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Abstract

In the past decade, differential privacy has seen remarkable success as a rigorous and prac-
tical formalization of data privacy. This privacy definition and its divergence based relaxations,
however, have several acknowledged weaknesses, either in handling composition of private algo-
rithms or in analyzing important primitives like privacy amplification by subsampling. Inspired
by the hypothesis testing formulation of privacy, this paper proposes a new relaxation of dif-
ferential privacy, which we term “f-differential privacy” (f-DP). This notion of privacy has a
number of appealing properties and, in particular, avoids difficulties associated with divergence
based relaxations. First, f-DP faithfully preserves the hypothesis testing interpretation of dif-
ferential privacy, thereby making the privacy guarantees easily interpretable. In addition, f-DP
allows for lossless reasoning about composition in an algebraic fashion. Moreover, we provide
a powerful technique to import existing results proven for the original differential privacy defi-
nition to f-DP and, as an application of this technique, obtain a simple and easy-to-interpret
theorem of privacy amplification by subsampling for f-DP.

In addition to the above findings, we introduce a canonical single-parameter family of privacy
notions within the f-DP class that is referred to as “Gaussian differential privacy” (GDP),
defined based on hypothesis testing of two shifted Gaussian distributions. GDP is the focal
privacy definition among the family of f-DP guarantees due to a central limit theorem for
differential privacy that we prove. More precisely, the privacy guarantees of any hypothesis
testing based definition of privacy (including the original differential privacy definition) converges
to GDP in the limit under composition. We also prove a Berry—Esseen style version of the central
limit theorem, which gives a computationally inexpensive tool for tractably analyzing the exact
composition of private algorithms.

Taken together, this collection of attractive properties render f-DP a mathematically co-
herent, analytically tractable, and versatile framework for private data analysis. Finally, we
demonstrate the use of the tools we develop by giving an improved analysis of the privacy
guarantees of noisy stochastic gradient descent.
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1 Introduction

Modern statistical analysis and machine learning are overwhelmingly applied to data concerning
people. Valuable datasets generated from personal devices and online behavior of billions of indi-
viduals contain data on location, web search histories, media consumption, physical activity, social
networks, and more. This is on top of continuing large-scale analysis of traditionally sensitive data
records, including those collected by hospitals, schools, and the Census. This reality requires the
development of tools to perform large-scale data analysis in a way that still protects the privacy of
individuals represented in the data.

Unfortunately, the history of data privacy for many years consisted of ad-hoc attempts at
“anonymizing” personal information, followed by high profile de-anonymizations. This includes the
release of AOL search logs, de-anonymized by the New York Times [BZ06], the Netflix Challenge
dataset, de-anonymized by Narayanan and Shmatikov [NS08], the realization that participants in
genome-wide association studies could be identified from aggregate statistics such as minor allele
frequencies that were publicly released [HSRT08], and the reconstruction of individual-level census
records from aggregate statistical releases [Abol8].

Thus, we urgently needed a rigorous and principled privacy-preserving framework to prevent
breaches of personal information in data analysis. In this context, differential privacy has put
private data analysis on firm theoretical foundations [DMNS06, DKM*06]. This definition has
become tremendously successful: in addition to an enormous and growing academic literature,
it has been adopted as a key privacy technology by Google [EPK14], Apple [Appl7], Microsoft
[DKY17], and the US Census Bureau [Abol8|. The definition of this new concept involves privacy
parameters € > 0 and 0 < § < 1.

Definition 1.1 ([DMNS06, DKM™*06]). A randomized algorithm M that takes as input a dataset
consisting of indiwviduals is (e,0)-differentially private (DP) if for any pair of datasets S, S’ that
differ in the record of a single individual, and any event E,

P[M(S) € E] <eP[M(S') € E] +6. (1)
When § = 0, the guarantee is simply called e-DP.

In this definition, datasets are fized and the probabilities are taken only over the randomness
of the mechanism®. In particular, the event E can take any measurable set in the range of M. To
achieve differential privacy, a mechanism is necessarily randomized. Take as an example the problem
of privately releasing the average cholesterol level of individuals in the dataset S = (x1,...,zy),
each z; corresponding to an individual. A privacy-preserving mechanism may take the form?

1 .
= ﬁ(xl + .-+ x,) + noise.

M(S)

The level of the noise term has to be sufficiently large to mask the characteristics of any individual’s
cholesterol level, while not being too large to distort the population average for accuracy purposes.
Consequently, the probability distributions of M (S) and M(S’) are close to each other for any
datasets S, S’ that differ in only one individual record.

LA randomized algorithm M is often referred to as a mechanism in the differential privacy literature.
2Here we identify the individual x; with his/her cholesterol level.



Differential privacy is most naturally defined through a hypothesis testing problem from the
perspective of an attacker who aims to distinguish S from S’ based on the output of the mechanism.
This statistical viewpoint was first observed by [WZ10] and then further developed by [KOV17],
which is a direct inspiration for our work. In short, consider the hypothesis testing problem

Hy : the underlying dataset is S  versus H; : the underlying dataset is S’ (2)

and call Alice the only individual that is in S but not S’. As such, rejecting the null hypothesis
corresponds to the detection of absence of Alice, whereas accepting the null hypothesis means to
detect the presence of Alice in the dataset. Using the output of an (g, §)-DP mechanism, the power?
of any test at significance level 0 < o < 1 has an upper bound? of e + §. This bound is only
slightly larger than « provided that ¢, are small and, therefore, any test is essentially powerless.
Put differently, differential privacy with small privacy parameters protects against any inferences
of the presence of Alice, or any other individual, in the dataset.

Despite its apparent success, there are good reasons to want to relax the original definition of
differential privacy, which has led to a long line of proposals for such relaxations. The most impor-
tant shortcoming is that (e, )-DP does not tightly handle composition. Composition concerns how
privacy guarantees degrade under repetition of mechanisms applied to the same dataset, rendering
the design of differentially private algorithms modular. Without compositional properties, it would
be near impossible to develop complex differentially private data analysis methods. Although it
has been known since the original papers defining differential privacy [DMNS06, DKM™06] that the
composition of an (1, 01)-DP mechanism and an (e, d2)-DP mechanism yields an (g1 + €3, 01 + 02)-
DP mechanism, the corresponding upper bound e“17¢2q + §; + J2 on the power of any test at
significance level « no longer tightly characterizes the trade-off between significance level and
power for the testing between S and S’. In [DRV10], Dwork, Rothblum, and Vadhan gave an
improved composition theorem, but it fails to capture the correct hypothesis testing trade-off. This
is for a fundamental reason: (g,)-DP is mis-parameterized in the sense that the guarantees of the
composition of (g;,0;)-DP mechanisms cannot be characterized by any pair of parameters (g, d).
Worse, given any 9, finding the parameter € that most tightly approximates the correct trade-off
between significance level and type II error for a composition of a sequence of differentially private
algorithms is computationally hard [MV16], and so in practice, one must resort to approximations.
Given that composition and modularity are first-order desiderata for a useful privacy definition,
these are substantial drawbacks and often continue to push practical algorithms with meaningful
privacy guarantees out of reach.

In light of this, substantial recent effort has been devoted to developing relaxations of differ-
ential privacy for which composition can be handled exactly. This line of work includes several
variants of “concentrated differential privacy” [DR16, BS16], “Rényi differential privacy” [Mirl7],
and “truncated concentrated differential privacy” [BDRS18]. These definitions are tailored to be
able to exactly and easily track the “privacy cost” of compositions of the most basic primitive in
differential privacy, which is the perturbation of a real valued statistic with Gaussian noise.

While this direction of privacy relaxation has been quite fruitful, there are still several places
one might wish for improvement. First, these notions of differential privacy no longer have hy-
pothesis testing interpretations, but are rather based on studying divergences that satisfy a certain
information processing inequality. There are good reasons to prefer definitions based on hypothesis

3The power is equal to 1 minus the type II error.
4 A more precise bound is given in Proposition 2.5.



testing. Most immediately, hypothesis testing based definitions provide an easy way to interpret
the guarantees of a privacy definition. More fundamentally, a theorem due to Blackwell (see The-
orem 2.10) provides a formal sense in which a tight understanding of the trade-off between type I
and type II errors for the hypothesis testing problem of distinguishing between M (S) and M (S’)
contains only more information than any divergence between the distributions M (S) and M (S")
(so long as the divergence satisfies the information processing inequality).

Second, certain simple and fundamental primitives associated with differential privacy—most
notably, privacy amplification by subsampling [KLNT11]—either fail to apply to the existing relax-
ations of differential privacy, or require a substantially complex analysis [WBK18]. This is especially
problematic when analyzing privacy guarantees of stochastic gradient descent—arguably the most
popular present-day optimization algorithm—as subsampling is inherent to this algorithm. At best,
this difficulty arising from using these relaxations could be overcome by using complex technical
machinery. For example, it necessitated Abadi et al. [ACGT16] to develop the numerical moments
accountant method to sidestep the issue.

1.1 Our Contributions

In this work, we introduce a new relaxation of differential privacy that avoids these issues and
has other attractive properties. Rather than giving a “divergence” based relaxation of differential
privacy, we start fresh from the hypothesis testing interpretation of differential privacy, and obtain
a new privacy definition by allowing the full trade-off between type I and type II errors in the
simple hypothesis testing problem (2) to be governed by some function f. The functional privacy
parameter f is to this new definition as (e,d) is to the original definition of differential privacy.
Notably, this definition that we term f-differential privacy (f-DP)—which captures (g,0)-DP as a
special case—is accompanied by a powerful and elegant toolkit for reasoning about composition.
Here, we highlight some of our contributions:

An Algebra for Composition. We show that our privacy definition is closed and tight under
composition, which means that the trade-off between type I and type II errors that results from the
composition of an f1-DP mechanism with an fo-DP mechanism can always be exactly described
by a certain function f. This function can be expressed via f; and fo in an algebraic fashion,
thereby allowing for losslessly reasoning about composition. In contrast, (¢,0)-DP or any other
privacy definition artificially restricts itself to a small number of parameters. By allowing for
a function to keep track of the privacy guarantee of the mechanism, our new privacy definition
avoids the pitfall of premature summarization® in intermediate steps and, consequently, yields a
comprehensive delineation of the overall privacy guarantee. See more details in Section 3.

A Central Limit Phenomenon. We define a single-parameter family of f-DP that uses the type
I and type II error trade-off in distinguishing the standard normal distribution N'(0, 1) from N (u, 1)
for > 0. This is referred to as Gaussian differential privacy (GDP). By relating to the hypothesis
testing interpretation of differential privacy (2), the GDP guarantee can be interpreted as saying
that determining whether or not Alice is in the dataset is at least as difficult as telling apart
N(0,1) and N (p,1) based on one draw. Moreover, we show that GDP is a “canonical” privacy
guarantee in a fundamental sense: for any privacy definition that retains a hypothesis testing
interpretation, we prove that the privacy guarantee of composition with an appropriate scaling
converges to GDP in the limit. This central limit theorem type of result is remarkable not only

5To quote Susan Holmes [Hol19], “premature summarization is the root of all evil in statistics.”



because of its profound theoretical implication, but also for providing a computationally tractable
tool for analytically approximating the privacy loss under composition. Figure 1 demonstrates that
this tool yields surprisingly accurate approximations to the exact trade-off in testing the hypotheses

(2) or substantially improves on the existing privacy guarantee in terms of type I and type II errors.
See Section 2.2 and Section 3 for a thorough discussion.
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Figure 1: Left: Our central limit theorem based approximation (in blue) is very close to the
composition of just 10 mechanisms (in red). The tightest possible approximation via an (g,6)-DP
guarantee (in back) is substantially looser. See Figure 5 for parameter setup. Right: Privacy
analysis of stochastic gradient descent used to train a convolutional neural network on MNIST
[LC10]. The f-DP framework yields a privacy guarantee (in red) for this problem that is significantly
better than the optimal (g, d)-DP guarantee (in black) that is derived from the moments accountant
(MA) method [ACG'16]. Put simply, our analysis shows that stochastic gradient descent releases
less sensitive information than expected in the literature. See Section 5 for more plots and details.

A Primal-Dual Perspective. We show a general duality between f-DP and infinite collections
of (¢,6)-DP guarantees. This duality is useful in two ways. First, it allows one to analyze an
algorithm in the framework of f-DP, and then convert back to an (g,0)-DP guarantee at the end,
if desired. More fundamentally, this duality provides an approach to import techniques developed
for (g,0)-DP to the framework of f-DP. As an important application, we use this duality to show
how to reason simply about privacy amplification by subsampling for f-DP, by leveraging existing

results for (g,0)-DP. This is in contrast to divergence based notions of privacy, in which reasoning
about amplification by subsampling is difficult.

Taken together, this collection of attractive properties render f-DP a mathematically coher-
ent, computationally efficient, and versatile framework for privacy-preserving data analysis. To
demonstrate the practical use of this hypothesis testing based framework, we give a substantially
sharper analysis of the privacy guarantees of noisy stochastic gradient descent, improving on previ-

ous special-purpose analyses that reasoned about divergences rather than directly about hypothesis
testing [ACG™16]. This application is presented in Section 5.



2 f-Differential Privacy and Its Basic Properties

In Section 2.1, we give a formal definition of f-DP. Section 2.2 introduces Gaussian differential
privacy, a special case of f-DP. In Section 2.3, we highlight some appealing properties of this new
privacy notation from an information-theoretic perspective. Next, Section 2.4 offers a profound
connection between f-DP and (e, §)-DP. Finally, we discuss the group privacy properties of f-DP.

Before moving on, we first establish several key pieces of notation from the differential privacy
literature.

e Dataset. A dataset S is a collection of n records, each corresponding to an individual.
Formally, we write the dataset as S = (z1,...,2,), and an individual z; € X for some
abstract space X. Two datasets S’ = (z],...,2z],) and S are said to be neighbors if they
differ in exactly one record, that is, there exists an index j such that z; = 2 for all i # j and

e Mechanism. A mechanism M refers to a randomized algorithm that takes as input a dataset
S and releases some (randomized) statistics M (.S) of the dataset in some abstract space Y.
For example, a mechanism can release the average salary of individuals in the dataset plus
some random noise.

2.1 Trade-off Functions and f-DP

All variants of differential privacy informally require that it be hard to distinguish any pairs of
neighboring datasets based on the information released by a private a mechanism M. From an
attacker’s perspective, it is natural to formalize this notion of “indistinguishability” as a hypothesis
testing problem for two neighboring datasets S and S’:

Hy : the underlying dataset is S versus  Hj : the underlying dataset is S’

The output of the mechanism M serves as the basis for performing the hypothesis testing problem.
Denote by P and () the probability distributions of the mechanism applied to the two datasets,
namely M(S) and M(S’), respectively. The fundamental difficulty in distinguishing the two hy-
potheses is best delineated by the optimal trade-off between the achievable type I and type II errors.
More precisely, consider a rejection rule 0 < ¢ < 1, with type I and type II error rates defined as®

ag =Ep[¢], By =1-Eq|¢],

respectively. The two errors satisfy, for example, the constraint is well known to satisfy

where the total variation distance TV (P, Q) is the supremum of |P(A) — Q(A)| over all measurable
sets A. Instead of this rough constraint, we seek to characterize the fine-grained trade-off between
the two errors. Explicitly, fixing the type I error at any level, we consider the minimal achievable
type II error. This motivates the following definition.

S A rejection rule takes as input the released results of the mechanism. We flip a coin and reject the null hypothesis
with probability ¢.



Definition 2.1 (trade-off function). For any two probability distributions P and @ on the same
space, define the trade-off function T(P,Q) : [0,1] — [0, 1] as

T(P,Q)(a) =inf {By : ap < a},
where the infimum is taken over all (measurable) rejection rules.

The trade-off function serves as a clear-cut boundary of the achievable and unachievable regions
of type I and type II errors, rendering itself the complete characterization of the fundamental
difficulty in testing between the two hypotheses. In particular, the greater this function is, the
harder it is to distinguish the two distributions. For completeness, we remark that the minimal £y
can be achieved by the likelihood ratio test—a fundamental result known as the Neyman—Pearson
lemma, which we state in the appendix as Theorem A.1.

A function is called a trade-off function if it is equal to T'(P, Q) for some distributions P and
Q). Below we give a necessary and sufficient condition for f to be a trade-off function. This
characterization reveals, for example, that max{f, g} is a trade-off function if both f and g are
trade-off functions.

Proposition 2.2. A function f : [0,1] — [0,1] is a trade-off function if and only if f is convez,
continuous’, non-increasing, and f(xr) < 1—x for x € [0,1].

Now, we propose a new generalization of differential privacy built on top of trade-off functions.
Below, we write g > f for two functions defined on [0,1] if g(z) > f(x) for all 0 < z < 1, and we
abuse notation by identifying M (S) and M(S’) with their corresponding probability distributions.
Note that if T(P,Q) > T(P,Q), then in a very strong sense, P and () are harder to distinguish
than P and @ at any level of type I error.

Definition 2.3 (f-differential privacy). Let f be a trade-off function. A mechanism M is said to
be f-differentially private if
T(M(S),M(S") > f

for all neighboring datasets S and S'.

A graphical illustration of this definition is shown in Figure 2. Letting P and Q be the dis-
tributions such that f = T'(P,Q), this privacy definition amounts to saying that a mechanism is
f-DP if distinguishing any two neighboring datasets based on the released information is at least
as difficult as distinguishing P and @ based on a single draw. In contrast to existing definitions of
differential privacy, our new definition is parameterized by a function, as opposed to several real
valued parameters (e.g. ¢ and ). This functional perspective offers a complete characterization
of “privacy”, thereby avoiding the pitfall of summarizing statistical information too early. This
fact is crucial to the development of a composition theorem for f-DP in Section 3. Although this
completeness comes at the cost of increased complexity, as we will see in Section 2.2, a simple
family of trade-off functions can often closely capture privacy loss in many scenarios.

Naturally, the definition of f-DP is symmetric in the same sense as the neighboring relationship,
which by definition is symmetric. Observe that this privacy notion also requires

T(M(S'), M(S)) > f

"Convexity itself implies continuity in (0,1) for f. In addition, f(a) > 0 and f(a) < 1 — « implies continuity at
1. Hence, the continuity condition only matters at z = 0.
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Figure 2: Three different examples of T (M (S),M(S’)). Only the dashed line corresponds to a
trade-off function satisfying f-DP.

for any neighboring pair S,S’. Therefore, it is desirable to restrict our attention to “symmetric”
trade-off functions. Proposition 2.4 shows that this restriction does not lead to any loss of generality.

Proposition 2.4. Let a mechanism M be f-DP. Then, M is fS-DP with f5 = max{f, f~'}, where
the inverse function is defined as®

fﬁl(a) =inf{t € [0,1] : f(¢t) < a} (4)
for a € ]0,1].

Writing f = T(P,Q), we can express the inverse as f~! = T(Q, P), which therefore is also a
trade-off function. As a consequence of this, f5 continues to be a trade-off function by making use
of Proposition 2.2 and, moreover, is symmetric in the sense that

o=
Importantly, this symmetrization gives a tighter bound in the privacy definition since f5 > f. In
the remainder of the paper, therefore, trade-off functions will always be assumed to be symmetric
unless otherwise specified. We prove Proposition 2.4 in Appendix A.

We conclude this subsection by showing that f-DP is a generalization of (e,d)-DP. This fore-
shadows a deeper connection between f-DP and (g,0)-DP that will be discussed in Section 2.4.
Denote

fes(a) =max {0,1 -0 —e‘a,e *(1 -6 — )} (5)
for 0 < a < 1, which is a trade-off function. Figure 3 shows the graph of this function and its
evident symmetry. The following result is adapted from [WZ10].

8 Equation (4) is the standard definition of the left-continuous inverse of a decreasing function. When f is strictly
decreasing and f(0) = 1 and hence bijective as a mapping, (4) corresponds to the inverse function in the ordinary
sense, i.e. f(f ' (x)) = f'(f(x)) = 2. However, this is not true in general.



Proposition 2.5 ([WZ10]). A mechanism M is (¢,0)-DP if and only if M is f. s-DP.
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Figure 3: Left: f. 5 is a piecewise linear function and is symmetric with respect to the line y = x.
It has (nontrivial) slopes —e** and intercepts 1 — §. Right: Trade-off functions of unit-variance
Gaussian distributions with different means. The case of ¢ = 0.5 is reasonably private, u = 1 is
borderline private, and p = 3 is basically non-private: an adversary can control type I and type II
errors simultaneously at only 0.07. In the case of = 6 (almost coincides with the axes), the two
errors both can be as small as 0.001.

2.2 Gaussian Differential Privacy

This subsection introduces a parametric family of f-DP guarantees, where f is the trade-off function
of two normal distributions. We refer to this specialization as Gaussian differential privacy (GDP).
GDP enjoys many desirable properties that lead to its central role in this paper. Among others,
we can now precisely define the trade-off function with a single parameter. To define this notion,
let

G, :=T(N(0,1),N(p,1))

for > 0. An explicit expression for the trade-off function G, reads

Glo) = BB (1~ a) — ), (6)

where ® denotes the standard normal CDF. For completeness, we provide a proof of (6) in Ap-
pendix A. This trade-off function is decreasing in 4 in the sense that G, < G if p > 1. We now
define GDP:

Definition 2.6. A mechanism M is said to satisfy p-Gaussian Differential Privacy (u-GDP) if it
is G,-DP. That 1s,
T(M(S),M(S") > G,

for all neighboring datasets S and S'.

GDP has several attractive properties. First, this privacy definition is fully described by the
single mean parameter of a unit-variance Gaussian distribution, which makes it easy to describe



and interpret the privacy guarantees. For instance, one can see from the right panel of Figure 3
that p© < 0.5 guarantees a reasonable amount of privacy, whereas if ; > 6, almost nothing is
being promised. Second, loosely speaking, GDP occupies a role among all hypothesis testing based
notions of privacy that is similar to the role that the Gaussian distribution has among general
probability distributions. We formalize this important point by proving central limit theorems for
f-DP in Section 3, which, roughly speaking, says that f-DP converges to GDP under composition
in the limit. Lastly, as shown in the remainder of this subsection, GDP precisely characterizes the
Gaussian mechanism, one of the most fundamental building blocks of differential privacy.

Consider the problem of privately releasing a univariate statistic 6(.S) of the dataset S. Define
the sensitivity of 0 as

sens(f) = sup |0(S) — 6(5")|,
S,S!

where the supremum is over all neighboring datasets. The Gaussian mechanism adds Gaussian
noise to the statistic 6 in order to obscure whether € is computed on S or S’. The following result
shows that the Gaussian mechanism with noise properly scaled to the sensitivity of the statistic
satisfies GDP.

Theorem 2.7. Define the Gaussian mechanism that operates on a statistic 0 as M(S) = 0(S) +&,
where &€ ~ N(0,sens(0)2/u?). Then, M is u-GDP.

