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Abstract

Composition is one of the most important properties of differential privacy (DP), as it allows
algorithm designers to build complex private algorithms from DP primitives. We consider precise
composition bounds of the overall privacy loss for exponential mechanisms, one of the most
fundamental class of mechanisms in DP. We give explicit formulations of the optimal privacy
loss for both the adaptive and nonadaptive settings. For the nonadaptive setting in which each
mechanism has the same privacy parameter, we give an efficiently computable formulation of
the optimal privacy loss. Furthermore, we show that there is a difference in the privacy loss
when the exponential mechanism is chosen adaptively versus nonadaptively. To our knowledge,
it was previously unknown whether such a gap existed for any DP mechanisms with fixed
privacy parameters, and we demonstrate the gap for a widely used class of mechanism in a
natural setting. We then improve upon the best previously known upper bounds for adaptive
composition of exponential mechanism with efficiently computable formulations and show the
improvement.
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1 Introduction

Differential privacy (DP) has emerged as the leading privacy benchmark in machine learning as well
as data analytics on sensitive data sets. One of the most useful properties of DP is that it composes,
with slight degradation in the overall privacy loss parameters. This allows algorithm designers to
build complicated algorithms whose privacy analysis follows from the fact that each subroutine
satisfies DP. Further, composition allows us to bound the amount of privacy loss, quantified by the
(€,0) parameters in DP, consumed by an (adaptive) sequence of DP algorithms evaluated on the
same dataset. Hence, there have been several works in DP that help bound the privacy loss in
composition, starting with basic composition from Dwork et al. [8] and advanced composition from
Dwork et al. [9]. More recently, there have been works that give the exact, optimal privacy loss
bound when all that is known is that the individual algorithms are each DP: Kairouz et al. [11] give
the optimal privacy loss bound in the homogeneous case, where all the privacy parameters for each
algorithm are the same, and Murtagh and Vadhan [14] give the more general optimal privacy loss
bound in the heterogeneous case, where all the privacy parameters can be different at each round.

Although these black box composition theorems give the best possible bound on the privacy loss
over multiple rounds of general DP algorithms, one should be able to improve on this bound when
considering specific subclasses of DP algorithms. One example of such a composition theorem that
takes into account the particular algorithm being used at each round is in moments accounting
composition from Abadi et al. [1]. For their setting, they use noisy stochastic gradient descent and
account for the subsampling and Gaussian noise that is added to the gradients at each round in
their overall privacy loss bound. In particular, they are able to save a factor of O(1/In(k/d)) in the
overall privacy parameter, where k is the number of gradient descent steps taken. Another example
of white box composition is from Durfee and Rogers [6] who introduce bounded range (BR) as a
property for DP algorithms, which leads to improved composition bounds compared to the general
case optimal bound.

Arguably, the fundamental DP primitives are the following: randomized response [19], Laplace
mechanism [8] or its discretized variant (geometric mechanism), Gaussian mechanism [7], and the
exponential mechanism [13]. The optimal DP composition bounds [11, 14] follow by showing that
each DP algorithm, once the neighboring datasets are fixed, can be written as randomized response
composed with a post-processing function that is independent of the data. Hence, the optimal DP
composition is essentially tailored to composing randomized response mechanisms. The geometric
mechanism was shown to also achieve the optimal composition bound [11]. Optimal DP composition
bound for Gaussian mechanisms is obtained as a special case of the general composition theorem
in Dong et al. [4].

Hence, it is only natural to then ask: what is the optimal DP composition bound over
the class of exponential mechanisms? This question is the primary focus of this work. As was
shown in Durfee and Rogers [6], the exponential mechanism satisfies the BR property and hence
enjoys their improved composition bound. The exponential mechanism provides a very general way
to design DP algorithms over an arbitrary outcome space where a quality score measures the value
of each possible outcome given the input datatset. In practice, the exponential mechanism is most
often deployed when a maximum or minimum operation is needed in a DP algorithm.

Surprisingly, the answer to this question depends on whether the choice of exponential mecha-
nism is adaptively chosen at each round or not. For the existing DP composition bounds, adaptivity
in the choice of DP algorithm did not affect the overall privacy bound, even in the optimal privacy
loss bounds. Rogers et al. [17] show that there is an asymptotic gap in the privacy loss bound when



the privacy parameters {ei}le are fixed in advance versus when an analyst can adaptively select
the privacy parameters ¢; at each round ¢ based on previous outcomes before i. However, we focus
on the traditional view of DP that fixes all the privacy parameters up front.

In the local setting of differential privacy, interactivity and adaptivity have been shown to be
significant in learning algorithms and estimation tasks, see [12, 18, 10], although for some estimation
tasks in more restricted interactivity models, there is no distinction [5]. However, such interactivity
models are not relevant to the central model since mechanisms are designed to take the full dataset
as input rather than designing algorithms on each datum as in the local model. Our result is in a
similar vein to these results that consider the possible impact to the privacy loss from giving the
adversary additional power.

We find the gap here particularly interesting because this is such a natural setting and has
practical interest in the deployment of top-k algorithms [6]. For such data queries, it would be
ideal to allow the analyst to adaptively interact with a DP system, rather than having the analyst
select all the mechanisms up front and produce results as a batch. For example, consider the
exponential mechanism as simply reporting the (noisy) maximum index for some metric of interest,
but only for a certain subgroup and the analyst specifies the classifications for this subgroup, such
as company, job title, geographic location, etc. Even if we fix the privacy parameter, our privacy
loss will increase if we allow the analyst to adaptively select these classifications in subsequent
queries.

Both the nonadaptive and adaptive setting will have practical importance and the distinction
will be important in efficiently computing the tightest possible bounds on the privacy loss. In
particular, our nonadaptive and efficiently computable composition formulation can be applied in a
dashboard setting, where the set of queries that are privately output for a dataset is predetermined,
and could include top-k queries for all the metrics of interest. Further, we know that our bound
cannot be improved in this setting. Alternatively, our efficiently computable improved bounds
for the adaptive setting can be applied in an API setting mentioned above, where the analyst
adaptively interacts with the DP system.

While the improvements we give here in bounding the overall privacy loss are not asymptotically
significant, if we consider the amount of privacy loss to be fixed, then increasing the number of
allowable queries by a constant factor can still have a substantial impact on practical deployments.
From our results in Figure 1, our nonadaptive composition bound allows for about four times more
queries than the optimal composition for general DP mechanisms given a fixed privacy loss budget.
Furthermore, this optimal composition allows for about two times more queries than the improved
bounds given in [6]. Additionally, in some settings our improvement for the adaptive composition
bound of exponential mechanisms allows for about three times more queries than both the optimal
composition for DP mechanisms and the improved bounds in [6].

1.1 Owur contributions

We informally summarize our main contributions here and will give the formal statements in Sec-
tion 3 once we have set up the requisite notation.

1. We show that there is indeed a gap between the optimal composition bound when an ad-
versary can adaptively select different exponential mechanisms at each round as opposed to
an adversary who selects all the exponential mechanisms in advance. This is in contrast



to traditional DP composition bounds, which showed no difference between these different
adversaries in terms of the privacy loss.

2. For the nonadaptive adversary, we provide an explicitly computable formula for the optimal
composition bound that can be computed in O(k?) time, where k is the total number of
exponential mechanisms that are executed.

3. For the adaptive adversary, we provide an explicit formulation for the optimal composition,
but in a recursive formulation that is intractable to compute for even reasonably sized k. We
then improve upon the previous upper bound on the privacy loss by giving an improved KL
divergence bound, and further provide a numerical scheme based on the moment generating
function of the privacy loss to obtain an even better upper bound on the optimal composition.

Although we have presented the exponential mechanism as a specific DP mechanism, it is also
important to discuss its generality. In particular, there is the folklore result that states that any
(pure) DP mechanism can be written in terms of an exponential mechanism with a particular
quality score, i.e. the log-density of the mechanism [13]. Hence, it might seem that the optimal
k-fold adaptive composition bound over the class of exponential mechanisms, or BR mechanisms, is
also the optimal k-fold adaptive composition bound over the class of all DP mechanisms. However,
sometimes taking general DP mechanisms, such as randomized response or the Laplace mechanism,
to the generic exponential mechanism form could result in a different overall privacy parameter.
Hence, a general e-DP mechanism can be written in terms of an exponential mechanism with
parameter €', which can be up to a factor 2 larger than e. See Section 3.5 for more discussion.

2 Preliminaries

In this section, we set up the necessary notation and definitions for our results. It will be neces-
sary in our analysis to use a generalized version of randomized response that corresponds to BR
mechanisms. Similar to the work in the optimal composition bounds for DP mechanisms, our goal
will be to reduce composition to adaptive calls of this more generalized randomized response than
the one used in the optimal DP composition analysis [11, 14]. For this reduction, we give a more
fine-grained definition of adaptive composition, that is equivalent to previous versions, but includes
details that were not necessary for standard DP composition. In particular, the class of algorithms
that we want to give a DP composition bound for is not closed under convex combinations. Thus,
an adversary can randomize over different algorithms in the same class and the resulting algorithm
is no longer in that class. Finally, we give the definition of optimal composition and an alternative
formulation that will be easier to work with.

We first cover the standard differential privacy definition from [8, 7], where we will say that two
datasets xz, 2’ € X are neighbors if they differ in the addition or deletion of one individual’s data,
sometimes denoted as x ~ x’.

Definition 2.1. A mechanism M : X — Y is (g,0)-differentially-private (DP) if the following
holds for any neighboring dataset x,2’ and S C Y:

Pr[M(z) € S] < ePr[M(a') € S] + 4.

Also if 6 =0, we simply write e-DP.



We now present the definition of bounded range from Durfee and Rogers [6], which was useful
in improving the composition bounds for their algorithms.

Definition 2.2. A mechanism M : X — ) is e-bounded-range (BR) if the following holds for any
neighboring dataset x,x' and yi,ys € Y:

PriM(z) =y] _ o PriM(z) = ys]

Pr[M(z') = y1] = Pr[M(z') = 2]

Note that for continuous outcome spaces, we can use the probability density function instead.
We then have the following equivalent formulation of BR mechanisms, which will be easier to use
in our analysis.

Corollary 2.1. A mechanism M : X — Y is e-BR if and only if for any neighboring databases
x,x’ there exists some t € [0,¢€] such that for any outcome y € Y we have

Pr(M(z) = 4]
1) =1

ey

We also have the following connection between BR and (pure) DP.

Lemma 2.1 (Corollary 4.2 in [6]). If M is e-BR then it is e-DP. Furthermore, if M is e-DP, then
it is also 2¢-BR.

We will now define the exponential mechanism in terms of a quality score v : X x ) — R and
its sensitivity Au := maxyecy max, s [u(z,y) — u(z’,y)|.

Definition 2.3 (Exponential Mechanism [13]). The exponential mechanism M, : X — ) samples

an outcome y € Y with probability proportional to exp (%)

The factor of two accounts for the possibility that the normalization term can also change with
a neighboring dataset and for some quality scores, i.e. monotonic, the factor of 2 is not necessary.
We then have the following result.

Theorem 1. The exponential mechanism is e-DP [13]. Further, the exponential mechanism is
e-BR [6].

Throughout the rest of this work, we will use a generalized version of randomized response,
which our analysis will primarily focus on and we define below.

Definition 2.4 (Generalized Random Response). For any e > 0 and t € [0,¢|, let RR.; : {0,1} —
{0,1} be a randomized mechanism in terms of probabilities ¢+ and pey such that

1 —et—¢ el—€ _ o€
RR.+(0) =0 w.p. T = Qe and RR.4(0) =1 w.p. T o= =:1—q
—t —c —t
e t—e 1—e
RR. (1) =0 w.p. e T Pet and RR. (1) =1 w.p. T 1 —pey.

Note the RR. ./ is simply the standard randomized response with privacy parameter /2 [19].
We will typically drop the dependence of € in RR.; = RR; when it is clear from context. It will
be useful to also define what we mean by optimal privacy parameters, which we will write as a
function dgpr of a mechanism and a global DP parameters ¢,.



Definition 2.5 (Optimal Privacy Parameters). Given a mechanism M : X — Y and any € € R,
we define the optimal 6 to be

0opr(M, €) := inf {5: M is (5,5)-DP}
Further, if M is a class of mechanisms M : X — ), then for any € € R, we define

5UPT(M75) ‘= sup 5UPT(M7€)
MeM

Fact 1. For any mechanism M : X — Y and € € R

dopr(M, e) = sup , max{Pr[M(z) = y] — e Pr[M(2') = y],0}dy (1)
T~z Jye

Proof. Tt follows immediately from definition that M is (g,0)-DP if and only if

sup sup {Pr[M(z) € S] — e*Pr[M(2) € S]} <6
z~x' SCY

This immediately implies

SEQI:)/ glclg)} {Pr[M(z) € S] — e"Pr[M(a') € S]} = bgpr(M, )

Furthermore, it is straightforward to see that for any neighbors x, 2’

sup {Pr[M(z) € S] — e*Pr[M(2') € S|} = / max{Pr[M(z) = y] — e Pr[M(2') = y],0}dy
S5CY yey

2.1 Improved semantics for the exponential mechanism

Here we present a slight modification to the traditional exponential mechanism presented in Defi-
nition 2.3. In particular, rather than presenting the probability of selecting different outcomes in
terms of the quality score’s sensitivity, we define it in terms of what we call the range of the quality
score. This leads to a simpler formulation of the exponential mechanism that does not have to
consider whether a quality score is monotonic or not, i.e. whether to include a factor of two or not
in the probability sampling rate, and for this reason we only view our modification as a semantic
improvement. Additionally, we present the following example, to show that defining the exponen-
tial mechanism in terms of the max sensitivity leads to unwanted properties, which suggests that
sensitivity is not a canonical parameter that should appear in the exponential mechanism.

Example 1. Let u : X x [m] — R be an arbitrary quality score with sensitivity Aw. Consider
an arbitrary function f : X — R on the data domain. We define the alternate quality score
u'(x,4) = u(x,i) + f(x). It is easy to see that

ecul(z;i) esu/ (z,7)

Zi ecu(®,i) - Zz ey (z,9)




That is, the privacy properties of the exponential mechanism with quality score u and v’ are equiv-
alent. However, it is very common that Au # Au'. For example let X =Y = {0,1} and
u(z,y) =x+y, f(z) =10z and hence v'(z,y) = 11z +y. Clearly, Au =1 and Au' = 11.

