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Abstract—We consider the following problem in this
paper: given a set of n distributions, find the top-m ones
with the largest means. This problem is also called top-
m arm identifications in the literature of reinforcement
learning, and has numerous applications. We study the
problem in the collaborative learning model where we
have multiple agents who can draw samples from the n
distributions in parallel. Our goal is to characterize the
tradeoffs between the running time of learning process and
the number of rounds of interaction between agents, which
is very expensive in various scenarios. We give optimal
time-round tradeoffs, as well as demonstrate complexity
separations between top-1 arm identification and top-m
arm identifications for general m and between fixed-time
and fixed-confidence variants. As a byproduct, we also give
an algorithm for selecting the distribution with the m-th
largest mean in the collaborative learning model.

I. INTRODUCTION

In this paper we study the following problem: given
a set of n distributions, try to find the m ones with
the largest means via sampling. We study the problem
in the multi-agent setting where we have K agents,
who try to identify the top-m distributions collabora-
tively via communication. Suppose sampling from each
distribution takes a unit time, our goal is to minimize
both the running time and the number of rounds of
communication of the collaborative learning process.

The problem of top-m distribution identifications
originates from the literature of multi-armed bandits
(MAB) [53], where each distribution is called an arm,
and each sampling from a distribution is called an arm
pull. When m = 1, the problem is called best arm
identification, and has been studied extensively in the
centralized setting where there is only one agent [5],
[11], [24], [27], [46], [40], [34], [41], [20], [13], [29].
Some of these algorithms can be easily modified to
handle top-m arm identification (e.g., [5], [12]). The
problem of best arm identification has also been studied
in the multi-agent collaborative learning model [31],
[55]. Surprisingly, we found that in the multi-agent

setting, the tasks of identifying the best arm and the top-
m arms look to be very different in terms of problem
complexities; the algorithm design and lower bound
proof for the top-m case require significantly new ideas,
and need to address some fundamental challenges in
collaborative learning.

Collaborative Learning with Limited Interaction.:
A natural way to speed up machine learning tasks is to
introduce multiple agents, and let them learn the target
function collaboratively. In recent years some works
have been done to address the power of parallelism
(under the name of concurrent learning, e.g., [51], [30],
[23], [22]). Most of these works assume that agents
have the full ability of communication. That is, they
can send/receive messages to/from each other at any
time step. This assumption, unfortunately, is unreal-
istic in real-world applications, as it would be very
expensive to implement unrestricted communication,
which is usually the biggest drain of time, data, energy
and network bandwidth. For example, once we deploy
sensors/robots to unknown environment such as deep
sea and outer space, it would be almost impossible to
recharge them; when we train a model in a central server
by interacting with hundreds of thousands of mobile
devices, the communication cost will directly contribute
to our data bills, not mentioning the excessive energy
and bandwidth consumption.

In this paper we consider the model of collaborative
learning with limited interaction, where the learning
process is partitioned into rounds of predefined time
intervals. In each round, each of the K agents takes
a series of actions individually like in the centralized
model, and they can only communicate at the end of
each round. At the end of the last round before any
communication, all agents should agree on the same
output; otherwise we say the algorithm fails. Our goal is
to minimize both the number of rounds of computation
R and the running time T (assuming each action takes



a unit time step).1

Naturally, there is a tradeoff between R and T : If
R = 1, that is, no communication is allowed, then
T ≥ TC where TC is the running time of the best cen-
tralized algorithm. When R increases, T may decrease.
On the other hand we always have T ≥ TC/K even
when R = T . We are mostly interested in understanding
the number of rounds needed to achieve almost full
speedup, that is, when T = Õ(TC/K) where Õ(·) hides
logarithmic factors.

We do not put any constraints on the lengths of the
messages that each agent can send at the end of each
round, but in the MAB setting they will not be very large
– the information that each agent collects can always be
compressed to an array of n pairs in the form of (xi, θ̃i),
where xi is the number of arm pulls on the i-th arm,
and θ̃i is the empirical mean of the xi arm pull.

Top-m Arm Identification.: To be consistent with
the MAB literature, we will use the term arm instead
of distribution throughout this paper. The top-m arm
identification problem is motivated by a variety of appli-
cations ranging from industrial engineering [42] to med-
ical tests [56], and from evolutionary computation [50]
to crowdsourcing [1]. The readers may refer to [5], [37],
[21], [18], [19] and references therein for the state-of-
the-art results on the top-m arm identification in the
centralized model.

In this paper we mainly focus on the fixed-time case,
where given a fixed time horizon T , the task is to
identify the set of m arms with the largest means
with the smallest error probability. We will also discuss
the fixed-confidence case, where given a fixed error
probability δ, the task is to identify the top-m arms
with error δ using the smallest amount of time.

Without loss of generality, we assume that each of
the underlying distributions has support on (0, 1). In
the centralized setting, Bubeck et al. [12] introduced
the following complexity to characterize the hardness
of an input instance V for the top-m arm identification
problem. Let θi be the mean of the i-th arm. Let [j] be
the index of the arm in V with the j-th largest mean, and
let θ[j](V ) be the corresponding mean. Given an input
instance I of n arms, let ∆

〈m〉
i (I) be the gap between

the mean of the i-th arm and that of the [m]-th arm or

1We note that our model is a simplified version of the one
formulated in [55]. The model defined in [55] allows each agent to
perform different numbers of actions in each round, and the length
of each round can be determined adaptively by the agents. However,
we noticed that all the existing algorithms for collaborative learning
in the literature have predefined round lengths, under which there is
no point for an agent to stop early in a round.

the [m+ 1]-th arm, whichever is larger. In other words,

∆
〈m〉
i (I) ,

{
θi − θ[m+1](I), if θi ≥ θ[m](I),

θ[m](I)− θi, if θi ≤ θ[m+1](I).
(1)

Definition 1 (Instance Complexity). Given an input
instance I of n arms and a parameter m (call it the
pivot), we define the following quantity which charac-
terizes the complexity of I .