Proof of Theorem 2.7. Recognizing that M (.S), M (S’) are normally distributed with means 6(.5), 6(.5’),
respectively, and common variance o2 = sens(0)?/u?, we get

T(M(S), M(S")) = T(N(6(S),0%), N(8(5),0%)) = Glo(s)-0(5"| /o
By the definition of sensitivity, [#(S) — 68(S")|/o < sens(f) /o = p. Therefore, we get
T(M(S), M(5')) = Glos)-o(s)l/o > G-
This completes the proof. ]

As implied by the proof above, GDP offers the tightest possible privacy bound of the Gaussian
mechanism. More precisely, the Gaussian mechanism in Theorem 2.7 satisfies

Gula) = T(M(S), M(S))(a), (7)

inf

neighboring 5,5’
where the infimum is (asymptotically) achieved at the two neighboring datasets such that |6(S) —
0(S")| = sens(0) irrespective of the type I error . As such, the characterization by GDP is precise
in the pointwise sense. In contrast, the right-hand side of (7) in general is not necessarily a convex
function of a and, in such case, is not a trade-off function according to Proposition 2.2. This
nice property of Gaussian mechanism is related to the log-concavity of Gaussian distributions. See
Proposition A.3 for a detailed treatment of log-concave distributions.

2.3 Post-Processing and the Informativeness of f-DP

Intuitively, a data analyst cannot make a statistical analysis more disclosive only by processing the
output of the mechanism M. This is called the post-processing property, a natural requirement
that any notion of privacy, including our definition of f-DP, should satisfy.



To formalize this point for f-DP, denote by Proc : Y — Z a (randomized) algorithm that maps
the input M (S) € Y to some space Z, yielding a new mechanism that we denote by Proco M. The
following result confirms the post-processing property of f-DP.

Proposition 2.8. If a mechanism M is f-DP, then its post-processing Proc o M is also f-DP.

Proposition 2.8 is a consequence of the following lemma. Let Proc(P) be the probability distri-
bution of Proc(¢) with ¢ drawn from P. Define Proc(Q) likewise.

Lemma 2.9. For any two distributions P and Q, we have
T (Proc(P),Proc(Q)) = T(P, Q).

This lemma means that post-processed distributions can only become more difficult to tell apart
than the original distributions from the perspective of trade-off functions. While the same property
holds for many divergence based measures of indistinguishability such as the Rényi divergences®
used by the concentrated differential privacy family of definitions [DR16, BS16, Mir17, BDRS18], a
consequence of the following theorem is that trade-off functions offer the most informative measure
among all. This remarkable inverse of Lemma 2.9 is due to Blackwell (see also Theorem 2.5 in
[KOV17]).

Theorem 2.10 ([Bla50], Theorem 10). Let P,Q be probability distributions on'Y and P',Q’ be
probability distributions on Z. The following two statements are equivalent:

(a) T(P,Q) < T(FP',Q).
(b) There exists a randomized algorithm Proc : Y — Z such that Proc(P) = P, Proc(Q) = Q’.

To appreciate the implication of this theorem, we begin by observing that post-processing
induces an order!® on pairs of distributions, which is called the Blackwell order (see, e.g., [Ragl1]).
Specifically, if the above condition (b) holds, then we write (P, Q) =Blackwen (P’, Q") and interpret
this as “(P,Q) is easier to distinguish than (P’,Q’) in the Blackwell sense”. Similarly, when
T(P,Q) < T(P,Q"), we write (P,Q) =tradeott (P’,Q’) and interpret this as “(P, Q) is easier to
distinguish than (P’,Q’) in the testing sense”. In general, any privacy measure used in defining a
privacy notion induces an order < on pairs of distributions. Assuming the post-processing property
for the privacy notion, the induced order < must be consistent with <piackwell- Concretely, we denote
by Ineq(=x) = {(P,Q; P',Q") : (P,Q) < (P',Q")} the set of all comparable pairs of the order <. As
is clear, a privacy notion satisfies the post-processing property if and only if the induced order =<
satisfies Ineq(=) 2 Ineq(=Biackwell)-

Therefore, for any reasonable privacy notion, the set Ineq(=<) must be large enough to contain
Ineq(=Blackwell)- However, it is also desirable to have a not too large Ineq(=). For example, consider
the privacy notion based on a trivial divergence Dy with Dy(P||/Q) = 0 for any P,Q. Note that
Ineq(=p,) is the largest possible and, meanwhile, it is not informative at all in terms of measuring
the indistinguishability of two distributions.

The argument above suggests that going from the “minimal” order Ineq(=pjackwel) to the “max-
imal” order Ineq(=p,) would lead to information loss. Remarkably, f-DP is the most informa-
tive differential privacy notion from this perspective because its induced order =i;aqeoff Satisfies

9See Appendix B for its definition and relation with trade-off functions.
10This is in general not a partial order.
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Ineq(Ztradeot) = Ineq(=<Blackwell). In stark contrast, this is not true for the order induced by other
popular privacy notions such as Rényi differential privacy and (e,d)-DP. We prove this claim in
Appendix B and further justify the informativeness of f-DP by providing general tools that can
losslessly convert f-DP guarantees into divergence based privacy guarantees.

2.4 A Primal-Dual Perspective

In this subsection, we show that f-DP is equivalent to an infinite collection of (e,§)-DP guarantees
via the convex conjugate of the trade-off function. As a consequence of this, we can view f-DP
as the primal privacy representation and, accordingly, its dual representation is the collection of
(e,9)-DP guarantees. Taking this powerful viewpoint, many results from the large body of (e, §)-DP
work can be carried over to f-DP in a seamless fashion. In particular, this primal-dual perspective
is crucial to our analysis of “privacy amplification by subsampling” in Section 4. All proofs are
deferred to Appendix A.

First, we present the result that converts a collection of (g,d)-DP guarantees into an f-DP
guarantee.

Proposition 2.11 (Dual to Primal). Let I be an arbitrary index set such that each i € I is
associated with €; € [0,00) and 0; € [0,1]. A mechanism is (g;,0;)-DP for all i € I if and only if it
1s f-DP with
f = sup fep.
i€l

This proposition follows easily from the equivalence of (¢,d)-DP and f. ;-DP. We remark that
the function f constructed above remains a symmetric trade-off function.

The more interesting direction is to convert f-DP into a collection of (e,d)-DP guarantees.
Recall that the convex conjugate of a function g defined on (—o00, 00) is defined as

9" (y) = sup yx—g(x). (8)
—oo<r<0o0
To define the conjugate of a trade-off function f, we extend its domain by setting f(z) = oo for
x < 0 and z > 1. With this adjustment, the supremum is effectively taken over 0 < x < 1.

Proposition 2.12 (Primal to Dual). For a symmetric trade-off function f, a mechanism is f-DP
if and only if it is (¢,6(e))-DP for all e > 0 with §(e) = 1+ f*(—e°).

For example, taking f = G, the following corollary provides a lossless conversion from GDP
to a collection of (g,0)-DP guarantees. This conversion is exact and, therefore, any other (e,d)-DP
guarantee derived for the Gaussian mechanism is implied by this corollary. See Figure 4 for an
illustration of this result.

Corollary 2.13. A mechanism is u-GDP if and only if it is (5, 5(6))—DP for all € = 0, where
N I WY Y (U o
5(5)—@( u+2> e<I>( p 2).

This corollary has appeared earlier in [BW18]. Along this direction, [BBG18] further proposed
“privacy profile”, which in essence corresponds to an infinite collection of (g,d). The notion of
privacy profile mainly serves as an analytical tool in [BBG18|.
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Figure 4: Each (e,d(¢))-DP guarantee corresponds to two supporting linear functions (symmetric
to each other) to the trade-off function describing the complete f-DP guarantee. In general, char-
acterizing a privacy guarantee using only a subset of (e, d)-DP guarantees (for example, only those
with small §) would result in information loss.

The primal-dual perspective provides a useful tool through which we can bridge the two privacy
definitions. In some cases, it is easier to work with f-DP by leveraging the interpretation and
informativeness of trade-off functions, as seen from the development of composition theorems for
f-DP in Section 3. Meanwhile, (¢,0)-DP is more convenient to work with in the cases where
the lower complexity of two parameters e,¢ is helpful, for example, in the proof of the privacy
amplification by subsampling theorem for f-DP. In short, our approach in Section 4 is to first work
in the dual world and use existing subsampling theorems for (g, )-DP, and then convert the results
back to f-DP using a slightly more advanced version of Proposition 2.12.

2.5 Group Privacy

The notion of f-DP can be extended to address privacy of a group of individuals, and a question
of interest is to quantify how privacy degrades as the group size grows. To set up the notation,
we say that two datasets S, 5" are k-neighbors (where k > 2 is an integer) if there exist datasets
S =80,51,...,5; = 5" such that S; and S;;1 are neighboring or identical for all i = 0,... k — 1.
Equivalently, S, S’ are k-neighbors if they differ by at most k& individuals. Accordingly, a mechanism
M is said to be f-DP for groups of size k if

T(M(S),M(S) > f

for all k-neighbors S and 5.
In the following theorem, we use h°* to denote the k-fold iterative composition of a function h.
For example, h°! = h and h°%(z) = h(h(z)).

Theorem 2.14. If a mechanism is f-DP, then it is [1 - (1- f)Ok] -DP for groups of size k. In
particular, if a mechanism is u-GDP, then it is ku-GDP for groups of size k.
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For completeness, 1 — (1 — f)° is a trade-off function and, moreover, remains symmetric if f
is symmetric. These two facts and Theorem 2.14 are proved in Appendix A. As revealed in the
proof, the privacy bound 1 — (1 — £)°¥ in general cannot be improved, thereby showing that the
group operation in the f-DP framework is closed and tight. In addition, it is easy to see that
1—(1—f)°% <1—(1— f)°*=1) by recognizing that the trade-off function f satisfies 1 — f(z) > x.
This is consistent with the intuition that detecting changes in groups of k£ individuals becomes
easier as the group size increases.

As an interesting consequence of Theorem 2.14, the group privacy of e-DP in the limit corre-

sponds to the trade-off function of two Laplace distributions. Recall that the density of Lap(u, b)
is Le—lz—nul/b
is ope .

Proposition 2.15. Fiz > 0 and set ¢ = p/k. As k — oo, we have
1= (1= fep)** = T(Lap(0,1), Lap(u, 1))
The convergence is uniform over [0, 1].

Two remarks are in order. First, T(Lap(O, 1), Lap(u, 1)) is not equal to f.s for any €,0 and,
therefore, (g, d)-DP is not expressive enough to measure privacy under the group operation. Second,
the approximation in this theorem is very accurate even for small k. For example, for p =1,k = 4,
the function 1 — (1 — f.)°% is within 0.005 of T(Lap(O, 1), Lap(p, 1)) uniformly over [0,1]. The
proof of Proposition 2.15 is deferred to Appendix A.

3 Composition and Limit Theorems

Imagine that an analyst performs a sequence of analyses on a private dataset, in which each analysis
is informed by prior analyses on the same dataset. Provided that every analysis alone is private,
the question is whether all analyses collectively are private, and if so, how the privacy degrades as
the number of analyses increases, namely under composition. It is essential for a notion of privacy
to gracefully handle composition, without which the privacy analysis of complex algorithms would
be almost impossible.

Now, we describe the composition of two mechanisms. For simplicity, this section writes X
for the space of datasets and abuse notation by using n to refer to the number of mechanisms in
composition't. Let M; : X — Y] be the first mechanism and M, : X x Y] — Y, be the second
mechanism. In brief, My takes as input the output of the first mechanism M; in addition to the
dataset. With the two mechanisms in place, the joint mechanism M : X — Y] X Y5 is defined as

M(S) = (y17M2(87y1)>7 (9)

where y; = M1(S5).'2 Roughly speaking, the distribution of M (S) is constructed from the marginal
distribution of M;(S) on Y7 and the conditional distribution of M3(S,y1) on Ys given M;(S) = y;.
The composition of more than two mechanisms follows recursively. In general, given a sequence of
mechanisms M; : X x Y] x---xY;_1 = Y; for i =1,2,...,n, we can recursively define the joint
mechanism as their composition:

M: X =Y x---xY,.

1 As will be clear later, the use of n is consistent with the literature on central limit theorems.
12 Alternatively, we can write M(S) = (M1(S), M2(S, M1(S))), in which case it is necessary to specify that M;
should be run only once in this expression.
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Put differently, M (.S) can be interpreted as the trajectory of a Markov chain whose initial distri-
bution is given by Mj(S) and the transition kernel M;(S,---) at each step.

Using the language above, the goal of this section is to relate the privacy loss of M to that of
the n mechanisms Mi,..., M, in the f-DP framework. In short, Section 3.1 develops a general
composition theorem for f-DP. In Sections 3.2, we identify a central limit theorem phenomenon of
composition in the f-DP framework, which can be used as an approximation tool, just like we use
the central limit theorem for random variables. This approximation is extended to and improved
for (e,6)-DP in Section 3.3.

3.1 A General Composition Theorem

The main thrust of this subsection is to demonstrate that the composition of private mechanisms
is closed and tight'3 in the f-DP framework. This result is formally stated in Theorem 3.2, which
shows that the composed mechanism remains f-DP with the trade-off function taking the form of
a certain product. To define the product, consider two trade-off functions f and g that are given
as f =T(P,Q) and g = T(P’, Q") for some probability distributions P, P’, Q, Q’.

Definition 3.1. The tensor product of two trade-off functions f = T(P,Q) and g = T(P',Q’) is
defined as
F@g=T(PxP,QxQ).

Throughout the paper, write f ® g(a) for (f ® g)(a), and denote by f®" the n-fold tensor
product of f. The well-definedness of f®™ rests on the associativity of the tensor product, which
we will soon illustrate.

By definition, f ® ¢ is also a trade-off function. Nevertheless, it remains to be shown that the
tensor product is well-defined: that is, the definition is independent of the choice of distributions
used to represent a trade-off function. More precisely, assuming f = T(P,Q) = T(P, Q) for some
distributions P, ), we need to ensure that

T(PxP,QxQ)=T(P xP,QxQ.

We defer the proof of this intuitive fact to Appendix C. Below we list some other useful properties!4
of the tensor product of trade-off functions, whose proofs are placed in Appendix D.

. The product ® is commutative and associative.

-1t g1 = go, then f® g1 = f @ go.
. f®@Id=1d® f = f, where the identity trade-off function Id(z) =1 —z for 0 < z < 1.

=W N =

(f®g) Tt =f1®g . See the definition of inverse in (4).

Note that Id is the trade-off function of two identical distributions. Property 4 implies that when
f, g are symmetric trade-off functions, their tensor product f ® g is also symmetric.
Now we state the main theorem of this subsection. Its proof is given in Appendix C.

13Section 2.5 shows that f-DP is “closed and tight” in a similar sense, in terms of the guarantees of group privacy.
14 These properties make the class of trade-off functions a commutative monoid. Informally, a monoid is a group
without the inverse operator.
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Theorem 3.2. Let M;(-,y1,--- ,yi—1) be fi-DP for all y; € Y1,...,yi—1 € Yi_1. Then the n-fold
composed mechanism M : X - Y1 X -+ XY, is f1®---® fn-DP.

This theorem shows that the composition of mechanisms remains f-DP or, put differently,
composition is closed in the f-DP framework. Moreover, the privacy bound f; ® --- ® f,, in
Theorem 3.2 is tight in the sense that it cannot be improved in general. To see this point, consider
the case where the second mechanism completely ignores the output of the first mechanism. In
that case, the composition obeys

T(M(S), M(S")) = T(My(S) x Ma(S), Mi(S') x Mz(S"))
=T (My(S), M1 (S")) @ T (Ma(S), Mz(S")).

Next, taking neighboring datasets such that T'(M;(S), M1(S")) = fi and T(Ma(S), Ma(S")) =
f2, one concludes that f; ® f2 is the tightest possible bound on the two-fold composition. For
comparison, the advanced composition theorem for (¢, §)-DP does not admit a single pair of optimal
parameters ,0 [DRV10]. In particular, no pair of £, can exactly capture the privacy of the
composition of (g,d)-DP mechanisms. See Section 3.3 and Figure 5 for more elaboration.

In the case of GDP, composition enjoys a simple and convenient formulation due to the identity

GM1®GM2®”'®G}Ln:Gﬂ’

where y = \/u3 + -+ + p2. This formula is due to the rotational invariance of Gaussian distri-
butions with identity covariance. We provide the proof in Appendix D. The following corollary
formally summarizes this finding.

Corollary 3.3. The n-fold composition of u;-GDP mechanisms is \/u3 + - - + p2-GDP.

On a related note, the pioneering work [KOV17] is the first to take the hypothesis testing
viewpoint in the study of privacy composition and to use Blackwell’s theorem as an analytic tool
therein. In particular, the authors offered a composition theorem for (g,9)-DP that improves on
the advanced composition theorem [DRV10]. Following this work, [MV16] provided a self-contained
proof by essentially proving the “(e,d) special case” of Blackwell’s theorem. In contrast, our novel
proof of Theorem 3.2 only makes use of the Neyman—Pearson lemma, thereby circumventing the
heavy machinery of Blackwell’s theorem. This simple proof better illuminates the essence of the
composition theorem.

3.2 Central Limit Theorems for Composition

In this subsection, we identify a central limit theorem type phenomenon of composition in the f-DP
framework. Our main results (Theorem 3.4 and Theorem 3.5), roughly speaking, show that trade-off
functions corresponding to small privacy leakage accumulate to G, for some p under composition.
Equivalently, the privacy of the composition of many “very private” mechanisms is best measured
by GDP in the limit. This identifies GDP as the focal privacy definition among the family of f-DP
privacy guarantees, including (e, d)-DP. More precisely, all privacy definitions that are based on a
hypothesis testing formulation of “indistinguishability” converge to the guarantees of GDP in the
limit of composition. We remark that [SMM18] proved a conceptually related central limit theorem
for random variables corresponding to the privacy loss. This theorem is used to reason about the
non-adaptive composition for (e, )-DP. In contrast, our central limit theorem is concerned with the
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optimal hypothesis testing trade-off functions for the composition theorem. Moreover, our theorem
is applicable in the setting of composition, where each mechanism is informed by prior interactions
with the same database.

From a computational viewpoint, these limit theorems yield an efficient method of approximat-
ing the composition of general f-DP mechanisms. This is very appealing for analyzing the privacy
properties of algorithms that are comprised of many building blocks in a sequence. For compari-
son, the exact computation of privacy guarantees under composition can be computationally hard
[MV16] and, thus, tractable approximations are important. Using our central limit theorems, the
computation of the exact overall privacy guarantee f; ® - -+ ® f,, in Theorem 3.2 can be reduced to
the evaluation of a single mean parameter p in a GDP guarantee. We give an exemplary application
of this powerful technique in Section 5.

Explicitly, the mean parameter p in the approximation depends on certain functionals of the

trade-off functions!®:

1
KI(f) = /O log | f/(x)] d

1
pa(f) = / log? |'(z)| d

0

1
ks(f) = / | og | £/(2)]] da

! 3
)= [ ol /)] +100) da.

All of these functionals take values in [0, +00], and the last is defined for f such that kl(f) < oo.
In essence, these functionals are calculating moments of the log-likelihood ratio of P and @ such
that f = T(P,Q). In particular, all of these functionals are 0 if f(z) = Id(x) = 1 — =, which
corresponds to zero privacy leakage. As its name suggests, kl(f) is the Kullback—Leibler (KL)
divergence of P and @ and, therefore, kl(f) > 0. Detailed elaboration on these functionals is
deferred to Appendix D.

In the following theorem, kl denotes the vector (kl( i), KI( fn)) and ko, k3, k3 are defined
similarly; in addition, || - ||; and | - ||2 are the ¢; and ¢ norms, respectively.

Theorem 3.4. Let f1,..., fn be symmetric trade-off functions such that k3(f;) < oo for all 1 <
1 < n. Denote

_ 2|1k1]; . 0.56|%s]|1
Tkl — KL (Il — [K112)>2

and assume vy < % Then, for all o € [y,1 — 7], we have'®

Gua+7)—7<fi®dfo® @ fola) < Gula—7) +7. (10)

Loosely speaking, the lower bound in (10) shows that the composition of f;-DP mechanisms
for ¢« = 1,...,n is approximately u-GDP and, in addition, the upper bound demonstrates that
the tightness of this approximation is specified by ~. In the case where all f; are equal to some

5 Although the trade-off function satisfies f'(x) < 0 almost everywhere on [0, 1], we prefer to use | f’(x)| instead of
—f'(z) for aesthetic reasons.
We can extend G, to be 1 in (=00, 0) and 0 in (1, +00) so that the assumption that a € [y, 1—+] can be removed.
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f # Id, the theorem reveals that the composition becomes blatantly non-private as n — oo because
i = /n — oo. More interesting applications of the theorem, however, are cases where each f;
is close to the “perfect privacy” trade-off function Id such that collectively u is convergent and -~y
vanishes as n — oo (see the example in Section 5). For completeness, the condition k3(f;) < oo
(which implies that the other three functionals are also finite) for the use of this theorem excludes
the case where f;(0) < 1, in particular, f.5 in (¢,0)-DP with § > 0. We introduce an easy and
general technique in Section 3.3 to deal with this issue.

From a technical viewpoint, Theorem 3.4 can be thought of as a Berry—Esseen type central limit
theorem. The detailed proof, as well as that of Theorem 3.5, is provided in Appendix D.

Next, we present an asymptotic version of Theorem 3.4 for composition of f-DP mechanisms.
In analogue to classical central limit theorems, below we consider a triangular array of mechanisms
{Mp1,..., My}, where My; is fri-DP for 1 <i < n.

Theorem 3.5. Let {fp; : 1 <i < n}S, be a triangular array of symmetric trade-off functions and
assume the following limits for some constants K > 0 and s > 0 as n — oo:

LS M (fu) > K
2. maxi<i<n KI(fni) = 0;
- iy k2 fui) = 8%
> k3(fai) = 0.

Then, we have

>~ W

nILH;o fnl @ fn2 DXy fnn(a) = G2K/s(a)
uniformly for all o € [0,1].

Taken together, this theorem and Theorem 3.2 amount to saying that the composition M,; ®
... ® My, is asymptotically 2K /s-GDP. In fact, this asymptotic version is a consequence of The-
orem 3.4 as one can show u — 2K/s and v — 0 for the triangular array of symmetric trade-off
functions. This central limit theorem implies that GDP is the only parameterized family of trade-
off functions that can faithfully represent the effects of composition. In contrast, neither e- nor
(€,0)-DP can losslessly be tracked under composition—the parameterized family of functions f. ;
cannot represent the trade-off function that results from the limit under composition.

The conditions for use of this theorem are reminiscent of Lindeberg’s condition in the central
limit theorem for independent random variables. The proper scaling of the trade-off functions
is that both kl(f,;) and ka(fni) are of order O(1/n) for most 1 < i < n. As a consequence,
the cumulative effects of the moment functionals are bounded. Furthermore, as with Lindeberg’s
condition, the second condition in Theorem 3.5 requires that no single mechanism has a significant
contribution to the composition in the limit.

