0+ℓ
ℓ

)

– it easily follows from the combinatorial
interpretation of binomial coefficients. Now, using this and (7), we get

(

αd0
≤ℓ

)

(d0
≤ℓ

) ≤
(αd0+ℓ

ℓ

)

(d0
ℓ

) ≤
(

α+
ℓ

d0

)ℓ

≤ wmin

100
. (8)

We now have,

P

[

dim(span({y−i} ∪ φℓ(A1))) ≤ (1− 0.4wmin)

(

d0
≤ ℓ

)

]

(9)

≥P

[

dim(span({y−i} ∪ φℓ(A1))) ≤ (1− 0.5wmin)

(

d0
≤ ℓ

)

+

(

αd0
≤ ℓ

)

]

using (8),

≥P

[

dim(span({y−i})) ≤ (1− 0.5wmin)

(

d0
≤ ℓ

)

]

using dim(span(φℓ(A1))) =

(

αd0
≤ ℓ

)

,

≥P[|I0| ≤ (1− 0.5wmin)

(

d0
≤ ℓ

)

]

using |I0| ≥ |{y−i}| ≥ dim(span({y−i})),

≥1− e
−wmin

2

24 (d0≤ℓ
) (10)

from a standard Chernoff bound.

Let us now define the event Bi as the event that i ∈ I0 and dim(span({y−i} ∪ φℓ(A1))) ≤
(1−0.4wmin)

(d0
≤ℓ

)

. Let r := ⌈(1−0.4wmin/ℓ)d0+ ℓ⌉. Using reasoning similar to (8), we have

( r
≤ℓ

)

(d0
≤ℓ

) ≥
(

r
ℓ

)

(d0+ℓ
ℓ

) ≥
(

r − ℓ

d0

)ℓ

≥
(

1− 0.4wmin

ℓ

)ℓ

≥ 1− 0.4wmin.

Thus, it follows that if the event Bi holds, dim(span({y−i} ∪ φℓ(A1))) ≤
( r
≤ℓ

)

. Now, let us

define the set Hi = {x ∈ F
d0
2 : φℓ(x) ∈ span({y−i} ∪ φℓ(A1))}. By Lemma 19, we get that

|Hi| ≤ 2r+1. Thus, we now have

P[yi ∈ span({y−i} ∪ φℓ(A1))|Bi] =
|Hi|
2d0

≤ 2r+1

2d0
≤ 2−

0.35wmind0
ℓ . (11)
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Applying the above inequality along with (10), we get

P[yi /∈ span({y−i} ∪ φℓ(A1))|i ∈ I0] ≥ 1− 2
−0.35wmind0

ℓ − e
−wmin

2

24
(d0≤ℓ

) ≥ 1− 2
−0.3wmind0

ℓ .
(12)

By taking a union bound, it follows that

P[∀i ∈ I0,yi /∈ span({y−i} ∪ φℓ(A1))] ≥ 1−
(

d0
≤ ℓ

)

2
−0.3wmind0

ℓ ≥ 1− 2
−0.2wmind0

ℓ . (13)

As we have chosen d0 to be sufficiently large, the right hand side is at least 0.999 showing
that P[E1] ≥ 0.999.

Proof of P[E2] ≥ 0.999: This follows from a straightforward Chernoff bound on the sam-
pling process defining I1.

Proof of P[E3] ≥ 0.999: This is a direct application of Claim 9.

Proof of P[E4] ≥ 0.999: This also follows from Claim 9.
�

6. Reduction from Learning Noisy Parities

In this section, we show how the problem of learning a mixture of two (comparable) sub-
spaces captures the notorious hard problem of learning parity with noise (LPN).

Given n ∈ N, the (n, ǫ)-LPN problem is instantiated by an (unknown) parity function
f : F

n
2 → F2 and a noise parameter ǫ ∈ (0, 1/2). The samples are generated i.i.d. by a

sampling oracle O = O(f, ǫ) as follows. First, x ∼u F
n
2 is sampled uniformly at random

from F
n
2 . Then b ∈ {0, 1} is sampled such that P[b = 0] = 1− ǫ and P[b = 1] = ǫ. If b = 0,

O outputs (x, f(x)) and if b = 1, outputs (x, 1 − f(x)). Given samples generated i.i.d. by
the sampling oracle O(f, ǫ), the goal is to learn the unknown parity function f .

The following simple proposition reduces LPN to learning mixtures of (comparable)
subspaces in F

n+1
2 , where the subspaces have dimensions n+ 1 and n respectively.

Proposition 20 Suppose there exists an algorithm ALG that given samples from a mixture
of two subspaces A0 = F

n+1
2 , A1 ⊆ F

n+1
2 of dimensions n + 1, n respectively, with mixing

weights 2ǫ, 1 − 2ǫ, runs in time T = T (n, δ) and solves this problem with probability 1− δ.
Then there is an algorithm that solves (n, ǫ)-LPN with probability 1 − δ and running time
O(T ) + poly(n).

