LOCAL ASYMPTOTICS FOR ORTHONORMAL POLYNOMIALS
ON THE UNIT CIRCLE VIA UNIVERSALITY

D. S. LUBINSKY

ABSTRACT. Let p be a positive measure on the unit circle that is regular in
the sense of Stahl, Totik, and Ullmann. Assume that in some subarc J, p is
absolutely continuous, while p’ is positive and continuous. Let {¢, } be the
orthonormal polynomials for p. Using universality limits, we show that for
appropriate z € J,

i GO

n—eo gy, (2)
uniformly for u in compact subsets of the plane.
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1. RESULTS

Let u be a finite positive Borel measure on [—7, ) with infinitely many points
in its support. Then we may define orthonormal polynomials

O (2) = k2™ + ooy ky > 0,
n=0,1,2, ... satisfying the orthonormality conditions
1 s
(L.1) 5= | On(2) & (2)dp (6) = drmn,

2r J_,

where z = €. We shall usually assume that j is regular in the sense of Stahl and
Totik [11], so that
(1.2) lim k1™ =1.
n—oo

This is true if for example p/ > 0 a.e. in [—m, ), but there are pure jump and
pure singularly continuous measures that are regular. We denote the zeros of ¢,
by {zjn};_,. They lie inside the unit circle, and may not be distinct.

The nth reproducing kernel for p is

Ko (o) = 365 ()3 ().
=0

One of the key limits in random matrix theory, the so-called universality limit [1],
3], [4], [5], [9], [15], [16] can be cast in the following form for measures on the unit
circle [4, Thm. 6.3, p. 559]:

Theorem A
Let p be a finite positive Borel measure on [—m, ) that is reqular. Let J C (—m,7)
be compact, and such that p is absolutely continuous in an open set containing
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J. Assume moreover, that 1’ is positive and continuous at each point of J. Then
uniformly for 8 € J and a,b in compact subsets of the complex plane, we have

(1 3) lim Ko (Z (1 * " ) . (1 * n )) — eiﬂ(a—b)w
. n—00 Kn (Z,Z) ﬂ.(a_b) ’

There are several refinements and generalizations of this result (Totik, Simon...)

In this paper, we shall use the universality limit to establish "local" asymptotics
for the ratio ¢, (z (1 + %)) /&, (). Analogous results for orthogonal polynomi-
als associated with measures on compact subsets of the real line were established
in [6], [7]. In [6], we showed that if 4 is a regular measure on [—1,1] for which
w (z) (1 — )" has a finite positive limit as * — 1—, then the orthonormal poly-
nomials {p,} for p satisfy, uniformly for z in compact subsets of C,

22
Lomllmd) e
T T a0

where J! (2) = Ju (%) /2“ is the normalized Bessel function of order a.. In [7], we
showed that if p is a regular measure with compact support in the real line, and
in some closed subinterval J of the support, u is absolutely continuous, while p'
is continuous, then for points y;, in a compact subset of J° with p), (y;,) = 0, we
have
. DPn (yjn + m)

lim = cosTz

n—oo Pn (yjn)
uniformly in y;, and for z in compact subsets of the plane. Here w is the density
of the equilibrium measure of the support.

The case of the unit circle turns out to be more difficult, because there is no
obvious analogue of the point 1 at the endpoint of [—1,1], or the local maximum
point y;, of |p,| inside the support. The derivative ¢!, of the orthonormal polyno-
mial ¢,, has all its zeros inside the unit circle. Moreover, |¢,, (eie)| might have only
a few local maxima for @ € [—m,7]. For that reason, we shall use paraorthogonal
polynomials

(1.4) Pn1 (2 8) = 2¢,, (2) — B, (2)
where |3] = 1 and

. 1
z
is the reverted polynomial. The paraorthogonal polynomial ¢, ,; (2; /) has n + 1
distinct simple zeros on the unit circle. Moreover, they interlace for different 5.
This is an easy consequence of the fact that

(15) B, (z) = 2n2)

¢ (2)
is a finite Blaschke product (ref. Simon []). It is a consequence of universality limits
that the zeros of {¢,, (+; 8)} exhibit "clock behavior" and this has been studied in
detail by Simon and his collaborators. We shall use heavily use those results. Our
main theorem is:
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Theorem 1.1
This is a conseugnce of a more general result:

Theorem 1.2
Let p be a positive measure on the unit circle. Assume that {(,,} is a sequence of
numbers on the unit circle, and that uniformly for a,b in compact subsets of C,