In passing, we remark that K and s satisfy the relationship s = v/2K in all examples of
the application of Theorem 3.5 in this paper, including Theorem 3.6 and Theorem 5.2 as well as
their corollaries. As such, the composition is asymptotically s-GDP. A proof of this interesting
observation or the construction of a counterexample is left for future work.
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3.3 Composition of (¢,§)-DP: Beating Berry—Esseen

Now, we extend central limit theorems to (g, d)-DP. As shown by Proposition 2.5, (&, §)-DP is equiv-
alent to f; 5-DP and, therefore, it suffices to approximate the trade-off function f; 5, ®--- ® fe, 5.
by making use of the composition theorem for f-DP mechanisms. As pointed out in Section 3.2,
however, the moment conditions required in the two central limit theorems (Theorems 3.4 and 3.5)
exclude the case where §; > 0.

To overcome the difficulty caused by a nonzero &, we start by observing the useful fact that

fa,6:f5,0®f0,6' (11)

This decomposition, along with the commutative and associative properties of the tensor product,
shows

feror @@ fep5, = (fo, 0@ @ fer0) @ (fos @+ @ fos,)-
This identity allows us to work on the € part and 6 part separately. In short, the € part f;, o ®
++® fe,,0 now can be approximated by G N/ ey by invoking Theorem 3.5. For the é part, we
can iteratively apply the rule

fo.s1 @ fo.s, = fo1—(1-61)(1=52) (12)

to obtain fo5, ® -+ ® fo,s, = fo,1-(1-61)(1—62)--(1—6,,)- Lhis rule is best seen via the interesting fact
that fy s is the trade-off function of shifted uniform distributions T(U [0,1,U[6,1+ 5])

Now, a central limit theorem for (g,6)-DP is just a stone’s throw away. In what follows, the
privacy parameters ¢ and ¢ are arranged in a triangular array {(eni, 0ni) 1 1 <@ < n} .

Theorem 3.6. Assume

n n
E €2 — K, max en; — 0, E Ong — 0, max 0p; — 0
— 1<i<n — 1<i<n
1= 1=

for some nonnegative constants j,6 as n — co. Then, we have

f5n176n1 K- fEnnyénn - G/J ® f0,1—676
uniformly over [0,1] as n — oo.

Remark 1. A formal proof is provided in Appendix D. The assumptions concerning {d,;} give rise
to 1 — (1 — 0p1)(1 — 8p2) -+ (1 — 6pn) — 1 — 7%, In general, tensoring with fy s is equivalent to
scaling the graph of the trade-off function f toward the origin by a factor of 1 — §. This property
is specified by the following formula, and we leave its proof to Appendix D:

(1-0)-f(1%), 0<a<1-4

0, 1-<a<l. (13)

f® fosla) = {

In particular, f ® fy s is symmetric if f is symmetric. Note that (11) and (12) can be deduced by
the formula above.

This theorem interprets the privacy level of the composition using Gaussian and uniform dis-
tributions. Explicitly, the theorem demonstrates that, based on the released information of the
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composed mechanism, distinguishing between any neighboring datasets is at least as hard as dis-
tinguishing between the following two bivariate distributions:

N(0,1) x U[0,1] versus N (1, 1) x U[1 —e™%,2 —e9].

We note that for small 6, e ~ 1 —4. So U[l —e™%,2 —e 9] = U[§,1+ 4]

This approximation of the tensor product f; 5., ® -+ ® f.. 6., Using simple distributions is
important from the viewpoint of computational complexity. Murtagh and Vadhan [MV16] showed
that, given a collection of {(g;,9;)}7;, finding the smallest e such that f. 5 < fo, 5, @ - ® fe, 5, 18
#P-hard!” for any §. From the dual perspective (see Section 2.4), this negative result is equivalent
to the #P-hardness of evaluating the convex conjugate ( fer,60 @@ fe, 8 )* at any point. For
completeness, we remark that [MV16] provided an FPTAS'® to approximately find the smallest
e in O(n?) time for a single 6. In comparison, Theorem 3.6 offers a global approximation of the

tensor product in O(n) time using a closed-form expression, subsequently enabling an analytical
approximation of the smallest ¢ for each 4.
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Figure 5: Left: Tensoring with fy s scales the graph towards the origin by a factor of 1 — 4.
Right: 10-fold composition of (1/1/10,0)-DP mechanisms, that is, f& with n = 10, = 1/\/n.
The dashed curve corresponds to ¢ = 2.89,6 = 0.001. These values are obtained by first setting
d = 0.001 and finding the smallest ¢ such that the composition is (e, d)-DP. Note that the central

limit theorem approximation to the true trade-off curve is almost perfect, whereas the tightest
possible approximation via (e, §)-DP is substantially looser.

That being said, Theorem 3.6 remains silent on the approximation error in applications with
a moderately large number of (e,d)-DP mechanisms. Alternatively, we can apply Theorem 3.4
to obtain a non-asymptotic normal approximation to f;, 0 ® --- ® f, 0 and use v to specify the
approximation error. It can be shown that v = O(1/y/n) under mild conditions (Corollary D.7).
This bound, however, is not sharp enough for tight privacy guarantees if n is not too large (note
that 1/4/n ~ 0.14 if n = 50, for which exact computation is already challenging, if possible at all).

74P is a complexity class that is “even harder than” NP (i.e. a polynomial time algorithm for any #P-hard
problem would imply P=NP). See, e.g., Ch. 9. of [AB09].

8 An approximation algorithm is called a fully polynomial-time approximation scheme (FPTAS) if its running time
is polynomial in both the input size and the inverse of the relative approximation error. See, e.g., Ch. 8. of [Vazl13].

19



Surprisingly, the following theorem establishes a O(1/n) bound, thereby “beating” the classical
Berry—Esseen bound.

Theorem 3.7. Fiz y > 0 and let € = p/\/n. There is a constant ¢ > 0 that only depends on u
satisfying
Gul(a+5) -

foralln>1andc/n<a<1-—c/n.

B <Gu(a-7)+ 5

As with Theorem 3.6, this theorem can be extended to approximate DP (§ # 0) by making
use of the decomposition (11). Our simulation studies suggest that ¢ ~ 0.1 for p = 1, which
is best illustrated in the right panel of Figure 5. Despite a fairly small n = 10, the difference

between (G1 and its target Sg" is less than 0.013 in the pointwise sense. Interestingly, numerical
evidence suggests the same O(1/n) rate in the inhomogeneous composition provided that 1, ..., ¢,

are roughly the same size. A formal proof, or even a quantitative statement of this observation,
constitutes an interesting problem for future investigation.
In closing this section, we highlight some novelties in the proof of Theorem 3.7. Denoting

=1 andg¢ = KOV17] presented a very useful expression (rephrased in our framework):

ef
pE T 1+4ef 1+ec? [

S(T)l = T(B(n,ps), B(n, qE))a

where B(n,p) denotes the binomial distribution with n trials and success probability p. However,
directly approximating ff?gL through these two binomial distributions is unlikely to yield an O(1/n)
bound because the Berry—Esseen bound is rate-optimal for binomial distributions. Our analysis,
instead, rests crucially on a certain smoothing effect that comes for free in testing between the two
distributions. It is analogous to the continuity correction for normal approximations to binomial
probabilities. See the technical details in Appendix D.

4 Amplifying Privacy by Subsampling

Subsampling is often used prior to a private mechanism M as a way to amplify privacy guarantees.
Specifically, we can construct a smaller dataset S by flipping a fair coin for each individual in the
original dataset S to decide whether the individual is included in S. This subsampling scheme
roughly shrinks the dataset by half and, therefore, we would expect that the induced mechanism
applied to S is about twice as private as the original mechanism M. Intuitively speaking, this
privacy amplification is due to the fact that every individual enjoys perfect privacy if the individual
is not included in the resulting dataset S, which happens with probability 50%.

The claim above was first formalized in [KLNT11] for (g, d)-DP. Such a privacy amplification
property is, unfortunately, no longer true for the most natural previous relaxations of differential
privacy aimed at recovering precise compositions (like concentrated differential privacy (CDP)
[DR16, BS16]). Further modifications such as truncated CDP [BDRS18| have been introduced
primarily to remedy this deficiency of CDP—Dbut at the cost of extra complexity in the definition.
Other relaxations like Rényi differential privacy [Mirl7] can be shown to satisfy a form of privacy
amplification by subsampling, but both the analysis and the statement are complex [WBK18].

In this section, we show that these obstacles can be overcome by our hypothesis testing based re-
laxation of differential privacy. Explicitly, our main result is a simple, general, and easy-to-interpret
subsampling theorem for f-DP. Somewhat surprisingly, our theorem significantly improves on the
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classical subsampling theorem for privacy amplification in the (g,)-DP framework [Ull17]. Note
that this classical theorem continues to use (,9)-DP to characterize the subsampled mechanism.
However, (e,9)-DP is simply not expressive enough to capture the amplification of privacy.

4.1 A Subsampling Theorem

Given an integer 1 < m < n and a dataset S of n individuals, let Sample,,(S) be a subset of S that
is chosen uniformly at random among all the m-sized subsets of S. For a mechanism M defined on
X™ we call M (Samplem(S )) the subsampled mechanism, which takes as input an n-sized dataset.
Formally, we use M o Sample,, to denote this subsampled mechanism. To clear up any confusion,
note that intermediate result Sample,,(S) is not released and, in particular, this is different from
the composition in Section 3.

In brief, our main theorem shows that the privacy bound of the subsampled mechanism in the
f-DP framework is given by an operator acting on trade-off functions. To introduce this operator,
write the convex combination f, := pf + (1 — p)Id for 0 < p < 1, where Id(z) = 1 — 2. Note that
the trade-off function f, is asymmetric in general.

Definition 4.1. For any 0 < p < 1, define the operator C, acting on trade-off functions as

Cp(f) := min{fp, f 1}**.
We call C), the p-sampling operator.

Above, the inverse f,° !is defined in (4). The biconjugate min{f,, fo 11+ is derived by applying
the conjugate as defined in (8) twice to min{fy, f, 11, For the moment, take for granted the fact
that Cp(f) is a symmetric trade-off function.

Now, we present the main theorem of this section.

Theorem 4.2. If M is f-DP on X™, then the subsampled mechanism M o Sample,, is Cy(f)-DP

on X", where the sampling ratio p = .

Appreciating this theorem calls for a better understanding of the operator C,. In effect, C,
performs a two-step transformation: symmetrization (taking the minimum of f, and its inverse Iy b
and convexification (taking the largest convex lower envelope of min{ f,, f, 11). The convexification
step is seen from convex analysis that the biconjugate h** of any function h is the greatest convex
lower bound of h. As such, Cy(f) is convex and, with a bit more analysis, Proposition 2.2 ensures
that Cp(f) is indeed a trade-off function. As an aside, Cp(f) < min{f, fp_l} < fp. See Figure 6
for a graphical illustration.

Next, the following facts concerning the p-sampling operator qualitatively illustrate this privacy
amplification phenomenon.

1. If 0 < p < ¢ < 1 and fis symmetric, we have f = C1(f) < Cy(f) < Cp(f) < Co(f) =1d. That
is, as the sampling ratio declines from 1 to 0, the privacy guarantee interpolates monotonically
between the original f and the perfect privacy guarantee Id. This monotonicity follows from
the fact that g > h is equivalent to g~ > h~! for any trade-off functions g and h.

2. If two trade-off functions f and g satisfy f > g, then Cy,(f) > Cp(g). This means that if a
mechanism is more private than the other, using the same sampling ratio, the subsampled
mechanism of the former remains more private than that of the latter, at least in terms of
lower bounds.
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3. For any 0 < p < 1, Cp(Id) = Id. That is, perfect privacy remains perfect privacy with
subsampling.

Explicitly, we provide a formula to calculate Cy( f) for a symmetric trade-off function f. Letting
x* be the unique fixed point of f, that is f(z*) = z*, we have

Ip(2), x € [0, z"]
Cp(f)(x) = 2"+ fp(z®) —z, € [z", f(z")] (14)
£y M), z € [fp(z*),1].

This expression is almost self-evident from the left panel of Figure 6. Nevertheless, a proof of
this formula is given in Appendix F. This formula, together with Theorem 4.2, allows us to get a
closed-form characterization of the privacy amplification for (g, §)-DP.

Corollary 4.3. If M is (¢,9)-DP on X™, then the subsampled mechanism M oSample,, is Cp( [z 5)-
DP on X", where

e —1
Cot ) =max{ o) 1= p9 = p S ~ . (15)
Above, &' =log(1 — p + pe®),d’ = pb, and p = 2.
1 1.0 1=
\ — f — fes
— fp 0.8 - \\\\ —_— fa’,é’
— fp_l \\ — Cp(fes)

0.6 1

0.4 4

0.2 1

0.0
1 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: The action of C). Left panel: f = G1g,p = 0.35. Right panel: ¢ = 3,0 = 0.1,p = 0.2.
The subsampling theorem 4.2 results in a significantly tighter trade-off function compared to the
classical theorem for (e, §)-DP.

For comparison, we now present the existing bound on the privacy amplification by subsampling
for (e,6)-DP. To be self-contained, Appendix F gives a proof of this result, which primarily follows
[Ull17] .

Lemma 4.4 ([UI17)]). If M is (¢,0)-DP, then M o Sample,, is (¢’,0')-DP with €' and §' defined in
Corollary 4.3.

Using the language of the f-DP framework, Lemma 4.4 states that M o Sample,, is f./ s-DP.
Corollary 4.3 improves on Lemma 4.4 because, as is clear from (15),

Cp(fz—:,é) > fs’,é’-

22



The right panel of Figure 6 illustrates Lemma 4.4 and our Corollary 4.3 for ¢ = 3,5 = 0.1, and
p = 0.2. In effect, the improvement is captured by the shaded triangle enclosed by Cj(f:s) and
fer 57, revealing that the minimal sum of type I and type II errors in distinguishing two neighboring
datasets with subsampling can be significantly lower than the prediction of Lemma 4.4. This gain
is only made possible by the flexibility of trade-off functions in the sense that C,(f:s) cannot be
expressed within the (g,0)-DP framework. The unavoidable loss in the (e,d)-DP representation
of the subsampled mechanism is compounded when analyzing the composition of many private
mechanisms.

In the next subsection, we prove Theorem 4.2 by making use of Lemma 4.4. Its proof implies
that Theorem 4.2 holds for any subsampling scheme for which Lemma 4.4 is true. In particular, it
holds for the subsampling scheme described at the beginning of this section, that is, independent
coin flips for every data item.

4.2 Proof of the Subsampling Theorem

The proof strategy is as follows. First, we convert the f-DP guarantee into an infinite collection
of (g,0)-DP guarantees by taking a dual perspective that is enabled by Proposition 2.12. Next, by
applying the classical subsampling theorem (that is, Lemma 4.4) to these (g,)-DP guarantees, we
conclude that the subsampled mechanism satisfies a new infinite collection of (e, §)-DP guarantees.
Finally, Proposition 2.11 allows us to convert these new privacy guarantees back into an f-DP
guarantee, where f can be shown to coincide with Cp(f)-

Proof of Theorem 4.2. Provided that M is f-DP, from Proposition 2.12 it follows that M is (5, 5(5))—
DP with d(¢) = 1+ f*(—e®) for all ¢ > 0. Making use of Lemma 4.4, the subsampled mechanism
M o Sample,, satisfies the following collection of (&', §’)-DP guarantees for all € > 0:

e =log(1—p+pe), & =p(l+f*(—c)).
Eliminating the variable € from the two parametric equations above, we can relate ¢ to ¢’ using
=1+ fp (=€), (16)

which is proved in Appendix F. The remainder of the proof is devoted to showing that (¢’,4")-DP
guarantees for all &’ > 0 is equivalent to the Cy(f)-DP guarantee.

At first glance, (16) seems to enable the use of Proposition 2.12. Unfortunately, that would be
invalid because f, is asymmetric. To this end, we need to extend Proposition 2.12 to general trade-
off functions. To avoid conflicting notation, let g be a generic trade-off function, not necessarily
symmetric. Denote by Z be the smallest point such that ¢’(x) = —1, that is, Z = inf{x € [0,1] :
g () = —1}.19 As a special instance of Proposition F.2 in the appendix, the following result serves
our purpose.

Proposition 4.5. If g(z) > & and a mechanism M is (e,1 4+ g*(—e®))-DP for all € > 0, then M
is min{g, g~ }**-DP.

9For simplicity, the proof assumes differentiable trade-off functions. If g is not differentiable, use the definition
Z =inf{z € [0,1] : —1 € dg(z)} instead. This adjustment applies to other parts of the proof.
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The proof of the present theorem would be complete if Proposition 4.5 can be applied to the
collection of privacy guarantees in (16)for f,. To use Proposition 4.5, it suffices to verify the
condition f,(7) >  where Z is the smallest point such that f;(z) = —1. Let 2* be the (unique)
fixed point of f. To this end, we collect a few simple facts:

e First, f/(z*) = —1. This is because the graph of f is symmetric with respect to the 45° line
passing through the origin.

e Second, Z < z*. This is because f)(z*) = pf’(z*) 4+ (1 — p)Id’'(z*) = —1 and, by definition, T
can only be smaller.

With these facts in place, we get
fp(@) 2 fp(a®) = f(a¥) =2 > &

by recognizing that f, is decreasing and f, > f. Hence, the proof is complete.
O

5 Application: Privacy Analysis of Stochastic Gradient Descent

One of the most important algorithms in machine learning and optimization is stochastic gradient
descent (SGD). This is an iterative optimization method used to train a wide variety of models, for
example, deep neural networks. SGD has also served as an important benchmark in the development
of private optimization: as an iterative algorithm, the tightness of its privacy analysis crucially
depends on the tightness with which composition can be accounted for. The analysis also crucially
requires a privacy amplification by subsampling argument.

The first asymptotically optimal analysis of differentially private SGD was given by [BST14].
Because of the inherent limits of (g,)-DP, however, this original analysis did not give meaningful
privacy bounds for realistically sized datasets. This is in part what motivated the development
of divergence based relaxations of differential privacy. Unfortunately, these relaxations cannot be
directly applied to the analysis of SGD due to the lack of a privacy amplification by subsampling
theorem. In response, Abadi et al. [ACGT16] circumvented this challenge by developing the mo-
ments accountant—a numeric technique tailored specifically to repeated application of subsampling,
followed by a Gaussian mechanism—to give privacy bounds for SGD that are strong enough to give
non-trivial guarantees when training deep neural networks on real datasets. But this analysis is
ad-hoc in the sense that it uses a tool designed specifically for the analysis of SGD.

In this section, we use the general tools we have developed so far to give a simple and improved
analysis of the privacy of SGD. In particular, the analysis rests crucially on the compositional and
subsampling properties of f-DP.

5.1 Stochastic Gradient Descent and Its Privacy Analysis

The private variant of the SGD algorithm is described in Algorithm 1. As we will see, from the
perspective of its privacy analysis, it can simply be viewed as a repeated composition of Gaussian
mechanisms operating on subsampled datasets.

To analyze the privacy of NoisySGD, we start by building up the privacy properties from the
inner loop. Let V be the vector space where parameter 6 lives in and M : X™ x V — V be the
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Algorithm 1 NoisySGD

1: Input: Dataset S = (x1,...,2y), loss function L(0,z).
Parameters: initial state 0y, learning rate 7, batch size m, time horizon T,
noise scale o, gradient norm bound C.

2: fort=1,...,7T do
3: Subsampling;:
Take a uniformly random subsample I; C {1,...,n} with batch size m > Sample,, in
Section 4
4: for i € I; do
5: Compute gradient:
ng) +— VoL(0s, ;)
6: Clip gradient:
o o Jmax {1, ol ||o/C}
7 Average, perturb, and descend:
Or11 < 0y — (% > 6,@ + N(0, 4‘:;#[)) > I is an identity matrix
8: Output O

mechanism that executes lines 4-7 in Algorithm 1. Here m denotes the batch size. In effect, what
M does in iteration ¢ can be expressed as

M(Sfta Ht) = 6t+17

where Sy, is the subset of the dataset S indexed by I;. Next, we turn to the analysis of the
subsampling step (line 3) and use M to denote its composition with M, that is, M = M oSample,,,.

Taken together, M executes lines 3-7 and maps from X" x V to V.
The mechanism we are ultimately interested in

NoisySGD: X" -V xV x--- xV
S>—>(91,92,...,0T)

is simply the composition of T' copies of M. To see this fact, note that the trajectory (61,6, ...,607)
is obtained by iteratively running -
011 = M(S,0;)

for j = 0,...,T — 1. Let M be f-DP. Straightforwardly, M is Cp/n(f)-DP by Theorem 4.2.
Then, from the composition theorem (Theorem 3.2), we can immediately prove that NoisySGD is
Cm/n(f)®T_DP

Hence, it suffices to give a bound on the privacy of M. For simplicity, we now focus on a
single step and drop the subscript t. Recognizing that changing one of the m data points only
affects one v, the sensitivity of % > T)t(i) is at most % due to the clipping operation. Making
use of Theorem 2.7, adding Gaussian noise N (0, o2 - %I ) to the average gradient renders this step
%—GDP. Since that the gradient update following the gradient averaging step is deterministic, we
conclude that M satisfies %-GDP.

In summary, the discussion above has proved the following theorem:
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Figure 7: Comparison of the GDP bounds derived from our method, and the (e,d)-DP bounds
derived using the moments accountant [ACG*16]. All three experiments run Algorithm 1 on the
entire MNIST dataset with n = 60, 000 data points, batch size m = 256, learning rates 7; set to 0.25,
0.15, and 0.25, respectively, and clipping thresholds C set to 1.5, 1.0, 1.5, respectively. The red lines
are obtained via Corollary 5.4, while the blue dashed lines are produced by the tensorflow /privacy
library. See https://github.com/tensorflow/privacy for the detail of the experiments.

Theorem 5.1. Algorithm 1 is Cyy,/,,(G,-1)®T-DP.

To clear up any confusion, we remark that this C,, /n(G071)®T—DP mechanism does not release
the subsampled indices.

The use of Theorem 5.1 requires the evaluation of C,, /n(Ggq)@T. However, numerical compu-
tation of this tensor product is computationally cumbersome. As a matter of fact, the moment’s
accountant technique applied to the present problem is basically equivalent to direct computing
Cn /n(GU_1)®T. In contrast, our central limit theorems provide an entirely different tool by ana-
lytically approximating C,, /n(GJq)@T in a way that becomes nearly exact as T" grows. The next
two subsections presents two such results, corresponding to our two central limit theorems (The-
orem 3.4 and Theorem 3.5), respectively. An asymptotic privacy analysis of NoisySGD is given in

Section 5.2 by developing a general limit theorem for composition of subsampled mechanisms. A
Berry—Esseen type analysis is shown in Section 5.3.

