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Abstract. Let µ be a positive measure on the unit circle that is regular in
the sense of Stahl, Totik, and Ullmann. Assume that in some subarc J , µ is
absolutely continuous, while µ′ is positive and continuous. Let {φn} be the
orthonormal polynomials for µ. Using universality limits, we show that for
appropriate z ∈ J ,

lim
n→∞

φn
(
z
(
1 + u

n

))
φn (z)

= eu,

uniformly for u in compact subsets of the plane.
Research supported by NSF grant DMS1800251

1. Results

Let µ be a finite positive Borel measure on [−π, π) with infinitely many points
in its support. Then we may define orthonormal polynomials

φn (z) = κnz
n + ..., κn > 0,

n = 0, 1, 2, ... satisfying the orthonormality conditions

(1.1)
1

2π

∫ π

−π
φn (z)φm (z)dµ (θ) = δmn,

where z = eiθ. We shall usually assume that µ is regular in the sense of Stahl and
Totik [11], so that

(1.2) lim
n→∞

κ1/n
n = 1.

This is true if for example µ′ > 0 a.e. in [−π, π), but there are pure jump and
pure singularly continuous measures that are regular. We denote the zeros of φn
by {zjn}nj=1. They lie inside the unit circle, and may not be distinct.

The nth reproducing kernel for µ is

Kn (z, u) =
n−1∑
j=0

φj (z)φj (u).

One of the key limits in random matrix theory, the so-called universality limit [1],
[3], [4], [5], [9], [15], [16] can be cast in the following form for measures on the unit
circle [4, Thm. 6.3, p. 559]:

Theorem A
Let µ be a finite positive Borel measure on [−π, π) that is regular. Let J ⊂ (−π, π)
be compact, and such that µ is absolutely continuous in an open set containing
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J. Assume moreover, that µ′ is positive and continuous at each point of J . Then
uniformly for θ ∈ J and a, b in compact subsets of the complex plane, we have

(1.3) lim
n→∞

Kn

(
z
(
1 + i2πa

n

)
, z
(

1 + i2πb̄
n

))
Kn (z, z)

= eiπ(a−b) sinπ (a− b)
π (a− b) ,

There are several refinements and generalizations of this result (Totik, Simon...)
In this paper, we shall use the universality limit to establish "local" asymptotics

for the ratio φn
(
z
(
1 + u

n

))
/φn (z). Analogous results for orthogonal polynomi-

als associated with measures on compact subsets of the real line were established
in [6], [7]. In [6], we showed that if µ is a regular measure on [−1, 1] for which
µ′ (x) (1− x)

−α has a finite positive limit as x → 1−, then the orthonormal poly-
nomials {pn} for µ satisfy, uniformly for z in compact subsets of C,

lim
n→∞

pn

(
1− z2

2n2

)
pn (1)

=
J∗α (z)

J∗α (0)
,

where J∗α (z) = Jα (z) /zα is the normalized Bessel function of order α. In [7], we
showed that if µ is a regular measure with compact support in the real line, and
in some closed subinterval J of the support, µ is absolutely continuous, while µ′

is continuous, then for points yjn in a compact subset of Jo with p′n (yjn) = 0, we
have

lim
n→∞

pn

(
yjn + z

nω(yjn)

)
pn (yjn)

= cosπz

uniformly in yjn and for z in compact subsets of the plane. Here ω is the density
of the equilibrium measure of the support.