Note that this example is carefully constructed to show that using sensitivity has unwanted
properties and we found no examples of such utility functions used in the literature. However, it
would be nice to have a definition that also optimally handles such utility functions, in addition to
encapsulating the monotonic case in the definition.

Given a quality score u : X x ) — R, consider defining the exponential mechanism in terms of
some function of the quality score ¢(u), e.g. ¢(u) = 2Au would give us the traditional exponential
mechanism. Instead, let’s consider the property that ¢(u) needs to satisfy to ensure a mechanism
M : X — Y is e-BR, and hence e-DP. Let x,2’ € X be neighbors and fix outcomes y,y € ).
To ensure e-BR, we require the following condition on ¢(u) (note that the normalization factors

cancel)
exp (sm?)) exp <suq§%,/))
@y = e - NN At u(z,y) —u(@’,y) —u(z,y) +u(@'y) < o(u).
exp (T(u) ) exp (Tu’) )

With this observation, we define the range Au of a function u as the following

Au:= sup u(z,y) —u(@,y) —ulz,y) +ul,y)
z~z Yy’ €Y
~ sup {max {u(e,y) — u(e,5)} — min {u(z,yf) — (e y'>}}
oo’ y Y

We then have the following useful properties of the range.

Proposition 1. The range Au of a function u : X x Y — R has the following properties
o Au= Au when u'(z,y) = u(z,y) + f(z)
e Au<?2- Au.
o Au=Au if u is monotone.

We then have the immediate result, which presents a variant of the exponential mechanism in
terms of the range, rather than the sensitivity, of the quality score.

Proposition 2. The mechanism M : X — Y that samples y € Y with probability proportional to
exp (W) 1s e-BR, and hence e-DP.

Au

2.2 Formally defining composition

We now present the definition of adaptive composition for DP algorithms in the setting introduced
by Dwork et al. [9]. Our definition will be slightly more explicit in how we formulate the adversary.
Specifically, the adaptive composition game in [9] does not explicitly allow the analyst to use its
own personal randomness in picking the mechanism at each round. Defining the analyst in this



way is fine if the analyst selects a DP mechanism at each round, since we know that any convex
combination of e-DP mechanisms is still e-DP. For example, if M’ and M” are arbitrary e-DP
mechanisms, then if we define the mechanism M to run M’ with probability p and run M” with
probability (1 — p), the mechanism M is e-DP. Therefore, any randomness used by the adversary
in their choice of e-DP mechanism can simply be simulated by another e-DP mechanism and can
be ignored in the definition.

In full generality, the class of mechanisms that we allow the analyst to select from at each round
may not necessarily be closed under convex combinations. In particular, we will be considering
the setting in which the class of mechanisms the adversary can choose from is restricted to e-BR
mechanisms, which is not closed under convex combinations, see Section 4.1. Hence, in the adaptive
composition game AdComp presented in Algorithm 1, we decompose the adversary into a randomized
and deterministic component. The adversary will then use personal randomness R at each round
and based on this will then use a deterministic function D to select a mechanism M; from the class
of algorithms & at round i.! As one would expect and we will show, the adversary cannot add their
own independent randomness that is data-independent and further degrade privacy. The output
of the adaptive composition game will be a sequence of random coins the adversary uses and the
outcomes from applying the mechanism for the corresponding databases (given the bit b), which
we write as Ro,All’, e ,Rk,l,Az,Rk.

Algorithm 1 AdComp(A = (R,D), (&1, ,&k),b), where D is a deterministic algorithm, R is a

randomized algorithm, &;,--- , & are classes of randomized algorithms, and b € {0, 1}.
ro ~ R(@)
fori=1,--- ,k do
D(ro, Al{, .-+ ,7;_1) selects neighboring datasets 2*9, 25! and M; € &

A receives AY = M;(x"?)
b b
Ty~ R(T07A17 T vriflvAi)
return view V° = (rg, A2 rq,--- ,Tk—laAza""k)

Definition 2.6 (k:—f_o)ld Adaptive Composition). Given classes of randomized algorithms g =
(&1, &), we say € is (g4,04)-DP under k-fold adaptive composition if for any adversary A
and b € {0,1}, along with any set S that is a subset of outputs of AdComp(A, E,-), we have

Pr[AdComp(A, g, b) € S| < e Pr[AdComp(A, E1- b) € S|+ 4.

It will be important to distinguish adaptive and nonadaptive adversaries in our composition
bounds. The nonadaptive adversary selects all the mechanisms and neighboring datasets to be
used at each round prior to any computation on the dataset. For this case, we can simply study
the privacy guarantees of a mechanism M = M; x My X --- X My where each M; is ;-BR and
M(x) = (My (), Ma(w), -, My ().

!Similarly, Rogers et al. [17] defined a simulated game which explicitly decomposed the adversary into a determin-
istic post-processing function of randomized response at each round and then used randomness at the beginning of
all the interactions to simulate the adaptive randomness at each round. They showed that such a simulated game is
equivalent to the adaptive parameter composition game, which allowed them to simply consider randomized response
mechanisms at each round with a deterministic adversary.



3 Overview of results and techniques

Given the necessary notation and setup, we present formal statements of our main results along
with the intuition and techniques used to prove these results. We detail the formal proofs in the
sequel.

3.1 Reduction to generalized randomized response

Similar to [11, 14], we first want to identity the “worst-case” mechanism for the class of BR mech-
anisms, which is to say that any BR mechanism can be simulated through post-processing of this
worst-case mechanism. It then follows that composition over the class of BR mechanisms can
be reduced to simply considering composition of this worst-case mechanism, allowing for explicit
computation of the optimal composition. For the class of e-DP mechanisms, the worst-case mech-
anism was shown to be randomized response through both the hypothesis testing interpretation
[11], and explicitly constructing the post-processing function [14]. Rather than consider the class
of exponential mechanisms in our analysis, we will instead focus on the more general class of BR
mechanisms due to the fact that the BR property in Corollary 2.1 closely matches the definition
of (pure) DP. We also show in Section 4.2 that this definition is essentially equivalent to the stan-
dard use of the exponential mechanism, which is to say that the privacy loss is identical for the
worst-case BR mechanism and the exponential mechanism. We then categorize the worst-case BR
mechanisms similarly to analysis done in [11, 14]. More specifically, we know from Corollary 2.1
that if a mechanism M : X — ) is e-BR, then for any neighboring x, 2’ there exists some t € [0, €]
such that for any y € ),

Pr[M(z) = y]
o= (gt —y) =

Note that if for each neighboring x,z’ we have that ¢t = /2, then M is also 5-DP. It then
follows from [11, 14] that when ¢ = /2 the worst-case mechanism is simply randomized response

with parameter §. Intuitively, this is the mechanism M such that for any y € J one of the bounds

is tight, in other words
Pr[M(z) = y] € €
In({——F17+—"—>= ——,=r.
n<Pr[M(m’):y] {33}

For our setting, this same intuition must hold for ¢t = £/2, and we then generalize this to any
t € [0,¢] where the worst-case mechanism M is such that

o PrM(z) = y] .
I(Pr[Mm:y])e“ -

This generalization is exactly our Definition 2.4, and using a similar interpretation to hypothesis
testing, we show that for any given t € [0, ¢] this is the worst-case mechanism that satisfies the
BR property. While this result is largely unsurprising, in Section 4 we give a thorough treatment
towards proving that both nonadaptive and adaptive composition can be reduced to this generalized
random response at each step where some ¢ € [0,¢] is chosen either nonadaptively or adaptively.

Note that for composition over e-DP mechanisms, the worst-case mechanism is simply random-
ized response, hence there is no difference between the nonadaptive and adaptive setting because the
worst-case is always randomized response regardless of previous outcomes. However, in our setting

10



the same conclusion is not necessarily true because the adversary now has the power of adaptively
choosing t € [0, €] at each round. We then first restrict our consideration to the nonadaptive setting
and consider the optimal composition of this setting.

3.2 Nonadaptive optimal composition

As with the previous work on advanced and optimal composition for (g, d)-DP mechanisms, it does
not suffice to simply consider one pair (¢4, dy), but instead we consider a parameter as a function of
the other parameter to get a full curve of privacy loss parameters. Note that throughout this work,
we will use similar conventions to [14] in that (e,d) will denote the privacy parameters of a single
mechanism and (g4, d4) will denote the global privacy parameters that are for the composition of
these mechanisms. While the previous optimal composition bounds considered fixing ¢, € [0, 1] and
computing the optimal €, as a function of the 4, it will be easier for us to write J, as an explicit
formula of e, given Fact 1, which is also seen in [11, 14]. These formulations are equivalent, so for
simplicity we will instead consider fixing ¢, and computing the optimal d,.

Having restricted our consideration to the nonadaptive setting and reducing to the worst-case
mechanisms being our generalized random response, it is then straightforward to obtain the optimal
composition formula for the heterogeneous setting of £;-BR mechanisms. We define the following
class M of nonadaptive heterogeneous BR mechanisms and M&E; of nonadaptive homogeneous
BR mechanisms as

MEF =My x -+ x My, : M; is ¢;-BR} My := {My x --- x My : M; is e-BR}. (2

Lemma 3.1. Recall from Definition 2.4 we have pe, t;, Gz, ;- We then have

5UPT(M119}2]€7 59) = sup Z max {H eyt H(l - qaiyti) — e priﬂfi H(l - pEi,ti)’ 0} :

t€llie 08l g1, k) i¢s icS i¢s icS

Note this formulation can in some ways be seen as a generalization of the following result from
Murtagh and Vadhan [14], although we only state it in the nonadaptive setting (as well as fix
d; = 0), it does also hold in the adaptive setting.

Theorem 2 (Theorem 1.5 from Murtagh and Vadhan [14]). Let ME¥ be the class of nonadaptive
composed mechanism M = My X --- X M where each M; is €;-DP, then we have

1
1) /\/ll:k, = =" i | — e il,0p.
opr(Mypp', €g) ?Zl(l &) o E max{exp <E 5) €9 exp (E 5) }
I1 c{l,..k} i€S i¢S

In particular, if we set ¢; = & for all 7 instead of taking the sup, then this is equal to the LHS
of the equation (1) in Theorem 1.5 for [14] where we replace ¢; with 5. Equivalently, by setting

t; = 5 for all 4, this is the optimal composition of £--DP, ..., 5:-DP mechanisms.
Similar to the result in Kairouz et al. [11] on optimal composition of DP mechanisms, we will
restrict our consideration to the homogeneous setting where €1, -+ , £ = € in an attempt to obtain

a formulation that is efficiently computable. However, this formulation will be far more difficult to
simplify than the optimal composition of DP mechanisms because of the supremum over ¢; € [0, £].
Our simplification will require significant technical work that will ultimately be done in two key

11



steps: 1) we show that the supremum is achieved when all ¢; = ¢; for ¢ # j, and 2) we show
that the supremum is achieved by a certain value t; = t* € [0,¢] contained in a set of at most
k possible values. This will then yield an explicit and efficiently computable formulation of the
optimal nonadaptive composition of BR mechanisms.

Theorem 3. Consider the homogeneous case where ¢; = € for each i € [k], then we have for
Pt; = Pet; given in Definition 2.4 and setting t); = W where if t} ¢ [0,¢], then we round it to
the closest point in [0, €]

(50t 0= (27— ) ).

Furthermore, this can be computed in O(k?) time.

Once again, we note that by instead setting t; = §, then this formulation is equivalent to the
LHS of Theorem 1.4 in [14], which is a rephrasing of the original optimal composition formulation
in [11], where we replace ¢ with £/2.2 We also plot the DP optimal composition bound where /2
is used as the DP privacy parameter for each individual mechanism in Figure 1. The improvement
in this formulation over the optimal composition of e-DP mechanisms is more than a factor of 2,
and we empirically compare the bound for £, in Figure 1 as a function of k. In the figure, we label
“DP OptComp” as the optimal composition bound for DP mechanisms from [14], “DR19” as the
composition bound for e-BR mechanisms from [6], and “BR OptComp” as the composition bound
in Theorem 3.

Unfortunately, our proofs of this optimal composition formulation cannot be applied to the
adaptive setting, pointing to the natural question of whether there is in fact further privacy loss
when the adversary is given power to choose the mechanism based upon previous responses.

3.3 Additional power of adaptivity

In order to better explain the intuition behind optimal composition in both nonadaptive and adap-
tive settings, we rely upon the random walk interpretation of composition similar to analysis in
[9, 17]. In particular, for composition of e-DP mechanisms, we can instead consider a random walk
on the real line beginning at 0, where with probability e%l a step of € is taken and with probability
ﬁ a step of —¢ is taken. Given some ¢4, the goal of the adversary is to maximize the probability
that the walk exceeds e, after k steps and the amount in which it exceeds 4. For achieving an
upper bound on the composition as in [9], we can ignore the amount the walk exceeds ¢, and
apply concentration bounds on the probability that the walk exceeds ¢, after k steps. The optimal
composition from [11, 14] instead requires computing the resulting binomial distribution over the
length of the walk to explicitly obtain both the probability and amount that each walk exceeds ¢,.
In the nonadaptive setting, the reason we could also achieve an efficient formulation was because
we proved that we can equivalently restrict all ¢; to be equal and further we can restrict the possible
t; to a smaller set, so our computation once again became equivalent to examining each respective
binomial distribution.

Interestingly, this then implies that for any €g where this maximum is achieved with ¢, = £, we then have that

the optimal composition of e-BR mechanisms is equivalent to the optimal composition of $-DP mechanisms for that
specific €4. We have in fact tested this and found cases in which this is true, but could not find any discernible
pattern for the specific values of €, when the optimal composition is equivalent.
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For the composition of e-DP mechanisms, the worst-case mechanism does not require an adver-
sarial choice, however in our setting the adversary does have the power to choose each t; € [0, €]
in the generalized random response mechanism. This choice of #; will then exactly determine the
length of the step in each direction, where either a step of ¢; is taken or a step of t; — ¢ is taken.
It might seem like the adversary would then always choose the maximum ¢;, but the probability
of taking that step is inversely related to the magnitude of the step. More specifically, the larger
the adversary sets t;, the smaller the probability that the step is taken in the positive direction,
presenting a natural tradeoff. Following this random walk interpretation, we can then give an ex-
plicit optimal composition in the adaptive setting as a recursive formulation that incorporates the
natural maximization problem.

