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Abstract

We study the data deletion problem for convex models. By leveraging techniques from convex op-
timization and reservoir sampling, we give the first data deletion algorithms that are able to handle an
arbitrarily long sequence of adversarial updates while promising both per-deletion run-time and steady-
state error that do not grow with the length of the update sequence. We also introduce several new
conceptual distinctions: for example, we can ask that after a deletion, the entire state maintained by the
optimization algorithm is statistically indistinguishable from the state that would have resulted had we
retrained, or we can ask for the weaker condition that only the observable output is statistically indis-
tinguishable from the observable output that would have resulted from retraining. We are able to give
more efficient deletion algorithms under this weaker deletion criterion.
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1 Introduction

Users voluntarily provide huge amounts of personal data to online services, such as Facebook, Google, and
Amazon, in exchange for useful services. But a basic principle of data autonomy asserts that users should
be able to revoke access to their data if they no longer find the exchange of data for services worthwhile.
Indeed, each of these organizations provides a way for users to request that their data be deleted. This is
related to, although distinct from the “Right to be Forgotten” from the European Union’s General Data
Protection Act (GPDR). The Right to be Forgotten entails the right for users, in certain circumstances, to
request that negative information concerning them to be removed. Like basic data autonomy, it sometimes
obligates companies to delete data.

But what does it mean to delete data? Typically, user data does not sit siloed in a database, but rather
is used to produce derivatives such as predictive models. Deleting a user’s data from a database may prevent
it from influencing the training of future models', but does not remove the influence of a user’s data on
existing models — and that influence may be significant. For example, it is possible to extract information
about specific data points used for training from models that have been trained in standard ways [SSSS17].
So deleting a user’s data naively, by simply removing it from a database, may not accomplish much: what
we really want is to remove (or at least rigorously limit) the influence that an individual’s data has on the
behavior of any part of the system.

How should we accomplish this? We could retrain all predictive models from scratch every time a user
requests that their data be removed, but this would entail an enormous computational cost. Ginart et
al. [GGVZ19] propose a compelling alternative: full retraining is unnecessary if we can design a deletion
operation that produces a (distribution of) model output(s) that is statistically indistinguishable from the
(distribution of) model output(s) that would have arisen from full retraining. Ginart et al. [GGVZ19] also
propose an approximate notion of deletion that uses a differential-privacy like measure of “approximate”
statistical indistinguishability that we adopt in this work.

1.1 Our Results and Techniques

In this paper, we consider conver models that are trained to some specified accuracy, and then are deployed
while a sequence of requests arrive to delete (or add) additional data points. The deletion or addition must
happen immediately, before the next point comes in, using only a fixed running time (which we measure
in terms of gradient computations) per update. We require that the distribution on output models be
(e, 8)-indistinguishable from the distribution on output models that would result from full retraining (see
Section 2 for the precise definition: this is a notion of approximate statistical indistinguishability from the
differential privacy literature). In a departure from prior work, we make the distinction between whether
the entire internal state of the algorithm must be indistinguishable from full re-training, or whether we only
require statistical indistinguishability with respect to the observable outputs of the algorithms. If we require
indistinguishability with respect to the full internal state, we call these update or unlearning algorithms
perfect. This is similar to the distinction made in the differential privacy literature, which typically only
requires indistinguishability for the outputs of private algorithms, but which has a strengthening (called pan
privacy [DNPR10, AJM19]) which also requires that the internal state satisfy statistical indistinguishability.
We remark that while unlearning algorithms that are allowed to maintain a “secret state” that need not satisfy
the data deletion notion require additional trust in the security of the training system, this is orthogonal
to privacy. Indeed, [CZW™20] show that even without secret state, algorithms satisfying standard deletion
guarantees can exacerbate membership inference attacks if the attacker can observe the model both before
and after a deletion (because standard deletion guarantees promise nothing about what can be learned about
an individual from two model outputs). In contrast, although some of our unlearning algorithms maintain a
secret state that does not satisfy the statistical indistinguishability property, our model outputs themselves
satisfy (e, d)-differential privacy. This in particular prevents membership inference attacks from observers

1Or perhaps not, if previously trained models (trained before a user’s data deletion) are used as inputs to the subsequent
models.



who can observe a small number of output models, so long as they cannot observe the secret state. All prior
work has focused on perfect unlearning.

We introduce another novel distinction between strong unlearning algorithms and weak unlearning algo-
rithms. For an unlearning algorithm to be strong, we require that for a fixed accuracy target, the run-time
of the update operation be constant (or at most logarithmic) in the length of the update sequence. A weak
unlearning algorithm may have run-time per update (or equivalently, error) that grows polynomially with
the length of the update sequence. All prior work has given weak unlearning algorithms.

We give two sets of results. The first, which operates under the most permissive set of assumptions,
is a simple family of gradient descent algorithms. After each addition or deletion request, the update
algorithm starts from the previous model, and performs a small number of gradient descent updates —
sufficient to guarantee that the model parameter is boundedly close to the optimal model parameter in
Euclidean distance. It then perturbs the model parameter with Gaussian noise of sufficient magnitude to
guarantee (e, d)-indistinguishability with respect to anything within a small neighborhood of the optimal
model. We prove that this simple approach yields a strong, perfect unlearning algorithm for loss functions
that are strongly convex and smooth. Without the strong convexity assumption, we can still derive strong
unlearning algorithms, but ones which must maintain secret state. We can further improve our accuracy
guarantees if we are willing to settle for weak unlearning algorithms. The per-round computation budget
and the achievable steady state accuracy can be smoothly traded off against one another.

Our second algorithm improves over the straightforward approach above (under slightly stronger regu-
larity assumptions) when the data dimension is sufficiently large. It first takes a bootstrap sample from the
underlying dataset, and then randomly partitions it into K parts. The initial training algorithm separately
and independently optimizes the loss function on each part, and then averages the parameter vector from
each part, before finally releasing the perturbed average. Zhang et al [ZDW12] analyzed this algorithm (ab-
sent the final perturbation) and proved accuracy bounds with respect to the underlying distribution (which
for us is the dataset from which we draw the bootstrap sample). Our update operation involves first using
a variant of reservoir-sampling that maintains the property that the union of the partitions continue to be
distributed as independent samples drawn with replacement from our current dataset. We then use the
simple gradient based update algorithms from our first set of results to update the parameters only from
the partitions that have been modified by the addition or deletion. Because each of these partitions contains
only a fraction of the dataset, we can use our fixed gradient computation budget to perform more updates.
Because we have maintained the marginal distributions on partition elements via our reservoir sampling
step, the overall accuracy analysis of [ZDW12] carries over even after an arbitrary sequence of updates. This
is also crucial for our statistical indistinguishability guarantee. The result is a strong unlearning algorithm
that yields an improved tradeoff between per-round run-time and steady state accuracy for sufficiently high
dimensional data.

1.2 Related Work

At a high level, our work differs from prior work in several ways. We call deletion algorithms that do not
maintain secret state perfect. All prior work focuses on perfect deletion algorithms, but we give improved
bounds for several problems by allowing our algorithms to maintain secret state. Second, we allow arbitrary
sequences of updates, which can include additions and deletions (rather than just deletions). Finally, we
distinguish between weak and strong unlearning algorithms, and give the first strong unlearning algorithms.

Cao and Yang [CY15] first considered the problem of efficiently deleting data from a trained model
under a deterministic notion of deletion, and coined the term “machine unlearning”. They gave efficient
deletion methods for certain statistical query algorithms — but in general, their methods (or indeed, any
deterministic notion of deletion) can apply to only very structured problems. Ginart et al. [GGVZ19]
gave the first definition of data deletion that can apply to randomized algorithms, in terms of statistical
indistinguishability. We adopt the approximate deletion notion they introduced, which is itself based on
differential privacy [DMNS06, DR14]. Ginart et al. gave a deletion algorithm for the k-means problem.
Their algorithm is a weak deletion algorithm, because their (amortized) running time per update scales
linearly with the number of updates.
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Table 1: Summary of Results. In this table, SC: strongly convex, C: convex, n is training dataset size, d is
dimension, & € [1,4/3] is a parameter.

Guo et al. [GGHvdM19] give deletion algorithms for linear and logistic regression, using the same notion
of approximate statistical indistinguishability that we use. Their algorithm is similar to our first algorithm:
it performs a convex optimization step, followed by a Gaussian perturbation. They use a second order
update (a Newton step) rather than first order updates as we do, and their algorithm yields error that grows
linearly with the number of updates, and so is a weak deletion algorithm. Izzo et al [[SCZ20] focus on linear
regression and show how to improve the run-time per deletion of the algorithm given in [GGHvdM19] from
quadratic to linear in the dimension.

Our main result leverages a distributed optimization algorithm that partitions the data, separately opti-
mizes on each partition, and then averages the parameters, analyzed by Zhang et al [ZDW12]. Optimizing
separately on different partitions of the data, and then aggregating the results is also a well known general
technique in differential privacy known as “Subsample and Aggregate” [NRS07] which has found applications
in private learning [PAET16]. Bourtoule et al. [BCCC™'19] use a similar technique in the context of machine
unlearning that they call “SISA” (Sharded, Isolated, Sliced, Aggregated). Their goal is more ambitious
(to perform deletion for non-convex models), but they have a weaker deletion criterion (that it simply be
possible that the model arrived at after deletion could have arisen from the retraining process), and they
give no error guarantees. Their algorithm involves full retraining on the affected partitions, a different ag-
gregation function, no randomization, and does not include the reservoir sampling step that is crucial to our
stronger indistinguishability guarantees. This distributed optimization algorithm also bears similarity to the
well-known FederatedAveraging algorithm of [MMRyA16] used for deep learning in the federated setting.