The case of the unit circle turns out to be more diffi cult, because there is no
obvious analogue of the point 1 at the endpoint of [−1, 1], or the local maximum
point yjn of |pn| inside the support. The derivative φ′n of the orthonormal polyno-
mial φn has all its zeros inside the unit circle. Moreover,

∣∣φn (eiθ)∣∣ might have only
a few local maxima for θ ∈ [−π, π]. For that reason, we shall use paraorthogonal
polynomials

(1.4) φn+1 (z;β) = zφn (z)− βφ∗n (z)

where |β| = 1 and

φ∗n (z) = znφn

(
1

z̄

)
is the reverted polynomial. The paraorthogonal polynomial φn+1 (z;β) has n + 1
distinct simple zeros on the unit circle. Moreover, they interlace for different β.
This is an easy consequence of the fact that

(1.5) Bn (z) =
zφn (z)

φ∗n (z)

is a finite Blaschke product (ref. Simon [ ]). It is a consequence of universality limits
that the zeros of {φn (·;β)} exhibit "clock behavior" and this has been studied in
detail by Simon and his collaborators. We shall use heavily use those results. Our
main theorem is:
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Theorem 1.1

This is a conseuqnce of a more general result:

Theorem 1.2
Let µ be a positive measure on the unit circle. Assume that {ζn} is a sequence of
numbers on the unit circle, and that uniformly for a, b in compact subsets of C,

(1.6) lim
n→∞

Kn

(
ζn
(
1 + i2πa

n

)
, ζn

(
1 + i2πb̄

n

))
Kn (ζn, ζn)

= eiπ(a−b) sinπ (a− b)
π (a− b) .

The following are equivalent:
(a)

sup
n≥1

1

n

∣∣∣∣∣∣
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ <∞; sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

(b) From every infinite sequence of positive integers, we can choose an infinite
subsequence S such that uniformly for u in compact subsets of C,

(1.7) lim
n∈S

φn
(
ζn
(
1 + u

n

))
φn (ζn)

= eu + Cev/2 sin
( v

2i

)
,

where

(1.8) C = 2i lim
n∈S

(
ζn
n

φ′n (ζn)

φn (ζn)
− 1

)
.

and C is bounded independently of the subsequence S.
We note that it is possible to formulate a version of this theorem where µ is

replaced at the nth stage by a measure µn so that we are handling varying measures,
as was done in [6], [7] for measures on the real line.

We note that our proofs very heavily use the fact that there is a Christoffel-
Darboux formula for orthogonal polynomials on the unit circle. Since such a formula
is lacking for more general contours, it will be a significant challenge to extend the
results of this paper to such a setting.

2. Proof of Theorem 1.2

We shall use the Christoffel-Darboux formula [9, p. 954], [12, p. 293]

(2.1) Kn (z, t) =
n−1∑
k=0

φk (z)φk (t) =
φ∗n (t)φ∗n (z)− φn (t)φn (z)

1− t̄z .

Let

(2.2) Hn (z, t) =
φ∗n (z)

φn (z)
− φ∗n (t)

φn (t)
.

Lemma 2.1
(a)

(2.3) Hn (z, t) =
tnKn

(
z, 1

t̄

) (
1− z

t

)
φn (t)φn (z)

.
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(b)

(2.4) Hn (z, t) = Hn (z, u) +Hn (u, t) .

Proof
(a) Now

tnKn

(
z,

1

t̄

)(
1− z

t

)
= tn

[
φ∗n

(
1

t̄

)
φ∗n (z)− φn

(
1

t̄

)
φn (z)

]
= φn (t)φ∗n (z)− φ∗n (t)φn (z) ,

so ( ) follows from the definition of Hn (z, t).
(b) This is immediate from the definition of Hn. �

Lemma 2.2
Let {ζn} be a sequence on the unit circle. The following are equivalent:
(a)

(2.5) sup
n≥1

1

n

∣∣∣∣∣∣
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ <∞; sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞.

(b) The functions
{
φn(ζn(1+ u

n ))
φn(ζn)

}
are uniformly bounded for u in compact subsets

of C.
Proof
(a)⇒(b)
Now

log

∣∣∣∣∣φn
(
ζn
(
1 + u

n

))
φn (ζn)

∣∣∣∣∣ =
n∑
j=1

log

∣∣∣∣1 +
uζn

n (ζn − zjn)

∣∣∣∣
=

1

2

n∑
j=1

log

(
1 + 2 Re

(
uζn

n (ζn − zjn)

)
+

∣∣∣∣ uζn
n (ζn − zjn)

∣∣∣∣2
)