We begin by simplifying our notation for adaptive composition and focusing on the homogeneous
case where & =€ for ¢ € [k] and will address the heterogenous case in Section 6. Given some fixed
e >0, let ME; := (Mg, ..., Mpg) be such that Mg is the class of &-BR mechanisms. We will
denote the family of adaptive composition games over all adversaries as the following

AE: := {AdComp(A, A7§R, -) : adversary A}. (3)

We then have the following result. Note that we also consider the heterogenous case for
€1, -+ ,&k in Lemma 6.1

Lemma 3.2. Given global parameter €4 and q. ¢, from Definition 2.4, we have the following optimal
privacy parameter where use set Sppr( A%, €4) = max{1 — e, 0},

Soer(Abp.2g) = sup {gedopr(Afs " 6 — 1) + (1 = g )domr( Al 2y + — 1)}
t1€[0,e]

Note that this formulation does not necessarily hold for the nonadaptive setting because the
choice of to cannot change based upon the result of the first mechanism, and the supremum for
all possible ¢; gets pulled to the beginning of the expression. It is exactly this difference that will
give the adversary additional power in the adaptive setting because, relying upon our random walk
intuition, the natural tradeoff between the magnitude of the step t; and the probability of that step
is actually dependent upon the current position of the random walk. For example, consider a walk
that begins by taking several steps in the negative direction. In order to make up this increased
distance and exceed ¢, it may then become necessary to increase the subsequent values of t; despite
this decreasing probability of these steps occurring. Similarly, if the walk begins by taking several
steps in the positive direction, it may become favorable to choose more conservative values of t;
and increase the probability of taking these positive steps.

We rigorously confirm this intuition that will heavily rely upon having obtained an efficient
formulation of the nonadaptive optimal composition. Furthermore, we confirm that this difference
in privacy loss exists for all possible values of £ in our composition, and almost all choices of ¢,.
As would be expected, if ¢, = ke and basic composition can be applied, then there is no difference
between optimal composition in the adaptive and nonadaptive setting. We further show that this
slightly extends beyond just basic composition in which the adaptive and nonadaptive setting are
equal, almost completely giving a full picture of when the adversary has additional power from
adaptivity.

Theorem 4. Recall the nonadaptive family of homogeneous e-BR mechanisms M@R from (2) and
Ak, given in (3). For any e, € [0, (k — 3)e] we have,
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5DPT(-/4§R7 gg) > 5UPT(M§R> Eg)-

Further, for any €4 > (k — 1)e, we have

Sopr(Alg, £4) = Sopr(Mbp, £g).

Note that under these conditions the gap only exists for kK > 4. We also show that the gap
exists for £ = 2,3 in Section 6, but the conditions do not extend as nicely and we leave them out
of the theorem statement here for simplicity.

We believe that the gap is quite small for all values of £, and k, however we believe that
proving a strong upper bound on the gap would require significant technical work and leave it
to future work. We can confirm this numerically for reasonable k, but due to the nature of the
recursive formulation for the adaptive setting it is intractable to check this for larger values of k.
Furthermore, these numerical methods become even more computationally difficult for the case of
heterogenous privacy parameters and the gap for this setting may be much larger.

3.4 Improved and efficiently computable bounds for adaptive composition

While we gave an explicit formulation of the optimal composition for the adaptive setting of BR
mechanisms, the computation is not tractable, and we suspect that it has similar hardness results
to [14], which we leave to future work. Accordingly, we further improve the known efficiently
computable upper bounds on the adaptive composition of e-BR mechanisms from [6]. The previous
work on e-BR composition followed a similar approach to [9] applying both an Azuma-Hoeffding
bound (on the variance) and a KL divergence bound (on the bias) to achieve a reasonably simple
upper bound on the optimal composition. However, the previous work only considered using the
BR property to improve the bound from Azuma-Hoeffding and did not consider improving the
KL divergence bound. While these bounds are quite complex to generally compute, we note that
for our generalized random response it will actually be quite simple to compute the explicit KL
divergence. Using our reduction to this worst-case class of mechanisms and taking the supremum
over all choices of ¢ we can give a much improved bound on the KL divergence.

Corollary 3.1. LeL./W = (My, Mg, -+, My) where each M; is the class of £;-BR mechanisms.
We then have that M is (g4(0g4), 64)-DP under k-fold adaptive composition for any 64 > 0 where

k k k
. &; E; 1
£¢(d) = min E Ei g <1—e‘5i —1—1In (1—6_81)> + 3 g £21n(1/6)
=1 i=1 i=1

This gives substantial improvements over the previous bound in some settings (and we will
provide plots in Section 7), but we will further improve this bound. In particular, the bound given
above considers the KL divergence and Azuma-Hoeffding separately, which is to say that the worst-
case t; € [0,¢;] is chosen separately for these two bounds instead of choosing this supremum with
respect to both. In order to improve this, we backtrack a step in this method and use the same
techniques from the proof of Azuma-Hoeffding but apply our more exact characterization.
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Theorem_t'); Let M = (Mq, Mo, -+, My) each M; is the class of €;-BR mechanisms. We then
have that M is (e4,064(gq))-DP under k-fold adaptive composition for any e, > 0 where we define

t €

he(A) = sup;ejp q A€ — ) +1n (1 +pey(e™ — 1)) with pey = &=

l—e—¢

and

59(5g) _ )I\I;% e—)\€g+zi hsi()\)‘

We present plots of our results in Figure 1 for the homogeneous case, plotting ¢4 as a function
of k. As stated earlier, we label “c-DP OptComp” as the optimal composition bound for DP
mechanisms from [14], “DR19” as the composition bound for e-BR mechanisms from [6], and “BR
OptComp” as the composition bound in Theorem 3, which only applies in the nonadaptive setting.
Furthermore, we label “OptKL” as the bound from Corollary 3.1 and “MGF” as the bound in
Theorem 5. To compare our bounds with simply using the optimal DP composition bound with a
half the actual privacy parameter, we also plot the DP optimal composition bound with £/2 with
label “c/2-DP OptComp”. This last curve highlights the fact that e-BR is almost the same as
£/2-DP when applying composition.

Privacy Loss for §, = 1le-6 and £ = 0.01 Privacy Loss for 65 = 1e-6 and € = 0.10

—— &-DP OptComp
DR19

—— OptKL

— MGF

0.301 =~ BR OptComp

»»»»» £/2-DP OptComp

—— &-DP OptComp
DR19

— OptKL

— MGF

-=- BR OptComp

----- £/2-DP OptComp

Privacy Loss &;
Privacy Loss &,

Pl

Privacy Loss for §, = 1e-6 and £ = 1.00

—— &-DP OptComp
DR19

—— OptKL

— MGF

-=- BR OptComp

~wue. €/2-DP OptComp

Privacy Loss &
IS
8

Figure 1. Comparison of optimal DP composition with the BR composition bounds in this work
and in Durfee and Rogers [6]. The dashed curve only applies in the nonadaptive composition setting
and the dotted curve uses the existing DP optimal composition bound with half the actual privacy
parameter. We present results for §, = 107% and ¢ € {0.01,0.1,1}.

3.5 Discussion of optimal DP composition bounds

Although e-BR implies e-DP, and the converse holds up to a factor of 2 in the privacy parameter, it is
important to point out that our optimal composition analysis of BR mechanisms does not supersede
the optimal composition of DP mechanisms. More specifically, consider the Laplace mechanism [8],
which adds Laplace noise to a bounded sensitivity statistic. This mechanism is e-DP, but it is also
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2e-BR yet it has a fixed value ¢ = ¢ for any neighboring datasets. As we will discuss more rigorously
in our analysis, our optimal composition bounds for BR mechanisms follows from maximizing the
bound over all sequences of ¢ values. Hence, utilizing the optimal composition bound over BR
mechanisms will result in a larger than necessary bound when considering Laplace mechanisms,
and thus the optimal DP composition bounds from [11, 14] should be used. Alternatively, if we are
composing exponential mechanisms that we know are e-BR, then our composition bounds improves
on the optimal composition of e-DP mechanisms.

Consider the following example with randomized response. In this case Mgy : {0,1} — {0,1}

€

and Mgr(b;e) = b with probability -#5. To fit this into the generic exponential mechanism,
we require a quality score u(b,b’) and we need to calculate its sensitivity, or as we discussed in
Proposition 2, its range. In this case u(b,d’) = 1 {b = b'}, which has sensitivityAu = 1 and also
has range Au = 2. Whether we use the range or the sensitivity of the quality score, the generic
exponential mechanism is then written as M, (b;¢) = esq(b,bﬁ;ﬁ:zilfb)/2 = ef/z/il. Hence, we have
M, (+;2¢) = Mgg(;¢). The fact that randomized response can be written as M, (-;2¢) implies that
it is 2e-BR, but we further note that there are only two neighboring databases for randomized
response. This then allows for only one value ¢ € [0,2¢] from Corollary 2.1, where we see that
t = € implies that this randomized response is also e-DP. Accordingly, if we only knew the generic
exponential form with parameter £ then our composition bounds would improve over the general
optimal DP composition bounds from [14, 11]. However, if it is also known that each individual
mechanism is also €/2-DP, as is the case for randomized response with parameter /2, then the

bounds from [14, 11] cannot be improved.

4 Bounded range and generalized random response

In this section, we show that k-fold adaptive composition over the class of BR mechanisms can be
reduced to only considering adversaries that select a generalized random response mechanism at
each step. First, we show that we can post-process the generalized random response to simulate
any BR mechanism on neighboring inputs. For this proof, we will utilize the hypothesis testing
interpretation of DP that was similarly used in [11] and then extended in [4]. We defer the analysis
to Appendix A.

Lemma 4.1. Let mechanism M : X — Y be e-BR. For any neighboring databases z°,z' € X,
there exists some t = t(M,x°,2') € [0,¢] and randomized function ¢ : {0,1} — Y that depends on
M, 2% 2! such that for any y €Y and b € {0,1} we have the following equivalence in terms of the
generalized randomized response mechanism from Definition 2.4.

Pr[M (") = y] = Pr[¢(RE. +(b)) = y]

We next show that k-fold adaptive composition over the class of BR mechanisms is equivalent
to considering the class of generalized randomized response mechanisms instead.

Lemma 4.2. Fiz parameters €1,--- ,€,. Let M = (My, -+, Myg) be such that M; is the class of
€;-BR mechanisms, and let RR = (RR1,--+ ,RRy) be the class such that RR; := {RR., 4, : t; €
[0,g:]}. We then have that M is (eg,04)-DP under k-fold adaptive composition if and only ifﬁ
is (4,94)-DP under k-fold adaptive composition.

16



Proof. Take any A = (D, R) that selects mechanisms from M; at round ¢ and we will construct
A" = (D', R’) that selects mechanisms in RR; in the following way. Replace the deterministic
component D(ro,All’, ---1;—1) that selects neighbors :z:?,x} and M; € M, at each round ¢ with
D'(ro, BY, AY,---7;_1) that selects neighbors ¥, z} and t;(M;,2?, z}) where BY = RRt(Mé,zg’m%)(b)
and ¢ < i.

The new analyst A’ receives B? = RRy( Mi@?,m%)(b) whereas A receives A? = M;(x?). We
then construct the randomized component of A’ in the following way. Rather than sample r; ~
R(r1, A%, -1, A ), we sample ri = (AY,r;) ~ R'(r, B}, A8, [ ri_1, B?) where first A? =
¢;(B?) and ¢; is the post-processing function described in Lemma 4.1 that depends on M;, z¥, z},
then r; ~ R(r1, A}, -+ 1i_1, A2 ), as before.

Given any outcome (rg, A%, ---rp_1, Ai, 1), we know that there exists a post-processing function

¢ such that for b € {0,1}

Pr AdComp(A,/T/l), b) = (TO,AI{, = -Tk_l,Az,Tk)}
=Pr [1/1 <AdComp(A',7ﬁ>, b)) = (ro,Al{, : "rk,l,Az,mﬂ
]

4.1 Handling convexity for BR composition

In this section, we discuss a technicality for adaptive composition of BR mechanisms. As discussed
earlier, BR mechanisms are not closed under convex combinations, and this can be easily seen by
simply considering a mechanism that has four possible outputs from randomizing over RR.;, and
RR. ;, where t; # to. This allows adversaries potentially additional power when they can randomize
between different BR mechanisms at each round, which is not the case for classes of mechanisms
that are closed under convex combinations, such as DP.

Despite this technicality, we will show that allowing the analyst this adaptive randomness at
each step does not increase the privacy loss. Consider the same adaptive game in Algorithm 1, but
now we take away the adversary’s ability to add their own data-independent randomness at each
round, which we will denote as A = (), D). We will show that this has the same level of privacy
regardless of the class of randomized algorithms used.

Definition 4.1 (Adaptive Composition without Adversarial Randomness). Given classes of ran-
domized algorithms g = (&1, &), we say g is (e4,04) differentially private under k-fold adaptive
composition without adversarial randomness if for any adversary A = (0, D) that does not have
any randomness of its own and b € {0,1}, along with any set S that is a subset of outputs of
AdComp((0,D), &, ")

Pr[AdComp(((), D), g, b) € S] < e Pr[AdComp((0, D), E1- b) € S|+ 4,

Lemma 4.3. Given any class of randomized algorithms g = (&1, &), g is (eg,04)-DP under
k-fold adaptive composition without adversarial randomness if and only if £ is (g4,04)-DP under
k-fold adaptive composition.

Proof. We largely follow Lemma 3.4 in Rogers et al. [16] which shows the point-wise equivalence
between an adversary that has access to internal randomness and with a deterministic adversary
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who can then post-processes the final result. This is done by including simulated randomness
for the deterministic adversary that can be fixed prior to any interaction with the dataset. One
technical difference between our setting and theirs is that for them an adversary can select a DP
algorithm, which is then a post-processing function of randomized response, at each round. This
means that even if an adversary could additionally randomize between different DP algorithms at
each round, the result is still DP. In our case, there is a difference between a deterministic adversary
and an adversary that can randomize between BR mechanisms at each round, because the resulting
mechanism may no longer be BR. However, we can just include this internal randomness of the
adversary at each round in the simulated randomness from the analysis in Lemma 3.4 of [16]. Hence,
we can analyze the DP guarantees for each realized value of simulated randomness. Lastly, the DP
guarantee does not change under convex combinations of the realized simulated randomness, which
shows that it suffices to only consider deterministic adversaries. O

Using Lemmas 4.2 and 4.3, we have the immediate result which shows that without loss of gen-
erality, we can consider deterministic adversaries that can select generalized randomized response
mechanisms at each round.