Proof Consider a sample (x,y) ∈ F
n+1
2 (with x ∈ F

n
2 ) drawn from a sampling oracle O(f, ǫ)

for the (n, ǫ)-LPN problem. We can view (x,y) as a sample from a mixture of two subspace
F
n+1
2 , A1 ⊆ F

n+1
2 of dimension n + 1, n (respectively) with mixing weights 2ǫ, (1 − 2ǫ) as

follows. Let A1 be the subspace of dimension n defined by the linear equation f(x)+y = 0
over F2. On the one hand, if b = 1, then (x,y) ∈ F

n+1
2 does not belong to A1; it is drawn

from A0 \ A1. On the other hand when b = 0, (x,y) ∈ F
n+1
2 lies in the subspace A1. But
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this could correspond to a sample drawn from A1 or to the portion of A0 that overlaps with
A1 (recall that A1 ⊂ A0 and |A0 ∩ A1| = |A0|/2 in our case). Hence by setting the mixing
weights of the subspaces A0 = F

n+1
2 , A1 to be 2ǫ, 1− 2ǫ respectively, we can view a sample

(x,y) drawn from the LPN problem as being drawn from the mixture of subspaces A0, A1.
Our goal is then to recover A0, A1 from i.i.d. samples of the form (x,y) drawn from the

LPN problem. If the algorithm ALG succeeds in finding A1, then this provides a parity
function f (corresponding to the constraint defining A1) that satisfies the LPN problem.

The next proposition shows that learning mixtures of two subspaces A0, A1 in F
n+1
2

where A0 = F
n+1
2 and dim(A1) = n is in fact equivalent to the LPN problem.

Proposition 21 Suppose there is an algorithm ALG that solves (n, ǫ)-LPN with probability
1 − δ and running time T = T (n, δ). Then, there is an algorithm that given samples
from a mixture of two subspaces F

n+1
2 , A1 ⊆ F

n+1
2 of dimension n + 1, n respectively with

mixing weights 2ǫ, 1 − 2ǫ, runs in time O(nT ) + poly(n) and recovers A1 with probability
1− δ − exp(−n).

Proof We start with a simple observation. Suppose (*) xi1 + xi2 + · · · + xik = 0 be the
constraint defining subspace A1, and suppose j ∈ {i1, i2, · · · , ik}. Consider the parity

f : F
{1,2,...,n+1}\{j}
2 → F2, where f(x) =

∑

ℓ∈{i1,i2,...,ik}\{j}
xℓ.

On one hand, if (x1, . . . ,xn+1) is drawn from A1 (this is with probability 1− 2ǫ), then the
pair (x−j ,xj) satisfies the parity f by definition of A1. On the other hand, if (x1, . . . ,xn+1)
is drawn from A0 (this is with probability 2ǫ), it satisfies parity f with probability 1/2. In
total, the parity f is satisfied with probability 1 − 2ǫ + 1

2 (2ǫ) = 1 − ǫ. Hence, a sample
(x1, . . . ,xn+1) from the mixture of subspaces with weights 2ǫ, 1− ǫ, (x−j ,xj) can be viewed
as a sample of (n, ǫ)-LPN with unknown parity f .

We do not know {i1, i2, . . . , ik}. However we can guess and try out j = 1, · · · , j = n+1
and get at most n+ 1 candidate hypothesises. We can then use the well known hypothesis
testing result from Proposition 22 to filter and find the correct subspace A1 with high
probability.
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Appendix A. Hypothesis Test

In this section we will prove the following theorem.

Theorem 12 Let D be a distribution of a mixture of two incomparable subspaces A,B ⊆ F
n
2

with mixing weights wA, wB ≥ w0. Let {Aj , Bj}Nj=1 be a collection of N sets of hypothe-
sis with the property that there exists i such that {Ai, Bi} = {A,B}. There is an al-
gorithm Choose-The-Right-Hypothesis which is given a confidence parameter δ, w0,
{Aj , Bj}Nj=1 and a sampler for D. Every subspace of {Aj , Bj}Nj=1 will be represented by a
basis of that subspace, and the algorithm will have the access to the basis. This algorithm
has the following behavior,

1. It runs in poly(N, 1/w0) log(1/δ) time.

2. With the probability 1− δ outputs the index i such that {Ai, Bi} = {A,B}.

We defer the proof to the end of this section.
In order to prove Theorem ??, we need a fundamental tool from statistics, namely

“hypothesis testing for distributions”. There are many equivalent forms of this algorithm
— we use the following (convenient) version from De et al. (2014).

Proposition 22 (Simplified (De et al., 2014, Proposition 6)) Let D be a distribu-
tion over W and Dǫ = {Dj}Nj=1 be a collection of N distribution over W with the property

that there exists i ∈ [N ] such that dTV (D,Di) ≤ ǫ. There is an algorithm TD which is
given an accuracy parameter ǫ, a confidence parameter δ, and is provided with access to (i)
samplers for D and Dk, for all k ∈ [N ] (ii) a evaluation oracle EV ALDk

, for all k ∈ [N ],
which, on input w ∈ W , output the value Dk(w). This algorithm has the following behavior:
It makes m = O((1/ǫ2)(logN + log(1/δ))) draws from D and each Dk, k ∈ [N ], and O(m)
calls to each oracle EV ALDk

, k ∈ [N ], performs O(mN2) arithmetic operations, and with
probability 1− δ outputs an index i∗ ∈ [N ] that satisfies dTV (D,Di∗) ≤ 6ǫ.