(2.6)

≤ Re

uζn
n

n∑
j=1

1

ζn − zjn

+
|u|2

2n2

n∑
j=1

1

|ζn − zjn|
2

Then given R > 0, we obtain from (2.5),

sup
n≥1

sup
|u|≤R

∣∣∣∣∣φn
(
ζn
(
1 + u

n

))
φn (ζn)

∣∣∣∣∣ <∞.
(b)⇒(a)
Let

A = sup
n≥1

sup
|u|≤1

log

∣∣∣∣∣φn
(
ζn
(
1 + u

n

))
φn (ζn)

∣∣∣∣∣ .
We use the fact that for each j,

Re

(
ζn

ζn − zjn

)
=

1− Re (ζnzjn)

|ζn − zjn|
2 ≥ 0,
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so that setting u = 1 above, we have

2 Re

(
ζn

n (ζn − zjn)

)
+

∣∣∣∣ 1

n (ζn − zjn)

∣∣∣∣2 ≥ 0.

Then also, for each j, we have from the identity (2.5) above

e2A − 1 ≥ 2 Re

(
ζn

n (ζn − zjn)

)
+

∣∣∣∣ 1

n (ζn − zjn)

∣∣∣∣2 ≥ 0.

Choose C1 > 0 such that

log (1 + t) ≥ C1t for t ∈ [0, e2A − 1].

Then from (2.6),

A ≥ C1

n∑
j=1

(
2 Re

(
ζn

n (ζn − zjn)

)
+

∣∣∣∣ 1

n (ζn − zjn)

∣∣∣∣2
)

= 2C1 Re

ζn n∑
j=1

1

ζn − zjn

+
C1

n2

n∑
j=1

1

|ζn − zjn|
2 .

As both terms are nonnegative, we obtain

sup
n≥1

1

n2

n∑
j=1

1

|ζn − zjn|
2 <∞ .

Next, we apply Cauchy’s inequalities for derivatives to fn (u) =
φn(ζn(1+ u

n ))
φn(ζn) . We

obtain ∣∣∣∣∣∣ζnn
n∑
j=1

1

ζn − zjn

∣∣∣∣∣∣ = |f ′n (0)| ≤ sup
|u|≤1

|fn (u)| ≤ eA.

�

Proof of Theorem 1.2
(a)⇒(b)

By Lemma 2.2, the functions {fn (u)} =

{
φn(ζn(1+ u

n ))
φn(ζn)

}
form a normal family.

Assume that S is an infinite subsequence of integers such that

lim
n∈S

fn (u) = G (u) ,

uniformly for u in compact subsets of the plane, where G is an entire function. Let

∆n =
nφn (ζn)

2

znKn (ζn, ζn)
.
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Then uniformly for u, v in compact sets, and u, v with G (u) , G (v) non-zero, Lemma
2.1 gives

∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

v

n

))

=

(
ζn
(
1 + v

n

))n Kn

ζn(1+ u
n ), 1

ζn(1+ v
n )


Kn(ζn,ζn) n

(
1− ζn(1+ u

n )
ζn(1+ v

n )

)
ζn

[
φn(ζn(1+ u

n ))
φn(ζn)

φn(ζn(1+ v
n ))

φn(ζn)

]

=
ev

G (u)G (v)

Kn

(
ζn
(
1 + u

n

)
, 1

ζn(1+ v
n )

)
Kn (ζn, ζn)

(
v − u
ζn

)
(1 + o (1)) .

Write u = 2πia, −v̄ = 2πib̄ so that v = −2πib. Here by the uniform convergence
in ( ),

Kn

(
ζn
(
1 + u

n

)
, 1

ζn(1+ v
n )

)
Kn (ζn, ζn)

=
Kn

(
ζn
(
1 + i2πa

n

)
, ζn

(
1 + i2πb̄

n +O
(

1
n2

)))
Kn (ζn, ζn)

= eiπ(a−b)S (a− b) + o (1)

= e(u−v)/2S
(
u− v
2πi

)
+ o (1) ,

so

∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

v

n

))
=

ev

G (u)G (v)
e(u−v)/2S

(
u− v
2πi

)
(v − u) + o (1)

= 2i
e(u+v)/2

ζnG (u)G (v)
sin

(
v − u

2i

)
+ o (1) .