Corollary 4.1. Fix parameters €1,--- ,&. Let M = (Mq, -+, Myg) be such that M; is the class
of €;-BR mechanisms, and let RR = (RR1,--- ,RRy) be the class such that RR; := {RR, 4, : t; €
[0,gi]}. We then have that M is (€g,04)-DP under k-fold adaptive composition if and only zf7€7—3>
is (£4,94)-DP under k-fold adaptive composition without adversarial randomness.

4.2 Exponential mechanism equivalence to generalized random response

It was shown in Kairouz et al. [11] that the discretized version of the Laplace mechanism, i.e. the
geometric mechanism, has the largest privacy degradation under composition. Similarly, we show
that for certain quality scores the exponential mechanism is equal in distribution, up to a data
independent post processing function, as the generalized randomized response mechanism. Among
this class of quality scores is the commonly used score for counting queries. More specifically, if we
run an exponential mechanism, then by post-processing we can achieve the same distribution as
RR. ; for some ¢, and likewise if we run RR. ; with the same ¢, then by post-processing we can achieve
the same distribution as the exponential mechanism. We first define the exponential mechanism
that we will be considering. This mechanism is one of the most common uses of the exponential
mechanism where each individual’s data is a bit string over some domain, and the mechanism wants
to output the maximum count for all individuals over this domain.

Definition 4.2. Let X = {0,1}"*¢ and x = (v, : i € [n],j € [d]) € X for some n € N, and
define Mcg : X — [d] to be the e-DP exponential mechanism from Definition 2.3 with quality score
u(z,j) = >, x;j. Neighboring databases will result from the addition or subtraction of a bit
string x; = {0,1}%. Note here that Au = 1 and that u is also monotonic.

Similar to the generalized random response mechanism, we then show that for any neighboring
databases the log-ratio of the probability mass for any outcome j € [d] is only at the end points of
the range.

Lemma 4.4. For any neighboring databases x,x" € X there exists some t € [0, ¢] such that for any
outcome j € [d]
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I ( Pr[Mcq(x) = j]
Pr[Mcq(x') = j]

Proof. We first assume that x’ = x 4 ; where z; € {0,1}%. We first set
> jeqq €09

Note that we must have ¢ € [0, ] because u(x,j) +1 > u(x’,j) > u(x,j) for all j € [d]. We can
then reduce our probability log-ratio to

P M =1 EU(X,j)
In H[Meg(x) J,] =t+1In e —
Pr[Mcq(x') = j] esulx’.d)
Applying our assumption that x’ = x+x;, by the definition of v we have u(x’, j) = u(x, j)+x; ;,
which reduces our expression to

L PriMee(x) =41\ _,  _
: <PT[MCQ(X’):J']) b e

and this implies our desired result because z; ; € {0,1}. We assumed x’ = x + x; and considering

the other case is equivalent to flipping the fraction, where it follows from natural log properties
that

> e {t—e,t}

L [ PriMeg(x') = j] e
I(Pr[Mcax):j]) W !

which also implies our desired result because € — t € [0, €].
O

This result is exactly why we consider the relation between this mechanism and generalized
random response to be analogous to the relation between geometric noise and randomized response.
For any outcome in the geometric mechanism, the magnitude of the log-ratio is always &, but
unlike randomized response there are many more than two possible outcomes. Essentially, we
can consider geometric noise and this counting query mechanism to split the outcomes of their

respective randomized response into many outcomes, which will be the post-processing function.
Corollary 4.2. For any neighboring databases x°,x! then there must exist some t € [0,¢] and

post-processing functions ¢ and ¢’ such that Mcg(x°) = ¢(RR-+(b)) and ¢'(Mcg(xP)) = RR. 4(b)

Proof. Applying Lemma 4.4, we split the outcome indices in the following way with ' € {0,1}

e (D) 1o}

It is straightforward to see from Definition 2.4 that we also have

PrRR.,(0) = ¥]\ .,
<Pr[RRE7t(1) b’]>_t_€b’




Therefore, we must have for any b € {0,1} and b’ € {0,1} that

Pr[RRe+(b) = V] = Y Pr[Mpq(x’) = j]
JET,

and our claim follows easily. O

From Corollary 4.1, we know that the adaptive composition of BR mechanisms can be reduced
to the class of generalized random responses and that this class is parameterized over all ¢ € [0, g].
In our proof of Lemma 4.4 we showed that the value ¢ came from the log-ratio of the sum of
exponential functions. For our definition of X', the number of neighboring databases is countably
infinite, so it is technically impossible for there to always exist some neighboring databases with
a corresponding t over the uncountably infinite interval [0,¢]. However, we can find neighboring
databases that give a log-ratio arbitrarily close to any given ¢ € [0,¢], i.e. the set of possible ¢
values from neighboring databases is dense in [0, €], and for all practical purposes we can consider
them equivalent. Therefore, the adaptive composition game with this simple instantiation of the
exponential mechanism is equivalent to an adversary being restricted to the class of generalized
randomized response mechanisms at each round. This is comparable to the result in Kairouz
et al. [11] that shows that the geometric mechanism achieves the worst case privacy composition
bound since it also achieves the same privacy region as the standard randomized response once the
neighboring datasets are fixed at each round.

5 Nonadaptive optimal composition

In this section, we first give the explicit formulation for the optimal composition of nonadaptive
BR mechanisms originally stated in Lemma 3.1. The majority of the section will then be devoted
to reducing this formulation to a simpler formula that can be computed in O(k?) time for the
homogeneous composition case, i.e. all privacy parameters are the same at each round. This will
then culminate in a proof of Theorem 3.

We will denote t = (t1,--- ,tx) € [][0,&i] where [][0,&;] := [0,e1] X -+ x [0,ex] and if all
g; = ¢ we will simply write [0,e]¥. Recall from (2), we will denote the family of nonadaptive BR
mechanisms as Mg for the homogeneous case and Mg for the heterogeneous case. Recall that
we defined the optimal privacy parameters by fixing a global £, and giving a formula for dgpr in
terms of €4 as in (1). Our first formulation follows immediately from Lemma 4.1.

Lemma 5.1.

Sopr(MET, 24)

k k
= sup max Z max {H Pr[RR., 1, (b;) = yi] — €9 H Pr[RR., 1, (1 — b)) = uil, O} .

k
te[][0.e,] {01} ye{01}k i=1 i=1

Proof. We know that DP is closed under post-processing, so from Lemma 4.1 we can restrict our
consideration to RRe, ¢, for t; € [0,¢;], along with b; € {0,1}. The formulation then follows from
Definition 2.5 and Fact 1. ]

We have the following symmetry result for the generalized randomized response mechanism,
which will be useful in our analysis.
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Claim 5.1. For any b € {0,1} along with € > 0 and t € [0,¢] we have
Pr[RR. ;(b) = b] = Pr[RR..—+(1 —b) =1 —].
We then use this symmetry property to show that the choice of b; is irrelevant.

Corollary 5.1. For any t € [[[0,&;] and b € {0,1}*, and some fized b € {0,1}, there erists
t’' € [1[0, ] such that

k k
> max {H Pr[RRe, 1, (bi) = yi] — % | [ Pr(RR, 1, (1 — bi) = yil, 0}

yG{O,l}k =1 =1

k k
= Z max {H Pr[RR_, 4 (b) = yi] — €% HPr[RREZ_’t;(l —b) = yil, 0}

ye{0,1}k i=1 i=1

Proof. If by = b, then we can simply set ¢, = t;. If b; # b, then from Claim 5.1 we can set t, = ¢; —t;
and the value of the summation will not change. O

It then follows that we can fix b € {0, 1} to give a simpler expression, and this expression is also
a generalization of the optimal composition bound in Theorem 2, where instead of the sup term
over t € [][0,&;], we can set each t; = ¢;/2, and this becomes the optimal composition of 5-DP
mechanisms.

Lemma 3.1. Recall from Definition 2.4 we have pe, ¢, Ge,; ;- We then have

50PT(M11?1:‘2]€7 59) = sup Z max {H 9e; t; H(l - q&',ti) — e Hpﬁzwti H(l - pEi,ti)’ 0} .

t€llicp 08l g1, 1y i¢s ics i¢s ics

Proof. Follows immediately from applying Corollary 5.1 with b = 0 to Lemma 5.1. O

5.1 Simplifying the optimal composition bound for the homogeneous case

Although we have a formula for the optimal composition bound over BR mechanisms, it is in-
tractable to compute for even modest values of k. To help simplify things, we will now restrict
our consideration to the homogeneous case, where all ¢; = ¢ > 0, and we will drop the € from our
notation, e.g. pe i, = pt;- We conjecture that the heterogeneous case has a similar hardness result
to compute as the result in Murtagh and Vadhan [14], but we leave that as an open problem.

Since we have shown that dgpr(MEg, £4) can be written as a sup over t € [0,¢]*, we will define
the function 0 : [0,]* x R — [0, 1] as the following

5(t759) = Z maX{H Qtz‘H(l *Qti) eengtiH(lpti)?O} : (4)

SC{1,...,k} ¢S  ieS i¢S  ieS

Written in this way, we have dgpr(Mbg,e,) = SUpge(o,e]r O(t,€g). We first show that when ¢, ¢
(—ke, ke), then the choice of §(t,e,) does not depend on t € [0,¢]*. However, this region for ¢, is
not typically interesting in most DP applications, since e, = ke is simply applying basic composition
from Dwork et al. [8].
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Lemma 5.2. Foranyt € [0,¢]*, ife, < —ke then §(t,e,) = 1—€%, and if e, > ke then §(t,e,) = 0.

Proof. Using the fact that ¢ = e'p; and (1 — q;) = €'~°(1 — p;), we equivalently have

o(t,eq) = Z Hpti H(l — pt;) max {eZti—\Sk — €%, 0}

SC{l,....k}i¢S  i€S

If ¢4 > ke then max{e2ti~15le — ¢ 0} =0 for any S C {1,...,k}. Similarly, if eg < —ke then
max{eXti191e — %9 0} = eXti=ISle — %9 for any S C {1,..., k} and we get

JCENEEDS (H%H(l%)659HPtiH(1pn>>:1esg
b

sc{i,..., i¢S  i€S ¢S ieS

O]

For the remainder of our analysis, we will focus on the interesting setting where ¢, € (—ke, ke).
Despite the large domain [0, €] of values to choose from in the sup; for dgpr, we show that it suffices
to consider the much smaller domain where each ¢; = t* for some t* for each i € [k]. This result
is crucial in determining a formula that can be computed efficiently for dgpr. We first give an easy

condition on what the t; must satisfy to optimize the § parameter which will be important for
proving a strict inequality in the subsequent claim.

Lemma 5.3. If e, € (—ke, ke) then for any t € [0,¢]F such that 6(t,e,) = Sgpr(MEg, €4), we must

have
k

sg<2ti<sg+k¢5
i=1

Proof. Using the fact that ¢, = e'p; and (1 — ¢;) = €"7°(1 — p;), we equivalently have

o(t,eq) = Z Hptz. H(l — pt;) max {eZtﬁ\Sk — e, 0}

SC{1,..k}igS  i€S
It then follows that if ) t; < ¢, we must have

max {eztif‘s‘E — e, 0} =0

for any S and so 6(t,e4) = 0. However, if ¢, < ke, then there must exist t such that ¢; < ¢ for
each i and Y t; > ;4. Setting S = () we must have p;, > 0 for all # and max{e>* — 9,0} > 0.
Therefore, Sgpr(Meg, £4) > 0 and if Y t; < e, we must have &(t,2,) < Sopr(Mehg, 4)-

Similarly, if > ¢; > €4 4+ ke we must have the following for any subset S

max {eztl_|s|6 — 66970} — 62t7«_ls|6 — ee.‘]

We then have the following,

Steg) = > e [ -pr) (ezti—ms _ 659)
SC{1,..k}i¢S €S
- Z H%i H(l —qt,) — €% Hpti H(1 —p;) =1—¢"

SC{1,...k}i¢S  i€S i¢S  ieS
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By the same reasoning, we have §(t,e,) > 1 —e% if eXt715lF s < 0 for some S C {1,--- ,k}
and all t; € (0,¢), which implies p;, € (0,1) for all i. Accordingly, we have 6(t,e,) > 1 — €% if
> ti < eg+ke, and if 5 > —ke, there must exist positive ¢; such that ) t; < ¢, + ke. Therefore if
St > g4+ ke, we must have §(t,,) < Sgpr(Mbg, €,). O

The next lemma shows that taking the average of some t;,¢; can only increase the value of
d(t,eq4). Further, this will strictly increase the ¢ when the ¢; satisfy the condition of the lemma
above. We will be able to easily conclude from this that § cannot be optimal if ¢; # t; for some i, j

Lemma 5.4. For any ¢, € R and t € [0,¢]*,

ti+to t,+t
5(t,eg) <6 <(1J2F2 1; 2,t3,...,tk> ,ag>

Further, the inequality is strict whenever e, < ) t; < g4 + ke and t1 # to.

The proof of this lemma will require quite a bit of technical detail which we relegate to Ap-
pendix B. We then have the immediate corollary.

Corollary 5.2. For any ¢, € (—ke, ke) we must have the following for any t € [0,e]F such that
there exists some t; # t;
8(t,eg) < Sopr(Mp, £g).

Proof. We will prove by contradiction and suppose 6(t,e,) = dopr(Mhy, e,) and t; # t; for some
pair of indices. Note that 0(t,eg) is equal under permutation of the indices in t, so without loss of
generality, we let ¢; # tp. From Lemma 5.3, we must have ¢, < ) t; < €5 + ke. We then apply
Lemma 5.4 to get our contradiction

t1+1t2 1 +¢
6(t,eg) < 5( - 5 2, 122;t37---7tk> < dopr(MEr: €9)

O]

We now prove the simplified formula for the optimal privacy parameters for the family M&, of
e-BR mechanisms, although in the next subsection, we show that we can restrict the range [0, €]
that the sup is over a smaller set.