H〈m〉(I) ,
∑
i∈I

(
∆
〈m〉
i (I)

)−2

.

We also define a related quantity which we call the ε-
truncated instance complexity.

H〈m〉ε (I) ,
∑
i∈I

max
{

∆
〈m〉
i (I), ε

}−2

.

To see why H〈m〉(I) is the right measure for the
instance complexity, note that if the mean of an arm is
either (θ+∆) or (θ−∆) where θ is a known threshold,
it takes Ω(∆−2) samples to decide whether the mean is
above or below the threshold θ (as long as θ ± ∆ are
bounded away from 0 and 1). Therefore, suppose all the
means are bounded away from 0 and 1, even if we are
given the means of the [m]-th and the [m+ 1]-th arms,
it still takes Ω(H〈m〉(I)) samples to decide for each
arm whether it is one of the top-m arms or not. Such
intuition can be formalized to show that, in the fixed-
confidence case, Ω(H〈m〉(I) log(1/δ)) samples are
needed to identify the top-m arms with success proba-
bility (1−δ) [52], [19]. On the other hand, there are cen-
tralized algorithms to achieve O(H〈m〉(I) log(1/δ) +
H〈m〉(I) logH〈m〉(I)) (see, e.g., [37]), almost match-
ing the lower bound (up to logarithmic factors).

For the fixed-time case, in [12] it was shown that
there is a centralized algorithm that identifies the top-m
arms with probability at least

1− exp

(
−Ω̃

(
T

H〈m〉(I)

))
(2)

using at most T time steps, where Ω̃(·) hides logarith-
mic factors in n. This upper bound can also be shown
to be tight up to logarithmic factors [41], [13], [52],
[19]. In the collaborative learning setting, our goal is
to replace the T factor in (2) with KT where K is the
number of agents, so as to achieve a full speedup.

Our Contributions.: We summarize our main re-
sults and their implications.

1) We give an algorithm for the fixed-time top-
m arm identification problem in the collabora-
tive learning model with K agents and a set I
of n arms. For any choice of r, the algorithm

1



uses T time steps and O(log logm
logK + r) rounds

of communication, and successfully computes
the set of top-m arms with probability at least
1− exp

(
−Ω̃

(
K(R−1)/R·T
H〈m〉(I)

))
. In particular, when

r = logK, the algorithm uses T time steps and
O(log logm

logK +logK) rounds of communication to
compute the set of top-m arms with probability at
least 1 − exp

(
−Ω̃

(
KT

H〈m〉(I)

))
, achieving a full

speedup. See Section III.
2) We prove that under the same setting, any col-

laborative algorithm that uses T = 1√
K
·H〈m〉(I)

time steps and aims to achieve success probability
0.99 needs at least Ω(log logm

logK ) rounds of com-
munication. By leveraging a result in [55], we
can also show that any collaborative algorithm
that uses T = α

K · H
〈m〉(I) time steps and

aims to achieve success probability 0.99 needs
at least Ω(logK/(log logK + logα)) rounds of
communication. These indicate that our upper
bound is almost the best possible. See Section IV.

3) Our lower bound gives a strong separation be-
tween the best arm identification and top-m iden-
tifications: there is a collaborative algorithm for
best arm identification (i.e., when m = 1) that
uses T = Õ

(
1√
K
·H〈1〉(I)

)
time and 2 rounds

of communication (see [55], [31]), while Item 2
states that for general m, to achieve the same time
bound we need Ω(logK/(log logK + logα))
rounds of communication.

4) We give an algorithm for the fixed-confidence
top-m identification problem in the collaborative
model with K agents and a set of n arms;
the algorithm uses O

(
H〈m〉(I)

K log
(
n
δ logH〈m〉

))
time steps and O

(
log(1/∆

〈m〉
[m] )

)
rounds of com-

munication, and successfully computes the set of
top-m arms with probability at least 1 − δ. This
is almost tight by a previous result in [55]. See
Section V.

5) Combining Items 1, 2, and 4, we have given a sep-
aration between fixed-time and fixed-confidence
top-m arm identification. We note that a similar
separation result is also proved for the best arm
identification problem [55], although the round
complexities for top-m identification are quite
different from the m = 1 special case (i.e., best
arm identification).

Speedup.: In [55] the authors introduced a concept
called speedup for presenting the power of collaborative
learning algorithms. The precise definition of speedup is
rather complicated due to the definition of the instance

complexity of MAB. Roughly, the speedup is defined to
be the ratio between the best running time of centralized
algorithm and that of a collaborative algorithm (given a
predefined round budget R) under the condition that the
two algorithms achieve the same success probability. In
this paper we simply focus on a fixed success proba-
bility 0.99, and define the speedup of a collaborative
algorithm which identifies the top-m arms on input
instance I with accuracy 0.99 using time TA(I) to be
TA(I)/H〈m〉(I), since the best centralized algorithm
achieving success probability 0.99 has running time
Θ̃(H〈m〉(I)) [12]. Interpreting our results in terms of
speedup, we have the following remarks:

1) Our algorithm for fixed-time top-m arm identifi-
cation achieves a speedup of Õ(K

r−1
r ) and uses

O(log logm
logK + r) rounds.

2) Our lower bound shows that in order to achieve
even an Ω̃(

√
K) speedup, any algorithm for top-

m arm identification needs at least Ω(log logm
logK )

rounds.
3) Compared with the main result for the best arm

identification in [55], which states that there is
a R-round algorithm achieving a speedup of
Õ(K

R−1
R ), we have shown a separation between

the complexities of the two problems (e.g., when
R = 2).

Selection under Uncertainty.: As a byproduct, we
also get almost tight bounds for a closely related prob-
lem we call selection under uncertainty. This problem
is similar to the classic selection problem where given
a set of n numbers, one needs to find the m-th largest
number. The difference is that now instead of having n
(deterministic) numbers, we have n distributions/arms,
and our goal is to find the one with the m-th largest
mean via sampling. It is easy to see that this problem
can be solved by first identifying the top-m arms, and
then finding the worst arm in these top-m arms, which
can be done in the same way as identifying the best
arm.