5.2 Asymptotic Privacy Analysis

In this subsection, we first consider the limit of C,(f)®? for a general trade-off function f, then

plug in f = G,-1 for the analysis of NoisySGD. The more general approach is useful for analyzing
other iterative algorithms.

Recall from Section 4 that a p-subsampled f-DP mechanism is C,(f)-DP, where Cp( f) is defined

* fp(2), z € [0, z*]
Cp(f)(z) =9 2"+ fp(z") —z, z€[z", fp(a™)]
fy M), z € [fp(z*), 1],

where z* is the unique fixed point of f. We will let the sampling fraction p tend to 0 as T" approaches
infinity. In the following, a? is a short-hand for (max{a, 0})%.
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Theorem 5.2. Suppose f is a symmetric trade-off function such that f(0) = 1 and fol(f’(x) +
)*dz < 4+o00. Furthermore, assume pvT — pg as T — oo for some constant pg > 0. Then we
have the uniform convergence

®T
Cp(f)™" = Gpox/2xi(f)

as T — oo, where ,
0= [ (7@l

This theorem has implications for the design of iterative private mechanisms involving subsam-
pling as a subroutine. One way to bound the privacy of such a mechanism is to let the sampling
ratio p go to zero as the total number of iterations T goes to infinity. The theorem says that the
correct scaling between the two values is p ~ 1/4/T and, furthermore, gives an explicit form of the
limit.

In order to analyze NoisySGD, we need to compute the quantity x%(G,). This can be done by
directly working with its definition. In Appendix G, we provide a different approach by relating
X2 (f) to x*-divergence.

Lemma 5.3. We have ,
X3 (Gp) = e - d(3p/2) + 30(—p/2) — 2.

When using SGD to train large models, we typically perform a very large number of iterations,
so it is reasonable to consider the parameter regime in which n — co,T" — oo. The batch size can
also vary with these quantities. The following theorem is a direct consequence of Theorems 5.1
and 5.2 and Lemma 5.3.

Corollary 5.4. If mv/T/n — ¢, then NoisySGD is asymptotically p-GDP with

=2 \/e"’_2 - ®(1.5071) + 3®(—-0.50"1) — 2.

First, we remark that the condition in the theorem is consistent with the analysis of private
SGD in [BST14], which considers m = 1 and T = O(n?). We also note that in the deep learning
literature, the quantity 7 - VT is generally quite small. The convention in this literature is to
reparameterize the number of gradient steps T" by the number of “epochs” F, which is the number
of sweeps of the entire dataset. The relationship between these parameters is that F = Tm/n. In
this reparameterization, our assumption is that Em/n — c¢2. Concretely, the AlexNet [KSH12] sets
the parameters as m = 128, E ~ 90 on the ILSVRC-2010 dataset with n ~ 1.2 x 108, leading to
Em/n < 0.01. Many other prominent implementations®’ also lead to a small value of Em /n.

5.3 A Berry—Esseen Privacy Bound

Now, we apply the Berry—Esseen style central limit theorem (Theorem 3.4) for the privacy analysis
of NoisySGD, with the advantage of giving sharp privacy guarantees. However, the disadvantage
is that the expressions it yields are more unwieldy: they are computer evaluable, so usable in
implementations, but do not admit simple closed forms.

The individual components in Theorem 3.4 have the form Cy(G,) with p = m/n,p =o' It
suffices to evaluate the moment functionals on Cp(G,,). This is done in the following lemma.

208¢ee the webpage of Gluon CV Toolkit [HZZT 18, ZHZ'19] for a collection of such hyperparameters on computer
vision tasks.
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Lemma 5.5. Let Z(z) = log(p - e**~#*/2 4+ 1 — p) and ¢(z) = \/%e_’”Q/Q be the density of the

standard normal distribution. Then

+oo
K(C,(G)) = p / Z(x) - (@ — 1) — p(2)) da

e
KZ(Cp(Gu)) - //2 ZQ(x) : (p90($_ﬂ) + (2_29)90(55)) dz
+o0
5a(C(Go) = | 7@ K@) o~ + (1 —pigte)
- Z k1(C,(G,) P d
w [ 17@GE) e de

We can plug these expressions into Theorem 3.4 and get

1

Corollary 5.6. Let p=m/n,u=0"" and

~ Qﬁ’kl(cp(Gu)) _ 0.56 K3 (Cp(Gu))
H = ) Y= '
Jea(G@) —k2(0(G) VT (ma(G(G) K (G(G))

NoisySGD is f-DP with
f(e) = max{Gz(a + ) —~,0}.

We remark that G; can be set to 0 in (1, +00) so that f is well-defined when o > 1 — .

6 Discussion

In this paper, we have introduced a new framework for private data analysis that we refer to
as f-differential privacy, which generalizes (g,0)-DP and has a number of attractive properties
that escape the difficulties of prior work. This new privacy definition uses trade-off functions of
hypothesis testing as a measure of indistinguishability of two neighboring datasets rather than
a few parameters as in prior differential privacy relaxations. Our f-DP retains an interpretable
hypothesis testing semantics and is expressive enough to losslessly reason about composition, post-
processing, and group privacy by virtue of the informativeness of trade-off functions. Moreover,
f-DP admits a central limit theorem that identifies a simple and single-parameter family of privacy
definitions as focal: Gaussian differential privacy. Precisely, all hypothesis testing based definitions
of privacy converge to Gaussian differential privacy in the limit under composition, which implies
that Gaussian differential privacy is the unique such definition that can tightly handle composition.
The central limit theorem and its Berry—Esseen variant give a tractable analytical approach to
tightly analyzing the privacy cost of iterative methods such as SGD. Notably, f-DP is dual to
(€,6)-DP in a constructive sense, which gives the ability to import results proven for (g,0)-DP.
This powerful perspective allows us to obtain an easy-to-use privacy amplification by subsampling
theorem for f-DP, which in particular significantly improves on the state-of-the-art counterpart in
the (e,d)-DP setting.

We see several promising directions for future work using and extending the f-DP framework.
First, Theorem 3.7 can possibly be extended to the inhomogeneous case where trade-off functions
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are different from each other in the composition. Such an extension would allow us to apply the
central limit theorem for privacy approximation with strong finite-sample guarantees to a broader
range of problems. Second, it would be of interest to investigate whether the privacy guarantee of
the subsampled mechanism in Theorem 4.2 can be improved for some trade-off functions. Notably,
we have shown in Appendix F that this bound is tight if the trade-off function f = 0, that is,
the original mechanism is blatantly non-private. Third, the notion of f-DP naturally has a local
realization where the obfuscation of the sensitive information is applied at the individual record
level. In this setting, what are the fundamental limits of estimation with local f-DP guarantees
[DJW18]? In light of [DR18], what is the correct complexity measure in local f-DP estimation?
If it is not the Fisher information, can we identify an alternative to the Fisher information for
some class of trade-off functions? Moreover, we recognize that an adversary in differentially private
learning may set different pairs of target type I and type II errors. For example, an adversary that
attempts to control type I and II errors at 10% and 10%, respectively, can behave very differently
from one who aims to control the two errors at 0.1% and 99%, respectively. An important question
is to address the trade-offs between resources such as privacy and statistical efficiency and target
type I and type II errors in the framework of f-DP.

Finally, we wish to remark that f-DP can possibly offer a mathematically tractable and flexible
framework for minimax estimation under privacy constraints (see, for example, [CWZ19, BUV18,
DSS*15]). Concretely, given a candidate estimator satisfying (e,d)-DP appearing in the upper
bound and a possibly loose lower bound under the (e, d)-DP constraint, we can replace the (g, ¢)-
DP constraint by the f-DP constraint where f is the tightest trade-off function characterizing
the estimation procedure. As is clear, the f-DP constraint is more stringent than the (e,d)-DP
constraint by recognizing the primal-dual conversion (see Proposition 2.12). While the upper bound
remains the same as the estimator continues to satisfy the new privacy constraint, the lower bound
can be possibly improved due to a more stringent constraint. It would be of great interest to
investigate to what extent this f-DP based approach can reduce the gap between upper and lower
bounds minimax estimation under privacy constraints.

Ultimately, the test of a privacy definition lies not just in its power and semantics, but also in
its ability to usefully analyze diverse algorithms. In this paper, we have given convincing evidence
that f-DP is up to the task. We leave the practical evaluation of this new privacy definition to
future work.
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A Technical Details in Section 2

The Neyman—Pearson lemma is a useful tool in our paper. The following statement is adapted
from [LRO6].

Theorem A.1 (Neyman-Pearson lemma). Let P and Q be probability distributions on 2 with
densities p and q, respectively. For the hypothesis testing problem Hgo : P vs Hy : @, a test
¢ : Q — [0,1] is the most powerful test at level o if and only if there are two constants h € [0, +o0]
and c € [0,1] such that ¢ has the form

1, ifpw) > hg(w),
p(w) =19 ¢ if pw) = hg(w),
0, if p(w) < hq(w),

and Ep[¢] = a.

Now, we use the Neyman—Pearson lemma to prove the proposition which gives sufficient and
necessary conditions for trade-off functions.

Proposition 2.2. A function f : [0,1] — [0,1] is a trade-off function if and only if f is convex,
continuous®', non-increasing, and f(z) <1 —x for x € [0,1].

In the entire appendix, from A to G, we will use .% to denote the class of trade-off functions,
and .Z*° the subclass of symmetric trade-off functions.

Proof of Proposition 2.2. “only if”: Suppose f = T(Py, P1). It is obviously non-increasing. The
randomized testing rule that blindly rejects with probability p achieves (p,1 — p) errors. It is
suboptimal at level p, so f(p) < 1—p.

Convexity follows from randomizing over two rejections rules. For given «, a/,t, all in [0, 1], let
¢ and ¢’ be the rejection rules achieving errors (a, f(a)) and (o, f(«)) respectively. The rejection
rule ¢y = te + (1 —t)¢’ achieves errors ta+ (1 —t)a’ and tf(«) + (1 —t)f(¢). It is suboptimal at
level ta + (1 — t)a/, so we have

flta+ (1 —t)d) <ta+ (1 —1t)d.

As we remarked in the footnote, continuity in (0, 1] follows from properties we have proved. At
0 it requires a closer look at Neyman-Pearson lemma. Suppose «,, — 0. Without loss of generality
we can assume o, is decreasing. We want to show f(a,) — f(0). Neyman-Pearson lemma tells us
the optimal test ¢,, at level o, must have the form

£

1, pl(w > hy,

o (w) — c gggw; =h
’ U
0, Py </ln

for some ¢, € [0,1] and h,, € [0, 400]. The fact that oy, is decreasing implies that ¢, (w) is monotone
decreasing in n except on a measure zero set, so it has a pointwise limit ¢(w). Furthermore, ¢(w)

21 Convexity itself implies continuity in (0,1) for f. In addition, f(a) > 0 and f(a) < 1 — « implies continuity at
1. Hence, the continuity condition only matters at z = 0.
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must be in the same form as ¢,. Again by Neyman-Pearson lemma, ¢ must be the optimal test
at level Ep [¢]. By dominated convergence theorem, Ep,[¢] = lim,,—oc Ep,[¢y] for i = 0,1. When
i = 0, this translates to Ep,[¢] = limy, 00 oy = 0. So ¢ is at level 0. When ¢ = 1, we have

Ep, [d)] = HILH;O Ep, [¢n] = nhﬁngo 1- f(Oén)
where the second equality follows from the optimality of ¢,. So

lim f(an) = 1~ Ep[g] = £(0).

Here the second equality follows from the optimality of ¢. In fact, this argument works not just
for 0 but for arbitrary a € [0, 1].

“if”: Given f, we need to find P, Q. The common measurable space is the unit interval [0, 1]. P is
the uniform distribution. @ has density —f’(1—x) on [0, 1) and an atom at 1 with Q[{1}] = 1—f(0).
In fact, @ is constructed to have cdf f(1 — ), with the slight twist that the cdf is reset to be 1 at
1, because cdf has to be right continuous.

It’s easy to verify that @ is indeed a probability distribution on [0, 1] using the properties of f.

The likelihood ratio is simply —f’(1 — ) when x < 1. At 1, it is 0 if f(0) = 1 and +oo if
f(0) < 1. By convexity of f it is non-decreasing, so the likelihood ratio rejection regions have the
form [h,1]. Type I error is P[h,1] =1 — h. Type II error is Q[0,h) = f(1 — h).

O

An equivalent object to our trade-off function is the “testing region” used in [KOV17]. For a
trade-off function f, we define a special version of epigraph of f as

epi(f) == {(a, ) |a € [0,1], fla) S F <1 —a}.

Let P, @ be distributions on €. Recall that for a testing rule ¢ : Q — [0, 1], we denote its type I
and type II errors by oy = Ep[¢], By =1 —Eqg[¢]. It is easy to see that epi(f) consists of all
achievable type I and type II error pairs that is better than random guessing. Namely

epi(f) = {(ag, Bg) | ¢ : @ — [0, 1] measurable, ay + 4 < 1}.

This means considering f and epi(f) are equivalent. For more information on the testing region,
see Chapter 12 of [PW14].
Next we justify the default assumption of symmetry.

Proposition 2.4. Let a mechanism M be f-DP. Then, M is f3-DP with {5 = max{f, f~'}, where
the inverse function is defined as*?

fﬁl(a) =inf{t € [0,1] : f(t) < a} (4)
for a € 10,1].

Lemma A.2. If f = T(P,Q), then f~! =T(Q, P).

22 BEquation (4) is the standard definition of the left-continuous inverse of a decreasing function. When f is strictly
decreasing and f(0) = 1 and hence bijective as a mapping, (4) corresponds to the inverse function in the ordinary
sense, i.e. f(f ' (x)) = f'(f(x)) = 2. However, this is not true in general.
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Proof of Lemma A.2. The lemma is best illustrated from the epigraph point of view. It is an
immediate consequence of the following claim: (o, 3) € epi(f) if and only if (3,a) € epi(f1),
which is to say, f(a) < 8 < 1— «if and only if f~1(8) < a < 1— 3. In order to show this, the
definition of f~1, together with continuity of f, implies that f(a) < 8 < f~1(8) < a. This justfies
the claim and hence the lemma. O

Proof of Proposition 2.4. Let S, S’ be neighboring datasets. Since M is f-DP, we know that
T(M(S).M(8)) > [, T(M(S). M(S)) > f. (17)

It follows easily from definition that if f, g € .% satisfy g > f, then g~! > f~!. So by Lemma A.2
and the second inequality in (17),

T(M(S), M(S')) = T(M(S"), M(S)) " = .
Together with the first inequality in (17), we see for all neighboring datasets we have
T(M(S),M(S")) > max{f, f~'}.

It is straightforward to verify that if f and g are both convex, continuous, non-increasing and
below Id then max{ f, g} also satisfy these properties. By Proposition 2.2, we have max{f,g} € .Z.
So fS = max{f, f~'} is in .#. The proof is complete. O

Recall that Equation (6) states that

T(N(0,1), N (i, 1)) () = (@11 — a) — p).

Proof of Equation (6). When p > 0, likelihood ratio of N(u,1) and N(0,1) is ‘pg(;)”) L
a monotone increasing function in x. So the likelihood ratio tests must be thresholds: reject if the
sample is greater than some t and accept otherwise. Assuming X ~ N(0,1), the corresponding
type I and type II errors are

at) =P[X > 1] =1—®(t), B(t)=PX +pu<t]=(t—p).

Solving a from ¢, t = ®~1(1 — a). So

Lemma 2.9. For any two distributions P and ), we have
T (Proc(P),Proc(Q)) = T(P,Q).

Proof of Lemma 2.9. The idea is that whatever can be done with the processed outcome can also
be done with the original outcome. Formally, if an optimal test ¢ : Z — [0, 1] for the problem
Proc(P) vs Proc(Q) at level a can achieve type II error 8 = T (Proc(P), Proc(Q))(a), then it is
easy to verify that ¢ o Proc : Y — [0,1] has the same errors «, 8 for the problem P vs (. The
optimal error T'(P, Q)(«) can only be smaller than £. O
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The next result is a generalization of Equation (6), together with the interesting inverse.
Let P be a probability distribution on R with density p, cdf F : R — [0,1], quantile F~1 :
[0,1] — [—00,400] and & be a random variable from the distribution P. Then we have

Proposition A.3. T(¢,t+ &) (o) = F(F~1(1 — ) — t) holds for every t > 0 if and only if the
density p is log-concave.

In particular, normal density is log-concave, so the expression of G, is a special case.
Proof of Proposition A.3. For convenience let
fi(e) == F(F~Y(1 —a) —t).
“if”: This is the easier direction. Fix ¢ > 0 and consider the log likelihood ratio of ¢ and ¢ + &:

Ik = logp(x — t) — log p(x).

lIk is increasing in = because of log-concavity, so according to Neyman-Pearson lemma, the optimal
rejection rule must have the form 1y, ;). Hence by a similar calculation as of Gaussian case, the
trade-off function indeed has the form f;.

“only if”: We are given that T'({,t+ &) = f; holds for every ¢ > 0, and we want to show that p
is log-concave. Now that f; is a trade-off function for every ¢ > 0, it must be convex. By chain rule

p(FH(1—a)—t)
p(F1(1—a))

Fix any ¢ > 0, convexity implies f/(«) is increasing in « for any «a € [0,1]. Setting 2 = F~}(1 — ),

we know p;x(;)t) is increasing in z for all x € R, hence also log p(z — t) — log p(z).

file) = (=1)-

For convenience let g = logp. We know g(x — t) — g(z) is increasing in z, V¢ > 0. Equivalently,
g (x—1t)— ¢ (z) > 0,Vx,Vt > 0, which means ¢'(z) is decreasing, i.e. g = logp is concave. The
proof is complete. O

Next we prove results presented in Section 2.4.

Proposition 2.12 (Primal to Dual). For a symmetric trade-off function f, a mechanism is f-DP
if and only if it is (g,6(¢))-DP for all e >0 with §(e) = 1 + f*(—¢°).

Proof of Proposition 2.12. The tangent line of f with slope k has equation y = kx — f*(k), so when
k = —e® the equation is

y =~z — f*(—¢).
Compare it to f. 5, we see 1 —6 = — f*(—e®). By symmetry, the collection {fa’1+f*(_ea)}s>0 envelopes
the function f. O

Corollary 2.13. A mechanism is u-GDP if and only if it is (5, 5(8))—DP for all e > 0, where

5(5):®<—%+g>—e5¢><—%—g>.
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Proof of Corollary 2.15. By Proposition 2.12, y-GDP is equivalent to (g,1 + G7},(—€%))-DP, so it
suffices to compute the expression of GJ,(—e).
Recall that G, (z) = ®(®!(1 — z) — p). By definition,

G (y) = sup yxr — (e N1 —2) — p).
z€[0,1]

Let t = ® (1 — z). Equivalently, z = 1 — ®(¢) = ®(—t). Do the change of variable and we have

GLy) = sup y®(—t) — 2t — p).

From the shape of G, we know the supremum must be achieved at the unique critical point. Setting
the derivative of the objective function to be zero yields

() — 2t~ )] =0

—yp(=t) —p(t —p) =0
ye 2 4 em2(t-0* —

y 4 et2nt =

Sot=1§+ ilog(—y). Plug this back in the expression of G}, and we have

Gu(y) = yq)( S llog(—y)) - <I>( ~By ilog(—y))-

2 u 2
When y = —e°,
nwoo€ pooe
= ea(4-2)a(442)
G (=€) e 5 5 + .
1 + G}, (—e°) agrees with the stated formula in Corollary 2.13. The proof is complete. O

The rest of the section is devoted to group privacy results. The main theorem is

Theorem 2.14. If a mechanism is f-DP, then it is [1 —(1- f)"k] -DP for groups of size k. In
particular, if a mechanism is u-GDP, then it is ku-GDP for groups of size k.

For convenience we define an operation 6, which is function composition with a slight twist. For
f[9eZ,
fog(z) = f(1-g(2)).
f°F is defined iteratively:
fr=go6--5f.
k

Notice that f6g=1— (1 — f)o(1—g),so f* =1—(1— f)°k,
Lemma A.4. The operation & has the following properties for f,g € % :
(a) foge F.

(b) (fog9)™ = (g~ Yo (f~Y). In particular, if f € F3, then f* € F5.
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Proof. (a) By Proposition 2.2, it suffices to check the four properties for f 6 g. Monotonicity
and continuity are obvious. Convexity follows by the well-known fact that decreasing convex
function composed with a concave function is convex. Finally, because f(x) <1 —z,g(z) <
1 — z, we have

fogla)=f(1-g() <1-(1-g(x) =g) <1-uz
(b) Recall that f~1(y) = inf{z € [0,1] : f(z) < y}. We have
[ He(f Dy =9 (1~ Fy) =inf{ze[0,1]: g(x) <1—f(y)}
For any two numbers z,y € [0, 1], we have the following equivalence chain:
g(@) <1—fHy) & [y <L—gx) & f1—g(2) <y & fog(z) <y
So
(g o (fH](y) =inf{z €[0,1]: fog(z) <y} =(fo9)"'(y).

That is, (g71) 6 (f~1) = (f 6 g)~L. The proof is complete.

Theorem 2.14 is an immediate consequence of the following lemma:
Lemma A.5. Suppose T(P,Q) > f,T(Q,R) > g, then T(P,R) > g5 f.

Proof. Fix a € [0,1]. Suppose ¢ is the optimal testing rules of the problem P vs R at the level of
a. Then we know the type I error Ep[¢] = o and the type II error achieves the optimal value, i.e.

1 — Egl¢] = T(P, R)(a).

¢ is suboptimal as a testing rule for the problem @ vs R, so the type I and II errors must be
above the trade-off function g. That is,

1 —Egl¢] > T(Q, R)(Eql¢]) > 9(Eq[¢))-

Similarly, ¢ is also suboptimal for the problem P vs Q. So 1 —Eg[¢] > f(Ep[¢]) = f(«). Equiva-
lently,

Put them together

@)) (g is decreasing)

This completes the proof. ]
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Proof of Theorem 2.14. Suppose S and S’ are k-neighbors, i.e. there exist datasets S = Sy, S1,...,Sr =
S’ such that S; and S; ;1 are neighboring or identical for all ¢ = 0,...,k — 1. By privacy of M, we
know T'(M(S;), M (Si+1)) = f. Iteratively apply Lemma A.5 and we have

T(M(S),M(S2)) = fof, T(M(S),M(Ss)>f3 ... T(M(S),M(S)) = fo*.

We know that f¢ =1 — (1 — £)°*, so the f-DP part of the claim is done.
The GDP part of the claim follows by an easy formula: G, ¢ G,y = G,4,s. To see this, recall
that G, (a) = ®(@71(1 — ) — p).

GudGu(a)=Gu(1-Gu(a) =2 (@ HGu(a) —p) =2(@ 1 —a) —p—p) = Gupp(a).
O
In fact, similar conclusion holds for any log-concave noise. See Proposition A.3.