Chen et al. [CZWT20] observe that deterministic deletion procedures such as SISA [BCCC™19] can
exacerbate privacy problems when an attacker can observe both the model before and after the deletion
of a particular user’s data point, and show how to perform membership inference attacks against SISA in
this setting. Our method leverages techniques from differential privacy, and so in addition to being an
(e, 9)-deletion algorithm, a view of the two outputs of our algorithm before and after a deletion is (2, 26)-
differentially private, which precludes non-trivial membership inference for reasonable values of € and §. This
follows because our deletion algorithm is randomized: procedures such as the one from [GGHvdM19] which
have randomized training procedure but deterministic deletion procedure do not share this property.



1.3 Summary of Results

In Table 1, we state bounds for all our unlearning algorithms, and (in the 2nd column) the assumptions that
they require (convexity, strong convexity, smoothness, etc.) The 3rd column of the table states whether our
algorithms are strong or weak update algorithms (i.e. whether or not their runtimes grow polynomially with
the length of the update sequence or not). The 4th column states the steady-state accuracy of the algorithm
as a function of the desired run time Z of the first update (each algorithm has a budget of nZ gradient
computations per update). The 5th column lists the run-time of the i’th update. The 6th column measures
the run-time of the baseline approach that would fully retrain the model after each update, to the accuracy
achieved by our algorithms in the 4th column. Most of these guarantees are for algorithms that maintain
a secret state. But for strongly convex and smooth functions we can obtain a perfect unlearning algorithm
(i.e. one that satisfies the indistinguishability guarantee not just with respect to observable outputs, but
with respect to the entire saved state) with the same asymptotic accuracy /runtime tradeoff, so long as the
per-update run-time is at least logarithmic in the dimension. See Theorem 3.2 for details. For non strongly
convex functions, our techniques do not appear to be able to give perfect unlearning algorithms for non-trivial
parameters; this is an intriguing direction for future work.

Our “Distributed PGD” algorithm is somewhat more complex (see Section 4), but has the advantage that
it obtains improved accuracy/run-time tradeoffs for sufficiently high dimensional data. It divides the same
gradient computation budget nZ between different numbers of iterations on different parts of the dataset.
See Remark 4.6 for the exact conditions on when it yields an improvement over our simpler algorithms.

2 Model and Preliminaries

We write Z to denote the data domain. A dataset D is a multi-set of elements from Z. Datasets can be
modified by updates which are requests to either add or remove one element from the dataset.

Definition 2.1 (Update). An update w is a pair (z,e) where z € Z is a data point and ¢ € T =
{’add’,’delete’} determines the type of the update. An update sequence U is a sequence (u1,us,...) where
u; € Zx T for alli. Given a dataset D and an update u = (z, o), the update operation is defined as follows.

D ~ |DU{z} if e="add
ou =
D\{z} ife="'delete

We use © to denote the space of models. In our setting, a learning or training algorithm is a mapping
A . Z*¥ — © that maps datasets to models. An unlearning or update algorithm for A is a mapping
Ra: Z2"x(Z2xT)x 0O — O that takes as input a dataset accompanied by a single update, and a
model, and outputs an updated model. Some of our update algorithms will also take as input auxiliary
information, that we elide here but will be clear from context. The output of the unlearning algorithm itself
will not be made public: before any model is made public, it must pass through a publishing function. A
publishing function is a mapping fpublish : © — © that maps a (secret) model to the model that will be
made publicly available. Our unlearning guarantee will informally require that there should be no way to
distinguish whether the published model resulted from full retraining, or an arbitrary sequence of updates
via the unlearning algorithm. Depending on whether we demand perfect unlearning or not (to be defined
shortly), we may save either the (secret) output of the unlearning algorithm as persistent state, or save only
the (public) output of the publishing function.

Definition 2.2 (D;,0;,6;,0;). Fiz any pair (A, R4) of learning and unlearning algorithms, any publishing
function fpupiisn, any dataset D, and any update sequence U = (ui,us,...). We write Dy = D and for
any t© > 1, Dy = Dj_q1 ou;. For any i > 1, we write 6; for the model input to the unlearning algorithm
R on round i. We write 6y = A(Dy), and for any i > 1, 0, = Ra (Di-1,ui,0;). For any i > 0, we
define 0; = fpubh-sh(éi). In other words, whenever A, Ra, fpubiish, D, and U are clear from context, we
write {D;}i>0 to represent the sequence of updated datasets, {0;};>1 for the sequence of input models to



R, {0iYi>0 to denote the (secret) output models of A and R4, and {0;}i>o to denote their corresponding
sequence of published models.

Our (€, §)-unlearning notion is similar to the deletion notion proposed in [GGVZ19] but generalizes it to
an update sequence consisting of both additions and deletions.

Definition 2.3 ((e, §)-indistinguishability). Let X and Y be random variables over some domain . We
€,0
say X and'Y are (€,0)-indistinguishable and write X =Y, if for all S C Q,

PriX eS| <ePriYeS|+d, PrlYeS|<ePriXeS|+d

Definition 2.4 ((¢,0)-unlearning). We say that R 4 is an (¢, 0)-unlearning algorithm for A with respect to a
publishing function fpupiish, if for all data sets D and all update sequences U = (u;);, the following condition

holds. For every update step i > 1, for 6; = éi,l

€,0
fpubtish (Ra (Di—1,ui,6;)) = fpubiish (A (D))
If the above condition holds for 0; = 6;_1, R4 is an (€, 8)-perfect unlearning algorithm for A.

Remark 2.5. Observe that an unlearning algorithm takes as input the model output by the previous round’s
unlearning algorithm, whereas a perfect unlearning algorithm takes as input the model output by the previous
round’s publishing algorithm. Since we require that the published outputs satisfy (e, d)-indistinguishability,
this means that unlearning algorithms may need to maintain secret state that does not satisfy the indistin-
guishability guarantee, but that perfect unlearning algorithms do not need to.

Assumption 2.6. For notational simplicity (so that we can state asymptotic bounds in terms of n) We
assume throughout that over the course of an update sequence, the size of the updated datasets never drops
below n/2 where n is the size of the original training dataset: Vi, n; > n/2 where n; is the size of D;. Note
that this is consistent with update sequences being of arbitrary length, since we allow additions as well as
deletions. This assumption is not necessary, but otherwise bounds would have to be stated in terms of n;.

2.1 Learning Framework: ERM

We consider an Empirical Risk Minimization (ERM) setting in this paper where models are (parameter)
vectors in d-dimensional space R? equipped with the (Euclidean) fo-norm which will be denoted by |-||,.
Let © C R? be a convex and closed subset of RY, and let D = supy gice |0 — 6'||2 be the diameter of ©.
We denote a loss function by a mapping f : © x Z — R that takes as input a parameter § € © and a data
point z € Z, and outputs the loss of 6 on z, f(, z) — which we may also denote by f.(#). Given a dataset
D = {z}, € 2", with slight abuse of notation, let fp(#) denote the empirical loss of ¢ on the dataset D.
In other words,

fo )£ =3 1.(0) 1)

Definition 2.7 ((«, 8)-accuracy). We say a pair (A, R4) of learning and unlearning algorithms is («, B)-
accurate with respect to a publishing function fpupiish, if for every dataset D and every update sequence U,
the following condition holds. For every i > 0,

Pr|fo.(6) - pin f2,0) > o| < 5

Definition 2.8 (strong vs. weak unlearning). Fiz any pair (A, R4) of learning and unlearning algorithms
that satisfy (o, B)-accuracy with respect to some publishing function fpupiish. Let C; represent the overall
computational cost of the unlearning algorithm at step i of the update. We say R4 is a “strong” unlearning
algorithm for A if



1. « and B are independent of the length of the update sequence, and

2. For everyi>1, C;/C1 = O (log()), i.e., the computation cost of the unlearning algorithm must grow
at most logarithmically with 7.

If (1) holds and Vi > 1, C;/C1 = Q (poly(i)), we say R4 is a “weak” unlearning algorithm for A.

We remark that we have defined update sequences as if they are mon-adaptively chosen, but that our
basic algorithms in Section 3 have guarantees also for adaptively chosen update sequences.

2.2 Loss Function Properties

Definition 2.9 (Strong Convexity). A function h: © — R is said to be m-strongly convex for some m > 0,
if for any 01,02 € ©, and any t € (0,1),

m
—_—

h (t91 + (1 — t)6‘2) < th(@l) + (1 — t)h(eg) 5

(1—1) |61 — 62

if the above condition holds for m = 0, we say h is convez.

Definition 2.10 (Lipschitzness). A function h: © — R is said to be L-Lipschitz if for all 61,02 € ©,
|h(01) — h(62)] < L |61 — b2]],

Definition 2.11 (Smoothness). A function h: © — R is said to be M -smooth, if it is differentiable and for
all 61,05 € O,
IVh(01) = Vh(B2)[|, < M ||y — 62|,

2.3 Strong Convexity and Sensitivity

Throughout the paper we will leverage the fact that the optimizers of strongly convex functions have low
sensitiwity to individual data points. We will formally state this fact in Lemma 2.12 and defer its proof to
Appendix B.