Now we use this in (2.4). We have

∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

v

n

))
= ∆nHn

(
ζn

(
1 +

u

n

)
, ζn

(
1 +

w

n

))
+ ∆nHn

(
ζn

(
1 +

w

n

)
, ζn

(
1 +

v

n

))
and hence for u, v, w with G (u)G (v)G (w) 6= 0,

e(u+v)/2

G (u)G (v)
sin

(
v − u

2i

)
=

e(u+w)/2

G (u)G (w)
sin

(
w − u

2i

)
+

e(w+v)/2

G (w)G (v)
sin

(
v − w

2i

)
.

Then

G (w) e(u+v)/2 sin

(
v − u

2i

)
= G (v) e(u+w)/2 sin

(
w − u

2i

)
+G (u) e(w+v)/2 sin

(
v − w

2i

)
.
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By analytic continuation, this holds for all u, v, w. Next, we note the elementary
identity

ewe(u+v)/2 sin

(
v − u

2i

)
= eve(u+w)/2 sin

(
w − u

2i

)
+ eue(w+v)/2 sin

(
v − w

2i

)
.

Then subtracting the two, we have

[G (w)− ew] e(u+v)/2 sin

(
v − u

2i

)
= [G (v)− ev] e(u+w)/2 sin

(
w − u

2i

)
+ [G (u)− eu] e(w+v)/2 sin

(
v − w

2i

)
.

Now we set w = 0 and use G (0) = 1 :

0 = − [G (v)− ev] eu/2 sin
( u

2i

)
+ [G (u)− eu] ev/2 sin

( v
2i

)
so that

G (v)− ev

ev/2 sin
(
v
2i

) =
G (u)− eu

eu/2 sin
(
u
2i

) .
Then both sides are constant, so calling the right-hand side C,

G (v) = ev + Cev/2 sin
( v

2i

)
.

To determine C, we note that

G′ (0) = 1 +
C

2i
.

In addition, we know that

G′ (0) = lim
n∈S

f ′n (0) = lim
n∈S

ζn
n

φ′n (ζn)

φn (ζn)

Thus

C = 2i lim
n∈S

(
ζn
n

φ′n (ζn)

φn (ζn)
− 1

)
.

(b)⇒(a)
Since C is bounded independently of the subsequence S, the uniform convergence
we are assuming gives that {fn} is uniformly bounded in compact subsets of the
plane. Lemma 2.2 gives ( ). �

3. Proof of Theorem 1.1

As we have noted, it is not trivial to verify the conditions ( ) in the case of the
unit circle. We begin with some identities. Recall the notation ( ) and ( ), so

Bn (z) =
zφn (z)

φ∗n (z)
.

Lemma 3.1
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Let |z| = 1.
(a)

(3.1) Re

[
z
φ′n (z)

φn (z)

]
=
n

2
+

1

2

n∑
j=1

1− |zjn|2

|z − zjn|2
.

(b)

(3.2) Re

(
z

n

φ′n (z)

φn (z)
− 1

)
=

1

n

n∑
j=1

(
Re ((z − zjn) zjn)

|z − zjn|2

)
.

(c)

(3.3)
∣∣φn+1 (z;β)

∣∣2 = 2 |φn (z)|2 {1− Re {βBn (z)}} .
(d)

(3.4) 1− βBn (z) =
−βφn+1 (z;β)

φ∗n (z)
.

(e)

(3.5) Im

{
zφ′n+1 (z;β)

φn+1 (z;β)

}
= Im

{
zφ′n (z)

φn (z)

}
− 1

2
|B′1 (z)| Im {βBn (z)}

1− Re {βBn (z)} .

