




TABLE I: Important Notations.

Symbol Definition

D The number of variables or objects

N The number of samples

K The number of distribution

X The observations of D-variate Gaussian distribution

S The empirical covariance matrix of X

φk The prior probability or mixing coefficient of distribution k

rik The posterior probability of sample i generated from distribution k

Σk The covariance matrix of distribution k

Θk The precision matrix of distribution k

Θ̄k The non-negative copy of Θk with zero diagonal elements

λ1 The Lagrangian multiplier of general lasso regularization

λ2 The Lagrangian multiplier of mutual exclusivity regularization

X̄ is the non-negative copy of X removed all diagonal

elements. In addition, we collect other important notations in

Table(I).

B. Inverse Covariance Estimation

The inverse covariance matrix is defined as Θ = Σ−1,

which can filter the directed links between all relationships.

C. Graphical Lasso

Graphical Lasso (GLasso) or Gaussian Graphical Model

(GGM) is usually formulated as the following optimization

problem,
min
Θ≻0

−log|Θ|+ tr(SΘ) + λ||Θ||1 (2)

where S = 1
nX

⊤X is the empirical covariance matrix,

||Θ||1 is the ℓ1-norm regularization that encourages sparse

solutions, and λ is a positive parameter denotes the strength

of regularization. Since Θ̂ is usually a relatively sparse matrix

with non-zero entries corresponding to directly connected pairs

of nodes, we can use it as a concise representation of the

underlying network.

D. The Adaptive Lasso

[33] proposed a special penalty to achieve the desirable

properties, which is called the adaptive Lasso. It requires

different weights for each component in the Lasso penalty.

So putting the adaptive Lasso penalty into Eq. 2, we can get:

min
Θ≻0

−log|Θ|+ tr(SΘ) + λ

N
∑

i=1

K
∑

k=1

ωik|Θ(ik)| (3)

where |Θ(ij)| denotes the ij-th element of Θ. We will propose

a similar idea in our model to deal with the non-overlapping

problem.

E. Gaussian Mixture Model

One of the most popular mixture model is Gaussian Mixture

Model (GMM), where each base distribution in the mixture is

a multivariate Gaussian (MVG) with mean µk and covariance

matrix Σk, the probability of data sample xi is as follows:

p(xi|θ) =
K
∑

k=1

φkN (xi|µk,Σk) (4)

where θ is the model parameters, 0 ≤ φk ≤ 1 is the prior

probability of the k-th base distribution chosen to generate a

sample and
∑K

k=1 φk = 1.

III. MGL METHOD

A. Gaussian Mixture Graphical Lasso

Given the number of base distributions K and the number

of node N , we assume the observed sample of each node is a

mixture of the K distributions. Thus, the joint probability of

all observations X = (x⊤
1 , · · · ,x

⊤
N ) ∈ R

N×D is given by

p(X|Θk,µk, φk) =

N
∏

i=1

K
∑

k=1

φkN (xi|µk,Σk)

=
N
∏

i=1

K
∑

k=1

φk

exp
(

− 1
2 (xi − µk)

⊤Σk(xi − µk)
)

(2π)D/2|Σk|1/2

We could assume µk = 0 without losing generality, so the

negative log likelihood (NLL) in terms of {Θk} is given by,

NLL(θ) = −log
(

N
∏

i=1

K
∑

k=1

φkN (xi|0,Σk)
)

= −
N
∑

i=1

log
(

K
∑

k=1

φkN (xi|0,Θ
−1
k )

)

(5)

where θ = {φ1, · · · , φk,Θ1, · · ·Θk} is the model parameters.

B. The Mutual Exclusivity Regularization

Similar to Eq. (3), we also need to impose regularization

on our mixture model to obtain interpretable results, which

means non overlapping edges exist among all estimators of

precision matrices. However, be different with adaptive lasso



or fused lasso, the intuitions are two folds: (1) we want each

Θk to be sparse; (2) we want each Θk to be fairly different

from other Θk′ . Towards this end, we propose to the mutual

exclusivity regularization as follows,

ℓλ1,λ2
({Θk}) = λ1

K
∑

k=1

‖Θk‖1 + λ2

∑

i 6=j

tr(Θ̄iΘ̄j) (6)

where Θ̄ =





|Θ11| · · · |Θ1N |
· · ·

|ΘN1| · · · |ΘNN |



 is the non-negative copy

of Θ. The first term is identical to graphical lasso, which

imposes sparsity controlled by λ1 > 0 on each Θk. The second

term is the summation of the approximate divergence measure

between each pair (Θi,Θj). It is easy to see when there is

no overlapping non-zero entities between each Θk, this term

reaches its minimal value 0. λ2 > 0 is employed to tune the

strength of the second regularization. So it makes sense that

we can use this term to force each estimation of Θk in the

result to have as few over-lapping elements as possible.