Lemma 5.5. For any ey, € R and e >0
Sopr(Mbp, €4) = sup Z (i>pf_z(1 — pt)' max { (el“t_z‘E - eag> ,0} (5)
te(0,e] 550

Proof. By Lemma 3.1 and our definition for §(t,¢,) given in (4), dopr(MEz, g,) = SUpgeo,e)k 0(t, €g)-
From Corollary 5.2 we know that for e, € (—ke, ke),

5ng(MI§R,€g) = sup d(t,...,t,&q).
te[0,e]
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Furthermore, we know if e, > ke then §(t,e,) = 0 for any t € [0,¢]*, and also if ¢, < —ke then
§(t,ey) =1 — €% for any t € [0,¢]*. Therefore,

5OPT(MIB€R769): sup Z HPtH(l—Pt)max{ekt—ISIS_eeg,O}
tel0el gcqn,. by igs  ies
= sup > pp = ) S max {151 — e, 0}
t€0el g1,k

For each i € {0,1,--- ,k} there are (’:) subsets S C {1,..., k} such that |S| = i, and grouping these
together gives our desired equality. O

5.2 Efficiently computing the optimal composition bound

Now that we have a much simpler formulation of the optimal composition for BR mechanisms in
(5), we will solve for the ¢ € [0,¢] that maximizes this expression. Ultimately, we will show that
there are only k different candidate values of ¢ that maximizes 6((¢,t,--- ,t),&4), and give explicit
expressions for these candidate values of t. These explicit expressions will also be necessary in later
sections when we show that there is a difference between the adaptive and nonadaptive setting.

Since we no longer need to consider any t € [0,¢]* where t is not a scalar times the all ones
vector, we will simplify our notation to be

k

SF(t,eq) == Z (?)pf‘i(l — p¢)" max { (ekt_iE - eag) ,O} . (6)

=0

Given that we want to find the ¢ which maximizes this expression, our goal will be to take the
partial derivative of this function with respect to t. The maximization within the expression will
make this more difficult, however, because the maximization is over a variable term and zero, we
will always be able to write dgpr in terms of the following function Fy for some ¢ € {0,--- , k} that
will depend on t.

14

Fi(t,eg) =Y (f) P = o) (eF17 = ). (7)

=0

This function is differentiable and we show its relation to 6% (¢, ;).

Lemma 5.6. For anyeq € R, € >0, and t € [0,¢], there must exist some £ € [k] such that

0 (t,eq) = Fult,ey)-
Proof. Note that e~ —e%s decreases as i increases, which implies that for any ¢ € [0, ] there must

exist some £ such that max{e¥' =% — e 0} = k=% — ¢% for all i < £ and max{e* % — ¢ 0} =0
for all ¢ > ¢. Therefore, because p; and (1 — p;) are non-negative we have

oF(t,ey) = Fi(t,ey).
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It then follows that optimizing over ¢ € [0,¢] for 6%(¢,e,) can be reduced to optimizing over
t € [0,¢] for each Fy(t,eg).

Corollary 5.3. For any ey € R and € > 0,

Sopr(Mg, eg) = Igfg(k{tzl[épe] Fy(t,eq)}-

Proof. Follows immediately from Lemma 5.6 and because for any €, and ¢ € [0,¢], by definition
Fy(t,e,) > 6k(t,e,) for all L.
O

We will now individually solve each sup;¢(o ) Fe(t,€4), which does not contain a maximization
term and is differentiable. Our ultimate goal will be to solve % = 0, and we want explicit
expressions for ¢, which will require a simple formulation of the partial derivate with respect to ¢.
These explicit expressions will also be necessary for proving that there is a gap between the non-
adaptive and adaptive settings. The proof for this will become quite involved with some surprisingly

nice cancellation, and we relegate the details to Appendix B.

Lemma 5.7. Fore, € R, e >0, and 0 < (< k

8F2(t7 59) (k 6) <k> k—l—f(l _ pt)f 1 (ei'?g*t _ ekt*(5+1)s> )

ot 14 1—e¢

In order to prove that there is a gap between composition of adaptive and nonadaptive BR
mechanisms, we will further utilize this exact characterization of the partial derivative to give a strict
interpretation of the set of ¢ that can achieve a maximization of our full expression. However, for
giving an efficiently computable expression for optimal composition, the following simple corollary
will suffice.

Corollary 5.4. Fore, € R, e >0, and 0 </ < k

(+1
arg sup Fy(t,eq) € {0,5, W}

te[0,e] k+1
Proof. Note that p; = 1 when ¢ = 0 and p; = 0 when t = £. Therefore % — 0 when t € {0,¢)
or when g5 —t = kt — (£ + 1)e which evaluates to t = W ¥

We can now prove our main theorem for this section that gives an efficient computation of
optimal composition in the non-adaptive setting, which we restate here.

Theorem 3. Consider the homogeneous case where ¢; = € for each i € [k], then we have for
Pt; = Pet; given in Definition 2.4 and setting t; = W

the closest point in [0, €]

where if t] ¢ [0,€], then we round it to

k

k y
5UPT(MBR7€Q <é< Z ( >pt* 1 —pt*) max { (ekte*’LE _ 659> 70} X

=0

Furthermore, this can be computed in O(k?) time.
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Proof. From Lemma 5.5 we have

dopr (M, £g) = sup 0°(t, )
t€[0,e]

From Lemma 5.6 and Corollary 5.3 we can restrict our consideration to values of t € [0, ] that
maximize Fy(t,e,4) for some £ € [k]. Applying Corollary 5.4 we can then restrict our consideration
to t; for all £ € [k], along with 0 and €. Note that p, = 1 when ¢t = 0 and p; = 0 when t = ¢, so
it is straightforward to verify that 6%(0,¢e,) = 6*(e,e,) = max{1l — €%, 0} for any ,. In the proof
of Lemma 5.3, we showed that dopr(Mby,e,) > 0 and Sgpr(MEg, £4) > 1 — €% when g, € (—ke, ke),
so it is irrelevant whether we include 0,¢ in this setting. Finally, if ¢, ¢ (—ke, ke), then from
Lemma 5.2 we have §%(t, ;) = Sgpr(MEg, £4) = max{1l — €%, 0} for any ¢.

For the running time, first note that for any ¢ we can compute pf(ef* — e%) in O(k) time.

Further, for any ¢, if we are given the values (’f)pf_i(l — p¢)" and e* 7% then we can compute

(ifl)pf_(iﬂ)(l —py)"*! and eFt=(+De in O(1) time. Our running time of O(k?) then immediately
follows. O

6 Adaptive optimal composition

In this section, we give the formulation for the optimal composition of BR mechanisms that can be
chosen adaptively, which will be recursively defined and intractable even for reasonable k. We see
no way to simplify this formulation and believe that exact computation (or even approximate) is
hard, but we leave that for future work. We further show that there is in fact a gap between the
optimal composition bound in the adaptive and the nonadaptive cases for all k > 2, and that this
gap exists for almost all non-trivial .

We will set up some notation that is similar to what we presented in Section 3.3, although we
extend it here to the heterogeneous case, where €1, - - - , &, need not be the same. Given some fixed
€1,...,Ek, and mechanisms (M, ..., My) be such that M; is the class of €;-BR mechanisms. We
then define the following family of mechanisms, which generalizes the homogeneous case A, given
in (3),

Aéﬁk := {AdComp(A, (M1, -+, M), ) : adversary A}. (8)

The formulations and proofs in this section will rely upon recursive definitions, and it then
becomes necessary to define the adaptive composition for different families of mechanisms, i.e.
ALY .= {AdComp(A, (My, ..., My),-) : adversary A} for £ € [k].

These definitions will then allow us to give an explicit recursive formulation of the optimal
composition bounds for the k-fold adaptive composition of BR mechanisms. This formulation will
follow from Corollary 4.1 which allows us to restrict our consideration to deterministically choosing
t; for our generalized random response, where this choice is conditional upon the previous outcomes.
The proof will be straightforward, but notationally heavy.

Lemma 6.1. Let A};}i’“ be the class of adaptive k-fold composition of ;-BR mechanisms given in
(8), then for any e, € R and setting dgpr(Abi'™* e,) = max{1 — ¢%9,0} we have,

5UPT(A11?}ZIC7 59) = sl[lp ] {qel,tl 5UPT(A%?}2]€7 €g — tl) + (1 - q€17t1)5UPT(“4%:Rk7 Eg +e1— t1>}
t1€[0,e1
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Proof. We will prove this claim by induction, where the key will be to apply Corollary 4.1 which
gives that we can equivalently restrict our consideration to adversaries without their own random-
ness and only consider mechanisms in the generalized randomized response class.

For our base case of k = 1, we have from Fact 1, Corollary 4.1, and using A with privacy
parameter €1,

opr(Asy,€4) = sup  sup Z max {Pr[RR., ¢, (b1) = y1] — e Pr[RR., ¢, (1 — b1) = 11],0} .
t1€[0,e1] b1€{0,1} y1€{0,1}

The symmetry of generalized random response from Claim 5.1 implies that we can fix by = 0,
and this reduces to

50PT(A1%§17 59) = SFp | { max {qﬂ,tl - eagpf-?l,tno} + maX{(l - q$1,t1) - egg(l - p€1,t1)7 0} }
t1€[0,e1

Using the fact that gz, 4, = €'peyyy and (1 — gy py) = €7(1 — pe, ), this reduces to our
desired equality. We then assume for £ — 1, and again applying Fact 1 and Corollary 4.1 we have
the following for the deterministic adversary A = (D, )) without its own source of randomness and
letting RR = (RR1,...,RRx) be the class such that RR; := {RR., 4, : ti € [0,€;]},

Sopr(Apiy ,€g) =

sup Z max {Pr[AdComp(A, RR, b) = y] — e®? Pr[AdComp(A, RR,1— b) =yl, 0} .
A:(D,V)) yE{O,l}k

We will expand this term by considering the first round where some t; € [0,¢1] is chosen deter-
ministically. Once again, we use the symmetry of generalized random response from Claim 5.1 to
simply set by = 0. The next choices are then dependent on this outcome, so the full expression
becomes

Sopr(Apiy ,€g) =

sup Z sup { Z max { Pr[RR, ¢, (0) = y1] Pr[AdComp(A, (RR2, - ,RRk),b) =y]
ey o3 A=PD L yeqopes

— €9 Pr[RR;, 4, (1) = y1] Pr[AdComp(A, (RR2, -+ ,RRk),1 —b) =y], O}}

Again, we use the fact that gc, ;; = €"pe, 4, and (1 — ey ty) = €7°1(1 — pgy4y) to pull them
outside of the maximum in the expression, so that for y; = 0 the inner term then reduces to

Qv th ( sup { Z max { Pr[AdComp(A, (RR2, -+, RR),b) =y]
A:(D7®) yG{O,l}k71

— €%~ " Pr[AdComp(A, (RRa, -+ ,RR%),1 —b) =y, 0}}>

= ey, Oopr(Agn €9 — 1)

This similarly follows for 3 = 1, and we have our desired claim. O
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Unfortunately, straightforward computation of this formulation is intractable, and we conjecture
that it has a similar hardness result as in Murtagh and Vadhan [14], even in the homogenous setting.
In later sections, we give improved bounds on adaptive composition for BR mechanisms, but for
this section we instead focus on proving that there is indeed a gap between this optimal formulation
and our formulation for the nonadaptive setting given in Theorem 3. Further, we show that this
gap exists in the homogenous setting for all k& and almost all choices of .

We now state the main result of this section, where we prove each claim in Lemmas 6.6 and
6.10, respectively.

Theorem 4. Recall the nonadaptive family of homogeneous e-BR mechanisms Mk, from (2) and
ALy given in (3). For any e, € [0, (k — 3)e] we have,

50PT(A§Ea gg) > 5UPT(MgHv Eg)-

Further, for any ¢4 > (k — 1)e, we have
Sopr(Afg, £g) = Sopr(Mp, £9)-

6.1 Gap between adaptive and nonadaptive optimal composition

In this section we show that there is a gap in the privacy loss between the adaptive and nonadaptive
setting for BR mechanisms. Furthermore, we want to prove that this gap exists for all £ > 2 and
most 4. In fact, the only values of €, in which the privacy loss is equivalent is when ¢, is almost
the bound from basic composition.

The general idea for proving the gap will be to also give the recursive definition for the nonadap-
tive optimal composition that must fix ¢ for each recursive call. The goal will then be to show that
at some point within this recursion the summation will strictly increase if the value for ¢ is changed.
This will require that we first fully characterize the possible values of ¢ for the nonadaptive optimal
composition. Fortunately, most of the heavy lifting in this regard was done in the previous section.
With this characterization, we show that there is a gap when k = 2, and then further show that
we can apply this gap for k£ > 2.

We will restrict our consideration to the simpler homogenous setting in which ¢; = ¢ for all i,
and use AE; as defined in (3) and M is the class of nonadaptive composed e-BR mechanisms
as in (2). We know that we can instead just restrict our consideration to the class of generalized
random response, and the key to our the proof will be that we will be able to specify exactly which
values of t1, ...t maximize the privacy loss for the nonadaptive setting. We define this set as in
terms of d(t,e,) from (4),

topr (Mg, £g) i= {t € [0,]" : 6(t,e4) = dopr( Mg, £9)}-
From Corollary 5.2, we know that this set cannot contain any t € [0, £]* such that t; # t; in the

interesting setting where ¢, € (—ke, ke). For the remainder of this section, we instead consider the
definition to equivalently be

topr (Mg, 2g) = {t € [0,] : 6"(t,24) = dopr(Mgz, £4)}
because when ¢, ¢ (—ke, ke) then there is not a gap between adaptivity and non-adaptivity, so we

ignore this setting. We will further utilize our proofs from the previous section to show that we
can further restrict this set.
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Lemma 6.2. Let ¢ > 0. Ife, € (—ke, ke), then

topr(Mbg, e4) C {W 0e{0,--- k- 1}} N (0,¢).

Proof. From Lemma 5.6 and Corollary 5.3 we can restrict our consideration to values of ¢ € [0, ¢]
that maximize Fy(t,e,) for some ¢ € [k]. Furthermore, Fy(t,e,) can only maximized at the endpoints

of the interval or whenever % = 0. Thus, from Corollary 5.4 we have
{41
topT( Mg, g4) C {tz = W 4 e {0, k}} u{0,¢el.