(1.6)  lim fn (C" (+5) <1 - 2Tﬂb)> _ in(a—pSinT(a—b)
nmee K’ﬂ (Cn’ Cn) ™ (a — b)

The following are equivalent:

(a)

1
sup—zi < 00; sup — —
n>1T j=1 cn — Zjn n>1T1 j=1 ‘Cn - Zjn|

(b) From every infinite sequence of positive integers, we can choose an infinite
subsequence S such that uniformly for uw in compact subsets of C,

(1.7) }llé{ls ey - e + Ce”/?sin (27) ,
where

i (a0, (Ch)
(1.8) C =2 }ngls (n¢n ) — 1) .

and C is bounded independently of the subsequence S.

We note that it is possible to formulate a version of this theorem where p is
replaced at the nth stage by a measure p,, so that we are handling varying measures,
as was done in [6], [7] for measures on the real line.

We note that our proofs very heavily use the fact that there is a Christoffel-
Darboux formula for orthogonal polynomials on the unit circle. Since such a formula
is lacking for more general contours, it will be a significant challenge to extend the
results of this paper to such a setting.

2. ProOF OoF THEOREM 1.2
We shall use the Christoffel-Darboux formula [9, p. 954], [12, p. 293]

(2.1) Kot = 3 60 (2) 3 0) = 22085 () = 0,96, ()
k=0

1—tz
Let
O AC
22) Ho (= 0) = 5y ™ )
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(b)
(2.4) H, (2,t) = H, (z,u) + H, (u,t).

Proof
(a) Now

t
= ¢, (1) ¢, (2) — ¢, (1) 9, (2),
so () follows from the definition of H, (z, t).
(b) This is immediate from the definition of H,,. B

Lemma 2.2
Let {¢,,} be a sequence on the unit circle. The following are equivalent:

(a)
(2.5) smpl i# < 00 sup Z

' n>1"N j=1 Cn — Zjn n? ZJ”‘
(b) The functions {W} are uniformly bounded for w in compact subsets
of C.
Proof
(a)=(b)
Now

O (Cn (1+5)) C

log | —>"——"22| = lo n

e ) Z ! ~ Zn)

2
uC u

2.6 = =) log 1+2Re< L >+ T

( ) 2 Jzz:l ( n (Cn - Zjn) n (C - Zjn) >

uy P
< — Z 2 92 2
n Cn — Zjn n? = ¢y — zjn]

Then given R > 0, we obtain from (2.5),

b (G (14 3))
T e Gy |
(b)=(a)
o (€, (14 2)
A=s Tnlon 2 Tl
S o8 T () ‘

We use the fact that for each j,

Cn 1 —Re((,Zn)
R = 0
e(<n ) Gz
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ot

2
> 0.

so that setting u = 1 above, we have
1

Cn
““(n«n%m>*'n@n@w

Then also, for each j, we have from the identity (2.5) above

2
> 0.

1

62A—122Re( Cn )>+

TL( n — %jn

Choose C7 > 0 such that
log (14t) > Cyt for t € [0,e24 —1].

Then from (2.6),

4 ¢ ) P
A > C 2Re +
1;;( (res) e
" 1 C — 1
= 2CiRe| ¢, + =
j; Cn Zjn n2 J; ‘Cn - ZJTL|2

n>1 1" " Cn = Zjnl
Next, we apply Cauchy’s inequalities for derivatives to f, (u) = it (;” ggl.+)%)). We
obtain
C, n 1 / B
=y ——— = (0)] < sup [fn (u)| < e
”;Cn_% S R
|
Proof of Theorem 1.2
(a)=(b)
. _ Jea(6a(1+2)) :
By Lemma 2.2, the functions {f, (u)} = ey~ ( form a normal family.

Assume that S is an infinite subsequence of integers such that
lim u) =G (u),
lim (1) = G (u)
uniformly for u in compact subsets of the plane, where G is an entire function. Let

2
ann (Cnv Cn)
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Then uniformly for u, v in compact sets, and w, v with G (u) , G (v) non-zero, Lemma