(f) If β = Bn (w),

(3.6) φn+1 (z;β) = − β̄

φ∗n (w)
(1− zw̄)Kn (z, w) .

(g)

(3.7)
|ImβBn (z)|
|1− ReβBn (z)| =

(
4
|φn (z)|2∣∣φn+1 (z;β)

∣∣2 − 1

)1/2

.

Proof
(a)

φ∗′n (z)

φ∗n (z)
− φ′n (z)

φn (z)

=
n∑
j=1

−zjn
1− zjnz

−
n∑
j=1

1

z − zjn

= −1

z

n∑
j=1

1− |zjn|2

|z − zjn|2
.

Thus

(3.8) z
φ∗′n (z)

φ∗n (z)
− z φ

′
n (z)

φn (z)
= −

n∑
j=1

1− |zjn|2

|z − zjn|2
.

Next, we differentiate φ∗n
(
eiθ
)

= einθφn (eiθ) to obtain

φ∗′n
(
eiθ
)
ieiθ = ineinθφn (eiθ) + einθφ′n (eiθ) eiθi

so
zφ∗′n (z) = nznφn (z)− znφ′n (z) z.
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Dividing by znφn (z) = φ∗n (z) gives

zφ∗′n (z)

φ∗n (z)
= n−

[
φ′n (z) z

φn (z)

]
,

so

z
φ′n (z)

φn (z)
−

n∑
j=1

1− |zjn|2

|z − zjn|2
= n−

[
φ′n (z) z

φn (z)

]

⇒ 2 Re

[
z
φ′n (z)

φn (z)

]
= n+

n∑
j=1

1− |zjn|2

|z − zjn|2
.

Together with ( ), this gives the result.
(b)

Re

(
z

n

φ′n (z)

φn (z)
− 1

)
=

1

2n

n∑
j=1

(
1− |zjn|2

|z − zjn|2
− 1

)

=
1

2n

n∑
j=1

1− |zjn|2 −
(

1 + |zjn|2 − 2 Re (zzjn)
)

|z − zjn|2


=

1

2n

n∑
j=1

(
2 Re (zzjn)− 2 |zjn|2

|z − zjn|2

)

=
1

n

n∑
j=1

(
Re ((z − zjn) zjn)

|z − zjn|2

)

(c) ∣∣φn+1 (z;β)
∣∣2 =

(
zφn (z)− β̄znφn (z)

)(
zφn (z)− β̄znφn (z)

)
= 2 |φn (z)|2 − 2 Re

(
zφn (z) β̄znφn (z)

)
= 2 |φn (z)|2 − 2 Re

(
zφn (z)βz−nφn (z)

2
)

= 2 |φn (z)|2
{

1− Re

{
βz

φn (z)

znφn (z)

}}
= 2 |φn (z)|2 {1− Re {βBn (z)}} .

(d)

1− βBn (z) =
φ∗n (z)− βzφn (z)

φ∗n (z)

=
−β
φ∗n (z)

(
zφn (z)− β̄φ∗n (z)

)
=
−βφn+1 (z;β)

φ∗n (z)
.

(d) Next,

ln
∣∣φn+1 (z;β)

∣∣2 = ln 2 + ln |φn (z)|2 + ln {1− Re {βBn (z)}}
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so

iz
∂

∂θ
ln
∣∣φn+1 (z;β)

∣∣2 = iz
∂

∂θ
ln |φn (z)|2 +

−Re {izβB′n (z)}
1− Re {βBn (z)} iz

so
∂

∂θ
ln
∣∣φn+1 (z;β)

∣∣2 =
∂

∂θ
ln |φn (z)|2 +

Im {zβB′n (z)}
1− Re {βBn (z)} .

Now a calculation shows that (Reference)

zB′n (z)

Bn (z)
= |B′n (z)|

so

(3.9)
∂

∂θ
ln
∣∣φn+1 (z;β)

∣∣2 =
∂

∂θ
ln |φn (z)|2 + |B′1 (z)| Im {βBn (z)}

1− Re {βBn (z)} .