For convenience, let us introduce a new (but very sim-
ilar) definition of instance complexity for the selection
under uncertainty problem:

H̄〈m〉(I) ,
∑
i6=[m]

(θi − θ[m])
−2.

With H̄〈m〉 we have the following immediate result:

• There exists an algorithm for the fixed-time m-th
arm selection problem in the collaborative learning
model with K agents and a set I of n arms; the
algorithm uses T time steps and O(log logm

logK + r)
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rounds of communication, and successfully identi-
fies the m-th arm with probability at least

1− exp

(
−Ω̃

(
K(r−1)/r · T
H̄〈m〉(I)

))
.

Why Top-m Arm Identification is Difficult in the
Collaborative Learning Model?: Before presenting our
results, let us first try to give some intuition on why
top-m arm identification is difficult in the collaborative
learning setting, as one may think that the top-m arm
identification is a natural generalization of best arm
identification (when m = 1), and the algorithm for the
latter in [55] may be adapted to the former.

The key procedure used in previous collaborative
algorithms for best arm identification [31], [55] is that
in the first round, we randomly partition the set I of n
arms into K groups, and feed each group to one agent
as a subproblem. Now if each of the K agents computes
the best arm in its subproblem, then we can reduce the
number of best arm candidates from n to K after the
first round, which is critical for us to achieve logK
communication rounds. The question now is whether
each subproblem can be solved time-efficiently (more
precisely, in Õ(H〈1〉(I)/K) time steps if we target a
Ω̃(K) speedup) at each agent in the first round.

A nice property for the best arm identification is that
if we randomly partition the set I of n arms to the K
groups, then the group (denoted by G) containing the
global best arm has a subproblem complexity H ′ =∑|G|
i=2 (∆′i)

−2, where ∆′i is the difference between the
mean of the best arm and that of the i-th best arm in
group G. It is easy to show that

E[H ′] = Θ
(
H〈1〉(I)/K

)
. (3)

Therefore, even though we cannot guarantee that each
of the K subproblems can be solved successfully under
time budget Õ(H/K), we still know that the global best
arm will advance to the next round with a good proba-
bility, which is enough for the algorithm to succeed.

Unfortunately, the above property does not hold in the
top-m setting due to its “multi-objective” goal. First, the
global m-th arm will only be assigned to one agent, and
thus others do not know what pivot to use for defining
its subproblem complexity. Second, even for the agent
who gets the m-th arm j, it does not know what is the
local rank of j, and, thus, still does not know when to
stop the local pruning. Third, even if the agents know
the local ranks of the m-th arm, it may not have enough
time budget to solve the sub-problem; note that this is
an issue only for the top-m case but not for the best
arm case, since in the top-m case each subproblem may
contain some top-m arms.

We will design an algorithm which addresses all
of these challenges, and then complement it with an
almost tight lower bound. Looking back, we feel that
in the best arm case it was just lucky for us to have
Equation (3), while in the general top-m case we have
to deal with some inherent challenges in collaborative
learning, which, unfortunately, also make our algorithm
for top-m much more complicated than that for best
arm identification. We will give a technical overview for
both the algorithm and lower bound proof in Section II.

Related Work.: To the best of our knowledge, the
collaborative learning model studied in this paper was
first proposed in [31], where the authors studied the
best arm identification problem in MAB. The model was
recently formalized in [55], where almost tight time-
round tradeoffs for best arm identification are given.

A number of works studied regret minimization,
which is another important problem in MAB, in various
distributed models, most of which are different from the
collaborative learning model considered in this paper.
For example, several works [45], [49], [9] studied regret
minimization in the setting of cognitive ratio network,
where radio channels are models as arms, and the
rewards by pulling each arm depend on the number
of simultaneous pulls by the K agents (i.e., penalty is
introduced for collisions). In [16] the authors considered
a model where at each time step each agent can choose
either to pull an arm, or broadcast a message to other
agents, but cannot do both. Authors of [54], [43],
[58] considered regret minimization in communication
networks. Distributed regret minimization has also been
studied in the non-stochastic setting [6], [38], [15].

The collaborative learning model is closely related to
the batched model (or, learning with limited adaptivity),
where one wants to minimize the number of policy
switches in the learning process. In the batched model
we want to minimize the number of policy switches
when trying to achieve our learning goal. Algorithms
designed in the batched model can naturally be trans-
lated to a restricted version of the collaborative model in
which at each time step, the action taken by each agent
is determined by the information (historical actions
and outcomes, messages received from other agents,
and the randomness of the algorithm) the agent has
at the beginning of the round, and the agents cannot
change their policies in the middle of the a round. A
number of problems have been studied in the batched
model in recent years, including best arm identification
[36], [2], [35], regret minimization in MAB [48], [28],
[26], Q-learning [7], convex optimization [25], online
learning [14]. We note that our collaboratively learning
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n number of arms in the input instance.
K number of agents.
T running time.
θi mean of the i-th arm.

θ[i](V ) the i-th largest mean among arms in V .
Topm(V ) indices of the m arms with the largest means in V .
Top1(V ) index of the best arm in V .
∆
〈m〉
i (V ) mean gap of the i-th arm; defined in (1).

H〈m〉(V ) instance complexity; see Definition 1.
H
〈m〉
ε (V ) ε-truncated instance complexity; see Definition 1.

Table I: Summary of Notations

algorithm for top-m arm identification in the fixed-
confidence case also works in the batched model, and
improves the algorithm in [35].

Finally, we note that there is also a large body
of work on sample/communication-efficient distributed
algorithms for various learning-related tasks such as
classification [8], [32], [39], convex optimization [60],
[59], [3], linear programming [4], [57]. Sample-efficient
PAC learning in the collaborative setting is recently
studied by [10], [17], [47]. However, the models con-
sidered in the papers mentioned above mainly focus on
reducing the sample/communication cost, and are all
different from the collaborative learning with limited
interaction model we study in this paper.