Proposition 2.15. Fiz > 0 and set ¢ = p/k. As k — oo, we have
1— (1= f0)°* — T(Lap(0,1), Lap(u, 1)).
The convergence is uniform over [0, 1].

As What makes it even more interesting is the convergence occurs with very small k. In Figure 8
we set ¢ = 0.5 and f = 1 — (1 — f-¢)°%. So the blue curve in the last panel is 1 — (1 — f)°? =
1— (1 — f-0)°* Next we set u = ke = 4-0.5 = 2. It turns out these numbers are good enough for
the condition ke — u, because the predicted limit T(Lap((), 1), Lap(u, 1)) (orange curve in the last
panel) is almost indistinguishable from the blue curve 1 — (1 — f. )%

f 1-f (1 /) 1-(1-5"

Laplace
limit

Figure 8: Group privacy corresponds to function composition. Here f = 1 — (1 — fg,o)02 with
e = 0.5, so the blue curve in the last panel is 1 — (1 — f)°? = 1 — (1 — f.)°*. Orange curve is the
predicted limit T’ (Lap(O, 1),Lap(2, 1)) The distinction is almost invisible even when k is only 4.

Lemma A.6. The trade-off function between Laplace distributions has expression

1 —eta, a<e M2
T (Lap(0,1), Lap(p, 1)) (a) = e */4a, e "/2<a<1/2,
e Hl—-a), a>1/2
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Figure 9: Graph of T(Lap(O, 1), Lap(u, 1)) with ¢ = 1. It agrees with the reciprocal function in
the middle.

The graph of this function with p = 1 is illustrated in Figure 9. In general, it consists of two

symmetric line segments: (0,1) connecting (e™#/2,1/2) and (1/2,e7#/2) connecting (1,0). Then
(e7#/2,1/2) is connected to (1/2,e7#/2) by the reciprocal function. It is easy to check that this
function is C!, i.e. has continuous derivative.

Proof of Lemma A.6. Let F be the cdf of Lap(0,1). By Proposition A.3,

T (Lap(0,1), Lap(u, 1)) (a) = F(F_l(l —a)—p).

Easy calculation yields

| ev/2, x <0,
F(“’“)_{ 1—e®/2, z>0.

So we must expect to divide into several categories. We will refer to the above two expressions as
negative and positive regimes.
When o > 1/2, we are in negative regime. Solving €*/2 = 1 — a gives us F~ (1 — a)

log2(1 — ) < 0. An additional —u keeps us in negative regime, so

FF'1l-—a)—p)=exp(F ' (1—a)—pn)/2= elog2=c)= /9 — o=H(1 — q).
When o < 1/2, solving 1 —e™%/2 =1 — « gives us F~1(1 — a)
i.e. e"/2 < a, we are in negative regime and

log2a > 0. If —log2a — pu < 0,

F(FY1—a)—p)=e 182071/2 = 7 /4a.
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If —log2a — >0, 1i.e. @ <e /2, we are in positive regime and
F(F'1—a)—p)=1—e82M/2=1_¢\a.
The proof is complete. O

Proof of Proposition 2.15. For simplicity assume p = 1. All arguments carry over for general u.
Let fr =1—fe0=1— fi/no- Fix zg and let z,, ; = fek(x0) = (1— f-0)°%(z0). We are interested
in showing
lim 1— 2y, = T(Lap(0,1),Lap(1,1))(zo).

n—oo

First we make a general observation: the sequence {z,} is increasing in k for any n. This is
because f;o(z) > 1 — x and hence f,(z) > .

Let 6,, = 1% By the expression of f. o, we obtain the following two dynamics:
+en
fulz) = e%x, if z < 6,,
1= fu(z) = e n(l—z), ifz >0,

The sequence {z, ;} evolves according to one of the two formula, potentially different for eack k.
We will refer to x < 0,, case as linear dynamics and x > 0, case as flip linear regime for evident
reason. For any xg and n, since {z, x} is increasing in k, there exists a moment such that linear
dynamics governs before and flip linear dynamics governs after. Extreme cases are one of the
dynamics governs from k£ = 0 to n. We divide the analysis into three cases depending on the initial
location xg:

(a) xo < i In this case, for large enough n, the linear dynamics governs all the time. To see
this, notice that 6, increases to % as n — 0o. So for large enough n, xg < % - 0p. It’s easy to
see that x,, 1 never exceeds 0,,. Hence x,,, = exy.

(b) oy > % = sup,, 0. @, is born above threshold and remains above forever. Flip linear

dynamics governs all the n steps, s0 1 — 2, = e~ 1(1 — z0).

(c) % <z < % Let t be the time of dynamics change. More precisely,

t —1=max{k: enz < On.} (18)

and
1 k2 _n—t
Tpt=€nTpi 1 =enxy, Ll—Tppn=¢€ n (1—xny).

Taking n — oo in (18) (using liminf and lim sup when necessary), we know en — L. So

20
1o = T et 1 —a )= Tim et 11 _eha et L Ly et L
nh_}ngol Tpp = nh_{rgoe (1—xpy) = nh_}rgoe (1 —enmy) =e 21’0(1 2) =e e
Collecting all three cases, we have
1 —exg, To < i,
. -1 1 -
nll_)nolol—xnm: e o e "/2<a<1/2,

e 11 —xz0), x0>= %

By Lemma A.6, this agrees with T(Lap(O, 1), Lap(1, 1)) Uniform convergence comes for free for
trade-off functions once we have pointwise convergence. This is a direct consequence of Lemma A.7
below, which will be used multiple times in this paper. ]
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Lemma A.7. Let f, : [a,b] — R be a sequence of non-increasing functions. If f, has pointwise
limit f : [a,b] — R where f is continuous on |a,b], then the limit is uniform.

This is an easy variant of Pélya’s theorem ([P6120]. See also Theorem 2.6.1 in [Leh04]). For
completeness, we provide a proof.

Proof of Lemma A.7. We are going to show that for every € > 0, there exists N such that
|fn(z) — f(x)] <e, Vz€la,b]l,Yn > N.

Since f is continuous on a closed interval, it is uniformly continuous. So for a fixed € > 0, we can
find § > 0 such that whenever z,y € [a, ] satisfies |x — y| < J, we have |f(z) — f(y)| < e/2.

Then we can divide [a,b] into small intervals a = 29 < 21 < -+ < Tp—1 < T, = b such that each
interval is shorter than 6. For these m -+ 1 points we can find N such that

(i) — flas)] < g V0 <i < m,¥n > N. (19)

We claim this N works for our purpose. For any = € [a, b], there exists a sub-interval that contains
it, namely [z;,x;+1]. By monotonicity of f,, we have

Now for n > N,

folwi) = f(2) = [falzi) = f(@)] + [f (i) = f(2)]

<5+ L) — f()] (By (19))
< g + g =e. (uniform continuity of g)

This shows the right hand side of (20) is less than €. A similar argument for the left hand side
yields
[fu(z) — f(2)] <e,

which justifies the choice of N. O

B Conversion from f-DP to Divergence Based DP

As the title suggests, the central question of this section is the conversion from f-DP to divergence
based DP. It boils down to the conversion from trade-off functions to various divergences. We first
introduce the most general tool, and then give explicit formula for a large class of divergences,
including Rényi divergence. At the end we prove the claim we made in Section 2.3 that privacy
notion based on Rényi divergence does not induce a strictly larger order than the Blackwell order.

Suppose we have a “divergence” D(-||-), which takes in a pair of probability distributions on a
common measurable space and outputs a number. We say D satisfies data processing inequality if
D(Proc(P)||Proc(Q)) > D(P||Q) for any post-processing Proc.

Proposition B.1. If D(-||-) satisfies data processing inequality, then there erists a functional lp :
ZF — R that computes D through the trade-off function:

D(P|Q) = Ip(T(P,Q)).
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Proof. It’s almost immediate from the following
Lemma B.2. If T(P, Q') > T(P,Q), then D(P'||Q) < D(P||Q). In particular, T(P,Q) =
T(P',Q’) implies D(P||Q) = D(P'||Q’).

To see why the lemma holds, notice by Blackwell’s theorem, T'(P', Q') > T(P,Q) implies
that there is a Proc such that P’ = Proc(P),Q" = Proc(Q), and by data processing inequality,
D(P'|Q") < D(P|Q).

The lemma implies the existence of [p because we can define Ip(f) = D(P||Q) through any
pair P, @ such that T'(P,@) = f. This definition is independent of the choice of P and Q. O

An immediate corollary is

Corollary B.3. If two trade-off functions f, g satisfy f > g, then Ip(f) <Ip(g).

Example: F-divergence Let P,(Q be a pair of distributions with density p and ¢ with respect
to some common dominating measure. For a convex function F : (0, +00) — R such that F'(1) =0,
the F-divergence D (P||Q) is defined as (see [LV06])

Dr(PlQ) - |

p
{pg>0} F<5) dQ + F(0)Q[p = 0] + 7Pl = 0]

where F(0) = limy;_,o+ F(t) and 7p := lim;—, 4 @ We further set the rules F(0)-0=7-0=10
even if F'(0) = 400 or 7p = +00.

Proposition B.4. Let z; = inf{z € [0,1] : f(z) = 0} be the first zero of f. The functional
lp : F — R that computes F-divergence has expression

) = [ (P @) 7 @) de 4 ) (1 F0) e (1= 29)

In particular, when f € F° and f(0) =1, we have

1
mm:Azwﬂm*»wmmm (21)

Proof of Proposition B.4. For a given trade-off function f, in order to determine [p(f), it suffices
to find P, @ such that f = T(P,Q) and then use the property {r(f) = Dr(P||@). Such a pair
is constructed in the proof of Proposition 2.2: P is the uniform distribution on [0, 1] and @ has
density |f'(1 —x)| on [0,1) and an atom at 1 with Q[{1}] =1 — f(0). When we set the dominating
measure p to be Lebesgue in [0,1) and have an atom at 1 with measure 1, the densities p and ¢
have expressions

p() :{ Ve g g :{ |1f/(1f(—0i)|, veloD,

Readers should keep in mind that the value at 1 matters because the base measure p has an atom
there. For a trade-off function f, its derivative f’(x) never vanishes before f hits zero, i.e. f'(x) >0
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for x < zy and f'(z) = 0 for > zy. Equivalently, {¢ > 0} = (1 — z¢,1] and {¢ =0} = [0,1 — 2¢].
So

Dr(PlQ) = |

F(B) dQ + F(0)Q[p = 0] + 7 P[q = 0]
{pg>0} q

1
2/1 F(f'0=2)7) - |f (1 = 2)[dz + F(0) - (1 = f(0)) + 77 - (1 - zf)

—zy
zf
= / F(If ()7 - |f (@) de + F(0) - (1 = f(0)) + 77 - (1 — zp).
0
Starting from the second line, the integral is Lebesgue integral. Now the proof is complete. O

Because of the generality of F-divergence, Equation (21) has broad applications. Many impor-
tant divergences can be computed via a simple formula. Below are some of the examples.

e Total variation distance corresponds to F(t) = 3|t — 1|. Easy calculation yields
1 /1
nv(f) =5 [ 1+ (@) do
0
e KL divergence corresponds to F(t) = tlogt. We have

1
IxL(f) :—/0 log | /()| dz.

This functional plays an important role in our central limit theorem. We call it kI(f) there.

e Power divergence of order a corresponds to Fj(t) = %

functional is

The corresponding

1 1 11—«
) +00, zp < 1.
e Rényi divergence of order « is defined as

Da(PIQ) = ylos (Er(5)"") = Lylog [~

It is related to power divergence of order a by

1
Da(P||Q) = P log (a(a = 1)Dp, (P[|Q) +1). (22)
So the corresponding functional, which we denote by l{ié“yi, has expression
1 l-«
lRényi(f) _ ﬁ IOg fo }f’(ﬂj‘)’ d$, Rf = la (23)
@ o0, zp < 1.
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Proof of Equation (22).

D (PIQ) = [a-Fa(?)

q

:/qxpa—az—w—l

ala—1)

_# /a1a+0_1
ala—1) P ala—1)

1
= = (ele=D)Da(PlQ) _
ala—1) (e 1)'

Solving for D, (P||Q) yields (22). O

Introduced in [Mirl7], a mechanism M is said to be (a,¢)-Rényi differentially private (RDP) if for
all neighboring pairs S, S’ it holds that

Da(M(S)[[M(S") <, (24)

A few other DP definitions, including zero concentrated differential privacy (zCDP) [BS16] and
truncated concentrated differential privacy (tCDP) [BDRS18], are defined through imposing bounds
in the form of (24) with certain collections of «. The following proposition provides the general
conversion from f-DP to RDP via (23).

Proposition B.5. If a mechanism is f-DP, then it is (a, lfényi(f))—RDP for any o > 1.
Specializing to the most important subclass, we have a simple expression.

Corollary B.6. If a mechanism is u-GDP, then it is («, %,uza)-RDP for any o > 1.

Proof. By the property of ™ we know lgényi(Gu) = Do (N(0,1)||N(p,1)). Easy calculation
shows Dy (N(0,1)||N(11,1)) = Fua. Readers can refer to Proposition 7 in [Mirl7] for a detailed
derivation. O

The functional [p allows a consistent, easy conversion from an f-DP guarantee to all divergence
based DP guarantees. The above conversion to RDP is, among all, the most useful example. On
the other hand, conversion from divergence, either to trade-off function or to other divergences,
often requires case by case analysis, sometimes significantly non-trivial. What’s worse is that it is
often hard to tell whether a given conversion between divergences is improvable or already lossless.
For conversion between F-divergences, a systematic approach called joint range is developed in
[HV11], but it is still significantly more complicated than Equation (21). On the other hand,
Proposition B.1 means conversion from trade-off to divergence is lossless and unimprovable.

This fine-grainedness of trade-off function (see also Section 2.3) is somewhat expected: it sum-
marizes the indistinguishability of a pair of distribution by a function, which is an infinite dimen-
sional object. In contrast, divergences usually just summarize by a number, which is obviously less
informative by a function.

Connecting back to informativeness, we argue that, even when we consider {D,(P||Q) : a > 1}
as an infinite dimensional object, it still does not induce Blackwell’s order. In the language of
Section 2.3, Ineq(=R¢nyi) 2 Ineq(=Blackwell). In other words, there are two pairs of distributions,
one easier to distinguish than the other in the Rényi sense, but not in the Blackwell sense.
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Let P. and Q). denote Bernoulli distributions with success probabilities % and
tively.

1
TFess respec-

Proposition B.7. There exists € > 0 such that the following two statements are both true:
(a) For all a > 1, Do(P.|Q.) < Da(N(0, DIIN(e, 1))
(b) TV(P.,Qc) > TV(/\/(O, 1), N (e, 1))

Surprisingly, although the whole collection of Rényi divergences asserts that the pair (./\f (0,1), N (e, 1))
is easier to distinguish than (P, Q. ), one can nevertheless achieve smaller summed type I and type I1
errors when trying to distinguish P, Q.. Fact (a) equivalently says that (A(0,1),N'(e,1)) =<Renyi
(P-||Q:), while fact (b) excludes the possibility that (N(0,1),N(e,1)) =Blackwenl (Ps, Q<), since
otherwise data processing inequality of the total variation distance would imply TV (P, Q:) <
TV(N(O, 1), N (g, 1))

We point out that (a) in Proposition B.7 in fact holds for all £ > 0, which is proved in [BS16],
partially based on numerical evidence. Our proof is entirely analytical.

Proof of Proposition B.7.

Da(P.[|Q) = —— log(p™q' ™ +¢"p' %)
1 e _|_ea(1—a)
= log
a—1 1+4e®
B 1 o es(a—%) _{_es(%—a)
a1 e

1 ! coshe(a — 3)

a—1 cosh §

Now we claim that coshz - e~2%” is monotone decreasing for z > 0. To see this, simply take the
derivative

(cosh - e_%ZQ)/ —sinhz - e 2% + coshz - (—x) - e 2% = (tanhx — x) - coshz - o2,

It is easy to show tanhx < x for > 0. Hence the derivative is always non-positive, which justifies
the claimed monotonicity. Since o > 1,& > 0, we have g(a — %) > % > 0. By the monotonicity,

coshe(ar — 5) Lem28(em3)? ¢ Coshg o35
That is,
1
coshe(a — 3) < ebetala1),
cosh §
So for any € > 0,
1 coshe(a — %) 1,
Do (P:||Q:) — -log cosh £ <gea= Do (N(0,1)[|N (e, 1)).
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For the second part, easy calculation and Taylor expansion yields

e 1
TV(P.,Q.) = —— = tanh

TV(N(0,1),N(g,1)) =1 — 2@(—%) = /2 o(x)dz

1
=¢(0)-e+o(e?) = e+ o(e?).
(0) (€)= 7%= (%)
Since \/% < 3, for small enough ¢, TV(N(0,1), NV (g,1)) < TV(P-, Q:). O

In summary, Proposition B.1 and Proposition B.4 provide general tools to losslessly convert a
trade-off function to divergences and hence justifies the fine-grainedness of trade-off functions. This
is complementary to the informativeness argument in Section 2.3.

C A Self-contained Proof of the Composition Theorem

In this section we prove the well-definedness of ® and Composition Theorem 3.2.

We begin with the setting of the key lemma, which compares indistinguishability of two pairs
of randomized algorithms. Let K1, K| : Y — Z; and Ko, K} : Y — Z5 be two pairs of randomized
algorithms. Suppose the following is true for these four algorithms: for each fixed input y € Y,
testing problem Ki(y) vs K{(y) is harder than Ks(y) vs K5(y). In mathematical language, let
I = T(Ki(y), Kl’(y)) (See the left panel of Figure 10). The above assumption amounts to saying
i = fY. So far we have fixed the input y. In the two pairs of testing problems, if the input
of the null comes from P and the input of the alternative comes from P’, then intuitively both
testing problems become easier than when inputs are fixed, because now the inputs also provide
information. Formally, the observation comes from input-output joint distribution (P, Ki(P)) or
(P',K/(P")) (with a little abuse of notation). Let f; = T'((P, K;(P)), (P, K(P'))),i = 1,2 be the
trade-off functions of the joint testing problems (See the right panel of Figure 10). As discussed,
we expect that f1 < f{, fa < f3 for all y. But what about f; and f»? Which joint testing problem
is harder? The following lemma answers the question.

Lemma C.1. If f¥ > fJ for ally €Y, then f1 > fo.

Ki(y) Yy K> (y) K1(P) P Ky (P)
fY =T(--) harder easier f3 =T( ") f1 harder easier f2
: : g V

Ki(y) Y K5(y) Ki(P") P K5(P")

Figure 10: Assumption (left) and conclusion (right) of Lemma C.1. Solid arrows indicate (random)
mapping and dashed arrows indicate the trade-off function of the two ends. For example, f1 in the
right panel is the trade-off function of two joint distributions: (P, Ki(P)) and (P, K1(P")).
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Let’s first use the lemma to show the well-definedness of ® and the composition theorem. Its
own proof comes afterwards. Recall that in Definition 3.1, f ® g is defined as T(P x P',Q x Q')
if f =T(P,Q),g =T(P,Q"). To show this definition does not depend on the choice of P,Q
and P’,Q’, it suffices to verify that when f = T(P,Q) = T(P,Q), we have T(P x P/,Q x Q') =
T(]5 XxP.QxQ ). The following lemma is slightly stronger than what we need, but will be useful

later.

Lemma C.2. If T(P,Q) > T(P,Q), then
T(PxP.QxQ)>T([PxP.QxQ).

As a consequence, if the assumption holds with an equality, then so does the conclusion.

P Yy p P P P
l T Px P Pxp
T(P,Q) T(P,0) | 3
! : QxQ QxQ
Q Yy Q Q Q' Q

Figure 11: Lemma C.1 implies well-definedness of ®.

Proof. In order to fit it into the setting of Lemma C.1, let the algorithms output a random variable
independent of the input y. See Figure 11. The input-output joint distributions are just product
distributions, so by the comparison lemma C.1,

T(PxP.QxQ)>T([PxP,QxQ).
When T(P,Q) = T(P,Q), we can apply the lemma in both directions and conclude that
T(PxP,QxQ)=T(PxP,QxQ.

The proof is complete. ]

Now that we have justified the definition of the composition tensor ®, lemma C.2 can be written

in a concise way:
N z29=>[R9 >[Qg. (25)

This is actually the second property we listed after the definition of ®.
For composition theorem, we prove the following two steps version:

Lemma C.3. Suppose in a two-step composition, the two components M1 : X — Y, Ms: X XY —
Z satisfy

1. M, is f-DP;
2. Ms(-,y) : X — Z is g-DP for each fized y € Y.
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Mg(:‘}, Y) Y @ Ms (S, Mi(S)) «—— M(S) Q
| | ne M(S)® Q
- é C
3 (S Mi(S) Q'
Ma(S', y) y Q' Ma(S', Mi(S)) — My(S') Q'

Figure 12: Lemma C.1 implies Lemma C.3.

Then the composition M : X —Y x Z is f ® g-DP.

Proof of Lemma C.3. Let Q, Q' be distributions such that ¢ = T(Q, Q’). Fix a pair of neighboring
datasets S and S’ and set everything as in Figure 12. The input y is an element in the output
space of M. Arrows to the left correspond to the mechanism Ms, while arrows to the right ignore
the input y and output Q, Q' respectively.

Here f{ in Lemma C.1 is T(MQ(S,y),MQ(S’,y)) > g, so the condition in Lemma C.1 checks.
Consequently,

T(M(S),M(S5")) = T (M(S) x Q Ml(S’) x Q') (Lemma C.1)
=T (M:1(S), M1(S) © T(Q,Q") (Def. of ®)
=T (My(9), )) g
>f®g (Privacy of M; and (25))
The proof is complete. O]

Now we prove Lemma C.1. The proof is basically careful application of Neyman-Pearson Lemma
Al

Proof of Lemma C.1. In order to further simplify the notations, for ¢ = 1,2, let u; and p} be the
joint distributions (P, K;(P)) and (P', K[(P')) respectively. Then fi = T(u1,11}), fo = T(pz, p1h)
and we need to show that the testing problem gy vs pf is harder than pg vs .

Consider the testing problem uy vs pj. For a € [0,1], let ¢1 : Y x Z; — [0,1] be the optimal
rejection rule at level a. By definition of trade-off function, the power of this test is 1 — fi(«).
Formally,

Eplo]=a, Eylo]=1- fi(a).

It suffices to construct a rejection rule ¢g : Y x Zy — [0, 1] for the problem us vs ph, at the same
level a but with greater power, i.e.

Euplpo] =a and E,l¢o] > Ey 1] =1 - fi(a).

If such ¢ exists, then by the sub-optimality of ¢ for the problem s vs i,
1= fola) ZE[¢2] 21— fi(a),

which is what we want.
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Fory € Y, let ¢ : Z1 — [0,1] be the slice of ¢1 at y, i.e. ¢¥(z1) = ¢1(y,21). This is a rejection
rule for the problem Ki(y) vs K{(y), sub-optimal in general. The type I error is

ay = Ezlel [d)l (Zl)]

The power is
E. k101 (21)] <1 f(a¥).