Next, if P is a polynomial,

∂

∂θ

∣∣P (eiθ)∣∣2 =
∂

∂θ

(
P
(
eiθ
)
P (eiθ)

)
= P ′

(
eiι
)
ieiθP (eiθ) + P

(
eiθ
)
P ′ (eiθ) (ieiθ)

= i |P (z)|2
{
zP ′ (z)

P (z)
−
[
zP ′ (z)

P (z)

]}

= −2 |P (z)|2 Im

{
zP ′ (z)

P (z)

}
,

so
∂

∂θ
ln
∣∣P (eiθ)∣∣2 = −2 Im

{
zP ′ (z)

P (z)

}
.

Substituing this in ( ) gives ( ).
(e)

φn+1 (z;β) = zφn (z)− β̄φ∗n (z)

= β̄ [zφn (z)β − φ∗n (z)]

= β̄

[
zφn (z)

[
ωφn (w)

φ∗n (w)

]
− φ∗n (z)

]

=
β̄

φ∗n (w)

[
zw̄φn (z)φn (w)− φ∗n (z)φ∗n (w)

]
= − β̄

φ∗n (w)
(1− zw̄)Kn (z, w)

See [10, p. 116, (2.14.20)].
(f) Now

1− ReβBn (z) =

∣∣φn+1 (z;β)
∣∣2

2 |φn (z)|2
.

Also

|1− βBn (z)|2 =

∣∣φn+1 (z;β)
∣∣2

|φn (z)|2
.
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Then

(ImβBn (z))
2

= |1− βBn (z)|2 − (1− ReβBn (z))
2

=

∣∣φn+1 (z;β)
∣∣2

|φn (z)|2
−
∣∣φn+1 (z;β)

∣∣4
4 |φn (z)|4

and then
(ImβBn (z))

2

(1− ReβBn (z))
2 = 4

|φn (z)|2∣∣φn+1 (z;β)
∣∣2 − 1.

�
Next we turn to quantitative estimates. In the sequel, we assume that µ is regu-

lar on the unit circle, and that µ is absolutely continuous in some closed subarc J ,
while µ′ is positive and continuous there. J1 will denote a subarc of the interior of J .

Lemma 3.2
(a)

n inf {1− |zjn| : zjn ∈ J1} → ∞ as n→∞.
(b)

lim
n→∞

n∑
j=1

1− |zjn|2

|z − zjn|2
|φn (z)|2

n
µ′ (z) = 1.

(c)

Re

(
zφ′n (z)

nφn (z)
− 1

)
=

1

2

(
1

|φn (z)|2 µ′ (z) (1 + o (1))
− 1

)
.

(d)

sup
t∈I

∣∣φn+1 (t;β)
∣∣ |φn (w)|µ′ (w) = 2 + o (1) .

In particular, if z gives a local max of φn+1 (t;β),∣∣φn+1 (z;β)
∣∣ |φn (w)|µ′ (w) = 2 + o (1) .

(e) If z gives a local max of φn+1 (t;β) and we use universality, then

∣∣∣∣Im{zφ′n (z)

φn (z)

}∣∣∣∣ =
1 + o (1)

2

(
|φn (w)| |φn (z)|2 µ′ (w)

2 − 1
)1/2

|φn (z)|2 µ′ (z)
.

Proof
(a) Suppose for infinitely many j, we have

1− |zjn| ≤ C/n.

Write

zjn = z

(
1 +

i2πan
n

)
.

We can assume that in a subsequence an → a. Let

tjn = 1/zjn.



12 D. S. LUBINSKY

Then

tjn = z

(
1 +

i2πan
n

)−1

= z

(
1 +

i2πan
n

+O

(
1

n2

))
.