Definition 23 D(A,B,wA, 1 − wA) is defined as the distribution induced by a mixture
of two incomparable subspaces A,B ⊆ F

n
2 of dimension at most d with mixing weights

wA, 1− wA.

Lemma 24 Let A,B,C,D be 4 subspaces of F
n
2 . Suppose {A,B} 6= {C,D}. Let D1 =

D(A,B,wA, 1−wA),D2 = D(C,D,wC , 1−wC), w
∗ = min(wA, 1−wA, wC , 1−wC). Then

dTV (D1,D2) ≥ w∗/8.

Proof Without loss of generality, assume A has largest dimension among all 4 subspaces.
We divide the rest of the analysis into a few cases.































Case 1 : A 6= C and A 6= D.

A = C or A = D. Assume A=C.2























Case 2 : A = B or A = D.

A 6= B and A 6= D.











Case 3 : A,B are incomparable.

Case 4 : A,D are incomparable.

Case 5 : B ( A and D ( A.
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Case 1:
In this case, A ∩ C and A ∩D are two proper subspace of A. By Claim 10, |A\(C ∪D)| ≥
|A|/4, dTV (D1,D2) ≥ w∗/4.
Case 2:
Without loss of generality, assume A = B. We have dim(A) ≥ dim(D) and D 6= A. Hence
A ∩D is a proper subspace of A. |(D1 −D2)(A\D)| = (1− wC)|A\D|/|A| ≥ w∗ · 1/2.
Case 3:
If B ⊆ D, we have B ( D. Since A,B are incomparable, A,D are incomparable. |(D1 −
D2)(D\(A∪B)| ≥ w∗/4. IfB * D, B∩D is a proper subspace ofB, |(D1−D2)(B\(A∪D)| ≥
w∗/4.
Case 4: similar to Cases 3.
Case 5:
If |wA−wC | ≥ w∗/2, then |(D1−D2)(A\(B∪D))| = |wA−wC |·|A\(B∪D))|/|A| ≥ w∗/2·1/4.
If |wA − wC | ≤ w∗/2, without loss of generality, assume dim(B) ≥ dim(D). Since B 6= D,
B ∩ D is a proper subspace of B. |(D1 − D2)(B\D)| = |(wA − wC) · |B\D|/|A| + (1 −
wA)|B\D|/|B|| ≥ (1−wA)|B\D|/|B|−|(wA−wC) · |B\D|/|A|| ≥ w∗/2−w∗/2 ·1/2 = w∗/4.

Proof [Proof of Theorem ??] Set ǫ = w0/100,M = ⌈1/ǫ⌉, γ = (1 − w0)/M . Let Dǫ =
{D(Aj , Bj , w0 + k ∗ γ, 1 − w0 − k ∗ γ}j∈[N ],k∈[M ]∪{0}. It is not hard to see that there exist
D∗ ∈ Dǫ such that dTV (D

∗,D) ≤ ǫ. By Proposition 22, we can find D′ ∈ Dǫ such
that dTV (D

′,D) ≤ 6ǫ with probability 1 − δ. Say D′ = D(A′, B′, w′, 1 − w′). We claim
{A′, B′} = {A,B}. For a contradiction, suppose it is not true. Then by Lemma 24,
dTV (D

′,D) ≥ w0/8 > 6ǫ, we derive a contradiction.

Appendix B. Generalized Chernoff Bound

Lemma 25 Let γ ∈ (0, 1), d, k ∈ N. Let x1,x2, · · · ,xk be a sequence of random variables
such that for all i ∈ [k]

P[(xi = 1) ∨ (x1 + x2 + · · · + xi−1 ≥ d)|x1, · · · ,xi−1] ≥ γ.

Assume k ≥ 2d/γ. Then

P[x1 + · · ·+ xk ≥ d] ≥ 1− exp
(

−kγ2/8
)

.

Proof We will use the coupling technique. Define

yi =

{

1 if x1 + · · ·+ xi−1 ≥ d.

xi otherwise.

Then

1. x1 + · · ·+ xk ≥ d ⇐⇒ y1 + · · ·+ yk ≥ d.

2. This is without loss of generality.
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2. For all i ∈ [k],P[yi = 1|y1, · · · ,yi−1] ≥ γ.

Define a submartingale Z0, · · · ,Zk by Z0 = 0 and Zj =
∑

1≤l≤j yl − jγ. Then,

P[x1 + · · ·+ xk ≥ d]

= P[y1 + · · ·+ yk ≥ d]

= 1− P[y1 + · · · + yk ≤ d− 1]

≥ 1− P[Zk − Z0 ≤ d− 1− kγ]

≥ 1− exp

(

−(kγ − (d− 1))2

2k

)

by Azuma–Hoeffding inequality

≥ 1− exp
(

−kγ2/8
)

. by kγ ≥ 2d
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