Notations and Conventions.: Let Topm(V ) be the
indices of m arms in V with the largest means, and
Top1(V ) be the index of the best arm in V .

We say the i-th arm is (ε, j)-top in V if and only if
θi ≥ θ[j](V )− ε. Similarly, the i-th arm is (ε, j)-bottom
in V if and only if θi ≤ θ[|V |+1−j](V ) + ε.

In this paper we focus on the case when θ[m](I) >
θ[m+1](I), since otherwise the instance complexity of I
will be infinity.

For simplicity, we will write Topm(V ), Top1(V ),
θ[i](V ), ∆

〈m〉
i (V ), H〈m〉(V ), and H

〈m〉
ε (V ) as Topm,

Top1, θ[i], ∆
〈m〉
i , H〈m〉, and H〈m〉ε , when V = I (I is

the input instance) or it is clear from the context.
We include a list of frequently used (global) notations

in Table I.
Roadmap.: In the rest of the paper, we first give

a technical overview of our main results in Section II.
We next present our algorithm for the fixed-time case
in Section III, and then complement it with a matching
lower bound in Section IV. Finally in Section V, we give
an algorithm for the fixed-confidence case and discuss
the correponding lower bound.

II. TECHNICAL OVERVIEW

In this section we give a technical overview for
our upper and lower bounds for fixed-time top-m arm

identification.

A. Upper Bounds for the Fixed-Time Setting

For simplicity we consider the full speedup setting
(i.e., we target a speedup of Ω̃(K)); the general speedup
is an easy extension. We achieve our upper bound result
for fixed-time top-m arm identification in three stages.
We first design an algorithm for a special time horizon
T = Θ̃(H〈m〉/K) which uses O(log logn

logK + logK)
rounds of communication and has an error probability
0.01. We next consider general time horizon T , and
target an error probability that is exponentially small
in T . Finally, we try to improve the round complexity
to O(log logm

logK + logK). In each stage we face new
challenges which stem from the collaborative learning
model, each of which demands novel ideas.

Stage 1: A Basic Algorithm.: We start with our
basic algorithm. A natural idea for achieving the T =
Õ(H〈m〉/K) running time is to randomly partition the
n arms to K agents, and then ask each agent to solve
a top-η arms identification (for some value η) on its
sub-instance. At the end we try to aggregate the K
outputs. As briefly mentioned in the introduction, there
are multiple hurdles associated with this approach. First,
it is not clear how to set the value η, since we do not
know how many global top-m arms will be distributed
to each agent. Second, even if we know the number
of global top-m arms assigned to each agent, there
are cases in which the global instance complexity is
rarely distributed evenly across the K agents. In other
words, we cannot guarantee that each agent can solve
the subproblem within our time budget Õ(H〈m〉/K).

We resolve these issues using the following ideas: we
take a conservative approach by setting η ≈ (m/K −√
n), and ask each agent to adopt a PAC algorithm for

multiple arm identification and compute an approximate
set of top-η arms on its sub-instance using Õ(H〈m〉/K)
time steps. The approximation error is a random vari-
able depending on the random partition process. We
then show that with a good probability this error is
smaller than the gap between the smallest mean of the
outputted arms and that of the global m-th arm. In this
way we can guarantee that the approximate top-η arms
outputted by each agent are indeed in the set of global
top-m arms. Using the same idea we try to prune a set
of “bottom” arms of size ≈ ((n−m)/K −

√
n). After

these operations we recurse on the rest O(K
√
n) arms.

We continue the recursion for O(log logn
logK ) rounds until

the number of arms is reduced to K10, and then use a
simple O(log n)-round collaborative algorithm which is
modified from an existing centralized algorithm. Note
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that for n′ = K10 we have O(log n′) = O(logK), and
thus overall we have used O(log logn

logK +logK) rounds.
Stage 2: General Time Horizon.: The basic algo-

rithm only guarantees that the set of top-m arms are
correctly identified with probability 0.99. Our next goal
is to make the error probability exponentially small
in T , which is achievable in the centralized setting.
The standard technique to achieve this is to perform
parallel repetition and then take the majority. That is,
we guess the instance complexity to be H = 1, 2, 4, . . .,
and for each guess we run the basic algorithm with
time horizon H for T/H times. Finally, we take the
majority of the output. In the case that the budget T
is larger than the actual instance complexity, at each
run with probability 0.99 we are guaranteed to obtain
the correct answer. Unfortunately, when T is smaller
than the actual instance complexity, not much can be
guaranteed. For some bad input instances, the output of
the basic algorithm can be consistently wrong, resulting
in a wrong majority.

We resolve this difficulty by introducing a notion
we call top-m certificate, which takes form of a pair
(S, {θ̃i}i∈I), with the property that S = Topm and for
each i ∈ I , it holds that

∣∣∣θ̃i − θi∣∣∣ < ∆
〈m〉
i /4. We can

augment our basic algorithm to output a (S, {θ̃i}i∈I)
pair (instead of simply a set of top-m arms). We then
design a verification algorithm which is able to check
for each (S, {θ̃i}i∈I) pair whether it is indeed a top-m
certificate. Our verification step can be fully parallelized
and can finish within our guessed instance complexity
H . With such a verification step at hand, the situation
that we take a wrong majority will not happen with high
probability.

Stage 3: Better Round Complexity.: Our ultimate
goal is to achieve an O(log logm

logK + logK) round
complexity, instead of O(log logn

logK + logK) in the
basic algorithm. We approach this by first reducing the
number of arms in the input instance to Õ(m), and
then applying the basic algorithm. Such a reduction,
however, is highly non-trivial, especially when we re-
quire the error probability introduced by the reduction
to again be exponentially small in T .