Now

Kn (zjn, tjn) =
φ∗n (tjn)φ∗n (zjn)− φn (tjn)φn (zjn)

1− t̄z = 0

but from universality,

lim
n→∞

Kn (zjn, tjn)

Kn (z, z)
=

lim
n→∞

Kn

(
z
(
1 + i2πan

n

)
, z
(
1 + i2πan

n

))
Kn (z, z)

= eiπ(a−a)S (0) = 1,

a contradiction.
(b) Now uniformly for a in compact sets,

lim
n→∞

Kn

(
z
(
1 + i2πa

n

)
, z
)

Kn (z, z)
= eiπaS (a) ,

so

lim
n→∞

φ∗n (z)φ∗n
(
z
(
1 + i2πa

n

))
− φn (z)φn

(
z
(
1 + i2πa

n

))[
1− z̄

(
z
(
1 + i2πa

n

))]
Kn (z, z)

= eiπaS (a)

so as Kn (z, z) /n→ µ′ (z),

lim
n→∞

[
φ∗n (z)φ∗n

(
z

(
1 +

i2πa

n

))
− φn (z)φn

(
z

(
1 +

i2πa

n

))]
µ′ (z)

= −2πiaeiπaS (a) = −2ieiπa sinπa.

Also, differentiating, as we can,

lim
n→∞

[
φ∗n (z)φ∗′n

(
z

(
1 +

i2πa

n

))
− φn (z)φ′n

(
z

(
1 +

i2πa

n

))]
2πiz

n
µ′ (z)

= − d

da

[
2ieiπa sinπa

]
= 2πeiπa sinπa− 2iπeιπa cosπa,

or

lim
n→∞

[
φ∗n (z)φ∗′n

(
z

(
1 +

i2πa

n

))
− φn (z)φ′n

(
z

(
1 +

i2πa

n

))]
z

n
µ′ (z)

= −ieiπa sinπa− eιπa cosπa,

so that taking a = 0,

lim
n→∞

[
φ∗n (z)φ∗′n (z)− φn (z)φ′n (z)

] z
n
µ′ (z) = −1

so

lim
n→∞

[
zφ∗′n (z)

φ∗n (z)
− zφ′n (z)

φn (z)

]
|φn (z)|2

n
µ′ (z) = −1.

Then

lim
n→∞

n∑
j=1

1− |zjn|2

|z − zjn|2
|φn (z)|2

n
µ′ (z) = 1.
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(c) Then

Re

(
zφ′n (z)

nφn (z)
− 1

)
=

1

2n

n∑
j=1

1− |zjn|2

|z − zjn|2
− 1

2

=
1

2

(
1

|φn (z)|2 µ′ (z) (1 + o (1))
− 1

)
.

(d) For t ∈ I, ∣∣φn+1 (t;β)
∣∣ =

∣∣∣∣∣−
[

β

φ∗n (w)

]
(1− w̄t)Kn (t, w)

∣∣∣∣∣
≤ C

|φn (w)| .

Moreover, if we take w = eiα and t = ei(α+2πan/n), we have∣∣φn+1 (t;β)
∣∣ =

1

|φ∗n (w)|

∣∣∣(1− ei2πan/n
)
Kn

(
ei(α+2πan/n), eiα

)∣∣∣
=

1

|φ∗n (w)|

∣∣∣∣2πann Kn

(
ei(α+2πan/n), eiα

)∣∣∣∣
=

1

|φ∗n (w)|

∣∣∣∣∣2πann Kn

(
eiα, eiα

) Kn

(
ei(α+2πan/n), eiα

)
Kn (eiα, eiα)

∣∣∣∣∣
=

2 |sinπan|+ o (1)

|φn (w)|µ′ (w) (1 + o (1))
so

sup
t∈I

∣∣φn+1 (t;β)
∣∣ |φn (w)|µ′ (w) = 2 + o (1) .

As z maximizes φn+1 (t;β), so this also gives∣∣φn+1 (z;β)
∣∣ |φn (w)|µ′ (w) = 2 + o (1) .

(e) We know that

0 = Im

{
zφ′n+1 (z;β)

φn+1 (z;β)

}
= Im

{
zφ′n (z)

φn (z)

}
− 1

2
|B′1 (z)| Im {βBn (z)}

1− Re {βBn (z)} .

and

|ImβBn (z)|
|1− ReβBn (z)| =

(
4
|φn (z)|2∣∣φn+1 (z;β)

∣∣2 − 1

)1/2

.