Lemma 2.12 (Sensitivity). Suppose for any z € Z, f, is L-Lipschitz and m-strongly convex. For any
dataset D, let 0 = argmingeg fp (6). We have that for any integer n, any data set D of size n, and any
update u, |05 — 0., l2< 2%

— mn’

2.4 Convergence Results for Gradient Descent

We make use of projected gradient descent extensively throughout this paper. Here, we state two convergence
results for gradient descent that we will use. A crucial feature of these bounds (and one not shared by all
bounds for gradient descent and its variants) is that they improve as a function of how close our initial
parameter is to the optimal parameter.

Let h: © — R where © C R is convex, closed, and bounded. Our goal is to approximate mingee h(f).
The Gradient Descent (GD) algorithm starts with an initial point 6y € © and proceeds as follows:

Vit Z 1: 9t = PI‘Oj@ (9t71 — nch(Ht,l))
Projg(6) = argming g ||6 — 0'||2 is a projection onto ©, and 7, is the step size used in round ¢.

Theorem 2.13 (Strongly Convex and Smooth [Chel9]). Let h be m-strongly convex and M-smooth, and
let * = argmingcg h(0). We have that after T steps of GD with step size n; =

* M—m ’ *
lor =07l < (S ) o0l

2
m~+M "’




Theorem 2.14 (Convex and Smooth [ABD17]). Let h be convex and M -smooth, and let 0* € argmingcg h(6).
We have that after T steps of GD with step size ny =

) M |60 — 9*||§
— < _ 4
MOr) = mig h(6) < 2T

3 Basic Perturbed Gradient Descent

A key building block for our main result (and a simple and effective deletion scheme in its own right, that
requires fewer assumptions than our main result) is perturbed gradient descent. The basic idea is as follows,
for both the training algorithm and the deletion algorithm: we will perform gradient descent updates until
we are guaranteed that we have found a 6, which is within Euclidean distance « of the optimizer, for some
small . Our publishing algorithm fyubiish adds Gaussian noise scaled as a function of « to every coordinate.
This guarantees (e, d)-indistinguishability with respect to any other parameter that is within distance a of
the optimizer — and hence between the outcomes of full retraining and updating. Depending on whether
we want a perfect deletion algorithm or not, we save either the perturbed or unperturbed parameter as our
initialization point for the next update.

Our update algorithm will be the same as our training algorithm — except that it will be initialized at
the learned parameter from the previous round, which will guarantee faster convergence. This is because —
if we allow secret state — the initialization parameter will be within « of the optimizer before the update,
and if f is strongly convex, within O(« + #) of the optimal parameter after the update by the sensitivity
Lemma 2.12. If we require a perfect deletion algorithm, we will necessarily need to start further from the
optimizer, because our saved state will have been additionally perturbed with Gaussian noise. Here we
leverage the fact that gradient descent converges quickly when its initialization point is near the optimal
solution.

This algorithm relies crucially on leveraging strong convexity, which guarantees us that updates only
change the empirical risk minimizer by a small amounts in parameter space. In Section 3.2 we solve the
non-strongly-convex case by adding a strongly convex regularizer.

Algorithm 1 A: Learning for Perturbed Gradient Descent
Input: dataset D
Initialize 6, € ©
fort=1,2,...7T do
0; = Projg (9271 - thfD(eéq))

Output: 6y = 0% > Secret output

We parameterize our results by the computational cost of the update operations, and we can trade
off run-time for accuracy. We measure computational cost by gradient computations. In this section, we
parameterize our strong unlearning algorithms by the number of iterations Z that they run for, which
corresponds to a budget of ~ nZ gradient computations per update. For weak unlearning algorithms, this
is the number of iterations they run for at their first update.

Algorithm 2 R 4: ith Unlearning for Perturbed Gradient Descent
: Input: dataset D,;_1, update u;, model 6;
Update dataset D; = D;_1 o u;
Initialize 6, = 6;
fort=1,2,...T; do
0; = Projg (91/5—1 -V fp, (914—1))

Output 6; = o7, > Secret output




Algorithm 3 f,piish: Publishing function
1: Input: g € R?
2: Draw Z ~ N (0,02}1(1)
3. Output: 6 = 6+2 > Public output

3.1 Perturbed GD Analysis: Strongly Convex Loss
In this section we analyze Algorithms 1 and 2 in the case when f is m-strongly convex.

Theorem 3.1 (Accuracy, Unlearning, and Computation Tradeoffs). Suppose for all z € Z, the loss function
f- is m-strongly convex, L-Lipschitz, and M-smooth. Define v = (M —m)/(M +m) and n = 2/(M + m).
Let the learning algorithm A (Algorithm 1) run with n, = n and T > T + log(£22)/log (1/7) where n
is the size of the input dataset, and let the unlearning algorithm R4 (Algorithm 2) run with input models

0, =0,_1 and n: =n and T; = T iterations, for all © > 1. Let the unlearning parameters € and 6 be such that
e =0 (log(1/6)), and let
421~%

mn (1=7) (VIog (1/8) + ¢ — /log (1/3))
in fpubtish, (Algorithm 3). We have that

o =

1. Unlearning: R4 is a strong (e, 0)-unlearning algorithm for A with respect to fpubiish-
2. Accuracy: for any B, (A, R4) is (o, B)-accurate with respect to fpupiisn where

<ML2721dlog (1/5) log? (d/ﬁ))
a=0 5
(1 — 72)* m2e2n?

Proof of Theorem 3.1. We first prove the unlearning guarantee. Fix a training dataset D of size n and an
update sequence U = (u;);. Recall from Definition 2.2 the notation we use: {D;};>¢ for the sequence of up-
dated datasets according to the update sequence U, {éi}izo for the sequence of secret non-noisy parameters,
and {91-}120 for the sequence of published noisy parameters. We also use n; to denote the size of D;. Note
that ng = n and that by Assumption 2.6, n; > n/2 for all 4. Let 6 £ argmin, fp,(f) denote the optimizer
of fp,, for any i > 0.

We have that for any i > 0, fpublish (A (D;)) ~ N (ui, U2Hd), where it follows by the convergence guarantee
of Theorem 2.13 that

2T 0, _ AL o

=0, <AT0h —0r||, = =0 Tl o 2 9
liss = 6711, <" 1165~ 651 D S 2)

We also have that for any i > 1, foublish(Ra (Di—1,u;,6;)) ~ N (ug, UQHd) where

4L v*
I *
R P e ®)
We use induction on ¢ to prove this claim. Let’s focus on the base case ¢ = 1. We have that

s =011, < +* o — 01

2

<7 (|60 — 65|, + 165 - 651,)
4L z 4L
<= T+ =
mn 1—~%  mn

4L v*

mn 1—A~Z

10



The first inequality follows from Theorem 2.13 and the fact that when running Algorithm 2 for the first
update ¢ = 1, the initial point 8 = 6; = 6o saved by the training algorithm. The second inequality is a
simple triangle inequality, and the third follows from Equation (2) (noting that by = o) and the sensitivity
Lemma 2.12. Let’s move on to the induction step of the argument. Suppose Equation (3) holds for some
i > 1. We will show that it holds for (i 4+ 1) as well. We have that

6,011,

||/L§+1 —9f+1||2

f(\z |, + Nz =0l
- 4L A L AL
<7 mn 1—Z mn

4L v*

mn 1—Z

The first inequality follows from Theorem 2.13 and the fact that when running Algorithm 2 for the (i 4+ 1)th
update, the initial point 6 = 6,41 = 6; saved by the previous run of the unlearning algorithm. The second
inequality is a simple triangle inequality, and the third follows from the induction assumption for i (noting
that 6; = ), the sensitivity Lemma 2.12, and the assumption that n; > n/2.

We therefore have shown that for any ¢ > 1, for 6, = él-,l

Soubtish (A (D)) ~ N (13, 0°La) ;  fpubtish (Rea (Di—1, us, 0;)) ~ N (uf, 0°La)
where Equations (2) and (3) imply

8L ~
mn 11— ~Z

llpei — /%”2 <A= £

It follows from Lemma A.3 that R4 is a (% + £/2log (1/5), §)-unlearning algorithm for A, where, with
o specified in the theorem statement, we get (¢, d)-unlearning guarantee.