Our basic idea for performing the reduction is the
following: we construct a random sub-instance V by
sampling each of the n arms with probability 1/m.
We can show that with constant probability, V con-
tains exactly one global top-m arm, and H〈1〉(V ) =
O(H〈m〉/m). Therefore we have enough time budget
to compute the best arm of V and include it into set
S as a top-m candidate. We perform this subsampling
procedure for Õ(m) times, getting Õ(m) sub-instances.

By the Coupon Collector’s problem we know that all
global top-m arms will be included in S with a good
probability.

The challenging part is to reduce the error probability
of this reduction to a value that is exponentially small
in T . Unfortunate, the idea of “guess-then-verify” that
we have used previously does not apply here – there
is simply no (S, {θ̃i}i∈I) pair for us to verify in the
reduction process.

We take the following new approach. We try to make
sure that for each randomly sampled sub-instance on
which we try to compute the best arm, the probability
of outputting any arm in Topm is at least half of that of
any arm outside Topm. This turns out to be enough for
us to guarantee that the set S contains all top-m arms.
We comment that the relaxation “half” is necessary here
for a technical reason which we will elaborate next.

Our key observation is that if we provide sufficient
time budget, say, T ≥ λH〈1〉(V ) where λ is a polylog-
arithmic factor, for solving a randomly sampled sub-
instance V , then provided that there is only one arm
a ∈ Topm in V , we will output a correctly with a
good probability. Now for any two arms a ∈ Topm and
b 6∈ Topm, by the uniformity of the sampling they will
be in the sub-instance with equal probability. We are
thus able to conclude that the probability of outputting
a is at least as large as that of outputting b. On the other
hand, if T ≤ H〈1〉(V ), then we can use our verification
step to detect this event. The subtle part is the middle
case when H〈1〉(V ) ≤ T ≤ λH〈1〉(V ), to handle which
we perturb our time budget T such that it takes values
T/λ or λT with equal probability. Using this trick we
are able to “reduce” the third case to the first two cases
with probability at least 1/2, which leads to our desired
property. The actual implementation of this idea is more
involved, and we refer the readers to Section III-D for
details.

B. Lower Bounds for the Fixed-Time Setting

In the lower bound part, we present two results. The
first result is that Ω(logK/(log logK + logα)) com-
munication rounds are needed for any algorithm with
(K/α) speedup to identify the top-m arms for any m.
This matches (up to logarithmic factors) the R term in
the O(log logm

logK +R) rounds vs Õ(K(R−1)/R) speedup
trade-off in our upper bound result. This lower bound
theorem is derived via a simple reduction together with
the similar type of lower bound proved in [55] for the
m = 1 special case.

Our main contribution in the lower bound part is the
second theorem. The theorem states that even if the goal
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is an O(
√
K) speedup, the log logm

logK term in the round-
speedup trade-off is necessary. (In fact, the log logm

logK can
be shown to be necessary for any Kζ speedup where ζ
is a positive constant.) This marks a completely different
phenomenon from the m = 1 special case where only
2 rounds of communication are needed to achieve an
Õ(
√
K) speedup [55], [31]. Below we sketch the proof

idea for this lower bound theorem.
The need for the log logm

logK term in the round complex-
ity stems from the hardness of collaboratively learning
the splitting position (i.e., where the m-th largest arm lo-
cates), which turns out to be substantially more difficult
than estimating the best arm (the m = 1 special case).
We start from the fact that any (possibly randomized)
algorithm cannot identify the number of 1’s in the n-
bit binary vector with success probability ω(n−1/2), if
the algorithm is allowed to probe only o(n) entries in
the vector. A strengthened statement we will prove as
the building block is the following lower bound for the
“learning the bias” problem: given n Bernoulli arms
(i.e., the stochastic reward of the arm is either 0 or 1),
each of which has mean reward (µ+ ε) or (µ− ε), then
any algorithm using o(nε−2/ log(n/ε)) samples will not
be able to identify the number of two types of arms with
probability ω(n−1/2).2

Now we explain the connection between the learning
the bias problem and the top-m arm identification
problem by sketching the plan of constructing the hard
instances as follows. Suppose that we set all but n1/2

arms in the hard instance to be Bernoulli with mean
reward either (µ+ε) (namely “the top arms”) or (µ−ε)
(namely “the bottom arms”). We denote the set of the
rest n1/2 arms by M , and their mean rewards are
sandwiched between (µ + ε) and (µ − ε). We will
set m = n/2, i.e., the goal is to identify the top
half of the arms. Now, as long as the number of top
arms, denoted by X , is bounded between n

2 −
√
n and

n
2 +
√
n, the goal is equivalent to identify the X top

arms and the top-(n2 −X) arms in M . We then vary the
number of the top arms and consequently the number
of the bottom arms (say, let X be uniformly randomly
chosen from the range), and will argue that each agent
will not be able to identify X much better than a
random guess without communication, and therefore

2The sample complexity lower bound for a similar problem is
proved in a recent work [44]. Our lower bound is different from
theirs in two aspects. First, in their setting, the number of arms is
not bounded and the goal is to estimate the fraction of the two types
of arms up to an additive error, while in our setting, the number of
arms is n, and the goal is to find out the exact numbers of arms
for the two types. Second, their lower bound is for algorithms with
constant success probability, while our lower bound is for algorithms
with only ω(n−1/2) success probability.

must perform one round of communication to learn
X in order to identify the top-(n2 − X) arms in M .
Here, the need for communication is due to the lower
bound for learning the bias and the fact that any agent
in a

√
K-speedup algorithm is allowed to make only

O(nε−2/
√
K) = o(nε−2) samples (where we make

a crucial assumption that the H〈m〉 complexity of the
constructed hard instance is O(nε−2)). The last piece of
plan is to argue that since X is not known before the first
round of communication, each agent cannot make much
progress before the communication towards identifying
the top-(n2 −X) arms in M , which is a necessary sub-
task. We will finally inductively prove a communication
lower bound for this sub-task. Note that the number of
arms in M is n1/2, and this plan will lead to a log log n-
style round complexity lower bound.