The last inequality holds because fi = (K 1(y), K (y)) and that ¢ is sub-optimal for this problem.
Let ¢% : Zo — [0,1] be the optimal rejection rule for the testing Ka(y) vs Kj(y) at level a¥.
Construction of ¢o : Y x Zy — [0, 1] is simply putting together these slices ¢4. Formally, ¢2(y, 22) =
®4(22). Its level is a because ¥ are averaged in terms of the same distribution P. More precisely,

E,,[¢2] = Eynp [EZ2N Ka(y [¢2(22)H (Construction of ¢9)
= Ey~plo’] (¢4 has level o)
= Eyep [E ok, () [0Y (21)]] (Def. of a¥)
= Eﬂl [¢1] = Q.

Let’s compute its power:

E [pa] = Eyupr By oy [05(22)]]

[ )
=E,.p [l — f3(a¥)] (¢4 is optlmal)
2 Eyopr[1 - fi(a¥)] (ff = f7)
> Eyopr [Ezlwl{{(y) [0 (21)]] (¢} is 5ub optimal)
(

Optimality of ¢1 for py vs u})

So ¢o constructed this way does have the desired level and power. The proof is complete. O

D Omitted Proofs in Section 3

We first collect the basic properties of ® listed in Section 3.1.
Proposition D.1. The product ® defined in Definition 3.1 has the following properties:
0. The product @ is well-defined.
1. The product ® is commutative and associative.
2. If g1 = g2, then f®@ g1 = f ® go.
3 feld=Id® f=f.
4o (fogt=f"taog
5. For GDP, G, ® G}, ® --- ® G, = G, where p = m
Property 0 and 2 are already proved in Appendix C. So we only prove 1,3,4,5 here.

Proof of Properties (1,3,4,5). We will assume f = T(P, P'),g = T(Q, Q') in the entire proof. The
upshot is that
T(P,PY®T(Q,Q)=T(PxQ,P xQ").
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1. Commutativity:

fog =T(P,P)2T(Q,Q) = T(PxQ, P'xQ") Y T(Qx P,Q'x P') = T(Q,Q)&T(P, P') = g f.

In step (a), we switch the order of the components of the product, which obviously keeps the
trade-off function unchanged.

Associativity: Let h = T(R, R').

(fRg@h=TPxQ,P xQ)T(R,R)=T(PxQxR,P' xQ xR
fR@eh)=T(P,PYRTQxR,Q xR)=T(PxQxR,P' xQ xR
So(feg)@h=f®(g®h).

2. Let R be an arbitrary degenerate distribution, i.e. R puts mass 1 on a single point. Then
Id = T(R, R) and
feIld=T(Px R,P' xR)=T(P,P") = f.

3. By Lemma A.2, taking the inverse amounts to flipping the arguments of T'(-,-).
(fog) ' =T(P'xQ,PxQ)=T(P.P)oT(Q,Q) =f"og "
4. Let p = (1, u2) € R? and I be the 2 x 2 identity matrix. Then

G#l ® G/tz = T(N(O’ 1),./\[(,&1, 1)) ® T(N(Oa 1)7N(N17 1))
=T (N(0,1) x N(0,1), N (pu1,1) x N(u2,1))
= T(N(O’IQ)vN(Hu-[Q))

Again we use the invariance of trade-off functions under invertible transformations. A (0, I2)
is rotation invariant, So we can rotate N (g, I2) so that the mean is (\/p$ + u3,0). Continuing
the calculation

Gy ® Gy =T(N(0,12), N (1, I2))
=T(N(0,1) x N(0,1), N (y/p? + pi3,1) x N(0, 1))
=T(N(0,1),N(y/p? + 13,1)) @ T(N(0,1),N(0,1))
= O

The following proposition explains why our central limit theorems need f, to approach Id.

Proposition D.2. For any trade-off function f that is not Id,

lim f*"(a) =0, Vaec(0,1].

n—-+4o0o

In fact, the convergence is exponentially fast.
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Proof of Proposition D.2. For any trade-off function f, let P, @ be probability measures such that
T(P,Q) = f. The existence is guaranteed by Proposition 2.2. It is well-known that 1 — TV (P, Q)
is the minimum sum of type I and type II error, namely,

1-TV(P,Q) = min a+ f(«a).
a€l0,1]

We claim that the following limit suffices to prove the theorem:
lim TV(P",Q") = 1. (26)
n—o0

To see why it suffices, recall that by definition T'(P™, Q™) = f®". Hence

1—-TV(P",Q") = min a+ f©"(a).
a€l0,1]

Let «;, be the type i error that achieves minimum in the above equation, i.e.
an + [ (an) =1 - TV(P",Q").

The total variation limit (26) implies a;, — 0 and f®"(ay,) — 0. For each n, consider the piecewise
linear function that interpolates (0, 1), (an, f©™ () and (1, 0), which will be denoted by h,,. By the
convexity of f®" we know that f®" < h, in [0,1]. It suffices to show that hy(a) — 0,V € (0,1].
Since «,, — 0, for large enough n, h,(a) is evaluated on the lower linear segment of h,. So

hn(@) < hp(an) < f€(ay) — 0. This yields the desired limit of f®".
Now we use Hellinger distance H?(P,Q) :=Eg|[(1 — g)g] to show the total variation limit (26).
An elementary inequality relating total variation and Hellinger distance is

%H2(P, Q) < TV(P,Q) < H(P,Q).

Another nice property of Hellinger distance is it tensorizes in the following sense:

HQ(PZ”,Q”) _ (1 _ HQ(;% Q))”‘

f is not the diagonal o — 1 — «, so P # Q. Hence TV(P,Q) > 0. By the second inequality in
the sandwich bound, H?(P,Q) > 0. By the tensorization property, H?(P",Q") — 2. By the first
inequality in the sandwich bound and that TV is bounded by 1 we have

1
2
This shows TV(P", Q") — 1 and completes the proof. O

1-—

H*(P",Q") < TV(P™", Q") < 1.

Now we set out the journey to prove the Berry-Esseen style central limit theorem 3.4. We first
restate the theorem.

Theorem 3.4. Let fi,..., fn be symmetric trade-off functions such that k3(f;) < oo for all 1 <

1 < n. Denote
2||k1|x _ 0.56/[<3 |1

v
k2l — K12 (2]t — K12)>
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and assume y < % Then, for all o € [y,1 — 7], we have*

Gula+7) - 7< iR 2@ @ fula) < Gula—7) + 1. (10)

Our approach is to consider the log-likelihood ratio between the distributions of the composi-
tion mechanism on neighboring datasets. This log-likelihood ratio can be reduced to the sum of
independent components that each correspond to the log-likelihood ratio of a trade-off function in
the tensor product. This reduction allows us to carry over the classical Berry—Esseen bound to
Theorem 3.4.

As the very first step, let’s better understand the functionals kl, k9 and K3 used in the statement
of the theorem. We focus on symmetric f with f(0) = 1, although some of the following discussion
generalizes beyond that subclass. Recall that

1
KI(f) = — /O log |/ (x)) dz
1
@(f):/o (log | (2)))? da

1 3
Ra(f) = /0 log | £/(2)| + KI(f) [ da

First we finish the argument mentioned in Section 3.2 that these functionals are well-defined and
take values in [0, 400]. For k2 and kK3, as well as the non-central version k3, the argument is easy
because the integrands are non-negative.

For kl, the only possible singularities of the integrand is 0 and 1. If 1 is singular then log | f'(x)| —
—oo near 1. This is okay because the functionals are allowed to take value +00. We need to rule
out the case when 0 is a singularity and foa log|f'(x)|dz = 4+00. That cannot happen because
log | f'(z)| < |f'(z)| — 1 and |f'(x)| = —f'(x) is integrable in [0,1] as it is the derivative of —f, an
absolute continuous function. Non-negativity of kl follows from Jensen’s inequality.

In the discussion of Proposition B.4, we showed that kI(T'(P,Q)) = Dxy(P||Q). This explains
the name of this functional. In fact, ko also corresponds to a divergence called exponential divergence
([E+85)).

We introduce a notation that will be useful in the calculation below. For a trade-off function
f, let Df be a function with the following expression:

Df(z) =[f'(1—a)]=—f'(1-=).

In fact, this is the density introduce in the proof of Proposition 2.2.
By a simple change of variable, the three functionals can be re-written as

1

kl(f):—/ log Df(x)dx
10 )

()= [ (o Df(a)*ar

! 3
7a() = [ |08 Df@) + () da

23We can extend G, to be 1 in (—o0,0) and 0 in (1, 4+00) so that the assumption that a € [y, 1—7+] can be removed.
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The following “shadows” of the above functionals will appear in the proof:
1
k(f) = / Df(z)log Df(x)dx
0
1
- 2
Ro(f) == /0 Df(:r)(long(:r)) dz

1 3
Ra(f) = /0 Df(x)|log Df (z) — I(f)[* da

These functionals are also well-defined on .%# and take values in [0, +00]. The argument is similar
to that of kl, k9 and Rg3.
The following calculations turn out to be useful in the proof.

Proposition D.3. Suppose f € .#° and f(0) = 1. Then

KI(f) = 1k(f)
ka(f) = Ra(f)
R3(f) = R3(f).

Proof. Our approach, taking xs as example, is to show ka(f 1) = &2(f). By definition of symmetry,
f~' = f and hence the desired result follows. First observe for f € . with f(0) =1, f~! agrees
with the ordinary function inverse, hence we can apply calculus rule as follows:
df—t -1
- l—2)= 7.
& 0= )

We only prove ro(f~!) = Ra(f) here and the other two identities can be proved similarly.

Df ) =

1
(1) = /O (log Df () da
1
- / (—log [~ £'(f~1(1 —a))])da
1
- /0 log? [~ f/(f (1 - 2))] da

Let y = f~1(1 — ), then f’(y)dy = —dx, and @ = 0 corresponds to y = 0, z = 1 corresponds to

1
pa(f1) = /0 log?[— /()] - (— () dy (y=F1(1-2)
1
- /0 log?[ f(1— 2)] - (— f/(1—2)) dz (z=1-y)

1
= /0 Df(z)(long(z))de
= Ra(f).
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We remark that by properly extending the definition of the shadow functionals, identities like
kl(f~1) = 1k(f) holds for general trade-off function f.

Before we finally start the proof, let’s recall Berry-Esseen theorem for random variables. Suppose
we have n independent random variables Xy, ..., X, with EX; = p;, VarX; = 012, E|X; — u]® = p?.
Consider the normalized random variable

g o iz Xi— i

n - o 5
> i1 0;
Denote its cdf by F),. Then

Theorem D.4 (Berry-Esseen). There exists a universal constant C > 0 such that

noop3
sup |Fy(z) — ®(2)| < C- Z%;lpz§
z€R (Z?:1 012)2

To the best of our knowledge, the best C' is 0.5600 due to [Shel0].

Now we proceed to the proof of Theorem 3.4.

Proof of Theorem 3.4. For simplicity let

F=h®he &

First let’s find distributions Py and P; such that T'(Py, P;) = f.

First, by symmetry, if f;(0) < 1, then f/(x) = 0 in some interval [1 — ¢, 1] for some £ > 0, which
yields kl(f;) = +o00. So we can assume f;(0) for all i.

Recall that Df;(z) = —f/(1 — ). Let P be the uniform distribution on [0,1] and @Q; be the
distribution supported on [0, 1] with density Df;. These are the distributions constructed in the
proof of Proposition 2.2. Since f; are all symmetric and f;(0) = 1, the supports of P and all Q; are
all exactly [0, 1], and we have T'(P, Q;) = f;. Hence by definition f = T(P", Q1 X -+ X Q).

Now let’s study the hypothesis testing problem P"™ vs Q1 X - -+ X Q. Let

dQ;

Li(z) :=log ap

(2) = log Dfi(x)

be the log likelihood ratio. Since both hypotheses are product distributions, Neyman-Pearson
lemma implies that the optimal rejection rules of this testing problem must be a threshold function
of the quantity ;" ; L;. We need to study > ; L;i(x;) under both the null and the alternative
hypothesis, i.e. when (x1,...,2,) comes from P"™ and Q1 X --- X Q,. From here we implement
the following plan: first find the quantities that exhibit central limit behavior, then express « and
f (@) in terms of these quantities.

For further simplification, let

As we turn off the z; notation, we should bear in mind that T}, has different distributions under
P and Q1 X -+ X Qp, but it is an independent sum in both cases.
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In order to find quantities with central limit behavior, it suffices to normalize T,, under both
distributions. The mysterious functionals we introduced are specifically designed for this purpose.

1

EQ% / D fi(xi)log D fi(xi) dz; = 1k(f;) = kI(fi)-

In the last step we used Proposition D.3. With the bold vector notation,

Epn [T, Z —KI(f;) = —||k1|1,

EQyx--xqu [T Zkl fi) = |k}

Similarly for the variances:

Varp[L;] = Ep[L;] — (EP[Li])2 = ra(fi) — KI*(fi),
Varg,[Li] = Eq,[L?] — (Eq,[Li])? = Ra(f;) — IE(f;) = wa(fi) — K2(f;).

Varpn [T] = Varg, x...x@, [Tn Z@ﬁ —k2(f;) = ||kalli — ||K13.

In order to apply Berry-Esseen theorem (for random variables) we still need the centralized third
moments:

1
EP|LZ' — EP[L,'HB’ = / ‘ IOngi(IE) + kl(fl)|3dx = Eg(f,’),
Eg,|Li —Eg,[L / Dfi(x ’long, (x) — lk(fi)‘3d:6 = R3(fi) = Ra(fi)-

Let F,, be the cdf of —Lot KLy der P, and F™ be the cdf of T lMIL ynder Qg x- - - X Q.
" [zl —|Ik1]l3 Vlrzlli k13 @ @n

By Berry-Esseen Theorem D .4,

sup | Fo(z) — ®(x)| < 0 — MFal (27)

3
z€R (2l = IIk13) 2

and similarly sup,cg |[F™ (z) — ®(z)] < 7.

So we find the quantities that exhibit central limit behavior. Now let’s relate them with f.
Consider the testing problem (P, Q1 X --- X @Qy,). For a fixed « € [0,1], let the optimal rejection
rule (potentially randomized) at level « be ¢. By Neyman-Pearson lemma, ¢ must be a thresholding
on T),. An equivalent form that highlights the central limit behavior is the following:

Tt [[]2

llm2ll1—] k1|13
T7L+Hk1| 1 —

=< p /=
¢ © Vil

Tn“!‘Hk” 1

0. —Intiklh
VARSI
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Here t € RU{+o0} and p € [0, 1] are parameters uniquely determined by the condition Epn[¢] = a.
With this form Epn[¢] can be easily spelled out in terms of F,:

Epn[g] = P"| T + Al | +p- P Lo il _ {
Vsz2[l = kI3 Virzll — (13

=1—=Fu(t) +p- [Fa(t) = Fu(t7)].
Here F,,(t7) is the left limit of the function F,, at t. Simple algebra yields
l—a=1=Epn[g] = (1 —p)Fp(t) + pFa(tT)
and consequently the inequality
F,(t7) <1—a< Ey(t).

For EqQ, x...xQ,[¢] it is helpful to introduce another letter 7 :=t — p. In the theorem statement p
2|1]jx

> so we have the equivalence
=2l —[kl]|3

was defined to be

Lotk T KL

(28)
[k2]l1 — (k13 [k2l1 — [Ik13
With this extra notation we have
1 - f(a) = EQ, x--xq. 4]
Tn + Hk1||1
= Qux-xQy
{ k2l — k1|3 ]
T, + || k1|1
prQi X xQp =t (Def. of ¢)
[\/Hﬂz!h — [[k1[|3 }
T, — |11
= Q1 X XQp
[\/ |k2]l1 — (k1|3 }
Tn - ||kl||1
P-Qu XX Qp =7 (By (28))
[\/Ilﬁzlh — [[k1[[3 }
= 1= F(r) +p- [F)(7) - F® (7))
Similar algebra as before yields
fla) = (1—p)F"(r) +pF™(r7)
and hence . .
FM(r7) < fla) < FM(7)
So far we have
Fn(ti) < 1_a<Fn(t)7 (29)
FM(r7) < fa) < FM(7) (30)

In (27) we show F,, and £ are within distance y to the cdf of standard normal, so

Pt)—y < F(t7)<1—a< F,1t) <O(t)+~
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and hence

' l-a—y) <t<® ! (1-—a+7) (31)
Using (30) and (31),
fla) <FU(r)

< P(7)+ v

=®(t—p)+v

<@ '(l—aty)—p) +r

=Gula—7)+7
Similarly we can show that f(a) > G,(a + ) — 7. The proof is now complete. O

Next we prove the asymptotic version. Recall that our goal is

Theorem 3.5. Let {fni : 1 <i < n}, be a triangular array of symmetric trade-off functions and
assume the following limits for some constants K > 0 and s > 0 as n — oo:

LY K fi) — K
2. maxj<i<p Kl(fni) = 0;
3. 3 ke fri) = 8%
4. 370 k3(fni) = 0.

Then, we have
nh_)Ing fnl ® fn2 Q- Q& fnn(a) = GQK/S(Q)

uniformly for all « € [0,1].

Proof of Theorem 3.5. We will first construct pointwise convergence fr1 ® fr2 ® - ® fnn — Gag/s
and then conclude uniform convergence from a general theorem.
Apply Berry-Esseen Theorem 3.4 to the n-th row of the triangular array and we have

Gun(a+7n) —Yn < fnl ®fn2 - ®fnn(a) < Gun(a_yn) + Yn-

Here p,, and 7, are the counterparts of u and ~ defined in Theorem 3.4 when applied to fu1,- .., fan-

Namely,
2[K1")
Hn = )
Vlira®@ ] — [11™]2
175y

Y = 0.56 - .
2

(ls2@™ 1 — [1k1)]13)

Here the bold vector notation with a superscript (n) denotes the vector for the n-th row. For
example, k1 = (KI(fn1), ..., kl(fan))-
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By the sandwich inequality, pointwise convergence of f,,1 ® fn2 ® -+ ® fy follows from the two
limits
Gu, (@ +m) = — Gogys(a),  Gu, (=) + 7 — Gagys(@). (32)

To prove these, let’s first show v, — 0 and p,, — 2K/s.
Reformulating the assumptions in bold vector notations, we have

™)1 = K, k™| =0, [Ire™ |l — 5%, [[rs™ |l = 0.
In addition to these, it suffices to show
IKI™|2 =0 and [|Rs™]; — 0. (33)

For the first half, notice that |[k1™]2 = (k10 k1™) < ||kl(” lloo Hkl |1 = 0. In fact, ||[k1|| o —
0 is not only sufficient but also necessary, because 1K1 o0 < |[K1™)][5.
Next we use the assumptions to show [|&3(™||; — 0. We need a lemma

Lemma D.5. For a trade-off function f,

R3(f) < ma(f) + 3KI(f) - ka(f) + 3K12(f) - VR (f) + KIB3(f
Proof of Lemma D.5.
! 3
wa(f) = [ |osDf@) ()] o
< / (llog Df ()| + |KI(f)])* dz
< /0 ‘1ong(x)‘ da:+3kl(f)-/01‘1ong(a:)‘2da:

1
+3mqﬁ.l ugpf@ndx+M%n

< k3(f) + 3KI(f) - ra(f) + 3KI2(f) - Vka(f) + KIP(f

In the last step we used Jensen’s inequality. 0

Apply Lemma D.5 to each f,; and sum them up:

1Rs™ |1 < [[es™ |1 + 332, KI(fui) - ko (Fui) + 33 K1 Fni) - /Ko (Fai) - KU Fni) + 325 KL (Fi) - K12 (fi)-

Using | > aibi| < | > ai| - max |b;| and Cauchy-Schwarz inequality yields

171 < s 1+ BRI - ez + 30 oo - (2 /R lFad) - K1) ) + 102, - 11

< ks ™1+ 3]0 flog - 2™ 1+ 3]K1™ o - \/Hﬂz(”)lh (15 S ) S RN | SRRy
By the assumptions

[ = K, Kl =0, [[w2™|l = 5%, [lks™[lL =0
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and Hkl(”)”% — 0 which we just proved, it’s easy to see that all four terms goes to 0 as n goes to
infinity.

The two limits (33) we have just proved imply p,, — 2K /s and 7, — 0. Given these, convergence
(32) is easy once we notice that G, (o) = ®(®~1(1 — a) — p) is continuous in both o and .

If the readers are concerned with 1 — o — , exceeding [0, 1], then observe that when « € (0, 1),
1 — a — v, eventually ends up in (0,1) where &' is well-defined and continuous. So the only
concern is at 0 and 1. If o = 0, @11 — v — v,,) = 400 50 Gy, (0 + V1) — 1 = 1 = Gag/5(0). A
similar argument works for a = 1.

Anyway, we have shown pointwise convergence. Uniform convergence is again a direct conse-
quence of Lemma A.7. The proof is now complete. O

Next we explain the effect of tensoring f s.

(1-90)-f(1%), 0<a<1-9

0, 1-d<a<l (13)

[ ® fos(a) = {
Proof of Equation (13). First, fys is the trade-off function of two uniform distributions fos5 =
T(U[O, 1,U[s,1 + (5]) To see this, observe that any optimal test ¢ for U|0, 1] vs U[d,1 + J] must
have the following form:
1, z€ (1,144
o(x) =14 p, ze€]o1],
0, x€]0,9)

That is, we know it must be from U0, 1] if we see something in [0,¢), and must be from U[6, 1 + §]
if we see something in (1,1 + §]. Otherwise the only thing we can do is random guessing. It’s easy
to see that the errors of such ¢ linearly interpolates between (0,1 —9) and (1—4,0), i.e. type I and
type II error add up to 1 — §. On the other hand, by definition, fys(e) = max {1 —J — «,0}. So
they indeed agree with each other.