Now let’s prove the accuracy statement of the theorem. We will make use of Equations (2) and (3) and
a Gaussian tail bound (see Lemma A.2). Recall that for any ¢ > 0, the published output 0, = 0; + Z, and
that 6y = 1o and 6, = = u} for ¢ > 1. We therefore have that, for any 3, and for any update step ¢ > 0,

[l

The choice of o in the theorem and the fact that for e = O (log (1/6)), we have /log (1/8) + e—/log (1/8) =
Q(e/+/log (1/8)), imply that for any ¢ > 0, with probability at least 1 — 3,

_O<L~yz«/dlog 1/6)log (d/B) ) (4)

1—9%)emn

A
AL 4

27 mn 1—v

7 +0V2dlog (2d/ﬁ>} <p

0; — 0;

Finally, since f, is M-smooth for all z, we get that for any update step ¢ > 0, with probability at least 1 — 3,

o <ML2~y2fdlog (1/8) log® (d/ﬂ)>

(1 —~7)* m2e2n?

fp.(6:) — fp.(6;

O

The same algorithm can be analyzed as a perfect unlearning algorithm (i.e. without maintaining secret
state). It obtains the same asymptotic tradeoff between running time and accuracy, under the condition
that the per-update run-time is at least logarithmic in the relevant parameters. Intuitively, this run-time
lower bound is required so that the update algorithm can “recover” from the effect of the added noise.
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Theorem 3.2 (Perfect Unlearning). Suppose for all z € Z, the loss function f, is m-strongly convez, L-
Lipschitz, and M-smooth. Define v = (M —m)/(M+m) andn = 2/(M+m). Let the unlearning parameters
€ and 0 be such that ¢ = O (log(1/6)). Let the learning algorithm A (Algorithm 1) run with n; = n and

T > T +log(Z22)/log (1/v) where n is the size of the input dataset, and let the unlearning algorithm R4

(Algorithm 2) run with input models 0; = 6;,—1 and n; = n and T; = T +log (log (4di/4)) /log (1/7) iterations
for all i > 1 where

log V2d (1—) ! .
I V/2108(2/8)+e—/210g(2/9) nd 8Ly (1 —~7%)
= log (1/7) ’ mn (\/210g (2/3) + 3¢ — \/21og (2/3) +2e)

in fpubtish (Algorithm 3). We have that
1. Unlearning: R.a is a strong (e, d)-perfect unlearning for A with respect to fpublish.-
2. Accuracy: for any B, (A, Ra) is (o, B+ 0)-accurate with respect to fpupiish where

<ML2721dlog (1/6) log? (d/ﬁ))
a=0 5
(1 — 72)* m2e2n?

The proof of this theorem can be found in Appendix D.

3.2 Convex Loss: Regularized Perturbed GD

If our loss function is not strongly convex, we can regularize it to enforce strong convexity, and apply
our algorithms to the regularized loss function. When we do this, we must manage a basic tradeoff: the
more aggressively we regularize the loss function, the less sensitive it will be, and so the less noise we will
need to add in our fpuplish routine. This reduced noise will increase accuracy. On the other hand, the more
aggressively we regularize, the less well the optimizer of the regularized loss function will optimize the original
loss function of interest, which will decrease accuracy. More aggressive regularization will also degrade the
Lipschitz and smoothness guarantees of the loss function. We choose our regularization parameter carefully
to trade off these various sources of error.

Suppose in this section, without loss of generality, that © contains the origin: 0 € ©. This will imply
that supycg ||0]l2 < D where D is the diameter of ©, as before. Our strategy is to regularize f so as to make
it strongly convex, and have our learning and unlearning algorithms run on the regularized version of f. Let,
for any z € Z and any 6 € ©, for some m > 0,

9:(0) £ 1.(6) + 5 613 (5)

Claim 3.3. If f, is convex, L-Lipschitz, and M -smooth, then g, is m-strongly convex, (L +mD)-Lipschitz,
and (M + m)-smooth.

Theorem 3.4 (Accuracy, Unlearning, and Computation Tradeoffs). Suppose for all z € Z, the loss function
f» is convex, L-Lipschitz, and M-smooth, and let g, be defined as in Equation (5) for some m specified later.
Define v & M/(M + 2m) and n = 2/(M + 2m). Let the learning algorithm A (Algorithm 1) run on the

Dmn

regularized g with n; = 1 and T > T + log(=3")/ log (1/7) where n is the size of the input dataset, and let

the unlearning algorithm R4 (Algorithm 2) run on the regularized g with input models 0; = 0;,_1 and N =n
and T; = T iterations for all i > 1. Let the unlearning parameters € and ¢ be such that ¢ = O (log (1/9)),

and let
2
4v2 (L + mD)~* (LM%«/dlog(l/zi))s
g = m =
DenT

mn (1-7) (Vlog (1/8) + ¢ — v/log (1/3)) |

where o is the noise level in fpupiisn. We have that

12



1. Unlearning: R.a is a strong (e, 0)-unlearning algorithm for A with respect to fpubiish-

2. Accuracy: for any B, (A, Ra) is (a, B)-accurate with respect to fpuiisn where

ulo

)

Proof of Theorem 3.4. The unlearning guarantee of the theorem holds for any m > 0, and follows from
Theorem 3.1 by the choice of ¢ in the theorem statement. Let’s prove the accuracy statement. Let 8" =
argmingeg gp, (¢) denote the optimizer of the regularized gp,, for all « > 0. It follows from the proof of
Theorem 3.1 (see Equation (4)) that for any update step ¢ > 0, with probability 1 — 3,

o ((L +mD)~%\/dlog (1/6) log (d/ﬁ)) -

(1—~Z)emn

enl

a=0 (JV[SLDZL\/W>g log® (d/B) | + 0O (n_%) +0 (n_

0; — 05"

Also note that
+* 1 M
T~ z S =
-y (1+2(m/M))" =1~ mI
Now let 0} € argmingg fp,(#) denote an optimizer of the original loss function fp,, for any ¢ > 0. We have
that, for any i > 0,

fDi(éi) - sz(er) = sz(él) - fpx(e;kr) + sz(erT) - fpx(e;k)

(7)

(é) Vip, (0:7) T (9 - 9;”) + % 0; —0;" z + f0.(0;") — fp,(07)

&2 —or |+ mor (07— 0) + o0~ 1. (00)

26— 7|+ mD? + g (67) ~ 1,8

= 3] - 0|+ mD? 4 g, 0) — B 65713 g 00) )
<L 27| mD? o 07) ~ 105 f0,00)

= oo w2 (12 - 0i2)

® 0 <M3 (L+ mend og 1/) log® (d/5) sz>

where inequality (1) follows from fp, being M-smooth. (2) follows from the fact that for all 0, V fp,(0) =
Vgp,(0) — mb and that by optimality of 8" for gp,, we have Vgp,(0;") = 0. (3) follows from a simple
application of Cauchy-Schwarz: for all 01,0, € ©, we have 0] 63 < ||01]2]|0=2]|2 < D?. (4) follows from the
optimality of 8" for gp,, and (5) is implied by Equations (6) and (7), and it holds with probability 1 — 3.
Now for the choice of m in the theorem, we conclude that for any ¢ > 0, with probability 1 — 3,

I, (éz) — fp,(0;)=0 <M§LD4€ndzlog (1/6)> log? (d/B) | +0 (n_%) + 0O (n‘g)

O

If our goal is to satisfy only weak unlearning (i.e. to allow our run-time to grow with the length of the
update sequence), we can obtain error bounds that have a better dependence on n.
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Theorem 3.5 (Accuracy, Unlearning, and Computation Tradeoffs). Suppose for all z € Z, the loss function
f» is convex, L-Lipschitz, and M-smooth, and let g, be defined as in Equation (5) for some m specified later.
Define v & M/(M + 2m) and n = 2/(M + 2m). Let the learning algorithm A (Algorithm 1) run on the
reqularized g with n, = n and T > T+log( Dm")/ log (1/7) where n is the size of the input dataset, and let the

unlearning algorithm R 4 (Algorithm 2) run on the regularized g with input model 0; = 0;_1 and m=n and
T; = i?-T iterations, for the ith update. Let the unlearning parameters € and & be such that ¢ = O (log (1/9)),

and let
o 2v2M (L + mD) 7n:¢LMMM%ﬂM)
mZn (\/log (178) + ¢ — \/log (1/3)) Deny/I

where o is the noise level in fpupiisn. We have that

1. Unlearning: R is a weak (€, 8)-unlearning algorithm for A with respect to fpubiish-

2. Accuracy: for any B, (A, Ra) is (a, B)-accurate with respect to fpuiisn where

log? (d/B) | + O (n~") + 0 (n"*

le
—

\/ MLD%/dlog (1/5) |
‘" env/T

Remark 3.6. We remark that we can further explore the tradeoff between each update’s runtime T; and
dependence on sample size n. Let € > 1 be any constant (Theorem 3.5 corresponds to & =1). We have that
under the setting of Theorem 3.5, with T; = i%¢ - T iterations, and

ag =

1 351
2V2M7 (L + mD) L2M € dlog (1/6)\
m = T
m(mI)%n (\/log 1/6) + € — /log ( 1/6) D2e2n?Te

1. Unlearning: R is a weak (€, 0)-unlearning algorithm for A with respect to fpubiish-

2. Accuracy: for any B, (A, R4) is (o, B)-accurate with respect to fpupiisn where

a=0

1+€ BEF1
M 12D dlog (1/5
0g (1/9) logz(d/ﬁ) —l—(’)(n '*Hl)—i-(?(n*f*g%)
2n2TE
The proof of Theorem 3.5 can be found in Appendix E.

4 Perturbed Distributed Descent

Our next algorithm obtains additional running time improvements for sufficiently high dimensional data.
The basic idea is as follows: we randomly partition the dataset into K parts, separately optimize to find a
model that approximates the empirical risk minimizer on each part, and then take the average of each of the
K models. Zhang et al [ZDW12] analyze this algorithm and show that its out of sample guarantees match
the out of sample guarantees of non-distributed gradient descent, whenever K < y/n. For us, this algorithm
has a key advantage: the element involved in an update will only appear in a small number of the partitions,
and we only need to update the parameters corresponding to those partitions. Our algorithm will improve
over basic gradient descent because those partitions are smaller in size than the entire dataset by a factor
of K, and hence our run-time budget of nZ gradient computations will allow us to perform more than Z
gradient descent operations per modified partition. We provide deletion guarantees by using a publishing
function that adds noise to the average of the K parameters.