There are several challenges for the plan above. Note
that in the sub-task for M , the goal is no longer to
identify the top half arms, which is not well aligned
with the (planned) induction hypothesis. Moreover, to
make the induction work, M would naturally have the
similar structure as the n-arm instance, i.e., with many
top and bottom arms (possibly with different µ and ε
parameters). However, such a construction would hardly
ensure that the H〈m

′〉 complexity is still O(nε−2).
Indeed, if the goal of the sub-task is to identify, for
example, the top |M |/4 arms, since most of the top
half arms are the same, the corresponding the H〈m

′〉

complexity would become infinitely large. Finally, it is
not clear how to make sure that any agent will not gain
much information about M before the first round of
communication so as to quickly identify the top (n2−X)
arms in M whenever X is learned.

To address these challenges, we craft a more com-
plex distribution of hierarchical instances. The main
highlight is that we let M consist of multiple blocks
I1, I2, . . . , Ik, where each block has the same number
of arms and is independently sampled from a recursively
defined hard distribution. We restrict the possible values
of (n2 − X) to be the half multiples of the block size
so that the sub-task always becomes to identify the top
half arms in Iξ for some ξ ∈ {1, 2, . . . k}. We will make
careful selection of the block parameters so that the
H〈m〉 complexity for any instance in the support of the
distribution, and the H〈m

′〉 complexity of any sub-task,
are all Θ̃(nε−2), where both upper and lower bounds
are crucial to the proof.

The detailed construction and proof idea are pre-
sented in Section IV-B1. For the analysis of the learning
the bias problem and the ultimate round complexity
lower bound, please refer to the subsequent subsections
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(Section IV-B2 and Section IV-B3).

III. A COLLABORATIVE ALGORITHM FOR THE
FIXED-TIME CASE

A. Preparation

In this section we give a few auxiliary lemmas to be
used in our algorithm and analysis.

The following lemma gives connections between in-
stance complexities and sub-instance complexities.

Lemma 1. Let V ⊆ I (|I| = n) be a subset of arms.
Let j ∈ {1, . . . , n−1} and k ∈ {1, . . . , |V | − 1} be two
indices such that θ[k](V ) ≥ θ[j] ≥ θ[j+1] ≥ θ[k+1](V ).
We have

1) H〈k〉(V ) ≤
∑
i∈V

(
∆
〈j〉
i

)−2

≤ H〈j〉.

2) H
〈k〉
ε (V ) ≤

∑
i∈V

max{∆〈j〉i , ε}−2 ≤ H〈j〉ε .

Proof: We start with the first item. The second
inequality is straightforward by the definition of H〈j〉.
For the first inequality, for each arm i ∈ V , we consider
two cases.

1) θi ≥ θ[k](V ): It holds that

∆
〈k〉
i (V ) = θi − θ[k+1](V ) ≥ θi − θ[j+1] = ∆

〈j〉
i .

2) θi ≤ θ[k+1](V ): It holds that

∆
〈k〉
i (V ) = θ[k](V )− θi ≥ θ[j] − θi = ∆

〈j〉
i .

We thus have

H〈k〉(V ) =
∑
i∈V

(
∆
〈k〉
i (V )

)−2

≤
∑
i∈V

(
∆
〈j〉
i

)−2

.

The second item follows from the same line of
arguments.

The next lemma gives a connection between instance
complexities under different pivots.

Lemma 2. For any t ∈ {1, . . . , n}, H〈t〉
∆
〈m〉
[t]

≤ 4H〈m〉.

Proof: We consider t ≤ m and t > m separately.
In the case that t ≤ m, for any i ∈ I we consider three
cases.

1) θi < θ[m]: In this case we have

max{∆〈t〉i ,∆
〈m〉
[t] } ≥ ∆

〈t〉
i

= θ[t] − θi ≥ θ[m] − θi = ∆
〈m〉
i .

2) θ[m] ≤ θi < θ[m+1]+2∆
〈m〉
[t] : In this case we have

max{∆〈t〉i ,∆
〈m〉
[t] } ≥ ∆

〈m〉
[t]

≥
θi − θ[m+1]

2
≥ ∆

〈m〉
i

2
.

3) θ[m+1] + 2∆
〈m〉
[t] ≤ θi: In this case we have

max{∆〈t〉i ,∆
〈m〉
[t] } ≥ ∆

〈t〉
i = θi − θ[t+1]

= θi − θ[m+1] + θ[m+1] − θ[t+1]

≥
θi − θ[m+1]

2
+
θi − θ[m+1]

2
− (θ[t+1] − θ[m+1])

≥ ∆
〈m〉
i

2
+ ∆

〈m〉
[t] − (θ[t+1] − θ[m+1]) ≥

∆
〈m〉
i

2
.

Therefore,

H
〈t〉
∆
〈m〉
[t]

=
∑
i∈I

max
{

∆
〈t〉
i ,∆

〈m〉
[t]

}−2

≤
∑
i∈I

4
(

∆
〈m〉
i

)−2

≤ 4H〈m〉.

In the case when t > m, the proof is symmetric by
considering the following three cases: (1′) θi > θ[m+1],
(2′) θ[m] ≥ θi > θ[m+1] + 2∆

〈m〉
[t] , and (3′) θ[m+1] +

2∆
〈m〉
[t] ≥ θi.

The following simple fact gives an upper bound of
the contribution (to the instance complexity) of an arm
that is not very close to the pivot.

Lemma 3. For any t ∈ {1, . . . , n}, if t ≤ m − z or
t ≥ m+ z, then(

∆
〈m〉
[t]

)−2

≤ H〈m〉/z.

Proof: In the case that t ≤ m−z, there are at least
z arms i such that θ[t] ≥ θi ≥ θ[m], or ∆

[m]
i ≤ ∆

〈m〉
[t] .