2.1 gives
U v
K" Cn(1+%), 1 )
L\ Cn(1+%) Cn (145
(G (1+3)) KCoCo) " (1 - an1+;’3>
R ¢ [2eeal2)) 0u(6, 04 5))
n ¢ (Cn) ¢n(Cn)
ev Kn(cn(lJrZ)’q(l:-”)) v—u
i n ( > (I14+0(1)).
G (u) G (U) KTL (C’rw Cn) Cn
Write u = 2mia, —0 = 2mib so that v = —2mib. Here by the uniform convergence
in (),
K, 1+, 1 i2ma i27wb 1
(000 ) (a0 q (128 0))
K’n (CnaCn) KTL (CnaCn)
= ™IS (a—b)+0(1)
_ u—v)eq (¥ Y
c S(?ﬁi)+0(l)’
so

G (u) G (v) 2mi
etz
i e ™ (o) Fow

Now we use this in (2.4). We have
u
u w
and hence for u, v, w with G (u) G (v) G (w) # 0,

. —u
GG ™™ < 2
ez —y N elwtv)/2 4w
GG w) "\ 2 G G\ T2 )
Then
(utv)/2 g (LY
G(w)e sin ( 5 )
_ (utw)/2 g (WU (wtv)/2 g (LW
G(v)e sm( 5 ) +G(u)e sm( 5 )
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By analytic continuation, this holds for all uw,v,w. Next, we note the elementary

identity
w (u+v)/2 v—u
s (421)
— U

= ¢ (u+w)/2 sin (

st p(wH0)/2 g (“‘w> .
21

Then subtracting the two, we have

)
G (w) — ] )/ sin ( u)
)

= [G(v)—eY elutw)/2 < —u +[G el e (w+v)/2 gin (1)2_w> .
)
Now we set w = 0 and use G (0) =
= — _ oV pU/2 g E _u) ,v/2 v
0 [G(v) —e"]e bln(2i)+[G(u) e'le bln(2z)

so that
Gv)—e"  G(u)—e"

ev/2 sin (%) ~ ev/2gin (%) '

Then both sides are constant, so calling the right-hand side C,
G (v) = €' 4 Ce¥/?sin (;) .
i

To determine C, we note that

C
! =14+ —.
G (0) =1+

In addition, we know that

 nes T aes n n ¢, (C,)
Thus

)
¢ =2 <n¢n ) 1) |

(b)=(a)

Since C' is bounded independently of the subsequence S, the uniform convergence
we are assuming gives that {f,} is uniformly bounded in compact subsets of the
plane. Lemma 2.2 gives ( ). B

3. PROOF OF THEOREM 1.1

As we have noted, it is not trivial to verify the conditions ( ) in the case of the
unit circle. We begin with some identities. Recall the notation ( ) and ( ), so

29y, (2)

Bn@) =30

Lemma 3.1



(3.3)
(d)
(3.4)
(e)
(3.5)

o

qu;z—&-l (Za ﬂ)
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1- |Zjn|2

|z — Zjn|2.

el =53
e (3519 1) < 15 (et

|6ns1 (2:8)]° =210,

1= BBy, (2) =

fom {50

}_

¢n+1 (Z; 5)

() If = Bn(w),

(3.6)
(2)

(3.7)

Proof
(a)

Thus

(3-8)

n
Next, we differentiate ¢, (e

SO

bror (58) = — =

Pn

—~

w

~

[Im 8B, (2)]

¢y, (2

|z — Zjn|

P11 (2 8)
O (2)

1
5 1B ()

:<4

[1—Re BBy (2)]

|¢n+1 (Z ﬂ

1- |Zjn|2

5 -
—1 |z — Zjn|

n T n
= ; 1 — ;jnz
_ 1yl
z ; 12 — zjn|?
AORACRNR
02 Tonm) Z
z9) 1"9¢ (e%) to obtain
0

),

(2)]* {1 = Re {BB, (2)}}.

Im {8B,, (2)}

1—Re {ﬁBn (z)}

(1—z2w0) K, (z,w).

1/2
) 2_1> .
:5)|

oy ( ’9) ie? = ine™%p, (e) + Ml (i) it

20, (2) = n2"¢, (2) — 2"

P (2) 2.
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Dividing by 2"¢,, (z) = ¢., (z) gives

SO

Ou(2) N~z n_[w)]

O (2) = |z — z7n| bn (2)
(b/n (z)} "1 - |Zjn|2
= 2Re [Z¢n(z) n+;7|z—zjn|2.

Together with ( ), this gives the result.