14



There are several difficulties that we must overcome. Primary among these is that the analysis of [ZDW12]
provides out of sample guarantees for a dataset that is drawn i.7.d. from some fixed distribution. In our case
(because our dataset results from an arbitrary and possibly adversarial sequence of additions and deletions),
there is no distribution from which the dataset is drawn. To deal with this, our initial training algorithm
does not directly partition the dataset, but instead draws a bootstrap sample (i.e. a sample with replacement)
from the empirical distribution defined by the dataset, so that the “out of sample” guarantees of [ZDW12]
correspond to empirical risk bounds in our case. Because the accuracy analysis depends on this distributional
property, as updates come in, before we use gradient descent to update the models corresponding to the
appropriate partitions, we must apply a form of reservoir sampling to guarantee that each partition continues
to be distributed as a set of samples drawn i.7.d. from the empirical distribution defined by the current dataset
(i.e. after the update). This is also crucial to our unlearning guarantee. Finally, the basic instantiation of
this algorithm only gives guarantees on the exzpected error of the learned model [ZDW12], and we want high
probability guarantees. To achieve these, we run C' = O(log(1/8)) copies of the algorithm in parallel, and at
every round, only publish a noisy version of the parameter achieving the lowest loss among all C' candidates.
We now go into more detail.

To facilitate the technical development in this section, we introduce some notation:

Definition 4.1. Fizx any update round i > 0. In this section we use 8; = (Sij)le for the partitioned dataset
at round i. We use S; (unbold) to denote the union of partitions in S; and D; for the unique data points
in S; (i..e D; removes the duplicates in S; which results from our sampling scheme). We use 0; = (GAW)]K:1
for the learned parameters in each partition. 6‘1 = fpublish(éi) represents the published model of round i. In
this section, the unlearning algorithm for update i takes as input the partitioned dataset of previous round
Si_1, an update u;, and the learned models of previous round éi_l, and outputs the updated models éi and
the updated datasets S; for use in the next update.

Algorithm 4 A: Learning for Perturbed Distributed Gradient Descent
: Input: dataset D
:forl=1,2,...,C do
Draw S ~ PB(D). > Bootstrap B data points.
Partition S randomly into K equally-sized datasets: Sp; = (Sj)fil.
for 7=1,2,..., K do

Initialize 6], € ©.

fort=1,2,...7T do

0; = Projg (9271 - mesj (9271))

0; =04
6o, = (é])le > I’th set of models.
. Call foublisn(Bo,1~) where I* = argmin, fp(avg(8o,)). > Publish the best model.
. Output: 0y = (60.1)7,, S0 = (S01)%, > For use in first update.

—
e

= =
N =

Throughout we denote the distribution on datasets of size B sampled with replacement from D by PB (D).
We need to maintain the condition that the marginal distribution of the sampled dataset S; at round 7 is
PB(D;). To do this, at each update, we iteratively update each partition using a technique called reservoir
sampling with replacement (that we need to extend to handle both additions and deletions). The algorithm
SB is detailed below.

rep

Lemma 4.2. Fiz any training dataset D and any non-adaptively chosen update sequenceU. Let Sy ~ PE(D)
(as in the learning algorithm) and for every i > 1, 8; ~ SE (Si—1,u;) (as in the unlearning algorithm,). We
have that for all © > 0:

S L PB(Dy).
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Algorithm 5 SZ _: Reservoir Sampling with Replacement for ith update

rep*

Input: Subsample S;_1, update u; = (2;, ®;).

S =8;_1.

if o, =’add’ then
Draw N ~ Binomial(B,n;!). > n;: size of D;.
Pick distinct indices i1, ...,iy at random from [B].

for k=1,2,...,N do
Replace z;, with z; in ;.

else
for z, € S;: zp = z; do
Replace zi with z ~ P(D;) in S; > P(D;): empirical distribution of D;.
Output: §;.

Lemma 4.3 shows that the reservoir sampling operation (Algorithm 5) modifies at most s; = O(B/n)
data points, and hence, at most s; partitions containing a modified data point. Thus we can divide our
budget of nT; gradient computations at round i, into (KnT;)/(Bs;) gradient computations per modified
partition.

Lemma 4.3. Fiz any training dataset D and any update sequence U, and suppose B > n. Let s; denote the
number of data points modified by the update of round i, namely, ;. In other words, s; =|{z;: 21 € Si, z1 ¢
Si_1}|. We have that for any update step i and any &' < e, with probability at least 1 — &',

o< 2800 (1))
n

Algorithm 6 R 4: ith Unlearning for Perturbed Distributed Gradient Descent

1: Input: datasets S;—1 = (Si—1,),, update u;, models 0,1 = (éi_l,l)lczl.

2: Update D; = D;_1 ou.

3: forl=1,2,...,C do

4: Draw S;; ~ Sfep (Siz1.0, ui) > Reservoir update + similar partition.
50 Let (Sij)js) = Siu, (Sic14)jo1 = Sicap, (Bi15)]5y = 01,

6 Let ind = {j : Si—1,; # Si,j} > Modified partitions.
7 for j=1,2,..., K do

8 if j € ind then

9: Initialize 96 = 9i,17j
10: fortzl,?,...,Tz%do
11: 9115 = PI’Oj(_) (91/571 - ntvf&,j (91/571))
12: éi_’j = 9,%
13: elseA R
14: 91',]' = 91'_17j
15: ;) = (é”)le > I’th set of models.
16: Call fpublish(é“*) where [* = argmin, fp, (avg(éi,l)) > Publish the best model.
17: Output: 0; = (éi_’l)lczl, S, = (Si,l)lczl. > For use in next update.
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Algorithm 7 f,u11sh: publishing function
1: Input: 6 = (é,);‘;l
2: Draw Z ~ N (0,0°14)

3. Output: 6 = avg(f) + Z > avg() averages input models.

We now state the accuracy and strong unlearning bounds for perturbed distributed gradient descent.
The convergence analysis on each partition is similar to the analysis in the proof of Theorem 3.1, with the
added complexity of handling the number of partitions updated at each round, and the number of duplicated
points (that could possibly be removed) in each partition. In order to obtain accuracy bounds we need to
leverage an accuracy bound for the averaged parameter in a distributed setting, which we quote below from
[ZDW12]. They remark that the required assumptions hold in most common settings, including in linear
and logistic regression as long as the data distribution satisfies standard regularity conditions.

Theorem 4.4 (Corollary 2 of [ZDW12]). Let 921@ =K Z i—1 0%, where 07 are the empirical risk minimiz-
ers on partition j of a dataset of size B sampled i.i.d. from some distribution 73 Let 0" = argmingcg E.p[f.(0)].
Then under the assumption that f, is m-strongly convex for all z, and satisfies the following smoothness con-

ditions for all 6 € O:
Eovp [IVLO3] <15, Eaup [[|[V2£.0) - V2Eoup [ O)]3] < HY,

and the Hessian matriz V2f,(+) is G-Lipschitz continuous for all z, then, for some constant c:

2 202 cK?L? 2G2 K K3

E (020, 0"

Theorem 4.5 (Accuracy, Unlearning, and Computation Tradeoffs). Suppose for all z € Z, the loss function
f» is m-strongly convex, L-Lipschitz, M -smooth, and that its Hessian is G-Lipschitz and bounded by H (with
respect to {y-operator norm of matrices). Define v 2 (M —m)/(M +m) and n = 2/(M +m). Fiz any
1 <€<4/3, and let B=n¢ and K = /B. Let the learning algorithm A (Algorithm 4) run with n, = n and
T iterations on every partition, and for any update i > 1, let the unlearning algorithm R4 (Algorithm 6)
run with ny = n and total T; iterations per copy (i.e. total nT; gradient computations per copy), where for
any L,

e log (DmL~'n® (1 + 10log (2/6)))

rem oz (1/7)
T, = 101og (2i/5) (z+ n; log(1 1?(111/05)(22/5)))

Let the unlearning parameters € and & be such that e = O (log (1/68)) and § = O(B™1), and let

4-3¢
4\/5[/}/1” 2

n (1 — 71"47_2%) (\/log(2/6) +e— \/log(2/5))

in fpubtish, (Algorithm 7). We have that

1. Unlearning: R4 is a strong (e, 0)-unlearning algorithm for A with respect to fpubiish-

2. Accuracy: for any B, letting C = log (2/8) /log?2, we get that (A, R.a) is (o, 5)-accurate with respect
to fpublish Where

2 2Tn 2 2
w_ O M L?y dlog (1/6)log” (d/B) +O<logd) +(9< 1 )

m2(1 — v)2e2n? oy I
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Remark 4.6. For any 1 <& <4/3:

4-3¢

€2n2 né

This improves over the bound of Theorem 3.1 (Basic Perturbed GD), whenever

- —
- T _ In%
Y Y

The proof of Theorem 4.5 can be found in Appendix F.
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Appendix

A Probabilistic Tools

Lemma A.1. Suppose X,Y are random wvariables over the same domain Q, and let Z be any random

€,20

€,0
variable. If with probability at least 1 — & over Z, we have X|Z = Y|Z, then X = Y.