By definition, we can remove all values outside of [0, ], so it then suffices to show that we can also
remove {0,¢,t;}. Note that p; = 1 when t = 0 and p; = 0 when ¢ = ¢ and recall §*(¢,¢,) from (6),
so it is straightforward to verify that §%(0,¢,) = §%(e, g4) = max{1—e%s,0} for any £,. In the proof
of Lemma 5.3, we showed that dopr(MBg,e,) > 0 and Sgpr(MEg, e4) > 1 — €% when g, € (—ke, ke),
which implies 0, ¢ ¢ topr(MEg, £).

It then suffices to show t} & topr(Meg,eg). If €5 > 0, then ¢} > €, so we only need to consider
g4 < 0. Note that kt} = k(;—jl + ¢), so for any i < k we have kt; —ie > %59 which implies

max {ekt}’;—is _ eag’o} _ ekt;—ia — %9,

Therefore, 6%(t,e4) = 1 — € and from above we know dgpr(Meg,e,) > 1 — €% when g, €
(—ke, ke), which implies ¢} & topr(MEy, e4) as desired. O

We now want to show that we can write the optimal nonadaptive composition in a similar form
as the adaptive composition. This recursive formulation will then fix a value ¢ throughout the
recursion and Sgpr( Mg, £4) is then just the maximum value of this recursion over all ¢ € [0, €].

Corollary 6.1. For k > 1 and for 6*(t,e,) from (6), we have §°(t,e,) = max{1 — e%,0} and
ot eg) = @0 Mt ey — 1) + (1 — q)o% Lt ey + € —1).

We relegate the proof of this corollary to Appendix C. Now that the formulations are similar,
we show the intuitive fact that if at any point in the recursion either it is the case that either 1)
switching the value of ¢, or 2) switching to the adaptive setting, will strictly increase that dgpr then
there must be a gap between the nonadaptive and adaptive setting.

Lemma 6.3. Fix the individual privacy parameter € > 0, some global privacy parameter e, € R
and k > 2, along with some t € topr(Mp,g4), if there exist 0 < ¢/ < ¢ < k such that either
Sopr(Mbt ey — tt 4+ 1) < Sopr( ALz e, — tt + 1) ort & topr(MEgt e, — 0t + ('), then we must
have

Sopr(Mr, £9) < Sopr( A, £)-

This lemma will actually require quite a bit of technical detail, so we instead give a proof in
Appendix C. With this property and our characterization of topr(Akg, €g), we now show that there
is a gap for the base case of k = 2.

Lemma 6.4. For any ¢4 € (—¢/2,¢/2) we have

Sopr( Mg, €9) < Oopr( Az, 4)

29



Proof. From Lemma 6.2, we know that there exists and ¢ € {0,1} such that ¢, = Lﬁ*l)i €
topr(M3g, £4). Furthermore, if both e, — t; and e, — t; + ¢ are in (—¢,¢), then we also must have
topT(MéR, Eg— t@) = % and topT(MéR, Eg— tg —|—€) = % which implies tUPT<MéR7 Eg —t@) 7é
topr (Mg, €9 — te + ).

Therefore, by Lemma 6.3 it suffices to show that both e, — ¢, and €4 — ty + ¢ are in (—¢,¢),
which is equivalent to showing e, — t; € (—¢,0). Plugging in for ¢, we then have

g+ (l+1)e (L—2)e (L+1)e
5g—gfe(—e,0) & sge< TR
which holds for £ € {0,1} by our assumption that e, € (—¢/2,¢/2). O

We will then apply this base case to the more general case for certain conditions by applying
Lemma 6.3.

Lemma 6.5. Given some €, € (—ke, ke) and t € topr(Mhg,e,). For k>4, if e, — (k —2)t < /2
and eg — (k — 2)t + (k — 2)e > —¢/2, then
Sopr(Mr, £9) < Sopr( A, £)-
We relegate the proof of this lemma to Appendix C and will use this to show our desired result.
Lemma 6.6. For any ey € [—(k — 3)e, (k — 3)e]| and k > 4 we have
Sopr(Mr, £9) < Sopr( A, £)-

Proof. We will prove for €4 € [0, (k — 3)e] and the case of e, € [-(k — 3)e, 0] follows symmetrically.

From Lemma 6.2 we know that for any ¢ € topr(Mbkg,e,) we must have t = W for some
0 < ¢ < k—1. The general idea will then be to show that for any ¢, = W, if £y € topr (Mg, €g)s

then dopr(Afz, £9) > Sopr(MEg, €4). We will split this into three cases.

Case I: (¢ >2) For this setting, we want to show that we can apply Lemma 6.5 where we know
eg+ (k—2)(e —t) > —¢/2 for any ¢ because we are assuming e, > 0. It then suffices to show that
eg — (k —2)ty < £/2. Plugging in for ¢, we have

gg— (k—2)ty <e/2 =3 beg < (2(k—=2)(l+1)+(k+1))e.

By assumption, we know ¢, < (k — 3)e, so for £ > 2, we have

beg <6(k—3)e<(Tk—11)e < (2(k—2)({+1)+ (k+1))e.
and therefore dgpr( ALy, 2,) > Sopr( Mg, €4) by Lemma 6.5.

Case II: (¢ = 0) For this setting we have ty = skgjf By our assumption that e, € [—(k —

3)e, (k — 3)e], we must have e; + ¢ —tg € (—(k — 1)e, (k — 1)e). From Lemma 6.2 we then know
tng(/\/lgR_I,zfg +e—tp) C {w Ve {0,k — 2}} We further see that for any ¢ > 0,

eg—i-e<€g+5<€g+€—to+(£’+1)a
E+1 ko~ k '

This implies to ¢ topr(Meg ', e, + & — to) and 50 dgpr(Akg, €4) > dopr(MEz, 4) by Lemma 6.3
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Case III: (¢ = 12 This will follow from the same argument as the previous case. For this setting
€

we have t; = szj;l . Once again, we use our more restrictive assumption that ¢, € [0, (k — 3)e], and

therefore e, + 2(e — t1) > —(k — 2)e. Furthermore, we have

_ _1)2
_sg+2e> k—1 (k 1)5<(k:—2)5

2 = 2e) <

€g + <5 E 1 k+1(5g+ e) < Fl
where the last step follows because (k—1)? < (k+1)(k—2) for k > 1. Thus g,+2(s —t1) € (—(k —
2)e, (k—2)¢) and by Lemma 6.2, topr(Mhg 2, e, +2(e —t1)) C {69+2(€_£1_)f(£”+1)€ 0" e {0,k — 3}}
It then follows that

Eg+2e g4+ 2(e—t) <5g—|—2(5—t1)+(€”—|—1)5

k+1 k—1 k—1

for any ¢” > 0. This implies t; ¢ topr(Mpg 2,4 +2(e —t1)) and 50 Sgpr(Abg, €4) > dopr(MbEg, £4) by
Lemma 6.3.

O

6.2 Settings for equivalent adaptive and nonadaptive optimal composition

We also want to show that there is not a gap between adaptive and nonadaptive composition
even in the non-trivial setting. More specifically, we will show that there is a gap not only when
eg ¢ (—ke, ke) and basic composition can be applied. We first show that there is no gap for the
trivial setting and then will extend this a bit.

Lemma 6.7. For any € > 0 and ¢, > ke, we have 5ng(A§R,8g) = 0, and for any e, < —ke, we

have Sppr(Akg, e4) =1 — 9.

We leave the proof of the trivial setting to Appendix C. The basic idea for extending this interval
a bit further will simply be to consider the case in which only one outcome can produce a positive
probability, or equivalently, all but one outcome can produce a positive probability.

Lemma 6.8. For anye >0 and ¢4 > (k— 1)e for k > 1, we have

k
Sopr( Az, €g) = sUD { (H qti> max{1 — %21, 0}}

te[0,e]k i=1

Proof. We show this inductively. For k = 1, if ¢, > 0, then for any ¢ € [0,¢|, we must have
gg+e—1t>0and max{l — est¢* 0} = 0. This then implies

Sopr(Agg, £9) = sup g max{l — e~ 0}.
te[0,e]

The inductive step for k& > 2 follows equivalently, where for any t € [0,¢], we must have
gg+e—t>(k—1)e, so from Lemma 6.7, we have

5OPT(‘A§R759) = Sup QtéoPT(Algglafg - t)
t€]0,e]

and we can then apply our inductive hypothesis because K —1 > 1 and ¢, — t > (k — 2)e, which
then gives the desired claim. O
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For completeness, we also consider the symmetric case where €4 can be negative, but leave the
proof to Appendix C.

Lemma 6.9. For any e >0 and ¢, < —(k — 1)e with k > 1, we have

k 0 qti)> (engrkszti _ 1) } .

We then have the following result that together with Lemma 6.6 covers almost all choices of
gg € R.

5ng(A§E,Eg) =1-—¢€%+ sup { <

te[0,e]k

1

Lemma 6.10. For any ey > (k —1)e or ey < —(k — 1)e we have

6DPT(A§R7 £g) = 50PT(M§R7 £g)

Proof. Each case can be proven directly following similar reasoning as in Lemmas 6.8 and 6.9.
But, we can more easily point out that in both cases, Lemmas 6.8 and 6.9 imply that the choices
of t1,...,t; are not adaptively made, so we must have dgpr(ALg, gg) = Sopr (Mg, £g)- O

7 Improved and efficient adaptive composition bounds

Although we have presented the optimal composition bound in (6.1), directly computing it is
intractable. We then aim to bound the privacy loss with computationally efficient bounds that
improve on previous work. Given our formulation of the privacy loss in terms of a summation of
individual generalized randomized response privacy loss variables, we then follow a similar analysis
to concentration inequalities, e.g. Azuma-Hoeffding bounds, by bounding the moments of the
privacy loss. We now present the main result of this section.

Theorem_5). Let M := (M, Ma, -+, My) each M; is the class of €;-BR mechanisms. We then
have that M is (e4,64(gq))-DP under k-fold adaptive composition for any e, > 0 where we define

—t —€

he(A) == supycpp Ale —t) +In (14 peg(e™ — 1)) with pey = =% and

(59(5g) = )1\r>1% e Aegtihe; (V)

By Corollary 4.1 we can assume all the component mechanisms are generalized randomized
response. Let L; be log likelihood ratio in the i-th term in the total privacy loss and we will write

ti=ti(y1, -, Yi-1)
Pr[RR., ¢, (1) = vily1, -, yi—1]
Pr[RR, +,(0) = wily1,- -+, ¥i—1]

Li(y17 cee 7%) =In

tz' — &4, if Y = 0.

Recall from Corollary _4).1 that we need only consider deterministic adversaries A = (0, D)ﬂd the
class of mechanisms M to be the class of generalized rand&mized response mechanisms RR. For
simplicity, let P be the output distribution for AdComp(.A, M,b) and @ be the output distribution
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for AdComp(A, M,1— b) on {0,1}¥ and L = Zle L; = ln% be the log likelihood ratio of the
composed mechanism. Then we have

50PT(Aé§k,69) = Q[L > g4] — €9 P[L > ¢g4].

The classical method introduced in Dwork et al. [9] make two approximations: (1) ignore the nega-
tive term —e® P[L > ¢,4] and (2) use moment generating function of L to bound the tail probability
Q[L > g4]. We follow (1) and improve on (2) with the help of the reduction in Corollary 4.1. We
present the proof of Theorem 5 to point out the stages in the analysis where other approaches used
weaker bounds. The initial steps remain consistent:

50PT(Aéﬁk>59) = Q[L > g4] — e P[L > g]
< Q[L > g4
=Pr [Z L; > 89]
< inf Pr [e)‘ZL" > 6)\65’]
A>0

< inf e 9 -E[eAZLi].
A>0

With a standard conditional probability argument we have the following result.

Lemma 7.1. If there is a function U; : (0,400) — R such that for each i =1,2,... k the follow-
ing holds for any arbitrary outcomes yi,...,y;—1 of the previous generalized randomized response
mechanisms,

]EQ[e)\Li ’ Yty .- ,?/i—l] < eUi(A))

then the following holds for any A > 0,
50pT(A§}f, eg) < e~ (Aeg=22Ui(N)

Different bounds correspond to different choices of U;(\) in Lemma 7.1, which result in different
bounds on dgpr (A, £,4). For example, both Dwork et al. [9] and Durfee and Rogers [6] utilize the
following lemma;

Lemma 7.2 (Hoeffding’s lemma). If a random variable X € [a,b] then InE[e*X] < £(b— a)?\? +
AEX.

We now walk through the following comparisons with previous work to highlight our improve-
ment. Dwork et al. [9] only uses the fact that L; € [—&;,&;] (which is weaker than e-BR). It
implies

(a) mEq[e M | y1,...,yim1] < 2e2A?

7

+AEQ[Li | 1,y - -, Yi-1]
(b) EQ[LZ ’ ylp---)yi—l] < 5itanh% < %822

For part (b), Dwork et al. [9] used a much rougher estimate. The %512 upper bound appears in [3].

For the most refined bound in terms of hyperbolic tangent function, readers can refer to Lemma
D.8 in [4].
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Combining both (a) and (b), we have U;(A) = 3e2(A\? 4+ \), which we refer to as “Improved
DRV10” in Figure 2.

Using the bounded range property from Durfee and Rogers [6], we know that for e-BR there
is a t; € [0,&;] such that a = t; — &;,b = t; in Hoeffding’s lemma. A similar argument yields
Ui(A) = 32(1A% + A), which we label as “DR19” in Figure 2.

A straightforward improvement could come from a finer treatment of (b). By definition of L;,

Eo[Li | y1,---,yi-1] = KL(Bern(qu,ti)|]Bern(pai7ti))

= e T (1 g ) e
Peiti 1 = Peyt;
— tiQEi,ti + (tz — 51)(1 — qs’i7ti)
_ 4 &; t;
_tl_esi—l(e —1).
efi—1

A bit of calculus shows the above expression is maximized at ¢; = In , and the value is

&i
€
maxkl(e) 1= — T~ 1—1In

e — e€ —1°

That is, we have replaced (b) with
(b,) EQ[Ll ‘ Yty ooy yi—l] < maxkl(ei).

Combining (a) and (b'), we can use U;(A) = §e7A? + A maxkl(g;), which we label as “KL-improved
DR19” in Figure 2. This observation on the expectation together with the Durfee and Rogers [6]
bound that uses Azuma-Hoeffding, but with a weaker bound on the expectation term, we have the
following result.