(b)
z ¢, (2) 1 i 1—|z~n|2
e <n¢n (Z) - 1) B %; <Z—Zj‘n|2 - 1)
L (1—zjn|2— (1+z.jn|2—2Re<zz.m>))
|

|

Il
[\-]
:\H
=
N
[\}
=
@
—
N
Qt\z
3
S—
[\
k)k\z
3
o
N—————

=1 |z — 2jn|
- 12": (Re((z - zjn)zjn))
= 2
n j=1 |Z - Zjn|

|$n i1 (Z§5)‘2 - (Z¢ (Z)_anm) (Z(b ()_anm>
= 2o, (2))? —2Re( Oy (2) B2y, ())
= 2|6, (2) —2Re ¢ z) Bz "¢, ())

ool

= 2|6, (2)]* {1 — Re {BB, (

¢ (2) = Bz9, (2)

i 20, (2) — Bor (=

= (g (#0n () — 541 (2)
_6¢n+1 (2;8)
on(2)

(d) Next,
|, (8| =2+ 1|6, () + In {1 — Re {BB, (:)}}
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SO

) ) —Re {1 ﬁB;l .
i35 |04 ()" = iz gg nldn Ol 1 —;{eziﬁBn Ezgw
o)
20 In|¢, 1 (:8)] = 90 |, () + 1—Re{B, (2)}
Now a calculation shows that (Reference)
BI
2l 15, )

o)

0 NI 2 |B) (2)) {88 (2))
(3.9) 55 2 01 (5 8)|" = 556, ()" + By (2)] [ Re (3B, ()]
Next, if P is a polynomial,

P ‘ 9 , :

5P = g5 (P PE?)

o
7] g2 2P’ (2)
%IH|P(€ )| = QIm{ Pl2)

Substituing this in () gives ().

()

Pnt1 (%8) = 20, (2) — By, (2)

= G|z zqun(w)f*z
- B[fbn()bz(w)] qsn()]
= B 20 z w) — z w
= = [ ()8 - 4 ()01 (w)]
B )
= - 1—zw) K, (z,w
bn (w)( JHnzw)
See [10, p. 116, (2.14.20)].
(f) Now
1—Re,BBn(z):W.
Also

2 — ‘¢n+1 (Zvﬂ)|2

1—-3B,(z 5
L= PB = )
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Then
(Im BB, (2))> = 1= BB, (2)]* = (1 - RepB, (2))*
1 GBI o =)
16, (2)] 41g, (2)[*
and then
(BB, ()" _, lén () |
(1-RefBn (2))" |, (2:8)]

|

Next we turn to quantitative estimates. In the sequel, we assume that p is regu-
lar on the unit circle, and that p is absolutely continuous in some closed subarc J,
while p/ is positive and continuous there. J; will denote a subarc of the interior of J.

Lemma 3.2
(a)
ninf {1 — |zjn| : 2jn € J1} — 00 as n — oo.

(b)

"1 e 2

2 —zl” om0

=1

2, (2) 1 1
Re -1)== -1
(n¢n (2) ) 2 <|¢n ()7 1 (2) (1 +0(1)) )

sup D1 (8 8)] by, ()| 1/ (w) =2+ 0(1).

()

(d)

In particular, if z gives a local max of ¢, (t; 5),

(611 (2 8)] |6, (W) ' (w) =2+ 0(1).

(e) If z gives a local max of ¢,, ,; (¢;3) and we use universality, then

1/2

‘I {zg;;(z)}‘ 1+ o(1) (190 @)1 18, (P (w)* = 1)

m = .
bn (2) 2 |60 (2)]* 12 (2)

Proof

(a) Suppose for infinitely many j, we have

1 —|zjn| < C/n.

2ma,
zjn:z<1—|—Z Wal).
n

We can assume that in a subsequence a,, — a. Let

Write

tin = 1/Zjn.
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2ra,\
tin = Z(1+n>

n

ora 1

n n

¢:L (tjn)¢z (Z]n) - ¢n (tjn)(/l)n (Z]n)

Then

Now

Kn ins t in) — = =0
(Z] J ) 1— 1z
but from universality,
li K, (ijtjn) _
n—oo Ky (Z’ Z)
Kn (Z (1 + i27ran) > (1 + iQWW)) )
li n ’ n — zw(afa)s 0) =1
S K, (2,2) € 0) =1,
a contradiction.
(b) Now uniformly for a in compact sets,
Ky (z(1+212) 2) |
l' n — ’LTK'GS
SO
* * 14 2ma)) _ % 1 4 i2ma )
i 90200 (2 (L4 50)) = 0, (G)6n (2 (L4 500)) _ imag

n— oo [1*2(2 (1+ i27ra))] Kn (272)

n

so as K, (z,2) /n — 1/ (2),

s 0 (- 1+ 2)) - (2

= —2miae'™S (a) = —2ie"™* sin Ta.