Proof. Define for any z, the following (good) event:

G(z)_{z:X|(Z_z)2§Y|(Z_z)}

and note that Pr,.z [z ¢ G(Z)] < 6. We have that for any S C Q,

PriX e S|=E,.z [Pr[X € S|Z =Z||

=E, z[Pr[XeSZ=2]1(z€G(2)+Pr[X € S|Z=21(z¢ G(2))]
<E,wz[ePr[Y € S|Z =z]+ 4] +21er [z ¢ G(2)]

<eE,nz[PrlY € S|Z=2]]+2§

=ePr[Y €S| +2§

where 1(A) is the indicator function of event A, for any A. This completes the proof because we can similarly

show,

PrlY eS| <ePr[XeS|+2§

Lemma A.2 (Gaussian Tail Bound). Let Z ~ N(0,0%1,). We have that for any 3 > 0,

Pr (1], > ov/3dlog(2d/5)| <

Lemma A.3 (Gaussian Mechanism [BS16]). Let X ~ N (p,0%1q) andY ~ N (i, 0%Ly). Suppose ||p— p'||y <
€,0
A. We have that for any § >0, X = Y, where

A? A
G_F—i_; 210g(1/5)
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Lemma A.4. Let X > 0 be any random variable drawn from a distribution P, with finite expectation
uw=Ex.p[X]. Let X1,...Xn “p. Then if Xmin = min; X;, for N > M, with probability at least

log 2
1—4: Xmin < 2#.
Proof. By Markov’s inequality, for any X;, Pr{X; > 2u] < % Hence,
N 1 N 1 lolgcggl/;i)
as desired. 0

Lemma A.5 (Chernoff Bound). Let X ~ Binomial (m,p), and let u = mp. Then for any §' > 0,

M6/2

PriX > 1+ <e 2+

B Proof of Sensitivity Lemma 2.12

To prove Lemma 2.12, we will need the following claim.

Claim B.1. Suppose h : © — R is m-strongly convex and let 0* = argmingcg h(0). We have that for any
0 €0, h(0)>h(o")+ 26— 0.

Proof. First, recall the definition of m-strong convexity: for any 61,6, € O, and any ¢ € (0,1),

m
- —t

h(f@l + (1 - t)@g) < th(@l) + (1 - t)h(eg) 5

(1—1)]|61 — Oall3
Now fix some 6 € ©. We have that for any ¢ € (0, 1),
h(6*) < h(td + (1 —t)0*) < th(0) + (1 — t)h(0*) — %t(l —t) 16— 6%

where the first inequality follows because 6* is the minimizer of h, and the second is due to m-strong convexity
of h. Rearranging the above inequality and dividing both sides by ¢, we get that for any t € (0,1),

* m *
h(0) > h(07) + 5 (1 =) 0 = 073
We therefore have that

h(0) > h(6*) + = sup (1—1) [0 — 072 = h(6*) + = |0 — 0%
2 t€(0,1) 2

O

Proof of Lemma 2.12. Fix n, a data set D = {z;}?_;, and an update u = (z, ), and let D’ = Dou. Assume
e ='delete’. If z ¢ D, then the claim immediately follows; so suppose z € D. We have that

T (05) = "L fo B) + ~ f- (03

" for (0p) + - (65)
= fo (6p) + - (65) — 1. ()

* L * *
< fo(0p) + P 105 — 051l

IN

n
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where the first inequality follows by optimality of 6%, for D’, and the second follows by L-Lipschitzness of
f». Note that since fp is m-strongly convex, Claim B.1 implies

* * m * *
fo 05 = fo (6) + 5 105 — 053 (10)

Combining Equations (9) and (10) completes the proof for the case when e = ‘delete’. Note that when
e =’add’, one can take u/ £ (z,’delete’), and use the bound for deletion to conclude that
HeD - 6Dou”2 = ‘ eDou - H(Dou)ou’ 9 < %

C Proofs of Lemmas in Section 4

Proof of Lemma 4.2. We prove the claim by induction on i. For i = 0, Sp is explicitly drawn from PZ(Dy)
and so the claim holds. Now assume the claim holds for ¢ — 1. In the case of addition, where u; = (z;,’add’)
this is exactly what is known as “Reservoir Sampling with Replacement” and we refer the reader to [Vit85].
So we need only establish the claim for deletion updates. Let us perform an update u; = (z;,’delete’).
We show that after conditioning on wu;, after the deletion update, each element of S; is independent and
has marginal distribution P(D;_;1 o ;) = P(D;), which will establish the claim. Conditioning on w;, let
hy; : Z — Z be the randomized function:

IR E z # 2z
h,uz(z) - {2/ ~ ,P(DZ) 2=z

Then for any data point z; € S;—1, the corresponding element in S; is h,,(2;). Since by assumption the
{z1} = S;_1 are independent, since h,, is a fixed randomized function conditioned on u;, the {hy,(z1)} = S;
are conditionally independent given u;. It remains to show that the marginal distribution of any z; = hy,, (2)
is P(Di—1 0u;) = P(D;). If z; = z;, then z] ~ P(D;) by design. If z; # z;, then z; = 2, and the distribution
of z] is 21|z # #,u;. Since U is a non-adaptive sequence of updates, z|z; # zi,u; ~ 2|z # z;. Then
by inductive assumption z; ~ P(D;_1), and so the distribution of z|z; # z; for z; € D;_1 is uniform over
Di—1\{zi} = D;—1 ou; = D;, which is exactly P(D;), as desired. This establishes the induction. O

Proof of Lemma 4.3. At any round i of update, by Lemma 4.2, we know S; ~ PZ(D;). By Assumption 2.6,
n; > n/2 where n; is the size of dataset D;. Hence for any data point z, the number of copies of z subsampled
in §; is distributed as Binomial(B,p), where p < 2/n. Let p = (2B)/n and note that x4 > 1. Now by a
Chernoff bound (see Lemma A.5) for a Bernoulli random variable, we get that for any ¢, the number of
repeated points of any one type in S; (including the ones subject to update) satisfies, with probability 1 —§':

s < i+ \/log? (1/8) + 8yulog (1/8')

log? (1/6') | 8log(1/¢’
L 1+\/Og£2/>+ o2(1/2)

< (14 ylog? (17 + 8108172
< 5plog(1/4")

as desired. Note the last inequality follows because log (1/6") > 1 by assumption. O
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D Proof of Theorem 3.2

Proof of Theorem 3.2. We first prove the unlearning guarantee. Fix a training dataset D of size n and
an update sequence U = (u;);. Similar to the proof of Theorem 3.1, we first recall a few notations from
Definition 2.2: {D;};>o for the sequence of updated datasets according to the update sequence U, {éi}izo
for the sequence of secret non-noisy parameters, and {éi}izo for the sequence of published noisy parameters.
Let Z; denote the Gaussian noise added by fpublish on round ¢ of update, and recall that 0; = 6‘1 + Z;. We
use n; (> n/2) to denote the size of D;. Let 6 = argmin, fp,(f) denote the optimizer of fp,.

We have that for any i > 0, fpublish (A (D;)) ~ N (ui, U2Hd), where it follows by the convergence guarantee
of Theorem 2.13 that,

2L~T |6/ : 4L

=05, < AT 6, - 01|, =
i — 05115 <~ 1160 Iy = Dmnl mn

We also have that for any update step ¢ > 1, conditioned on the noise of previous rounds {Zy, ..., Z;—1},
Soublish (R (Di—1,ui, 05)) ~ N (u;,0%1q), where for any 8 > 0,

] V(4L , .
P [l 00> o (4 ovEIog 20/ )| <0 (12)

20,y Zi—1

We use induction on 4 to prove this claim. Fix any ’. Let’s focus on the base case ¢ = 1. We have that

s =051, < 2™ |60 — 67

<™ (1Zoll, + Héo — 65|, + 1165 011l.)
<on (Mpy 2L +a\/_log(2d/ﬁ )
mn
o A A\, AL ,
<At (1 7 (— +0\/ﬁ10g(2d/ﬁ )) + — —i—a@log@d/ﬁ ))
T
_ (_ o Blog 2/

The first inequality follows from Theorem 2.13 and the fact that when running Algorithm 2 for the first
update ¢ = 1, the initial point of the algorithm 6} = 6, = fo. The second inequality is a simple triangle
inequality, and the third holds with probability at least 1 — 8’ and follows from Equation (11) (noting that
0y = o), the sensitivity Lemma 2.12, and a Gaussian tail bound for Zy (Lemma A.2). Let’s move on to the
induction step of the argument. Suppose Equation (12) holds for some ¢ > 1. We will show that it holds for
(1 +1) as well. We have that

iz — 0541 l], < yTien |16; —91+1H
<A™ (12l + |0 = 07 |, + 10 = 07411,
T /4L AL
<Al (T (22 5\ Bdlog (2d/8)) ) + —— + ov/2dlog (2d/8)
1 -~ \mn mn
Tisr (AL
i ’
- ~Z 4 ov2dlog (2d
T (25 + ovadiog 20/

The first inequality follows from Theorem 2.13 and the fact that when running Algorithm 2 for the (i +1)th
update, the initial point of the algorithm 6, = 6,11 = 6;. The second inequality is a simple triangle inequality,
and the third holds with probability at least 1 — (i + 1)8’ and follows from the induction assumption for i
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(note 0; = p}, and T; > T), the sensitivity Lemma 2.12 (note n; > n/2), and a Gaussian tail bound for Z;
(Lemma A.2). Now with the choice of ' = §/(2¢), Equation (12) implies with probability at least 1 — §/2
over the Gaussian noise draws {Zy, ..., Z;—1},

A
* /y
[z = 071l < T—Z <— + U\/_) (13)

because 47 < (log (4di/8)) " ~Z. We therefore have shown that for any i > 1, conditioned on {Zy, . .., Z;_1}
Soubtish (A (D3)) ~ N (13, 0%1a) ,  foubtish (Ra (Di—1,ui, 6;)) ~ N (5, 0%1a)
where Equations (11) and (13) imply, with probability 1 — /2 over {Zo, ..., Zi_1},

T

z 4L 4L 2
s = il < Tz (o + VB ) 4 o7 < 2 (2 ovaa) 2 4
-7y mn mn 1—7 mn

It then follows from Lemma A.3, as well as the choice of o and the assumption on Z in the theorem statement,
that for any 7 > 1, with probability 1 — /2 over {Zo, ..., Z;—1},

€,0/2
fpubtish (A (D5)) = fpublish (Ra (Di—1,us,0;))
Now we can apply Lemma A.1 to conclude that for any i > 1,

€,0
fpubtish (A (D5)) = fpubtish (Ra (Di—1,ui,6;))

And this shows R 4 is an (e, §)-unlearning algorithm for A, as desired.