Hence, we formally present the objective of our MGL as

follows,

min
{Θk≻0}

NLL({Θk}) + ℓλ1,λ2
({Θk}) (7)

C. The Latent States

Since there are K separate latent distributions, so each data

sample xi could come from one of the K distributions, we

denote the corresponding state as zi ∈ {1, · · · ,K}. Thus, the

NLL function could be rewritten as follows,

NLL(θ) = −
N
∑

i=1

log

K
∑

k=1

(Q(zik)p
(

xi|Θk φk

)

Q(zik)

)

= −
N
∑

i=1

log

K
∑

k=1

(p
(

xi, zik|Θk φk

)

Q(zik)

)

(8)

Here Q(zik) is the latent variable and
∑K

k=1 Q(zik) = 1. In

fact, we can treat this item as the posterior probability of the

i-th observation generated by the k-th distribution, which will

be proved in the next section.

According to the expression in the Equation (8), it can not

be directly computed because the expression in log is a sum

term. So we use the Expectation Maximization (EM) algorithm

to optimize the above NLL w.r.t. {Θk}.

D. The E Step

Firstly, according to the Jensen inequality, we known that

when the optimal function is convex:

f(E(x)) > E(f(x)) (9)

Because NLL is convex, and
∑K

k=1

(

p
(

xi,zi|Θk φk

)

Q(zi)

)

can be

treated as the expectation of p
(

xi, zi|Θk φk

)

. So we apply

Jensen inequality here to find a lower bound of it. Based on

this principle, we get the lower bound of NLL such as follows,

NLL(θ) = −
N
∑

i=1

log

K
∑

k=1

(p
(

xi, zi|Θk φk

)

Q(zi)

)

(10)

6 −
N
∑

i=1

K
∑

k=1

Q(zi) log(p
(

xi, zi|Θk φk

)

) (11)

The equal sign is approved only when the following is true,

p(xi, zik)

Q(zik)
= C (12)

where C is a constant. So simply we have,

K
∑

k=1

p(xi, zik) = C

K
∑

k=1

Q(zik) = C (13)

Q(zik) =
p(xi, zik)

∑K
k=1 p(xi, zik)

= rik (14)

The NLL(θ) = −
∑N

i=1

∑K
k=1 Q(zi) log(p

(

xi, zi|Θk φk

)

) is

correct only when the constraint of Q(zik) is true. So we can

get the conclusion that the latent variable we created is the

posterior probability of the i-th observation generated by the

k-th distribution. Then we can compute each rik based on the

initialization or update results of Θk and φk.

E. The M Step

After we obtain the r
(t)
i in the E step, we could update φk

accordingly:

φ
(t)
k =

1

N

N
∑

i=1

r
(t)
ik (15)

However, 1
N

∑N
i=1 r

(t)
ik −φ

(t−1)
k is a feasible descent direction.

So we update φk based on the follows:

φ
(t)
k = φ

(t−1)
k + δk(

1

N

N
∑

i=1

r
(t)
ik − φ

(t−1)
k ) (16)

where {δk|k = 0, 1, 2, . . . ; δ ∈ (0, 1)} is a learning rate and

we find δ = 0.1 works well in our experiments.

The remaining problem is to find Θk that maximizes the

expectation we obtain in the E step, which is equivalent to

minimize the following function:

min
{Θk≻0}

−
N
∑

i=1

K
∑

k=1

r
(t)
ik log p(xi|Θk) (17)

⇐⇒ min
{Θk≻0}

−
N
∑

i=1

K
∑

k=1

r
(t)
ik log

(exp(− 1
2x

⊤
i Θkxi)

(2π)D/2|Θk|−1/2

)

(18)

⇐⇒ min
{Θk≻0}

N
∑

i=1

K
∑

k=1

r
(t)
ik

2
(x⊤

i Θkxi +D log 2π − log |Θk|)

(19)