Corollary 3.1. Let_’/\_/l) = (M, My, -, My) where each M; is the class of €;-BR mechanisms.
We then have that M is (€4(d4),d4)-DP under k-fold adaptive composition for any d; > 0 where

k k k
. &; &; 1
£¢(d) = min E Ei g <1—e‘5i —1—1In (1—6_81)> + 3 E e21n(1/6)
=1 i=1 i=1

Instead of trying to come up with analytic, closed form upper bounds, we directly compute

Eq [e*i | y1,...,yi1], resorting to numerical tools when necessary. Recall that p.; = e;_efj and

Qe = €'pey = %, we then have the following result.

Lemma 7.3.

A+1

EQ[e)\Li | Y1,y yic1] = pai76i—tiq<5_i,>t\€i—ti +(1 - pai’si_ti))\Jrl(

1-— qéz',&‘i—ti)i)\
where t; = ti(y1, -, Yi-1)-
Proof. Let P; be the distribution for Bern(p,, ;) and @Q; be the distribution for Bern(ge, ;). Then

‘ Qi
EQ[eALz | ylv"’ayi—l] :/ (?’L) Q’L
[2
= q?z—;}p;ﬁfl + (1 - quati)/\+1(1 - paiati)i)\

It is easy to verify that ¢c..—y = 1 — p-y and p..—y = 1 — q-;. Plugging these into the above
expression yields the desired result. O
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We now simplify the expression in Lemma 7.3 with the following function,

he(A) = sup In (P27 + (1 — pe)M (1 = gep) ™)

te[0,e]

= sup In (p&te_)‘t +(1- pgjt)e_A(t_a))
te[0,e]

= sup Ae—1t)+In(1 + peg(e™ — 1)).
te[0,e]

The second line above makes use of the fact that

et = etpe,t and 1 — et = et_e(l - ps,t)-

Now it is easy to see that U;(\) can be taken as hg,(\), which we label as “General MGFE” in
Figure 2. Combining this with Lemma 7.1, we have Theorem 5.

—— Improved DRV10
504 —— DRI9
—— KL-improved DR19

—— General MGF
40 A

30
U

20 A

10 1

Figure 2. A unified view and comparison of composition theorems involving concentration inequal-
ities. The figure shows graphs of different U functions (see Lemma 7.1) used in different results, such
as from Dwork et al. [9] (labeled “Improved DRV10”) and Durfee and Rogers [6] (labeled “DR19”).
According to Lemma 7.1, smaller function U yields tighter privacy result. Theorem 5 uses the smallest
U (labeled “General MGF”) among all and is hence the tightest. All curves use € = 1.

Numerical Issue We now point out a potential numeric issue in computing the function ho(\).
Note that it can be simplified differently as

he(A\) = Sl[lp} —At +1n (pe,t + eg/\(l — p&t)).
te|0,e

For comparision, the expression we use in Theorem 5 is

he(A) = sup AMe—1t)+In(1 + peg(e™ — 1)).
te(0,e]
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At first glance it may appear that the above two expressions are equal. However, the one used in
the theorem is far more robust numerically, as in the optimization step, e\ can be large, which
could make e} beyond the range of floating point numbers.

8 Conclusion and future directions

In this work, we studied the privacy loss when composing multiple exponential mechanisms, which is
a fundamental class of DP algorithms. We considered the privacy loss bounds when the exponential
mechanisms can be adaptively selected at each round or when they are all selected in advance, as
well as differentiated the homogeneous (all privacy parameters are the same) and the heterogeneous
(privacy parameters can be different) case. We then made the connection between exponential
mechanisms and the generalized randomized response mechanism to help simplify our privacy loss
expressions. Although we provided formulas for each case, we only provided an efficient calculation
for computing the optimal composition bound in the nonadaptive and homogeneous case. We
conjecture that computing the optimal composition bound in the nonadaptive and heterogeneous
case has similar hardness results as shown in Murtagh and Vadhan [14] and we leave the problem
open for future work.

We then showed for the optimal homogenous composition bound that there is a separation
between in the adaptive and nonadaptive case, which to our knowledge is a first of its kind result.
We then provided improved and computationally efficient composition bounds for the adaptive and
homogeneous case by tailoring concentration bounds for our particular setting. In order to better
understand the adaptive composition bound, one potential direction for future work is to understand
the asymptotics of the privacy loss bound, as ¥ — oo. We conjecture that the asymptotic gap
collapses between the optimal composition bound for the adaptive and nonadaptive cases, and
leave that as future work to study. Furthermore, in the non-asymptotic setting we believe that the
gap between adaptive and non-adaptive is quite small, and also leave proving a strong upper bound
on this gap to future work.

Lastly, it is interesting to study composition bounds that account for different types of DP
mechanisms at each round. General DP composition bounds can be used in cases where Laplace
and exponential mechanisms are used, but perhaps those bounds can be improved with composition
that accounts for exponential mechanisms and Laplace mechanisms separately. We leave this as an
interesting direction of future work.
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A  Proof of Lemma 4.1

In order to use this interpretation, we will need to first establish some notation. For a pair of
probability distributions P and () on a common probability space {2, its trade-off function [4]
describes the hardness of the hypothesis testing problem Hy : P vs H1 : Q. Let E C Q be an
arbitrary rejection region and

ap = P[E]
Be =1-Q[E]

be the type I and type II errors of the test F respectively. Fix a level ag and let E run over all test
with type I error at most ag, the minimal type II error is

inf{8g : E is a rejection region s.t. ap < ap}.

This correspondence of «g to the minimal type II error defines a function from [0, 1] to [0,1]. We
will call this function T'(P, Q). Formally,

T(P,Q):[0,1] — [0,1]
ap — inf{fr : ap < ap}

For our proof, we will use this function 7" and apply Blackwell’s theorem ([2], Theorem 10).
The following form is taken from [4].

Theorem 6. Let P, be probability distributions on'Y and P',Q’ be probability distributions on
Z. The following two statements are equivalent:

(a) T(P,Q) < T(P',Q").
(b) There exists a randomized algorithm Proc : Y — Z such that Proc(P) = P',Proc(Q) = Q’.

We now prove that we can post-process the generalized random response to simulate any BR
mechanism on neighboring inputs.

Proof of Lemma 4.1. Let P be the outcome distribution of M (z") and @ be the outcome distribu-
tion of M (x!). By Corollary 2.1, we know there exists some t € [0, ¢] such that

t—egan(y) <t
P(y)
Equivalently, for any event £ C Y,
e'"°P[E] < Q[F] < ' P[E]. (9)

Applying the same rule for the complement event E°, we have
e P[E‘] < Q[E“] < ' P[E“]. (10)
The second inequality of (9) and the first inequality of (10) imply

1-Bp <cap, e °(1-ag)< B (11)
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Let the piece-wise linear function l; . : [0,1] — [0, 1] be defined as
lie(z) = max{l — e’z !5 (1 — 2)}.

It’s easy to see that (11) implies T'(P, Q) > l; . pointwise in [0, 1].

Furthermore, it is straightforward to verify that I, . = T'(RR.+(0), RR. +(1)) because the respective
inequalities in (11) are tight for £ = {0} and E = {1}, respectively. Therefore, there must be a
t =t(M, 2%, z') such that

T(M(z°), M(z")) > T (RRe¢(0),RR(1)).

Applying Theorem 6 then gives our desired claim. O

B Omitted Proofs from Section 5

We provide here the proofs from Section 5 that were omitted.

B.1 Proof of Lemma 5.4

This lemma. will be proven in two main sublemmas. First, we show that it holds for k¥ = 2, then we
show how we can reduce the general case to k = 2 by conditioning outcomes other than the first
and second terms.

Lemma B.1. For any e, € R and t1,ty € [0,¢]

t -ty t -t
5((t1»t2)a€g)§5<<1227 : 5 2)75g>

Further, the inequality is strict whenever e4 < t1 +1t2 < g4 + 2¢ and t1 # to.

Proof. Using the fact that ¢ = e'p; and (1 — q;) = e!=5(1 — p;), we rewrite

5((t1,t2),€g) = Z Hpti H(l —pti)maX{et1+t2_|S|E - 66’7,0}

SC{1,2}igS  ieS

We will then prove our desired inequality by considering four cases.

Case I (t; +1t2 <¢g,): This implies that max{et1t?2~I51e — %9 0} = 0 for any subset S and
t to t t
S((tt)ey) = o ((H52.2212) ) o

Case IT (t; + 1ty > e, 4+ 2¢):  This implies max{et1 21518 —¢%9 0} = eh1tt2=I5le _ ¢% for any S,
which gives

5((t1,t2),€g) = Z (H 4t; H(l - Qti) — e Hpti H(l _pti)> =1—¢%

SC{1,2} \i¢sS €S i¢S €S
ti+to t1+t2)
2 0 2

and equivalently holds for § (( 1Eq)-
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Case I1I (¢, < t; +t2 <&, +¢): This implies that max{et+*2-15lc —¢%s 0} = 0 for any S such
that |S| > 0. Therefore,
5((t17 tQ)? Eg) = Pt Dts (etlthZ - eEg)

Equivalently, we have

ti+ty ty+t
’ << 1 2 S 2 2) a€9> = Pl (77 — )

We want strict inequality for this case, so it suffices to show p; p, < p%1+t2- Plugging in the
Gty

explicit formula for each p; and performing some simple algebraic manipulations gives that this is

equivalent to
_ t1+tg

2z <e g2

which holds due to the strict-convexity of the exponential function.

Case IV (g,+¢ < t;+ty < e,+2¢): This implies that max{e’* T2~15° —¢s 0} = 0 when |S| = 2.
Therefore,

5((t1’ t2)’ 59) = Pty Pty (6t1+t2 - esg) + (ptl (1 - ptz) +pt2(1 - pt1)) (et1+t2_€ - esg)
From Case II, we know
Z Hpti H(l — Pt;) (etl+t2_|5|€ - egg> =1-—¢%
SC{1,2}i¢S €S
which yields
0((t1,t2),69) =1 — €7 — (1 = py, ) (1 = pr,) (€727 — %) .
This equivalently holds for § ((@, %) ,€4) and because ef1 272 — ¢ < 0, we have

t1 +to 141 2
tn)e) <o ((M32052) s) e Gem-m < (1-pug)

Once again, we plug in the explicit formula for each p; and perform some simple algebraic
manipulations to see that this is also equivalent to

_ t1+to

2z <e g2

and this again holds due to the strict-convexity of the exponential function.
O

We now want to extend this to & > 2, which will be done by fixing an arbitrary subset
of {3,---,k} and show that the inequality holds when we restrict the summation to subsets of
{1,--- ,k} that must contain that subset of {3,--- ,k}. This will allow for easy cancellation. We
will denote dy7(t,eg4,5) for aset U C [k] and S C U as

du(t,eq,9) := H ptiH(l_pti)

ieU\S €S
Z Max {GZjeUthSIE H a, H(l —q,) — € H D, H(l —Pti),o} )
S'Clk\U @uus’  ies’ 1¢Uus’ €S’
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Claim B.1. Let ¢, € R. Then for any t € [0,¢]*, we have for U = {3,--- ,k}
5(t,eg) = > St eq,5)
SCU
Proof. We fix aset S C {3,---,k} = U. Using the fact that ¢ = e'p; and (1 — ¢) = €'~ ¢(1 — py),

we have
H at; H(l - Qti) = et3+"'+tk—\s‘€ H P, H(l - pti)

1€U\S  i€S 1€U\S €S
Therefore, we also have

ot S = Y max{ Mo I] -a-c I o ] <1—ptz.>,o}

§'C{1,2} i¢S'US  ies'us i¢S'uUS  ieS'US

Summing over all S we can simply rewrite this summation over all subsets of {1,--- , k}, giving our
desired equality. O

Lemma B.2. For any S C {3,....,k} = U, we have the following inequality

t to t t
5U(ta€g7S)S6U<< 1; 27 1;— 27t37'-'7tk>7‘€g78>

Further, the inequality is strict if 4 < Zle ti — |Sle < gg + 2 and t1 # to.

Proof. We fix S C {3,--- ,k}. Let e, = ¢4 +[S| —t3 —--- —t}, and then by cancelling non-negative
like terms it suffices to show

Z maX{H qt; H(l —q1,) — €% pri H(l _pti)’o}

5/c{1,2} igs’  ies’ igs’ €S
< Z maX{HQt' H(l—Qt')—esg’ Hpt' H(l—Pt’),O}
s/c{1,2} igs’  ieS’ i¢s €S

t1+to
2

where t' = . By definition, this is then equivalent to showing

t1+1t2 t1+1

which follows from Lemma B.1, and the strictness follows from the fact that e, = ¢4 + |S| —
> =2t O

With these we can now prove our main convexity lemma.

Proof of Lemma 5.4. Tt immediately follows from Claim B.1 and Lemma B.2 that for any t € [0, ¢]*

t 4ty b+t
5(t,ag)§5<( 1; 2 1; 2,t3,...,tk>,sg>

Additionally, if we assume that t; # t2 and e, < > t; < g4 + ke, then there must exist some
¢ € [0,k — 2] such that ¢4 + e < > t; < g4+ (¢ + 2)e, which implies that e5 < > t; — le < g4+ 2e.
Further, we know that for any ¢ € [0, k—2] there exists S C {3,--- , k} such that |S| = £. Therefore,
for one of these subsets the inequality is strict and the sum must be a strict inequality as well. [
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B.2 Proof of Lemma 5.7

Recall that we had the following definition, for which we wanted to compute the partial derivate
with respect to t.

Fylt,e,) = Ze: (”“) P = py)i (ekt_ia - e) (12)

=0 \'
We further split each Fy(t,e,) into the individual terms to more easily differentiate the full
summation with respect to t.

fe(t,eq) == (i)pf_e(l — )" <ekzt—£a B eag)

In particular, giving a much simpler formulation for the partial derivative will rely upon an in-
ductive proof, so this definition will allow an even easier comparison between Fy(t,e4) and Fyy1(t,€4)
that follows immediately from the definition.

Corollary B.1. For any { € [1,k]

Fy(t,eg) = Foo1(t,eg) + folt,eq)

We first differentiate the simplest of these expressions Fy(t,e4), and then we will ultimately use
this as the base case for proving a simplified formulation of derivative for the general case.