Also, differentiating, as we can,

7 (- 2) - o 142 v

d . ,
= — [226”“’ sin ﬂa] =2mwe™*sinwa — 2ime'™ cos wa,

" da

s 5 (- 1+ 2)) - - 122 v

= —ie'™sinma — ™% cosma,

or

so that taking a = 0,

lim (57 ()67 () = 6, (2160, (2)] 2t (2) = 1

o [0 @) 2 @)@,

s [ G e =
Then
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(c¢) Then

20! (2) L&z 1
Re(wn(z)‘l) - "3

9. 2
2nj:1 |Z—Z]n| 2

(d) Fortel,
B _
bpi1 (B8)] = —[ = 1 —wt) Ky, (t,w
| +1 ( )’ (bn (UJ) ( ) ( )
C
|y, ()]
Moreover, if we take w = €' and t = e*(@+27an/n) e have
1 ) . )
(bn (t; ﬁ) — _ (1 _ ez27ran/n) Kn (el(o¢+27ran/n)7 euy)
G GO1 =
= | Pl g, (et ) i)
¢ (W) | n
1 2 ” . ) Kn i(a+27ran/n)’ i
= o Uy (e',e') (c 0 )
M)n ('w)‘ n K, (eza’ eux)
_ 2 [sinmay,| +o(1)
|6 (W) 1/ (w) (1+0(1))
SO

sup |Gni1 (6 8)| [0, (W) 4’ (w) =2+ 0(1).
As z maximizes ¢, (¢; 3), so this also gives

|n 11 (23 8)| 16y (w)| ' (w) =2+ 0(1).

() We know that
0= Im{w} _ Im{Z% (2) } B % B (2) Im{3B, ()}

Gns1 (2 5) 6u (2) L= Re{fB, (=)}
and
mB, () (P \
11— RepB, (2)| |6sr (2:8)]
Thus
& () | 160 () v
Im { Zn 2 = Bl (2 4#2—1
{asn(z)}‘ 2! ”( (61 (2:8)] >

(&1 6, (2)]2 v
- = _ Egm y—_a -1
2 (; |Z_Zjn|2) ( |¢)n+l (z,ﬁ)|2 >

. <4 6, ()P 2_1>”2.
60 AP W (L4 0(0) \ [ops (49)

N =
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Using the above,

- 29}, (2) 1 1 w AR () 1/2
i {22 S (10, Wl (O 0 - 1)
14+0(1) 1 o

2 6, (2)° 1/ (2) (1 + 0 (1)) (|¢n W) |9, (2)|* ' (w)? — 1)

So we want both

|6 (2)* 11 (2)] = 1+ 0 (1) and |g, (w)]” 4’ (w) = 1+ 0(1).

4. THE CONVERSE

Suppose now that

On (G (1+3)) _ .

lim =e

n n

uniformly for u in compact sets. Then

o (G (14 7))
¢ (Cn)

uniformly for z in compact sets. Then
Ko (¢, (1+2%).¢, (1+2))
SR
¢Z(Cn(1+'ﬁ))¢4££z££j;§))—-¢n(Cn(1+—%))¢n((n(1+-%))
(1-TFO+ DT+ 2)]) Ko )
165 (C)PP (1 +0(1)) = [, (€I (1+0(1)) e
[ (452) + 0 (52) ] K (G C)
0uCIE 11— e o))
LKn (Cn,Co) [~ (w+0)+0 (2]

If we have the standard Christoffel function asymptotics
1 _

*Kn (Cnv Cn) = MI (Cn) ! +o (1) )
)6 (1+3))

g ) This is suprising! It then gives

|60 (C)I” 1 (Go) = T+ 0(1).

K (¢,
then we have (s ;Jr(z
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Now if we set

u = 2mia and ¥ = 2mib = v = —2mib,
then we obtain
1 — evtu 1 — e2mi(a—b)
—(u+v) B —2mi(a — b)
e™ (=Y sin (7 (a — b))
- 7(a—0)

= erila-blg (a —b)
SO
Ko (G (14 222) ¢, (14 222))
K”l (Cn’ Cn)
= 1én GO A () e™@S (a—b) +0(1).
Now if we do have the standard universality, this does indeed give

|60 (C)I” 1 (G) = T+ 0(1).
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