By dropping terms do not rely on Θk, we obtain:

min
{Θk≻0}

N
∑

i=1

K
∑

k=1

−r
(t)
ik

(

log|Θk| − x⊤
i Θkxi

)

(20)

Thus, deriving Θk in M-step is equivalent to solve the

following problem,

min
Θ1≻0,··· ,ΘK≻0

N
∑

i=1

K
∑

k=1

−r
(t)
ik (log|Θk| − x⊤

i Θkxi) (21)

Intuitively, above problem is equivalent to K separate con-

ventional graphical lasso sub-problem weighted by r
(t)
ik , where

each sub-problem has the form of

min
Θk≻0

−sk log |Θk|+ r⊤k X
⊤ΘkX (22)

where rk = (r1k, · · · , rNk)
⊤ and sk =

∑N
i=1 rik. If we set

X̃k = (
√

r1k/skx
⊤
1 , · · · ,

√

rNk/skx
⊤
N ), the above problem

can be reformed as follows,

min
Θk≻0

− log |Θk|+ tr(X̃⊤
k ΘkX̃k) (23)

which takes a similar form to Eq. (2). Then we bring in the

adaptive regularization to obtain the final problem for M step,

min
{Θk≻0}

K
∑

k=1

(

− log |Θk|+ tr(X̃⊤
k ΘkX̃k)

)

+ ℓλ1,λ2
({Θk})

(24)

This problem is not convex w.r.t. {Θk}, but we could solve

it alternatively for each Θk by regarding other Θk′ 6=k fixed.

Each sub-problem of Θk is exactly in the form of Eq. (23) plus

the adaptive regularization terms. Thus it could be solved by

any existing method for solving Graphical Lasso such as QUIC

without significant modifications. In each iteration of M-step,

the alternating optimization repeats until all estimated Θk

become stable or reaches the maximal number of iterations.

The final solutions to Eq. (24) and updated {φk} obtained

using Eq. (15) are used in the upcoming iteration of E-step

to update the responsibility weights {ri}. This loop of E step

and M step repeats until the loss function converges.

The MGL algorithm is also summarized in Algorithm (1).

F. Initialization

As we know from the Algorithm (1), we need to give

starting values of each estimators. In the process of com-

parative experiments, we found that the initialization of the

parameters will largely affects the performance of our model.

The following scheme we found empirically works well in

our experiments. For each observation i = 1, . . . , N , we

distribute it randomly a class k ∈ {1, . . . ,K}. Then we assign

a weight r̂ik = 0.9 for this observation i and distribution k
and r̂ij = 0.1

K−1 for all other distributions. In the M-step, we

update Θk from the initial values Θ̂
(0)
k computed by GLasso

based on the whole samples. and φk from the initial values

φ̂k = 1
K .

Algorithm 1 Algorithm for MGL

Require: i: X: The observations of D-variate Gaussian dis-

tribution

ii: k: the number of Gaussian distributions

iii: λ1: the Lagrangian multiplier of sparsity con-

straint

iv: λ2: The Lagrangian multiplier of mutual exclu-

sivity constraint

v: itermax: the maximum number of iteration

Output: Θ̂k, φ̂k

1: Initialization: initialize φ
(0)
k , Θ

(0)
k and r

(0)
ik

2: repeat

3: E step: Update the latent variable r
(t)
ik with given

φ
(t−1)
k and Θ

(t−1)
k

4: M step: Update φ
(t)
k , Θ

(t)
k with r

(t−1)
ik

5: until iter = itermax or convergence

IV. EMPIRICAL STUDY

In this part, we demonstrate the performance of our pro-

posed model through extensive comparative experiments. We

evaluate our proposed model in synthetic datasets at first.

To comprehensively evaluate proposed model, we conduct

experiment to answer the following research questions:

• RQ 1: How does MGL perform compared with state-of-

the-art models in the consideration of the effect of sample

size?

• RQ 2: Does our model still show robustness under noise?

If the MER regularization term has positive influence on

the performance under noise?

• RQ 3: How do hyper-parameters in comparative experi-

ments impact each model performance?

• RQ 4: Is there a problem with mixture brain network

structure in real ADHD-200 datasets?

A. Compared Baselines

To demonstrate the effectiveness of our proposed method,

we test against several variations of the state-of-art method

Graphical Lasso:

• GLasso + Spectral Clustering: GLasso algorithm that

assumes all data samples are drawn from the same Gaus-

sian distribution, then using Spectral Clustering divide the

whole network into several sub-graph.