Now let’s prove the accuracy statement of the theorem. We will make use of Equations (11) and (13)
and a Gaussian tail bound (see Lemma A.2). Recall that for any ¢ > 0, the published output 0, =0, + Z,
and that éo = po and 6, = w; for i > 1. We therefore have that, for any 3, and for any update step i > 0,

Pr [ ~Z 0
VAT

z 4L

> i — +0V2d ) +oV2dlog (2d/B)| < B+ =
2 1—9Z \mn 2

The choice of o in the theorem and the fact that for e = O (log (1/6)), we have /log (1/8) + e—/log (1/8) =

Q(e/+/log (1/6)), imply for any update step ¢ > 0, with probability at least 1 — 5 — /2,

o <L~yI\/dlog 1/8)log (d/B) ) 14)

(1 =~%)emn

Finally, since f, is M-smooth for all z, we get that for any update step i > 0, with probability at least
1—-5-4/2,

0; — 0%

2

o (00) ~ fo,(07) < 5

., < ML2Zdlog (1/5) log® (d/ﬁ))
2

(1 —~7)> m2e2n?

E Proof of Theorem 3.5

Proof of Theorem 3.5. We first prove the unlearning guarantee. Fix a training dataset D of size n and an
update sequence U = (u;);. Recall from Definition 2.2 the notation we use: {D;};>¢ for the sequence of up-
dated datasets according to the update sequence U, {6;}:>o for the sequence of secret non-noisy parameters,

and {91-}120 for the sequence of published noisy parameters. We also use n; to denote the size of D;. Note
that ng = n and that by Assumption 2.6, n; > n/2 for all i. Let 8] € argmin, fp,(#) denote an optimizer of
fp,. Let 0" = argmingcg gp, () denote the optimizer of the regularized loss gp, .
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Fact E.1. Note that for any positive integer T",

T
/ 1 1 M
7= < < (15)
1+2(m/M) 1+2(m/M)T’ mT’
where the last inequality follows because for all x >0, 1+ > 2\/x.

Fact E.2 (Generalizing Fact E.1). In general, for any constant £ > 1 and any integer T', we have

L 1
7 7\ € M 2¢
N (ng) < (mT/) (16)

We will use Fact E.1 later on in the proof and we note that Remark 3.6 follows by using the more general
Fact E.2. of Let L’ £ L +mD which is the Lipschitz constant of the regularized loss function g. We have
that for any ¢ > 0, fpublish(A (D;)) ~ N (ui, Uzﬂd), where it follows by the convergence guarantee of Theorem
2.13 that

2L/ T g — 9" /
7~ 116g i HQ < 2L "YI (17)

L < T@/_GM“ <
b= 077l <7 10 = 057l < =L —

We also have that for any ¢ > 1, foublish(Ra (Di—1,u;,0;)) ~ N (,u;, O'Qﬂd) where

4L’ 2
A B 18
e P (18)

We use induction on ¢ to prove this claim. Let’s focus on the base case ¢ = 1. We have that
s =037l < +* |60 — 037,
< (|[fo - 067, + 15— 6371,

/ li
< (s 2

mn mn

/
< & '”YI
mn

The first inequality follows from Theorem 2.13 and the fact that when running Algorithm 2 for the first
update ¢ = 1, the initial point 6 = 6; = éo saved by the training algorithm. The second inequality is a
simple triangle inequality, and the third follows from Equation (17) (noting that by = o) and the sensitivity
Lemma 2.12. Let’s move on to the induction step of the argument. Suppose Equation (3) holds for some
i > 1. We will show that it holds for (i + 1) as well. We have that

3 2 *T
(rD7E 0i — 0;%1

piea = 054 ]|, < v ’2
<O ([0 — 07|+ [l - 021 ],

< )T (4_’3’ aPT oy 4_’7)

mn mn

/!
< AL (i+1)- A DT
mn
The first inequality follows from Theorem 2.13 and the fact that when running Algorithm 2 for the (i + 1)th

update, the initial point 8) = 6,11 = 6, saved by the previous run of the unlearning algorithm. The second
inequality is a simple triangle inequality, and the third follows from the induction assumption for i (noting
that 6; = uf), the sensitivity Lemma 2.12, and the assumption that n;, > n/2.

24



Now that we can apply Equation (15) to Equations (17) and (18) to conclude

AL M AL M
) ViZl, ”/1';_6‘;’WH2§
mvmin mvmin

We therefore have shown that for any i > 1,

Soubtish (A (D)) ~ N (15, 0°La) »  fpubtish (Roa (Di—1, us, 0;)) ~ N (uf, 0°La)

Vi>0, | — 0], < (19)

where Equation (19) implies
s =il < S 2
Hi falle = mvmIn

It then follows from Lemma A.3 that R 4 is a (% + %\/2 log (1/6), 6)-unlearning algorithm for A, where,
with o specified in the theorem statement, we get (¢, d)-unlearning guarantee.

Now let’s focus on the accuracy statement of the theorem. Note, similar to the proof of Theorem 3.1,
the convergence bounds in Equation (19), the choice of o in the theorem statement, as well as a Gaussian
tail bound (Lemma A.2), imply that for any update step ¢ > 0, with probability at least 1 — 3,

‘ i 0 (\/M(L+mp) V/dlog (1/3) log (d/B)) 20)
2

mIn
We therefore have that, using a similar analysis as in the proof of Theorem 3.4 (see Equation (8)), for any
update step ¢ > 0, with probability 1 — 3,

. 2 2 2
i (6) = o, (07) = © (M e mm)

Finally, with the choice of m in the theorem,

fp.(0:) — fp, (0

MLD3./dlog (1/5) (1/5)
en

- log? (d/B) | +O (n"Y) +0O (n*

[N
N——

F Proof of Theorem 4.5

Proof of Theorem 4.5. We first prove the unlearning guarantee. We note that the boosting of our algorithms
(running multiple copies of algorithms and picking the best model for publishing) won’t matter in our
unlearning bounds. In fact, the unlearning guarantee holds for any set [ of models learned by the algorithms
because they have all sufficiently come close to their respective optimizers in each chunk. Hence, until we get
to the proof of accuracy statement, we imagine the algorithms are run once. We will see how this boosting
will be helpful to recover high probability accuracy guarantees from the accuracy bounds of [ZDW12] which
are in expectation.

Fix a training dataset D of size n and a non-adaptively chosen update sequence U = (u;);. Similar to
our previous proofs, we first recall a few notations (from Definition 4.1), as well as some new notations for
our proof:

e {D;};>0 for the sequence of updated datasets. We use n; (> n/2) to denote the size of D;.

o {8i=(8ij)i< 1 }izo for the sequence of partitioned subsampled datasets.

. {0 = ( i) i1 }ixo for the sequence of learned parameters in each partition.
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° {6‘Ai7a\,g}i20 for the sequence of averaged learned parameters: éi,avg =K! Zszl HAU

{éz = fpublish(éi) = éi,avg + Z;}i>o0 for the sequence of published parameters.

{60 }i>0 is the sequence of target optimizers: 67 = argming, fp, (6).

{67 = (0;;)I<, }i>0 is the sequence of optimizers for partitions: 6; £ argming fs,; ().

K s
=195

{07 avg }izo is the average of optimizers for partitions: 6., = K~

{si}i>1 for the sequence of number of affected data points in the whole dataset, i.e., s; shows how
many points differ between §; and §;_;. We will also make use of notation s;; which shows how many

points differ between S;; and S;_1 ;. Note that s; = E]K:l Sij.
Fact F.1. Let §; = max;<; 5. We have by Lemma 4.3 that for any i, with probability at least 1 — §/2 over

the sampling randomness up to round i, §; < %bg (2i/0). We condition on this high probability event
throughout the proof.

Fact F.2. We also work with general K and B for now and eventually we use the ones stated in the theorem.
We note that for general K and B, we can write

- Kn*T N log (DmL™'B (1 + 10log (2/6)))

1= log (1/7)

and

T; = 101og (2i/6) (z+ B’ log(1+10ilog(2i/5)))

En?’ log (1/7)
Let T} be the number of iterations in affected partitions on round i. We have that with probability at least
1—-10/2, by Fact F.1,

2 ~ - 2
T{ZﬁTiZ Kn ' S log (14 10ilog (2¢/6)) Kn°Z
Bs; 10B21log (2i/6) log (1/7) B2

(21)

Fact F.3. We have that B > n, and Kn? > B? (note these are justified by the setting of these parameters
in theorem statement). We will use these later on in the proof.