Consequently we have

H〈m〉 =
∑
i∈I

(
∆
〈m〉
i

)−2

≥ z ·
(

∆
〈m〉
[t]

)−2

.

The case t ≥ m+ z can be proved in the same way.
We need two centralized algorithms

CentralAppTop and CentralAppBtm for
computing (ε,m)-top/bottom arms. We leave their
detailed description to Section III-E1. The following
lemma summarizes the guarantees of these two
algorithms; it is a direct consequence of Lemma 26
and Lemma 27, which will be presented and proved in
Section III-E1.

Lemma 4. Let I be a set of n arms, m ∈ {1, . . . , n−1},
and ε ∈ (0, 1) be an approximation parameter. Let

T1(I, a, ε, δ) = c1H
〈a〉
ε/2(I) · log

(
H
〈a〉
ε/2(I)/δ

)
for a universal constant c1. We have that
• If

T ≥ T1(I,m, ε, δ)
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then CentralAppTop(I,m, T, δ) with probabil-
ity at least 1− δ, returns m arms each of which is
(ε,m)-top in I using at most T time steps.

• If
T ≥ T1(I, n−m, ε, δ)

then CentralAppBtm(I,m, T, δ) with probabil-
ity at least 1− δ, returns m arms each of which is
(ε,m)-bottom in I using at most T time steps.

The following lemma says that there is a simple
collaborative algorithm CollabTopMSimple for top-
m arm identification that uses O(log n) rounds of
communication. Note that this bound is still much
larger than our final target O(log logm+logK) rounds.
CollabTopMSimple is a simple modification of a
centralized algorithm in [12], and will be described in
details in Section III-E2. Lemma 5 is a direct con-
sequence of Lemma 28, which will be presented and
proved in Section III-E2.

Lemma 5. Let I be a set of n arms, and m ∈
{1, . . . , n− 1}. Let

T2(I,m, δ) = c2 ·
H〈m〉(I)

K
· log n · log

n

δ
(4)

for a universal constant c2. There is a collaborative
algorithm CollabTopMSimple(I,m, T ) such that if
T ≥ T2(I,m, δ) then with probability at least 1 − δ,
one computes the set of top-m arms of I using at most
T time steps and O(log n) rounds.

B. Special Time Horizon T

In this section we prove the following theorem con-
cerning a special time horizon T .

Theorem 6. Let I be a set of n arms, and m ∈
{1, . . . , n− 1}. Let

T0 = c0
H〈m〉

K

(
log
(
H〈m〉K

)
+ log2 n

)
log(2) n (5)

for a large enough constant c0. There exists a collabo-
rative algorithm CollabTopM(I,m, T ) that computes
the set of top-m arms of I with probability at least
0.99 when T ≥ T0, and uses at most T time steps and
O(log logn

logK + logK) rounds of communication.

Algorithm and Intuition.: Our algorithm is de-
scribed in Algorithm 1. Note that we have used recur-
sion instead of iteration to omit a superscript r. But we
still call each recursive step a round.

Let us briefly describe Algorithm 1 in words. At the
beginning of each round we first randomly partition the
set of arms to the K agents. Then each agent tries to
identify a subset of arms Acci of size ` ≈ (m/K−

√
n)

Algorithm 1: CollabTopM(I,m, T )

Input: a set of n arms I , parameter m, and
time horizon T .

Output: the set of top-m arms of I .
1 Let R be the global upper bound on the number

of rounds and δ be also the global parameter
equal to 1/(100R);

2 q ← 4K
√
n log (nR);

3 if n > K10 then
4 Acc ← ∅,Rej ← ∅;
5 randomly assign each arm in I to one of the

K agents, and let Ii be the set of arms
assigned to i-th agent 3;

6 if m > q then
7 `← (m− q)/K;
8 for agent i = 1 to K do
9 Acci ←

CentralAppTop
(
Ii, `,

T
4R ,

δ
2K

)
;

10 Acc ←
⋃K
i=1 Acci;

11 if n−m > q then
12 r ← (n−m− q)/K;
13 for agent i = 1 to K do
14 Rej i ←

CentralAppBtm
(
Ii, r,

T
4R ,

δ
2K

)
;

15 Rej ←
⋃K
i=1 Rej i;

16 return

Acc⋃
CollabTopM(I\(Acc∪Rej ),m−|Acc|, T )

17 else
18 return CollabTopMSimple(I,m, T/2) .

to be included to Topm, and a subset of arms Rej i
of size r ≈ ((n − m)/K −

√
n) to be pruned. The

intuition to introduce the additive
√
n term is that by a

concentration bound, we have with a good probability
that at least ` true top-m arms will be assigned to
each agent, and similarly at least r non-top-m arms
will be assigned to each agent. However, even with
this fact, we still cannot guarantee that each agent can
identify the top and bottom arms successfully given its
limited budget, which is approximately H〈m〉/K. Such
a budget in some sense demands that the global instance
complexity is evenly divided into the K agents, which is
not necessary true. We thus adopt a PAC algorithm for
top-m arm identification which returns a set of ` (ε, `)-
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top arms at each agent Ai, where ε is a random variable
which, with a high probability, is smaller than the gap
between the `-th top arm locally at Ai and that of the m-
th global top arm. In this way we can guarantee that it is
safe to include each Acci that Ai computes into Topm.
By essentially the same arguments, we can show that it
is safe to prune the set of bottom arms Rej i.

The following lemma is critical for the correctness of
the algorithm.

Lemma 7. if T ≥ T0 (defined in 5). When running
Algorithm 1 CollabTopM(I,m, T ) , we have that at
each round,

Pr [(Acc ⊆ Topm) ∧ (Rej ⊆ I \ Topm)]

≥ 1− 1/(200R),

where Acc and Rej are defined in Algorithm 1.

Before proving Lemma 7, we first show that Lemma 7
implies Theorem 6.