• k-means + GLasso: This is a pipeline method that first

employs k-means to assign each xi to different groups,

then using GLasso for each group to obtain the final Θk.

• JGL [16]: This is the Joint Graphical Model with fused

lasso, which is proposed in [16]. It is equivalent to our

proposed model without MER term. So it can work as

the comparative method for assessing the performance of

MER.

B. Synthetic Simulations

Due to the lack of ground truth in many real-world data, we

first compare our proposed method against other competitors

on several carefully designed synthetic data sets.





(a) Precision matrix Θ1 (b) Precision matrix Θ2

Fig. 4: True precision matrices of data sets (p = 20 and k =
2) in scenario 3 and 4. In the consideration of elements in

off-diagonal area, white indicates no directed relationship and

black indicates directed relationship between each variable.

first column shows the results when we control sample size

N and hold on the others, which corresponds to RQ1. It is

obvious that k-means and Spectral models are useless when

the ground truth data sets are drawn from mixture Gaussian

distribution. Meanwhile, when the sample size is not large

enough, the precision of JGL is lower than that with MGL. The

second column shows the results when we control noise, which

corresponds to RQ2. We fix the sample size N on 500, so

when σ = 0, JGL is as good as MGL. According to the results,

The louder the noise, the worse JGL performs, which means

sensitive to the noise.So the result demonstrates that MER

regularization can improve the performance of our proposed

model. Compared to the others, MGL shows robustness in this

scenario. To answer RQ3, we can figure out the answer from

both column in this figure. Since our experiments are setting

in low-dimensional and high-dimensional space separately,

we can see from all comparison results that the issue of

hyper-parameters does not affect the performance of MGL. In

contrast, the performance of JGL in high-dimensional space

isn’t as well as that in the low-dimensional space, no matter

in the scenario of sample size or noise. In summary, in the

comparative experiment of synthetic datasets with ground-

truth, our proposed method MGL shows better accuracy and

robustness than that of other comparison methods.

Figure 3 has exhibited the overall performance of all meth-

ods. To better understand the effectiveness of MGL, we also

show the visualization of these scenarios, which can more

intuitively reflect the problem of multiple mixture network

and the performance of each method. Figure 4 shows the true

precision matrices of data sets in scenario 3 and 4. It indicates

that these data sets are drawn from two independent Gaussian

distributions, which is consistent with the defined problem in

the paper. According to the color bar, in the consideration

of elements in off-diagonal area, white indicates no directed

relationship and black indicates directed relationship between

each variable. So it is obvious that the precision matrices of

them have non-overlapping area with each others.

Figure 5 shows the comparison when sample size N = 1000
and no noise exists in the data sets. We filter the precision

matrix into a matrix with only 0 and 1 by a threshold close

(a) JGL: Θ̂1 (b) JGL: Θ̂2

(c) MGL: Θ̂1 (d) MGL: Θ̂2

Fig. 5: Estimated precision matrices of data sets (p = 20 and

k = 2) when N = 1000 and σ = 0 (no noise).

to zero. So according to the figure, as long as the sample

is large enough and no noise exists, these two models can

figure out ground truth mixture distribution, no matter whether

considering the mutual exclusivity term. However, when the

sample size is insufficient or there is noise in the datasets

(Figure 6 and 7), JGL begins to show malfunction, which

indicates that this model is sensitive to sample size N or noise.

According to the second row of them, the mutual exclusivity

regularization can solve this problem to some extent. MGL

can still get results that are very close to the real situation,

which demonstrate that MER improves the performance of

MGL under small sample size. In summary, we believe that

MGL is more accurate and robust to mixture Gaussian data

sets with non-overlapping constraint. The mutual exclusivity

regularization works well on small samples or noisy data sets.

C. Real fMRI Data

In the subsection, we evaluate our proposed method on

fMRI dataset from ADHD-200 project1. ADHD, which is also

called Attention Deficit Hyperactivity Disorder, is a chronic

condition. This condition has been happened on 5% - 10% of

school-age children. Through this paper, we discover the net-

work discovery from a collection of fMRI scans, in which each

sample corresponds to a 4D brain image (a sequence of 3D

images) of a subject. These scans are usually transferred into

time series of voxels in the 3D images space. Consequently in

practice with real fMRI cases, node is a set of voxels in 3D

brain images that are similar to each other in function. Our

real world dataset is distributed by nilearn2. Specifically, there

are 40 subjects in total. Among them, 20 subjects are labeled

1http://fcon 1000.projects.nitrc.org/indi/adhd200
2http://nilearn.github.io/



(a) JGL: Θ̂1 (b) JGL: Θ̂2

(c) MGL: Θ̂1 (d) MGL: Θ̂2

Fig. 6: Estimated precision matrices of data sets (p = 20 and

k = 2) when N = 400 and σ = 0(no noise).