For every i > 1, let S} be the partitioned dataset we would have had we retrained (using our learning
algorithm A) on dataset D;, and note that by Lemma 4.2, S} and S; are distributed identically. To apply
Lemma 4.2 we have used the fact that U/ is a non-adaptive sequence of updates selected independently of any
internal randomness of R 4. Now let C; be a coupling of the pair (S}, S;) such that S = S; with probability
one. Throughout the proof when we condition on any of & or S; being drawn from their distribution, we
will think of these datasets being drawn from the coupling C; so that we are always guaranteed S; = S;.
Let’s start proving the unlearning guarantees. For any i > 0, conditioned on the draw of &), we have that
foubtish (A (Di)) ~ N (pi, 0°1a), where p; = K=+ Ejil pi; and that it follows by the convergence guarantee
of Theorem 2.13 that, for all partitions 7,

ALY "5 |6 — 03| iL ;
0 Y2 < . 7% (22)
DmB (1+10log(2/6)) — mB (1 + 10log(2/9))

[ij =05, <7 (166 — 05|, <

We also have that for any update step ¢ > 1, with probability at least 1 — §/2 over the randomness up to
step ¢ (draws of all 8; for all | < %), fpublish (Ra (Si—1,u;,80;)) ~ N (ug, 02Hd), where we first observe that
W= éi,avg =K1 Zfil él-j, and furthermore,

ALK (K71 + < Slj) Kt

v B
< . 23
2~ mB(1+10ilog(2i/6)) 1_,YK§§I (23)

v J;
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We use induction on i to prove this claim. Let’s focus on the base case i = 1. For any partition j such that
515 = 0, because the update algorithm doesn’t make any updates, we have

|65 o], = s 05,
< 4L Kn;l
. B
= mB(1+ 10log (2/0)) |
ALK (K~ 4 s15) o5
= mB(1+10log(2/0) | _ %7

because note that 9()]- = po; and therefore, we can use Equation (22) for ¢ = 0. For any partition j such that
s1; # 0, the update algorithm makes update, and in particular runs for T7 iterations. We therefore have
that

b; — 03

<A
2

fo; - 6th2

<4h (HéOj — 0,

, T 1166; - ofsz)

Kn?Z

cort (AL AT ALK,
- mB 1— ,ng;I mB
’7l2
ALK (K71 + 1) N BT
= mB(1+10log(2/3)) | _ 7!3;21

The first inequality follows from the convergence guarantee of Theorem 2.13 and the fact that on round ¢+ 1
of update, the gradient descent of chunk j is initialized at éoj. The second inequality is a triangle inequality
and the third follows from Equation (22) for i = 0 (note 6o; = pi0;), and the sensitivity Lemma 2.12 (note
that we apply this Lemma 2s1; times and that the size of each chunk is B/K). The last inequality follows
from Equation (21). Now let’s focus on the induction step of the argument. Suppose Equation (23) holds
for some ¢ > 1. We will show that it holds for ¢ + 1 as well. For any partition j such that s;41; = 0, we
have ||0;4 1.5 — 07i14ll2 = 16,5 — 07 ;|2 and the claim holds by induction assumption. Now suppose s;1,; # 0
which implies the update algorithm runs 77, iterations of gradient descent on chunk j. We therefore have
that, similar to how we proceed for i = 1 case above,

* T!
9’L‘+11j - 9i+17jH2 S ’Y i+l

A *
eij - 9i+1,jH2

<yl ( 0 — 05|, + 1167 — 9f+1,j"2)
-1 n2
< Tl ALK (K s S“) , v E ALK i1,
=7 mB 1 /ngzI mB
ALK (K14 iy 51 e
< — .
= mB(1+10(i+1)log (2(i +1)/8)) 1 _ "5

where the third inequality follows from induction assumption for ¢ and applying the sensitivity Lemma 2.12
2s;4+1,; times, and the last inequality follows from Equation (21). This completes the induction proof. Now
we can use Equations (22) and (23) to conclude that for all ¢ > 0,

< 4.L Kn;I < 4.L Kn;I (24)
. B _ B
2= mB(1+10log(2/6) 0 Zmn

1 K
It~ Ol < 5 3 s — 0
j=1
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where we use the fact that B > n. And with probability at least 1 — §/2, for all ¢ > 1,

IR
i Bl = > 5,
Jj=1
AL gt K
v B -1
< . . : K=+ ) sij
mB (14 10ilog(2i/6)) 1 _ ,YK;‘;I ; ; ’
AL 5t
"Y B
= : . . 14+ sy (because S1; = S1)
mB (14 10ilog(2i/d)) 1 _’nggz ; ; ’
4L Kn;I
Y B . .
< - - . (14+143;) (recall §; = maxs;)
Kn21 i
mB (1+ 10ilog(2i/0)) 1 _ ~ 252 1< (25)
< 4L 1 (108 (2i/5)
: i i
~ mB(1+10ilog(2i/0)) 4 _,YK;‘;I n 8
4L Kn;I
- "z (g 10ilee 20/0)
= . — 4+ 10ilog (2i/0
mn (1+10ilog (2i/9)) | _ 3 \B + 10 1og (2i/9)
Kn2T
< AL v (14 10ilog(2i/6)) (because B > n)
: i i u n
~ mn (14 10ilog(2i/6)) 1 _ 7K§§I & B
Kn2T
4L v B2
= mn 1 F)/K;;I

implying that for any i > 1, conditioned on the event that {§; < 10Bn~'log(2i/§)} which holds with
probability at least 1 — /2 (by Fact F.1),

8L Kn;I
’y B
i = pilly < — - ——r = A (26)
mn 1— v B2
It then follows from Lemma A.3, as well as the choice of
n2
4\/5[/)/ KB2I

o =

mn (1 — 7%21) (\/log (2/0) +e— \/log(2/6))

€,0/2
in the theorem statement, that for any ¢ > 1, with probability at least 1 — §/2, foublisn (A (D;)) z/

fpublish (RA (Si—1,ui,80;)). Now we can apply Lemma A.1 to conclude that for any ¢ > 1,

€,0
fpubtish (A (D5)) = fpublish (Ra (Si—1,ui,6;))

And this shows R 4 is an (e, §)-unlearning algorithm for A, as desired.
Now let’s prove the accuracy statement of the theorem for which we will make use of Equations (24) and

(25) (which holds with probability 1 —4§). Recall that éO,avg = po and éwvg = u; for i > 1. We first state the
accuracy in expectation and then finally will turn those into high probability accuracy guarantees. First, we
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have that by a simple application of Cauchy-Schwarz inequality,

E éi,avg - 6‘: z =E éi,avg - ej,avg + ej,avg - 6‘: i
~ 2 R T
=K ei,avg - of,avg 9 + E ||0;'k,avg - 9: ||z + 2E (ei»a‘/g - er,avg) (G;avg - 9:) (27)
) * 2 * (|2 ) * 2 * «||2
<K ei)an - ei,avg 9 +E ’ ei,avg - 91' Hz + \/E ‘ eivan - ei,avg 9 E Hei,avg - 91 9

but, by an application of law of total expectation (to turn the high probability guarantees into bounds in
expectation),

2 16L? ¥ B22

E 2= m2n2 (1 Kn21)

N *
9i7an - ei,avg

> +6D? (28)

and we also know by Theorem 4.4 that, for some constant ¢, and for the choice of K = /B,

2 2172 2,2 3
EHer,avg_oz||z< 2L +ﬂ<H210gd+LG)+O(K>+O(K_)

~— m?B m%B? m2 B2 B3
00>  cL? [, 262 s
= 5+ 3 <H logd + = )+O(B ) (29)

1 (202 cL? [, 12G? s
= E <W+W (H 10gd+ 2 >) +O(B 2)
Putting together Equations (27) and (28) (with K = v/B) and (29), and noting that for § = O(B~!) and
B > n we have \/E||9Aiﬁavg — I2-E|6;,.. — 0713 = O(logd/B), and hiding all constants under the O

i,avg
notation, we have

*
oi,avg

n27T

: 2 75 logd 1
E |6 avg — 07| = O PR +O<Og >+O< 3>
2 n2T B B§
n2(1—73ﬁ>

Now by Lemma A.4, we have that by running the algorithm for C' = log (2/3) /log2 times and picking the
best model with smallest loss (note by strong convexity, the smaller the loss of a model is, the closer the
model parameter is to the optimizer. Also for notational convenience, we still use éi,avg for the best model),
with probability at least 1 — 8/2,

n2z
~ N 2 'yBJE logd 1
s — 05, = O — | +0 (%) +o( 5 (30)
n2 (1 — fyB\/§)

Recall that at any given round ¢ > 0, the published model 6‘1 = éi7avg + Z;. We therefore have that by
Equation (30), a Gaussian tail bound (Lemma A.2), choice of ¢ in the theorem statement, and the fact that

for e = O (log (1/4)), we have /log (1/8) + e — +/log (1/8) = Q(e/+/log (1/6)), with probability at least 1— 3,

_ 2 2, 5% 2
G0 o | X2 dlog(l/‘s)ioi (ZW) +0 (—logd> +0 ( 13) (31)
2 m2e2n2 (1 _7#) 2
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Note that (1 —~*)~t < (1 —~)~! for any @ > 1 (in our case a =
choice of B = n¢ and M-smoothness of f:

> 1). The proof is complete by the

2

b; — 0

2
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