Lemma B.3.

OFy(t,eg) _ kp,’f_l 1 (eag—t _ ekt—a)

Proof. By definition

ko Kt et —e =\
— 13 — S
Fo(t,eq) = p; (e —eg>—< e > (e —eg>

Therefore, by basic differentiation rules

_ _ —_eN k-1 — —e\ k
8F()g;,é‘g) _ (—kl e ti <elt_e 8> <€kt_€€g>> n (elt_e 5) Lokt
—e—¢€ —e—¢ — et

which easily reduces to our desired term.

To apply an inductive claim to the general case, we will also need to evaluate the partial
derivative of the last term for each sum.
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Lemma B.4. For1 </¢<k

fe(t,eg) (kY p-1-¢ -1 1 ? cg—t | (k—1)t—((+1)e
o= e (=) (E-o (e )
ny (e(k—l)t—éa + eag—a—t> —k (689—215 + ekt—(ﬁ—i-l)e) )
Proof. By definition

Folt eg) = (’;) (1 = po)t (et — )

We can consider this then to instead be fy(t,e4) = (]z)f(t) - g(t) - h(t) with f(t) = pF=*,
g(t) = (1 — py)’, and h(t) = e* % — ¢%s. Applying basic differentiation rules and using the fact

€

that p; = elt_%, we obtain

Ace) () e— 0 (= ) - g (e - o)

k et _ _ _ k e ke
1 <£>€ <1 - 6_6> pf E(l _pt)z 1 (ekt te eag) n (g)kekt Zapf 4(1 —pt)é

We can pull out similar terms from each expression to achieve

E)fegfg) = <lz>pf_l_£(1 - < . >2 ( — (b= e (1 — et (M — o)
et et — o) (R o) g kM (e - o) (1 ) )

Further examination of the inner term by expanding each expression and cancelling like terms
gives

(k=) t(1—e7h) (ektféa _ eeg) et —e) (ektffs _ esg> L kektte (et—e)(1—e)

— (k—0) (eag—t i e(k—1)t—(z+1)e) ) (e(k—l)t—ea + 6€g—s—t> s (esg—% n 6kt—(£+1)e)

This then implies our desired expression.
O

We now have the pieces to give a simpler evaluation of the partial derivative for the general case
using an inductive argument. Surprisingly, with a bit of combinatorial and algebraic massaging,
the full partial derivative will reduce to a rather simple expression.
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Proof of Lemma 5.7. The base case of £ = 0 is true from Lemma B.3. We then assume the claim
for £ — 1, and by Corollary B.1 we know Fy(t,e4) = Fy_1(t,eq4) + fo(t,e4), which implies

OF(t,eq) _ OF;_1(t,eq) n Ofi(t,eq)
ot ot ot

Applying our inductive claim and Lemma B.4 we then have

OFy(t,eq) _ k k—1—(0—1) -1 1 cg—t kt—Le
LD -, Yt ()

R\ k16, . ve—1 1 2 cg—t | (k—1)t—((+1)e
() (e

ny (e(kz—l)t—& + eag—s—t> s (eag—% + ekt—(Z—f—l)s) >

We use the fact that (k — (¢ — 1))(651) = E(’Z) and this reduces to

OFy(t,eq)  (k\ k-1-4 -1 1 2 I P
o Ept (1—pr) 1_e-t E(e —¢ )(eg ¢ >+

(k—10) (egg—t i e(k—l)t—(Z—H)e) ny (e(k—l)t—és + esg—e—t> L (65g—2t + ekt—(z+1)e> >

Further examination of the inner term by expanding each expression and cancelling like terms
gives

/ (e—t _ e—s) (esg—t _ ekt—fs) + (]C _ 6) (esg—t + e(k—l)t—([—l—l)e)

) (e(k—l)t—ea i eag—a—t> _k (eag—2t 4 ekt—(f—i-l)e)

_ (kj - E) <esg7t _ efe2t + e(kfl)tf(@rl)s o ektf(fﬁ’l)&)

= (k—0)(1—e? (eeg—t _ ekt—(€+1)e>

Substituting for this simplified expression and using the fact that 1 —p; = i:z:z then gives our

desired result. O

C Omitted Proofs from Section 6

We provide here the proofs from Section 6 that were omitted.

C.1 Proofs from Section 6.1

Proof of Corollary 6.1. Note that by our definition, ¢ = e'p; and 1 — ¢ = e!~¢(1 — p;), so we can
equivalently write
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k

ok (t, £q) = Z (i)qf_z(l — q¢)' max { (1 - eag_kt“a) ,0} .
=0
We then prove by induction. For k& = 1, the base case,
51(75,59) = g max{l —e* " 0} + (1 — q) max{1 — e* "7 0},

and the claim follows by definition of §°(¢, £g). We can then apply our inductive hypothesis to get
both

b e 1) k-1 (k - 1>qfi(1 — ) max { <1 _ eag—kt-I—ie) ’0} ’

—-1 . A ,
(1 _ (It) . 514:—1(69 4t 6) _ (k ‘ >qflz(1 o qt)H—l max{(l o eag—kt-‘r(z-‘rl)a) ’0}

N |

= ( 1>qf_l(1—qt)zmax{<1—eag_kt“E),0}.
Z_

1

Our claim then follows from the fact that for any i € [1, k£ — 1], we must have (]fjll) + (k_.l) =

()- =
Proof of Lemma 6.3. We prove this inductively. For the base case k = 2, from Corollary 6.1 and
our definition of topr(M3g, e,) we have

dopr (Mg, €g) = @0 (g — 1) + (1 — @1)0' (1,9 + ¢ — 1)

If t ¢ topr(Mag,eq — t + £'e) for some ¢' € {0,1}, then Sgpr(Mig, ey — t + ') > 01 (t, e, — t + le).
Applying Lemma 6.1 for the homogeneous case,

60PT(A§R’ 59) > Qt(SDPT(AéR, €g — t)+(1— Qt)(;DPT(Aém gg— 1+ €)
> qtél(t, eg—t)+(1 - qt)él(t, ggte—t)= 6ng(M§R, Eg)

This equivalently follows if dgpr(Mag, g4 — t + £'€) < Sopr(Agg, €4 — t + £'¢) for either ¢ € {0,1}.
The inductive step will then follow equivalently. Once again, we have

Sopr (Mg, €g) = @:6" Mt eg — ) + (1 — @) 0" (t,eg +2 — t)

which similarly implies

50PT(A’§R, €g) > QtfsoPT(A]gEl’ gq— 1)+ (1— Qt)fSDPT(A]glx_l: gg—t+e)
> qopr(Mpg toeg — 1) + (1 — qr)opr(Mig g — t +¢)
> " (teg —t) + (1 — )6 (teg + £ — t) = dopr(Mig, gg)
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The goal will then be to show that this inequality becomes strict if one of the conditions in
the statement holds. First, suppose ¢ ¢ tng(./\/llgR_l,eg — t + l'e) for either ¢ € {0,1}, then
Sopr(MET e, —t + 0e) > 55‘1(15, gg —t 4+ 0'c) and the inequality must be strict. On the other
hand, if ¢ € topr(MEz !, e, —t+'¢) for both ¢/ € {0,1}, then this fits the condition of our inductive
hypothesis, and we will then use this to prove our claim for the remaining cases.

Let 0 < ¢ < { < k be such that dopr(Akz’ ey — £t + 'e) > Sopr(Mpz b e, — £t + '), and if
¢ = 0, then the inequality holds trivially. If £ > 1, then rewriting the inequality, we equivalently
have both of the following inequalities,

Sopr(AETTE )t (0= D)t + le) > Sopr(ME Y ey —t — (£ = 1)t + L),
and  Sopr(Ab T oy —t e — (0= 1)t + (£ — 1))
> Sopr(Me D oyt e — (0= 1)t + (£ = 1)e).
If £ > 1, then we must have either 0 < ¢ < ({—-1)<k—-1lor0< (¢ -1)<(¥{-1) < k-1
We can then apply our inductive hypothesis to achieve (50pT(A'B€R_1, gg —1t) > 5ng(./\/llgR_1, gg —t), or
Sopr(Abet ey —t +€) > dopr(Miz !, ey — t + ), respectively, which implies that our inequality is
strict.

Similarly, let 0 < ¢ < £ < k be such that t ¢ topr(MEz* e, — ¢t + £'c) By definition we cannot
have ¢ = 0, and we previously considered ¢ = 1, so we assume £ > 1 in order to apply our inductive
claim. Rewriting the set tgpr, we must then have both hold

t ¢ topr(METTED ot — (0= 1)t + )
and  t¢ topp(ME T et e — (0= Dt + (¢ - 1)e).
If¢>1,thenl{—1>0andeither 0 <V < ({—-1)<k—-1lor0<(—-1)<(—-1)<k-1.
Applying our inductive hypothesis, we have either case hold, respectively
Sopr (Agg ' g — 1) > Sopr (Mg ' g — 1),
or dopr(Afg ', gg—t+e)> Sopr(MEL, gg —t+e).

This implies our inequality is strict. O
In order to prove Lemma 6.5, we will also need the following edge case.
Lemma C.1. tng(M%R, —38/2) N tng(M?gH, 8/2) = @ and tng(M%H, —8/2) N tng(M%R, 8/2) = @

Proof. For any ¢, € {—3¢/2,—¢/2,¢/2,3¢/2}, from Lemma 6.2 that topr(M3zg,e,4) C {M} N
(0,6) for ¢ € {0, 1} This then implies that tng(M%R, —36/2) = 6/6, tng(M%R, —6/2) - {8/6,6/2},
topr (Mg, €/2) C {/2,5¢/6}, and topr(Mzg, 3e/2) = 5¢/6. The claim then follows immediately.

O

Proof of Lemma 6.5. By our assumptions, it immediately follows that either there exists 0 < 5 <
k — 2 such that ¢, — (k — 2)t + je € (—€/2,¢/2), or we are in the edge case where there exists
0 < j < k—2such that ¢, — (k — 2)t + je = —¢/2. In first case, we know that Sopr(Mag, 5 —
(k — 2)ty + je) < Sopr(Azp,eg — (K — 2)t + je) from Lemma 6.4. In the second case (the edge
case), if 7 = 0 then we know j 4+ 2 < k — 2 because k > 4, and from Lemma C.1 we must either
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have t ¢ topr(M3g, ey — (k — 2)ty + je) or t ¢ topr(M2g, e, — (k — 2)ty + (j + 2)). Otherwise, if
j > 0, then we again have from Lemma C.1 that either ¢ ¢ topr(M3g, e, — (k — 2)tp + (j — 1)e) or
t & topr(Mzg, ey — (k — 2)ts + (j + 1)e).

In either case, we can immediately apply Lemma 6.3 to achieve our desired inequality. O

C.2 Proofs from Section 6.2

Proof of Lemma 6.7. We will prove both statements by induction, where the base case dopr(As, £4) =
max{l — e%,0} = 0 for £, > 0 and Jopr(Adg, e,) = max{l —e%,0} =1 — €% for ¢, < 0. For any
t €0,el, if e, > ke we must have e, —t > (k—1)e and ¢, —t +¢ > (k — 1)e. Similarly, if e, < —ke
we must have e, —t < —(k—1)e and ¢ —t+¢ < —(k—1)e. Using Lemma 6.1 for the homogeneous
case, we know

5OPT(AI]§R7 Eg) = Sl[lp] {qténg(AlgR_l, Eg — t) + (1 — qt)éng(AlgR_l, &g +e— t)}
te|0,e
and applying our inductive hypothesis easily gives 5ng(AI§R, gg) = 0 for any e, > ke. Applying our
inductive hypothesis for ¢, < —ke, we have for any t that

Qt(SDPT(A’gR_la gg— 1)+ (1— qt)5ng(A’§R_1, ggte—1t)

_ t—e t—e _ ,—¢€
—e _

This then implies dgpr( Ak, g4) = 1 — e for any g, < —ke.
O

Proof of Lemma 6.9. We show this inductively. For k = 1, if ¢, < 0, then for any ¢ € [0,¢], we
must have ¢, — ¢ <0 and max{1 — e®s~* 0} = 1 — ¢®9~*. This then implies
Sopr(Apg, €g) = sup {@(1—e7") + (1 — q) max{l — 7", 0}}.
te[0,e]

If £, < —¢ then max{l — €% 7% 0} =1 — e%o™=~ for any ¢ € [0,¢] and dopr(Agg, g4) = 1 — €%
because from the proof of Lemma 6.7 we have ¢ (1 — e®7%) + (1 — q;)(1 — e®o™=7t) = 1 — e for
any t. Furthermore, efs™¢~% — 1 < 0 for any t € [0, €], so SUPye0 ] {(1 —qp)(efoTETt — 1)} =0 by
setting ¢ = 0, and we have our desired equality.

If e < g4 <0, then there must exist some ¢ € [0,¢] such that e, + ¢ —t > 0. Once again, we
know q;(1 — e®07) + (1 — q;)(1 — e*97¢7t) = 1 — ¢ for any t. Consequently, the supremum must
be achieved for some ¢ € [0,e, + €) C [0,¢] such that 1 — e®s ™7t < 0. Thus,

5ng(AéR,€g) = sup q(1-— esg_t)

te[0,e4+4¢)
= sup {Qt(l _ 6Eg—t) + (1 _ Qt)(l _ eag-i-a—t) 4 (1 _ qt)<eag+a—t _ 1)}
te[0,e4+4¢)
=1—¢c"+ sup (L—gq)(e™"—1)
te[0,e4+¢)
=1—¢% + sup (1 —q)(eote " —1).
te[0,e]
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The inductive step for k& > 2 follows more easily, where for any ¢ € [0,¢], we must have
gg —t < —(k —1)e, so from Lemma 6.7, we have

Sopr( Az, £4) = sup {qt(l — €57 4 (1 — qt)dopr(AZF ey + 6 — t)} .
t€[0,e]
We can then apply our inductive hypothesis because k —1 > 1 and g, +¢ —1t < —(k —2)e, and
therefore

k—1
k—
6DPT(-AI1§R_1>59 Fe—t)=1—e9rt 4 sup H(l ) (eeg-i-a—t—i-(k—l)e— T 1)
ti€[075] =1

Plugging in this term and once again using the fact that q;(1 —e~%) + (1 — q;)(1 — ef9T=71)
1 — €% for any t, gives our desired equality.

Ol
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