Now suppose f = T(P,Q). By definition of tensor product, f ® fos = T(P x U[0,1],Q x
U[d,1+ 6]). If the optimal test for P vs @ at level « is ¢, then an optimal test for P x U0, 1] vs
Q x U[d,1 + 0] must be of the following form:

~ 1, xe(1,1+ 5]
¢a(w7x) = ¢a(w)a T € [67 1]7
0, x € [0,0)

The errors are

Epxuio,) (6] = Pz € (1,1+6]] + P[z € [6,1]] - Ep[¢a(w)]
=04+ (1-0)a=(1-0)

1 7]EQ><U[5,1+5][¢§C¥] =1- P[:E € (17 1+ 5]] - P[$ € [67 1]] ’ EQ[gba(w)]
=1-0-(1-0)(1~ f(a)) =(1-0)f(x)

This completes the proof. ]

Theorem 3.6. Assume

n
Zeii—uﬁ, max &n; — 0, Zém—MS max 0p; — 0

1<i<n 1<i<n
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for some nonnegative constants i, as n — oo. Then, we have

f5n1,5n1 ® Tt ® fenn76nn — Gllz ® fO,l*E_é
uniformly over [0,1] as n — oo.
Proof of Theorem 3.6. As in the main body, we first apply rules f. s = fz0® fos and fo s, @ fo.5, =
Jo,1—(1=61)(1—62) O get

fgnl:‘Snl X ® fgnnzfsnn = (f5n1’0 @ fennvo) ® (f0,5n1 PXEERNY foyénn)
= (fem 0 ® @ fen0) ® fo 500
20

with 60" = 1 — []"_,(1 — 6,i). For the second factor, let’s first prove the limit 6™ — 1 — 9.

i=1
Changing the product into sum, we have

log(1 — ™) =S log(1 — 1)
The limit almost follows from the Taylor expansion log(1+ z) = z + o(x), but we need to be a little
more careful as the number of summation terms also goes to infinity. Since max;<i<p dni — 0, we
can assume for large n, d,; < r for some r such that when |z| < r, the following Taylor expansion
holds for some constant C:

llog(1 — x) + z| < Ca.
With this,

Therefore, log(1 — §™) = > log(1 — d,;) has the same limit as Y7 | 8,;. In other words,
log(1 —6() — §, or equivalently, 6 — 1 —e~9,

For a fixed z € [0,1], fj 50 (%) = max{0,1— 6(") — x} is continuous in 6. Hence we have the
pointwise limit fj s;) = fo1-c-5-

For the first factor f(" = feni0 ®@ - @ fepn.0, we will apply Theorem 3.5. Let’s check the
conditions.

By the continuity of the function z — a:tanh% at 0, the assumption maxj;<n €pi — 0 implies

) — . Enig
112&}; KI(fni) 112&}; €ni tanh =5+ — 0.
Next, we show
n n o /J2
g kl ':E gpitanh — — K = .
i=1 (o) i=1 " 2 2

Preparing for the same Taylor expansion trick, let n be large enough so that Taylor expansion
|tanhz — | < Cz? applies to all ;.

n e n 82

) cne “ni
g 1 €ns tanh > E 5
1=

=1

2 2

n
= g Eni
=1

n

2

<C- E Eni * Eni
=1

n
2
< C- max gy - g eri — 0.
1<i<n =
P
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2
So Y% | enitanh &2 and YO | 2t has the same limit, which by our assumption is p?/2.
For second moment, > 1, ko(fni) = Y. €2; has limit 2. That is, s in Theorem 3.5 is equal
to u.
For third moment,

n

n n
D) = ek < (o zw) - Y by 0.
i=1 = i=1

i=1

All four conditions of Theorem 3.5 check, so we can conclude the limit of f(™ is the GDP
trade-off function with parameter 2K /s = s = p.
The last step is to combine the two limits £ — G, and fo.sm = fo1—e—s. By Equation (13),

(1 - 5(n)) ’ f(n)(l_(g(n))? 0<a<1- 5(n)a
0, 1-0 <a<l.

FM @ fo 500 (@) = {
Lemma A.7 tells us £ uniformly converges to G, so we have the limit
F5) = Gul =)
This implies the pointwise limit

fanl,énl Q- & f“:nnuénn = f(n) ® f0,§(n) - GM ® fO,l*e_é
Again, uniform convergence comes for free via Lemma A.7. O

The next two corollaries are Berry-Esseen style central limit theorems for the composition of
pure e-DP. Given the existence of Theorem 3.7, these results are relatively loose, but might be good
enough if we have large n. Nonzero ¢ is allowed following a similar argument as in Theorem 3.6.

Corollary D.6. Set t; = tanh § and

22? €ili
. (Zz 1 z 1 )1/2’
Z” ef’( th
(Siei-)™?

v = 0.56 -

Then for any o € [0,1],
Gu(a +’Y) -7 < fa1,0 ® faz,O K- Q& fSn,O(a) < G,u(a - 7) + 7.

In order to highlight the 1/y/n convergence rate, we also derive an easy version in the homoge-
neous case.

Corollary D.7. Let i = 2y/nsinh §,v % : chssﬁli . Then
<

Gula+7) =7 <[5 (@) < Gula—7) +7.
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To see v = O(1/4/n), note that for the limit to be meaningful, € has to be o(1), which implies

Both of them rely on evaluating the moment functionals on f; 9. We summarize the results in

the following lemma:
Lemma D.8. Lett =tanh5. Then
KI(fe0) =ct,  ka(feo) =€, h3(fe0) =%, Ra(fep) =e°(1—t4).

Proof of Lemma D.§8. For convenience, let p = % andg=1—-—p= ﬁ We have

ef e3 cosh & 4 sinh £ 1
p= =— r = 2 2= (141
e€4+1 ez4e 2 2cosh § 2
= 1 _ e~ 3 :cosh%—sinhgzl(l_t)
ec+1 es4e 2 2 cosh § 2 '

The log likelihood ratio is —e with probability p and ¢ with probability ¢, so

Kl(feo) = —[(—¢) -p+e-q=clp—q) =et,
ka(fe0) =%(p+q) =€,

Kk3(fe0) =2 (p+q)=¢°

and
Rs(fe0) =p| —e+e(p—q)l> +qle +<p — g)
=87 pa(p® + ¢%)
_9cd . (1-12). %(1 +2)
=3(1—th).
O
Proof of Corollary D.6 . Follows directly from Theorem 3.4 and Lemma D.8. O

Proof of Corollary D.7. All we need to do is to simplify the expression of p and ~ assuming all
;i = ¢ and hence t; =t = tanh §.
2net

ne?(1 —t2)
—2/n- 1_tt2 - 2\/ﬁsinhg

ned(1 — t4)
(ne2(1 - t2))3/2
0.56 1-+1¢2
Vi V1o
0.56 coshe
% :

—.
cosh 5

/"L:

v =0.56 -

The proof is complete.



E Proof of Theorem 3.7

This section is devoted to the proof of Theorem 3.7. Since we always assume § = 0, it is dropped
from the subscript and we use f; to denote f. . As in the proof of Theorem 3.4, the first step is to
express f&" in the form

1_fz§n(a) :Fn[xn_val(l _04)]

with F,, — ® and z,, — 1. Then we show both convergences have rate 1/n.

Proof of Theorem 3.7. Let’s find F,, first. Fix € and let p = H%,q =1—p =p-e. Recall
that f&m = T(B(n,p), B(n, q)) and we know that it is the linear interpolation of points given by
binomial tails. The main goal here is to avoid the linear interpolation.

For the simple hypothesis testing problem B(n,p) vs B(n,q), we know via Neyman-Pearson
that every optimal rejection rule ¢ must have the following form:

1, if x > k,
o(x) =< 0, it v <k,
1l—¢, ifx=%k.

It rejects (i.e. decides that the sample comes from B(n,q)) if it sees something greater than k,
accepts if it sees something smaller than k, and reject with probability 1 — ¢ if it sees k. Such tests
are parameterized by (k,c) where k € {0,1,...,n} and c € [0, 1).

The corresponding type I and type II errors are denoted by o ) and B ). Let X ~ B(n, p)
and Y ~ U|[0, 1] be independent random variables. We have

Q) = IEa:rvB(n,p) [d)(l‘)] = E[¢(X)]
=P[X > k] + (1 — ¢)P[X = K]
=P[X > k] +P)Y > ] -PX =k
=PX+Y >k+(
B(k,c) = E;ENB(n,q)[l - ¢(‘T)] = E[l - (25(77, - X)]
=Pn—-X <k|+c-Pn—X =k
=PX>n—kl+PY >1—¢ -PX =n—k|
=PX+Y>n+1—k—¢
X +Y supports on [0, 7+ 1] and has a piecewise constant density. As a consequence, the cdf Fxyy
is a bijection between [0,n + 1] and [0, 1]. So for a fixed type I error « € [0, 1], the optimal testing
rule (k, c¢) is uniquely determined by the formula
kE+c= F)}}ry(l — ).
And we have for the trade-off function:
1— f&"(a) = Fxsy(n+1—Fgly (1 - a)).
Now we proceed to write Fx,y in a form that reveals its central limit behavior. First notice
EX +Y] =np+ 3, Var[X + Y] = Var[X] + Var[Y] = npq + 75. For simplicity denote this variance
by o2. Let F}, be the normalized cdf of X + VY, i.e.
Fo(z) = P XHY=EX+Y] I} - wa[nﬁ%ﬂg},

v/ Var[X+Y]
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Simple algebra yields
1— f&"(a) = F, | M2 _ i1 — ).

(34)

It’s easy to show that ma=p) 1 and F,, — ® pointwise. However, we need to show that the

(e

convergence rates are both 1/n, which is technically involved, especially for the convergence of F,.
In view of this, we pack the conclusions into the following lemmas, and provide the proofs later:

Lemma E.1. Withe =1/\/n and p,q,0 defined as above,
n(g —p) 1 -1
——=1-— .
> S +o(n™ ")
As a consequence, there exists C' > 0 such that

}"(fIU—P) _ 1‘ < %

Lemma E.2. There is a positive number C' such that |F,(z) — ®(z)| < € holds for n > 2

Since ®(z) > F,(x) — %, setting x = F; '(1 — ) yields

O(F(1—a)) = Fu(FM(1—a) -

sSQ

Hence

. . 1 . .
The function @ is m—LlpSChltZ, SO

1= fEne) < e[1—0 1—a -9+ A 042

n

By blowing up the current C and using the symmetry of standard normal, we have

?”(a)>1—<1>[1—q>—1(1_a_g)} e

:@[@*1(1—04—%—1] _c

:Gl(a—i—%)—g.

n

Similarly, we can show the upper bound

() < Gila -

£

) +

3lQ
?\Q

The proof is now complete.
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Next we show Lemma E.1 and Lemma E.2.

Proof of Lemma E.1. The proof is basically careful Taylor expansion. We will frequently use the
assumption that e = 1/y/n. First we factor the objective as

n(q —p) :2\/ﬁ(q—p)-\/ﬁ 2(¢—p) Vn

o 20 15 20

and consider Taylor expansions of the two factors separately. For the first factor, recall that

= tanh

¢—p= :.

£
e —1 e2 —e
5 - £
es+1 e2 +e

NI DM

Using the Taylor expansion tanhz = 2 — 23/3 4 o(x*), we have
E2) — fanh s /5 =1-4(5)2 +0(e®) = 1 — &+ o(n~3/?). (37)

For the second one, since p + ¢ = 1, we have 4pg = (p+q)?> — (p — ¢)2 = 1 — (¢ — p)®. A shorter

expansion shows ¢ —p = tanh § = § + 0(¢?), and hence

dpg=1—(5§+0(c?)) =1—-5 +o(e®)=1— ﬁ+0(n*3/2)'

Recall that o is defined to be y/npg + 1—12 Using the above expansion of 4pq, we have

NG n n 1\ —1/2 1 —3/2\\—1/2
2% 402 \/ 4npg _’_% ( Pq + Sn) ( + 12, To(n ))

Since (1 + 2)7Y/2 =1 — 12 + o(z), we have

NG

% = 1- %(ﬁ + o(n_3/2)) + o(n_l) =1- ﬁ + o(n_l). (38)

Combining the expansions (37) and (38),

n(g—p) 2(q—p) Vn

o £ 20
1 1
- (1= o0 ) (- g k)
( 1on, TO ) oam T
1
=1-— % + O(n_l).
The proof is complete. ]

Then we move on to the more challenging Lemma E.2.

Proof of Lemma E.2. The proof is inspired by Problem 6 on page 305 of [Usp37]. Though involved,
the idea is not hard: reduce the bound on cdfs to a bound on characteristic functions (ch.f. for
short) by an appropriate Fourier inversion, then control the ch.f. by careful Taylor expansion.
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Recall that €, p, q, 0 depend on n via

1 1 B es B 1
= P ixe T 1ge TVt

Random variables X ~ B(n,p),Y ~ U[0,1]. F), is the normalized cdf of X + Y. More precisely,
since

1
E[X +Y] :np—|—5, Var[X + Y] :VarX—i—VarY:npq—i—% = o2,

F, is the cdf of 071 (X +Y — 3 — np). Our goal is to show that sup,ep |Fn(z) — ®(z)| = O(2).
First let’s compute the characteristic function (ch.f. for short) ¢, of the distribution F,.

©n (t) — E[eita*I (X+Y—%—np)]

= e~inPt/o  Feit/o(X+Y =3)]
_ e_inpt/a X (px(t/O') . (Py_%(t/a)'

Easy calculation shows that the ch.f. of X is (pe' + ¢)" and that of Y — % is Snt/2 g,

t/2
on(t) = e~ inpt/o (peit/a +q)"- siil/t2/02(r
= (peiqt/U + qe—ipt/a)n . si;l/t#.

The base pe'?/? + ge~Pt/7 is a convex combination of two complex numbers on the unit circle, so

|sint/20] s o2
we have |pp,(t)| < 0] S mm{ﬁ, 1}.

Now let’s connect back to cdf. We need some form of Fourier inversion formula. Let ¢(t) =
e~’/2 be the ch.f. of the standard normal.

Lemma E.3. We have the following inversion formula

1 [ e en(t) —
ite #n(t) = (t)

t

F(x) — ®(x) = t.

2m J_

The integrand is integrable over R because: (1) At infinity |¢,(¢)| = O(%), so the integrand has
modulus O(t%); (2) When ¢t — 0,

‘Pn(t)t_@(t) — Spn(t)_lt_W(t)""l _ ‘Pn(t);SOn(o) _ cp(t);go(O) N 90;1(0) . s0/(0) _ EZNFn [Z}

is a finite number. So the integrand is continuous at 0.
Lemma E.3 makes it possible to control F,(x) — ®(x) by controlling ¢, (t) — ¢(t).

2| Fy () — ®(z)] < /_:o W dt
< AKW ’%(t)yt_y PO 4 (I)
f @
+ AMU |(7(t7|f)| dt (I3)



It suffices to find some constant r such that all three integrals are O(%) This is done via the
following three lemmas.

Lemma E.4. There exist universal constants r > 0,C > 0 such that when |t| < ro,

lpnlt) — p(t)] < Ce™s - (£ 4 1M 4 2y,

_ lon(t) = ()]
h‘ﬁma Y

/c (2 1y g = 0(L).

Consequently,

Lemma E.5. For r <7, we have Iy < (2+ f—g) L

Lemma E.6. Forn > 2, Is < % e 01 polds for any positive r.

So we can select a small enough r such that all three estimates hold, which implies [; =
O(%),I, =0(%) and I3 < . In summary,

n

1 1
F, - <—UL1+L+13)=0(—).
[Fulw) = ®(@)| < o-(1 + o+ T5) = O(-)
Assuming correctness of Lemmas E.3 to E.6, the proof of Theorem 3.7 is complete. O

The rest is to prove Lemmas E.3 to E.6. We deal with the three integrals first, and then come
back to inversion formula.

Proof of Lemma E.4. Let w = pe'®/? + qe~"/?  Then on(t) =w"- sint/20  We have

t/20
sint/20 142
t) —o(t)] = |w" - —e72!
fon®) = (0] = w" - Z e
12 sint/20
0" — 3 + Ju e (39)

All we need is a positive r such that when |t| < ro, both of the above terms are small. We are
going to shrink r as we need from time to time.

First, on the disk |z| < r we have Taylor expansion * = 1 + z + 322 + 223 4+ O((z|%). So for
|t| < ro we have

2

petal” = p(1+ 11+ §(29)" + §(20)° + O(E)

qe_itp/a = q(l — ltp + 5 ( Up )2 — l(%) + O(%))

w=1- 5 (pg? +qp)+6gs( ipg® — qp®(—i)) + O(%;)
=1-2.0 4 P ipg(p— q) + O(Ly). (40)
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Obviously this implies w=1-2%.5 + o(ﬁz) (we will return to the more delicate (40) soon). Since

1 3
npqg>pg > — 1an > 15, we have
pg _ _pg  _ _mpg_ 1 1, 341y 9 5 2
o2 — T — T n/n 16/(6 2) 13n>3n'

nqurﬁ npq+ 13

That is, the quadratic term is more than —2 We can tune r so that the little o remainder is even

smaller, i.e. |w—1+ 2.1 | < 15-. This 1mphes
2 2 t>
lw) <1— +1t2n— —L e,
One consequence is we can bound the second term in (39). By Taylor expansion again, s‘% =
1+ O(2?), so
sint/20 2 2 _2 2
lw|™ |1 — |<e 1-0(L)=e1-0L). (41)

t/20 o

12 t2
The first term in (39) requires a more careful analysis. Let z = ¢ 2n and v = e~ 4n. Our goal is
|w™ — 2"|. We have proved |w| < =y, while |z| = ¥ < v is obviously true. We have

n_zn’ n71‘

lw < Jw™ — w4 w2 = 2 < njw — 2] -y

2 e 2
Without loss of generality assume n > 2, then v"~! =e~ 7 n < e~ 8. That is,

2
|w™ — e*%tz\ < njw — 67;7’ o8t (42)
2
For n|w — e~ 2| we need (40) again. First decompose it as
,ﬁ t2 ,ﬁ t2
njw —e 2n|<n’w—1+%}+n}e 2 — 1+ 5| (43)

Since |p — ¢q| = 22:& <ef—1=0() = O(ﬁ) and 07! = O(ﬁ), we have

w=1-2-5+ & ipap - )+ O(k) =1- B 5 +0(z) + O(f).

g

Note that neither of two “big O” dominate each other, because ¢ can be as small as 0 and as large
as ro = O(y/n). Using the more delicate expansion of w and that o2 = npq + %, we have

nfw—1+5]=n|f - % 5 +0(%) +0(L)|

o2

= |5 - % t2+0<t3)+0<t“)\
_‘t2 1202+O( )+O )|
t*

= 0(5) +0(5) +0(L). (44)

By Taylor expansion again, we can tune r so that when [¢t| < ro, we have

nlet — 1+ £ =n-0(4) = O(L). (45)

Now plug (44) and (45) back into (43), and then into (42) to get

" — 37| <75 (0(L) + O(4y) + O(L)).
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This ends the analysis of the first term of (39). Combining with the estimate of the first term, we
have
142

‘SOn(t)—@(tﬂ <e s (O(%)+O(%)+O(%))

O
Proof of Lemma E.5. For this integral we only care about the modulus of |¢,(t)|. Let’s simplify it
first.

sint/20
t/20

[pnt)] = et + g/ "

Let 0 = t/o. Using |z|? = 2z, we have
’peiqﬂ + qe—ip0|2 — (peiqe + qe—ipe) . (pe—qu 4+ qeipG)
=P’ + ¢ +pg(e” +e7)
=1—2pq + 2pgcosd
=1- Zlcpqsin2 g.

So

n/2 |sint/20

t/20

[en(t)] = (1 - 4pgsin® 57)

We see from this expression that the integrand of I is an even function. Therefore,

+
1 :/ ™ len®) 4
2 ro !

+o0
:/ (1—4pqsin2 %)n/2~
T

(o)

sint/20

t/20 dt

|

+oo /2
:/ =(1- dpgsin® )™ " - | sint| dt
r/2

In the last step we do a change of variable s = t/20 and rename s to t. Next, we break down the
integral at km, and upper bound the t% factor by its value at the left end of the interval, so that
the rest of the integrand is periodic.

1 ™
512 < / % (1 — 4pgsin® t)n/2 - |sint| d¢
T

2"
+00  a(k+1)7w
—i—Z/ t%(l—4pqsin2t)n/2'|sint|dt
=1k
400 T
< (7% + Z k21ﬂg> /0 (1 — 4pq sin® t)n/2 -sintdt
k=1

J

70



The integral J can be estimated as follows:
T .2 \N/2 .
J:/ (1—4pqsm t) -sintdt
0
T 2 n/2
= —/ (1 —4pg(1 —cos”t))"“dcost
0

1
:/ (1 —4pq(1—x2))n/2 dz

-1

1
= 2/ (1 —4pq + 4pq3:2)"/2 dx.
0
We have seen that 1 —4pg = (p — q)? = tanh? 5. It is easy to show that tanhx < z for z > 0. So

pg= (1 —tanh?§) > 1(1 - ) = § — -
Since 0 < z < 1, we have
1 — 4pq + 4pgz® < ﬁ +(1- ﬁ)xQ.

Hence
1 n/2
J<2/ (&+0-4)e)" do.
0

It’s easy to check that -~ and 1 are the two roots of the quadratic equatlon 41n +(1— ﬁ)$2 =z

So we have 4n +(1- E)mz r between the two roots, i.e. for z € [+ For the rest of the

interval, we upper bound the integrand by 1. That is,

L 1y,2\"? -1 ! /2 1 1 3
/0(471—%(1—%):5) darg/o 1d:1:—i—/1 " dr < =g T 727 S o

dn—1> ]

4n—1
So we have J < % Returning to I, with the well-known identity Z % = %2, we have
+
2(% Z )
k=
_ (8 4 = 6
=+ % 7?) n
48\ . 1
=(2+%) %
The estimate of I is complete. O

Proof of Lemma FE.6. First notice the following simple facts:
1. When t > ro, we have % <t =y

r2o

2. 02 > 0.2n for any n.
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The second follows from a bound we derive in the proof of Lemma E.5: pg > i — ﬁ. In fact,

2 _ 1l >n_ 1,1 _ _n_19n
oT=npqt 23"t T4 18 5

Using these two facts, we can bound I3 as follows:

t
e [ 0L,
[t|>ro ‘t’
“+o0o 1 g2
= 2/ —e z dt
ro t

< 2 +oot _ﬁdt
- . e 2
h T2O-2 ro

2 12 |ro
= . 6_7
r2g2 +o0
2 T20'2
= e 2
r2p2
10 1 2
—0.1
< 72 .—.e T n
% n
The estimate of I3 is complete. O

We are done with the three integrals. Before we dive into the proof of the inversion formula
E.3, we make a few observations.
First, one cannot hope to obtain this lemma by showing

it

+oo
Fo(z) = o= —eite . enlt) gy
n 27

—00

and a similar expression for ®(z) separately because this alternative integrand is not even integrable.
To see this, notice ¢,(0) = 1, so the integrand ~ + around 0.

Inversion formula E.3 has the same form as Lemma 3.4.19 of [Durl9]. However, the ch.f.s
are assumed to be (absolutely) integrable there, while ¢,, is not. To see this, recall that Fourier
inversion tells us that if the ch.f. is absolutely integrable, then the probability distribution has
continuous density (see e.g. [Durl9], Theorem 3.3.14). This is not true for X + Y because its
density is piecewise constant. So ¢, cannot be in L!'(R). There seems to be no shortcut, so let’s
work out our own proof.