Thus∣∣∣∣Im{zφ′n (z)

φn (z)

}∣∣∣∣ =
1

2
|B′1 (z)|

(
4
|φn (z)|2∣∣φn+1 (z;β)

∣∣2 − 1

)1/2

=
1

2

 n∑
j=1

1− |zjn|2

|z − zjn|2

(4
|φn (z)|2∣∣φn+1 (z;β)

∣∣2 − 1

)1/2

=
1

2

1

|φn (z)|2 µ′ (z) (1 + o (1))

(
4
|φn (z)|2∣∣φn+1 (z;β)

∣∣2 − 1

)1/2

.
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Using the above,∣∣∣∣Im{zφ′n (z)

φn (z)

}∣∣∣∣ =
1

2

1

|φn (z)|2 µ′ (z) (1 + o (1))

(
|φn (w)| |φn (z)|2 µ′ (w)

2 − 1
)1/2

=
1 + o (1)

2

1

|φn (z)|2 µ′ (z) (1 + o (1))

(
|φn (w)| |φn (z)|2 µ′ (w)

2 − 1
)1/2

So we want both

|φn (z)|2 |µ′ (z)| = 1 + o (1) and |φn (w)|2 µ′ (w) = 1 + o (1) .

�

4. The Converse

Suppose now that

lim
n→∞

φn
(
ζn
(
1 + u

n

))
φn (ζn)

= eu

uniformly for u in compact sets. Then

φ∗n
(
ζn
(
1 + v̄

n

))
φ∗n (ζn)

=

(
ζn
(
1 + v̄

n

))n
φn

(
1

ζn(1+ v̄
n )

)
ζnφn

(
1
ζn

)
= ev̄+o(1)

[
φn
(
ζn
(
1− v

n +O
(

1
n2

)))
φn (ζn)

]
= ev̄+o(1)−v̄ = 1 + o (1) ,

uniformly for z in compact sets. Then

Kn

(
ζn
(
1 + u

n

)
, ζn

(
1 + v̄

n

))
Kn (ζn, ζn)

=
φ∗n
(
ζn
(
1 + v̄

n

))
φ∗n
(
ζn
(
1 + u

n

))
− φn

(
ζn
(
1 + v̄

n

))
φn
(
ζn
(
1 + u

n

))(
1−

[
z
(
1 + v̄

n

)] [
z
(
1 + u

n

)])
Kn (ζn, ζn)

=
|φ∗n (ζn)|2 (1 + o (1))− |φn (ζn)|2 (1 + o (1)) ev+u[

−
(
u+v
n

)
+O

(
1
n2

)]
Kn (ζn, ζn)

=
|φn (ζn)|2

1
nKn (ζn, ζn)

1− ev+u + o (1)[
− (u+ v) +O

(
1
n

)] .
If we have the standard Christoffel function asymptotics

1

n
Kn (ζn, ζn) = µ′ (ζn)

−1
+ o (1) ,

then we have
Kn(ζn(1+ u

n ),ζn(1+ v̄
n ))

Kn(ζn,ζn) This is suprising! It then gives

|φn (ζn)|2 µ′ (ζn) = 1 + o (1) .
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Now if we set
u = 2πia and v̄ = 2πib̄⇒ v = −2πib,

then we obtain
1− ev+u

− (u+ v)
=

1− e2πi(a−b)

−2πi (a− b)

=
eπi(a−b) sin (π (a− b))

π (a− b)
= eπi(a−b)S (a− b)

so

Kn

(
ζn
(
1 + 2πia

n

)
, ζn

(
1 + 2πib̄

n

))
Kn (ζn, ζn)

= |φn (ζn)|2 µ′ (ζn) eπi(a−b)S (a− b) + o (1) .

Now if we do have the standard universality, this does indeed give

|φn (ζn)|2 µ′ (ζn) = 1 + o (1) .
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