(a) JGL: Θ̂1 (b) JGL: Θ̂2

(c) MGL: Θ̂1 (d) MGL: Θ̂2

Fig. 7: Estimated precision matrices of data sets (p = 20 and

k = 2) when N = 1000 and σ = 0.5.

as ADHD, and the others are labeled as TDC. The fMRI scan

of each subject in the dataset is a series of snapshots of 3D

brain images of size 61×76×61 over ∼176 time steps. In our

experiment, we only choose the subjects which are labeled as

ADHD.

Because real fMRI data lacks ground-truth as a reference

to measure the accuracy and robustness of the model. We

(a) Sub-graphs discovered by k-means

(b) Sub-graphs discovered by JGL

(c) Sub-graphs discovered by MGL

Fig. 8: Comparison of k-means + GLasso, JGL and MGL on

ADHD dataset. The results show how to estimate a mixture

connectivity structure on a group of subjects using different

group sparse inverse covariance estimation models from real

fMRI data set. The closer the color of elements in off-diagonal

is to blue, the bigger probability the directed edges between

corresponding nodes.

are more concerned with the interpretability and rationality

of the results. Specific to our proposed model, we are more

concerned about whether our model can mine different con-

nectivity structures among nodes from the fMRI datasets.

Throughout this subsection, we still make horizontal compar-

isons of the models mentioned in synthetic datasets, in order

to compare the different results of each method on this fMRI

datasets.

In our experiment, we only choose the subjects which are

labeled as ADHD. We focus on the multiple connectivity

structures among the same subjects, in order to provide

evidence on feature selection between different subjects in

further study. Rather than discover the brain network on the

level of voxels, we extracts the signal on regions defined via

a probabilistic atlas, to construct the data sets. So it is more

conventional for visualization of the results. The data sets is

a 1899 × 39 data sets and we consider that they are drawn

from a mixture Gaussian distribution. However, the number k
of it is unknown, which need to be given in advance. Through

repeated experimental observations, we found that k = 4 can

provide the most reasonable results on the data sets.

In the Figure 8, the first row indicates the results of k-

means plus GLasso; the second one indicates JGL and the

third one indicates MGL. According to the results, we can

find that there are almost no differences among four sub-

graphs discovered by k-means plus GLasso. It indicates that

this method is useless for mining sub-graphs in ADHD data

sets. JGL shows four different sub-graphs, however, so many

overlapped areas among them. These results seem not to





multiple precision matrices through possibly nonconvex fusion

regularization. However, this method does not fully highlight

the non-overlapping areas of the substructures, meanwhile it

is unstable to noise and small data set.

Based on the above discussion, we find out that the existing

models related to GMM or GLasso are not suitable for the

problem we define in this paper.

VI. CONCLUSION

Through this paper, we aims at addressing the question

of interest here: how to discover different connectivity sub-

structures between a set o nodes based upon the observed

node activities in brain network discovery. Existing sparse

Gaussian graphical models always give the same network for

all populations unless the parcellation of the data set has been

finished before. On the other hand, the methods related to

mixture brain network discovery ignore the direct connectivity

among the nodes meanwhile show lack of robustness to noisy

observations and small sample. We propose embedding one of

the current methods of estimating multiple Gaussian graphical

models in the framework of Gaussian mixture modeling, then

design a new regularization term, called mutual exclusivity

regularization, to make sub-graphs un-overlapped with each

other. Meanwhile, we develop the EM algorithm on our model.

Through extensive controlled experiments, we demonstrate

that our proposed model MGL shows more effectiveness

than other baseline models, meanwhile, MGL shows more

robustness than JGL, especially in the consideration of small

samples or noisy data sets. In addition, this conclusion is also

demonstrated in the experiment of real fMRI brain scanning

datasets from ADHD subjects. So we have reason to believe

that, our method can also be applied in other domains when

network connectivity structure is very complex.
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