Proof of Lemma E.3. Applying the general inversion formula (see e.g. [Durl9] Theorem 3.3.11) to
F,, we have
1 T _—ita —itx

Fo(z) — Fp(a) = — lim R

= . t)dt
21 T—+oo J_p it on(t)

n is continuous and decays in the rate ﬁ, so the integrand is dominated by O(¢~2 A1) and hence
the limit on T is equal to the Lebesgue integral. That is,

+oo e—ita _ e—itx
Fo(z) — Fa(a) = — / e e bt (46)

T or —oo it
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Similarly,
1 +o00 e—zta _ e—ztx
B - 00 =5 [ e

27
Note that in (46), we cannot let @ — —oo and use Riemann-Lebesgue lemma because %(t) is not
integrable, as discussed before the proof. However, subtracting the two formula yields
1 +o00 e—ita o e—it:ﬁ
(Ful) = ®(2)) ~ (Fu(a) — @(a)) = 5- / C ()t (a7)
—00

Consider the part involving a
/+°° —ita Pn(t) . P(t) 4y
i

—0o0

We argued right after introducing Lemma E.3 that M € L'(R), so by Riemann-Lebesgue

lemma we have the limit N
> . t) — ot
llm e_Zta . M d

a——00 | _ o 1t

t=0.

Take the limit a — —oo on both sides of (47) and we have

1 +o00 _e—it:v
Fo(z) — ®(z) = — - (on(t) — (1)) dt
@ =0 = 5= [ = (enl) = ol0)
1 [t n(t) — o(t
= efztz . ¥ ( ) QO( ) dt.
21 J_ t
The proof is now complete. O

F  Omitted Details in Section 4

We begin this appendix with a small example showing our subsampling theorem is generically
unimprovable.

Tightness Consider the mechanism M that randomly releases one individual’s private informa-
tion in the dataset. The privacy analysis is easy: without loss of generality we can assume two
neighboring datasets differ in the first individual. Effectively we are trying to distinguish uniform
distributions over {1,2,...,n} and {1,2,...,n}. It’s not hard to see that the trade-off function of
these two uniform distributions is fy 1/, i.e. (g,0)-DP with e = 0,0 = 1/n. This is exact — the
adversary has tests that achieve every point on the curve.

Our theorem 4.2 yields the same result, showing its tightness. To see this, let M be the
1dent1ty map that takes in one individual and outputs his/her entire private information. Then
M=Mo Samp1e1 Privacy of M is described by f = 0. By Theorem 4.2, M is C1/n(f)-DP.

Figure 6 shows that Cin(f) = foa/m-
Next we show the following two equations:

= log(1 — p + pe®),
' =p(1+ f*(~¢))
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can be re-parameterized into

0 =1+ f;(—) (16)
where f, = pf + (1 —p)ld.

Proof of Equation (16). Since € — log(1 —p+ pe®) maps [0, +00) to [0, +00) monotonically, we can
solve ¢ from & and plug into §’. We have

;(1 —e¢Y=1—¢ and ¢ =p(1+ f* (=€) =p(1+ f*(%(l — ) — 1)).

Let y = —e® and it suffices to show for any y < —1,
L+ fy(w) =p(L+ (51 +y) - 1)). (48)
To see this, expand f, as follows
Ip () = suwpyz — fo(z)

=supyz —pf(x) — (1 -p){1 —2)

=p—14sup(y+1-p)z—pflx)

=p—14p-suwp((1+y) - Dz — f(z)

=p—1+pf"(G(1+y) —1)
(48) follows directly. O

Next we provide the general tool mentioned in Section 4.2 that convert collections of (e, §)-DP
guarantee in the form of (16) to some f-DP.

The symmetrization operator Symm : # —
metric trade-off function. It’s defined as follows:

7% maps a general trade-off function to a sym-

Definition F.1. For f € .7, let = inf{x € [0,1] : —1 € Of(z)}. The symmetrization operator
Symm : .F — % is defined as

min{ f, 7'}, if 7 < f(2),
Symm = _ A _
i) = { ot YIS
Proposition F.2. Let f € #, not necessarily symmetric. Suppose a mechanism is (e, 1+ f*(—e®))-
DP for all € > 0, then it is Symm(f)-DP.

Recall from basic convex analysis that double convex conjugate f** is the greatest convex lower
bound of f. If f itself is convex then f** = f. For f symmetric , f = f~'. By convexity of f, we
have Symm(f) = f in both cases. So Proposition 2.12 is a special case of Proposition F.2. The
first half of Proposition F.2 is Proposition 4.5, the part we used in the proof of our subsampling
theorem.

From Figure 13 it’s not hard to see that

f(z), z € [0,7],
min{f, f1}*(x) =< T+ f(&) —=x, =z €[z f(T)],
Fan z € [f(2),1].



— —

— f—l \\ — f—l

— Symm(f) SN Symm())

EHON (@).2)

@ DN (@ /@)

0 - 0
0 1 0 1

Figure 13: Action of Symm. Left panel: z < f(z). Right panel: z > f(z). For both panels the
effective parts (red bars on z-axes) are [0,Z] of f and [f(Z),1] of f~!. No overlap in the left panel
since < f(Z), so interpolate with straight line; overlap in the right panel so the max is taken.

Proof of Proposition F.2. M being (5, 5(5))—DP means that for any neighboring datasets S and $’,
T(M(S),M(5")(z) = —e"z+1—§(e).
Fix x € [0, 1]. Since the DP condition holds for all € > 0, the lower bound still holds when we take

the supremum over € > 0. In other words, M is fen,-DP with

fenv(z) = max{0, supl — d(g) — e“x}.

e=0

By Proposition 2.4 M is also max{ fenv, fob }-DP. The proof will be complete if we can show
max{fenva f;n};} = Symm(f)

1+ 1
‘ —_ —

\
f env RN f env

0 \ 0
0 1 0 1
Figure 14: Symm explained. Left panel: z < f(z). Right panel: z > f(z).

We achieve this by first showing;:

f(z), z € [0, z],
fenv(z) = T+ f(7) -z, xer,z+ f(T)],
0, z €[+ f(2),1]



From Figure 14 it is almost obvious. We still provide the argument below.
Plug in 6(¢) = 1 + f*(—e®) and change the variable y = —e®:

sup[—e“z + 1 — d(g)] = sup[—e“z — f*(—e)]
e>0 =0

= sup [yz — f*(y)]
y<—1

From convex analysis we know if y € df(z) then yx = f(x) + f*(y). By definition of z, if z <
then at least one subgradient y € df(x) is no greater than —1. So this specific yz — f*(y) = f(z)
is involved in the supremum, i.e. sup,<_;[yx — f*(y)] = f(z). This justifies the expression for the
first segment.

When z > Z, the supremum is always attained at y = —1. In fact, if we let [,(z) = yz — f*(y),
then

Lemma F.3. [,(z) <l_i(x) wheny < —1 and z > T.

Proof of Lemma F.3. l, is the supporting linear function of f with slope y. It suffices to show that
ly(x) is monotone increasing in y. To see this, change the variable from the slope y to the supporting
location u. As f is convex, y = f’(u) is increasing in u. In terms of u, l,(z) = f(u) + f'(u)(z — u).
Taking derivative with respect to u:

;ﬂd@=f%0+fﬁmx—w+fWO%—UZfWWW—U)

y < —1 corresponds to location u < Z and hence u < z. So we see that 8% ly(z) = f"(u)(z—u) > 0.
ly(x) is increasing in u, and hence increasing in y, completing the proof of the lemma. O

So the supremum is attained at y = —1. The value is sup,<_4 [yx —f* (y)] = [_1(z). Support
function with slope —1 must support f at z. The location yields expression I_1(z) = f(Z) — (v —
Z). This justifies the expression for the second segment. The third one is simply the result of
thresholding at 0.

It’s straightforward to verify that

o 4@ —x zel0f@),
Jon (@) ‘{ (), & [£(@).1].

Obviously max{ fenv, fone } = Symm(f). When the intervals [0, %] and [f(Z), 1] are disjoint, f and
f~1 are effective separately, and the linear interpolation fills the blank. On the other hand when
they intersect, max is taken and the linear function is never effective. O

We conclude this appendix with the proof of the classical privacy amplification by subsam-
pling theorem. It primarily follows [Ull17], but is written so that potential generalization and
improvement are in reach.

Lemma 4.4 ([UL17]). If M is (¢,0)-DP, then M oSample,, is (¢',8')-DP with €' and ¢’ defined in
Corollary 4.3.
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Proof of Lemma 4.4. Let S and S’ be neighboring datasets, each with n individuals. Without loss
of generality, assume S and S’ differ in the first individual. We are ultimately interested in M (.S)
and M(S'). They are generated as follows.

Let I C [n] be any size m subset of the index set [n] = {1,2,...,n}. S; and S} denote the m
individuals indexed by I in corresponding datasets, both of which can be the input of M. When [
is uniformly sampled from the () subsets of [n] of cardinality m, M (S7) is M(S).

Let ¢ be an arbitrary rejection rule. For a fixed I C [n], when ¢ is used for the problem M (Sy)
vs M(S%), the corresponding type I and type II errors are

ar =E[p(M(Sr))] and  Br:=1-E[p(M(S]))] (49)

respectively. The expectations are over the randomness of M.
When ¢ is used for M (S) vs M(S’), the type I error « and type II error 3 satisfy

o = E[¢(M(9))] = Er E[¢(M(S1))] = Eq[a;)
and
B=1-E[p(M(S")] = Er[1 - E[p(M(S)))] = Er[51]-

Ultimately we are going to show that § has a lower bound in terms of «. This is possible because
for each I, B; has a lower bounded in terms of o, whose form depends on whether the “difference”
individual 1 is sampled.

When 1 ¢ I, S; = S7. By definition (49), a; + 8r = 1. When 1 € I, St and S} are neighbors in
X™ so (g,0) privacy of M becomes effective here. Let k = —e®,b = 1 — 4. From Proposition 2.5
we know By > kay +b.

So we should separate these cases 1 € I and 1 ¢ I and average them respectively. Define

A=E[as|I 51], B=E[g|I>1]
and
A=ElaI#1], B=E[B|I71]

Let p =m/n. Then P[I 5 1] = p, P[I # 1] = 1 — p. Further averages of these quantities give us «
and j3: ) )
a=pA+(1-pA, B=pB+(1-p)B.

Linearity passes through expectations, so we have A+ B =1 and
B =E[g|I >1] > Elkar +b|I 1] =kE[ag|] 1]+ b= kA +b.

This inequality B > kA +b comes from the difference between S and S’. The smart observation
is, there are a lot more neighboring datasets we can exploit. For example S; and S} when [ =
{1,2,...,m},I = {2,3,...,m + 1}. They share individuals 2,3,...,m and differ in the one left.
This yields another inequality B > kA 4+ b. We fill in the details Jon Ullman omits in his lecture
note.
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For I 5 1, we can replace 1 with any of the n — m indices not in I and obtain n — m different
subsets I(M ... 1("=™) Note that none of these contains 1. In another word, we have the following
correspondence:

51 Z1
I« I

I« [=m)

Each S;(;) is a neighbor of S, so by the privacy of M, we have f; > ka;¢) +b. Sum these up for
each I 5 1 and the n — m replacements of I, we have

(n—m)'Z&)m-Zka[—i—b.

I>1 11

The right hand side factor m comes from a different counting: if I Z 1 then each of the m items in
I could have been 1 before the replacement. So each I Z 1 appears m times in the summation.
Multiply by —-=2 (") _1,

m(n—m) \m

w () (@) et () ()

By the simple Bayes’ rule, this is B > kA + b.
Remember we want a lower bound of 5. The best possible lower bound we can ge t via these
relations is the minimum of the following linear program:

st. pB+(1—p)
pA+(1-p)
A+B=1
B>kKA+b
B>kA+b
A,B,A,Bel01]

B=g§
A=a

Lemma F.4. The minimum of the above linear program is no less than p(ka+b) + (1 —p)(1 — ).

Proof of Lemma F.J. We are going to remove the A, B, A, B € [0,1] constraint and find the exact
minimum of the relaxation, which is a lower bound of the original minimum.

We have 5+ a=p(A+ B)+ (1 —p)(A+ B) =p(A+ B) + (1 — p). So equivalently we can try
to solve

min A4+ B
A,B,A
st. pA+(1-pA=a
B>kA+b
B>kA+b
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When A = A = q, the lower bound they impose on B is ka + b. Notice that k = —e® < —1. The
two consequences are:

1. A > « is worse than A = «a, because the convex combination equality requires A < o. B has
to increase anyway. Both A and B increase, so the objective A + B also increases.

2. If A is decreased from « by some amount, B has to increase by e° times that amount, which
is not worth it.

So the minimum of the relaxed linear program is achieved at A= A =a,B =ka +b,B =1 — a,
thereby inducing the claimed lower bound. O

So 8 = p(ka+b) + (1 — p)(1 — ). Changing back to ¢,d, we have
Bep(—fa+1-08)+(1-p)(l—a)=—[pf+1—pla+1l—psi=—ea+1-45.

By Proposition 2.5, M is (¢/,8")-DP. O

G Omitted Proofs in Section 5

Our first goal is to prove

Theorem 5.2. Suppose f is a symmetric trade-off function such that f(0) = 1 and fol(f’(ﬂs) +

D*dz < 4+00. Furthermore, assume pvT — pg as T — oo for some constant pg > 0. Then we
have the uniform convergence

T
Cp(f)™" = Gpo\/2xi(f)

as T — oo, where

1
2
a0 = [ 7@ -1 a

First we point out that the functional Xi is computing a variant of x2-divergence. Recall that

x2-divergence is an F-divergence with F(t) = (t — 1)2. We define Xi—divergence to be the F-
<

divergence with F(t) = (t — 1)2 = { ?t’ 2 i ; 1’ As in Appendix B, let z; = inf{z € [0,1] :
f(z) = 0} be the first zero of f.

Proposition G.1. For a pair of distributions P and Q such that T(P,Q) = f is a symmetric
trade-off function with f(0) =1,

XA (PQ) = XA(f)-
Proof of Proposition G.1. By Proposition B.4, when f = T(P,Q), Xi(PHQ) can be computed via
the following expression:

X3 (PlQ) = /Zf (1F@)| " =1)% | £ @) dz+ F0) - (1= £(0) + 7 - (1 — 2p)
0

(t)

where F(0) = lim, o+ F'(t) = 0,77 = lim, oo FTt = 4o00. Since we assume f is symmetric,
z¢ = f(0) = 1. This also implies that f~! is the ordinary function inverse, i.e. f(f(z)) = z. Let
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y = f~Y(x) = f(z). Then dy = f'(z)dx. On the other hand, * = f(y), dz = f'(y)dy. = =1
corresponds to y = 0 and x = 0 corresponds to y = 1, so

V(PIQ) = / (7@ =12 | @) da
= [ -0 @l
—/10(\f’(y)} ~1)5 dy
=/01 (17w - 1) dy

We need some more calculation tools to prove Theorem 5.2.

Lemma G.2. Let f € .Z° with f(0) =1 and z* be its unique fized point. Then

ka(f) = /0 (@) + 1) (log | £/ (2)])? de

*

H3<f>=/0 lHog | £/(x)] + K(A)[* + /(@) - |log | (@)] — KI(f)| da

o
walh)= [ 1F@I+1) (081 @) da.
Proof of Lemma G.2. First we observe that f/(z) < —1 for # < z* and f/'(z) > —1 for z > z*.
This means the integrand involved in Xi is 0 in [z*, 1] and hence proves the first identity.
The rest of the proof is entirely based on a trick we used above. Let y = f~!(x) = f(z). Then
x = f(y), de = f'(y)dy. Since z* is the fixed point of f, x = z* corresponds to y = 2*. = =1
corresponds to y = 0 and z = 0 corresponds to y = 1.

1 1
~ [ 1oglr@)lde = [ toglr@)tda

x*

Z/x(jlog‘z‘-f'(y)dy

*

- /0 " log /W) 1)) dy.
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So

1
KI(f) = — /O log |/ (x)] dz

*

. 1
—— | og|f@ldo [ tog|f ()] da
0 z*

* *

-/ " Jog |f'(z)|dz + / " log |f/(@)] - |/ (2)] dz
9 0
- /0 (I7'@)] - 1) log | f'(x)] da.

The rest of identities can be proved in exactly the same way. O

Lemma G.3. Suppose f € Z° and f(0) = 1. x* is its unique fived point. Let g(x) = —f'(z)—1 =
|f'(z)| — 1. Then

KI(C)(f)) = p /0 " g(@)log (1 + py()) de

*

w2 (Cyl(f)) = /0 " (24 po(a)) [log (1 + pg(2))]* da

*

k3(Cyl(f)) = /0 " (24 pg(a)) [log (1 + py(x))]* da-.

Proof of Lemma G.3. We prove for kl and the rest are similar. Let z;, be the fixed point of Cp(f).
By Lemma G.2,

K = [ PG, ()] = 1) log | C( ) (=) e

From the expression of C(f) (14) we know log |Cy(f)'(z)| = 0 in the interval [z*, z;], and Cp(f) =
fp =pf+ (1 —p)Id in the interval [0,2*]. So

KIC() = [ (@) — 1) log | ()] da.

In the interval [0,a°], g(2) = /(@) — 1 > 0. f3(x) = pf'@) + (1 — p)(~1) = p(f'(@) + 1) — 1 =
—pg(z) — 1, so |f,(z)| = pg(x) + 1. When plugged in to the expression above, we have

kI(Cp(f)) = p/: g(x)log (1 + pg(z)) da.

Proof of Theorem 5.2. It suffices to compute the limits in Theorem 3.5, namely

T-KU(Cy(f). T ra(Cp(f)) and T - k3(Cy(f)-

Since T ~ p~2, we can consider p—2kI(C,(f)) and so on.
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As in Lemma G.3, let z* be the unique fixed point of f and g(x) = —f'(z) — 1 = |f'(z)| — 1.
Note that g(z) > 0 for = € [0, 2*]. The assumption expressed in terms of g is simply

1
/ g(x)tdz < +o0.
0

In particular, it implies g(x)* are integrable in [0,2*] for k = 2,3,4. In addition, x%(f) =
fgc* g(z)? dz by Lemma G.2.
For the functional kl, by Lemma G.3,

*

1 , v 1
pgrg+?k1((j’p(f)):pli>rg+ ) g(x)-;log (1+ pg(z))dz (%)
x* 1
= - lim = log (1 d
/0 g(e) - lim ~log (1+pg(x)) dw

*

- / " g(@)dr = 2(f)

Changing the order of the limit and the integral in (%) is approved by dominated convergence
theorem. To see this, notice that log(1 4+ z) < . The integrand in (x) satisfies

0<g(x)- ;bg (1+pg(2)) < g(2)*.

We already argued that g(z)? is integrable, so it works as a dominating function and the limit is
justified. When pv/T — pg, we have

T-KI(Cy(f) = g - x5 (f)-

So the constant K in Theorem 3.5 is pZ - x%.(f).
For the functional ko we have

pl?@(cp(f)):/o (2+pg($))[;log (1 +p9($))]2dx.

By a similar dominating function argument,
. 1 ; 2 2
lim — k2(Cp(f)) =2 g(z)” dz = 2x7.(f).
0

p—=0t P

*

*

Adding in the limit pv/T — po, we know s? in Theorem 3.5 is 2pZ - x2.(f). Once again, we have
5?2 =2K.
The same argument involving g(z)* applies to the functional k3 and yields

lim = ka(Co(f) :2/; o(2)? da.

p—0+ p3

*

Note the different power in p in the denominator. It means r3(Cp(f)) = o(p?) and hence T -
#3(Cp(f)) — 0 when pvVT — po.
Hence all the limits in Theorem 3.5 check and we have a G, limit where

u:2K/s:s:\/m=p0'\/2Xi(f)~

This completes the proof. ]
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Lemma 5.3. We have ,
(G = e - B(311/2) + 38(—p/2) - 2,

Proof of Lemma 5.3. We use Proposition G.1 as the tool. Obviously P = N (p,1) and @ = N(0,1)
satisfy the conditions there. So it suffices to compute x% (N (u, 1)||NV(0,1)). Recall that x% is the
F-divergence with F(t) = (t — 1)%, so x4 (P||Q) = EQ[(g —1)4]. Let ¢ and ® be the density
function and cdf of the standard normal. We have

X3 (Gp) = xF (N (1, DIV (0, 1))

e (25 )
o0 T — 2
- /m (@(@(x)u) ~1) @
= /u/:oo (W>2 cp(x)de — Q/H;r:o o(r —p)dz + /M;OO o(z)dz

+oo
= [ () da 21 - (/2) + B(—p/2)
©/2

~~

I
=1+30(—p/2)—2.

For the integral I,

+00 2
I :/ 2= L p(z) dx
w/2

+
:/ Tl w2 g,
w2 V2T

+00 1

— B G D EP BTN

= e & X
/u/z 2

= e PIN(2u,1) > /2]
= e D(31/2)
This completes the proof. ]

Corollary 5.4. If m\/T/n — ¢, then NoisySGD is asymptotically yu-GDP with

pw=2c- \/6072 - ®(1.5071) + 3®(—0.50"1) — 2.
Proof of Corollary 5.4. Combining Theorems 5.1 and 5.2 and Lemma 5.3, it suffices to check

fol(f’(x) +1)*dz < +oo when f(z) = Gu(z) = (@ (1 —2) —a). Let y = 7 1(1 —2). We
have ¢(y) dy = — dx. Hence

Go(x) =y —a)- % - _(p(z(;)@ oY
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The integral is

1 +o0 o2
/ (Gl(x) + 1)* da = / (—e™~F 1 1)'o(y) dy,
0 —00

which is just a linear combination of moment generating functions of the standard normal and
hence finite. O

Lemma 5.5. Let Z(z) = log(p - e"*#*/2 4+ 1 — p) and ¢(z) = \/%e_ﬂﬂ be the density of the

standard normal distribution. Then

+oo

K(C,(G,) = p / ) 2@ (oo ) da

+oo
k2(Cp(G)) = / ) (pple =)+ 2~ plo(w) o

+oo
F3(Cp(G)) = / 7@ GG - ot =)+ (1 prote) de

i Kl 3 d

Jr/ﬂ/2 ‘Z(m)+ (Cp(GM)H ~(z)dz.

Proof of Lemma 5.5. We will use Lemma G.3. It’s easy to show the fixed point of G/, is z* =
O(—pu/2). So

O(—p/2)
kl(Cp(Gp)) = p/o (= G(x)—1)log (14 p(=G),(z) — 1)) dz

Using the same change of variable y = ®~1(1 — x) = —®~1(x), we have
kI(Cp(Gp)) = P/+OO (M - 1) log (1 er(M - 1))@@) dy
/2 e(y) o(y)
+o0o
= p/ Z(y) - (oly — 1) — ¢(y)) dy.

w2
The rest can be proved similarly. O
Corollary 5.6. Let p=m/n,u= 0" and

Qﬁ'kI(CP(Gu)) _ 056 K3 (Cp(Gu))

(NI

A= y
\/'i2 (Co(Gp)) — K2 (Cp(G) VT (r2(Cp(Gp)) — kl?(CP(Gu)))

NoisySGD is f-DP with
f(o) = max{Gy(a +~) — 7,0}

Proof of Corollary 5.6. Follows from plugging in the expressions above into Theorem 3.4. O
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