Proof of Theorem 6: W.l.o.g. we assume that K =
ω(log log n). Note that when K = O(log log n), we
have T0 ≥ K · T2(I,m, 1/100), and thus each agent
can simply solve the problem independently using the
centralized algorithm in [12].

Let m′ = m − |Acc|. If Acc ⊆ Topm and Rej ⊆
I \ Topm, then we have

1) Topm = Acc ∪ Topm′(I \ (Acc ∪ Rej )).
2) H〈m

′〉(I \ (Acc ∪ Rej )) ≤ H〈m〉.
The first item is obvious. The second item is due to
Lemma 1. The second item ensures that the recursion
goes through under the same time horizon.

By the first item, Lemma 5 (note that T/2 ≥
T2(I,m, 1/200)), and a union bound, we have that
with error at most (1/(200R) · R + 1/200) = 1/100,
Algorithm 1 computes Topm.

Now we analyze the running time. Under the con-
dition that at each round we have Acc ⊆ Topm and
Rej ⊆ I \ Topm, it follows that when n > K8 and
K = ω(log log n),

n− |Acc| − |Rej | ≤ 2 · 4K
√
n log (nR) ≤ n7/8.

Therefore after R = 10 log
(

logn
10 logK

)
rounds, we

have n(7/8)R ≤ K10. Consequently Algorithm 1
must have already reached Line 18. The algorithm
CollabTopMSimple in Line 18 takes O(logK10) =
O(logK) rounds by Lemma 28 (setting R = log n
where n = K10 here). Thus the total number of rounds
is bounded by O

(
log
(

logn
logK

)
+ logK

)
.

In the rest of this section we will prove Lemma 7.

Let q = 4K
√
n log (nR), ` = (m− q) /K and r =

((n−m)− q) /K be defined in Algorithm 1. Further,
define a = m− q/2 and b = (n−m)− q/2.

The following lemma concerns properties of the
random partition in Line 5 in Algorithm 1.

Lemma 8. Let V be a random subset of I (n > K10)
by taking each arm independently with probability 1/K.
We have

1) If m > q, then

Pr
[
(|V | ≥ `) ∧

(
θ[`](V ) ≥ θ[a]

)]
≥ 1− 1

1600KR
.

2) If n−m > q, then

Pr
[
(|V | ≥ r) ∧

(
θ[|V |−r+1](V ) ≤ θ[n−b+1]

)]
≥ 1− 1

1600KR
.

Proof: We focus on the first item; the second item
is symmetric and can be proved by similar arguments.

For each i ∈ {1, . . . , a}, we define a random variable
Xi which is 1 if the arm with mean θ[i] lies in the set
V , and 0 otherwise. Let X =

∑a
i=1Xi. Thus E[X] =

a/K. By Chernoff-Hoeffding (Lemma 41) we have

Pr[X < `] = Pr
[
X <

a

K
− q

2K

]
≤ exp

(
−8n log (nR)

a

)
≤ 1

1600KR
.

Thus with probability at least
(
1− 1

1600KR

)
, V contains

at least ` arms with mean at least θ[a].
The next lemma connects the global instance com-

plexity with the local instance complexity.

Lemma 9. Let V be a random subset of I (n >
K10) by taking each arm independently with proba-
bility 1/K. Let P be a random variable such that
θ[P ] = θ[`](V ), and Q be a random variable such that
θ[Q] = θ[|V |−r+1](V ). We have

1) If m > q, then

Pr

[
(|V | ≥ `) ∧

(
H
〈`〉
∆
〈m〉
[P ]

(V ) ≤ 5H〈m〉/K

)]
≥ 1− 1

800KR
.

2) If n−m > q, then

Pr

[
(|V | ≥ r) ∧

(
H
〈r〉
∆
〈m〉
[Q]

(V ) ≤ 5H〈m〉/K

)]
≥ 1− 1

800KR
3This randomness can be precomputed and stored at each agent.
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Proof: We only need to prove the first item. The
second item follows by symmetry.

When m > q, let χ denote the event (|V | < `) ∨
(θ[`](V ) < θ[a]). By Lemma 8 we have that χ happens
with probability at most 1/(1600KR). We have

Pr

[
(|V | < `) ∨

(
H
〈`〉
∆
〈m〉
[P ]

(V ) >
5H〈m〉

K

)]
≤ Pr

[
χ̄ ∧

(
H
〈`〉
∆
〈m〉
[P ]

(V ) >
5H〈m〉

K

)]
+ Pr[χ]

≤ Pr

[
χ̄ ∧

(
H
〈`〉
∆
〈m〉
[P ]

(V ) >
5H〈m〉

K

)]
+

1

1600KR
. (6)

Apply the law of total probability to the first term:

Pr

[
χ̄ ∧

(
H
〈`〉
∆
〈m〉
[P ]

(V ) >
5H〈m〉

K

)]
=

a∑
p=1

Pr

[(
H
〈`〉
∆
〈m〉
[p]

(V ) >
5H〈m〉

K

)
∧ (P = p)

]

≤
a∑
p=1

Pr

[∑
i∈V

max
{

∆
〈p〉
i ,∆

〈m〉
[p]

}−2

>
5H〈m〉

K

]
, (7)

where the inequality is due to Lemma 1.

For each i ∈ I , define Xi = max
{

∆
〈p〉
i ,∆

〈m〉
[p]

}−2

if
i ∈ V , and Xi = 0 otherwise. Let X =

∑
i∈I Xi. We

thus have E[X] = H
〈p〉
∆
〈m〉
[p]

/K. By Lemma 2 we have

E[X] ≤ 4H〈m〉

K
. (8)

By Lemma 3 and p ≤ a = m− q/2, we have

Xi =
[
0, H〈m〉

/q
2

]
. (9)

By (8), (9), and Chernoff-Hoeffding we have

Pr
[
X > 5H〈m〉/K

]
= Pr

[
X > E[X] +H〈m〉/K

]
≤ exp

(
−2
(
H〈m〉/K

)2
n
(
2H〈m〉/q

)2
)

= exp

(
−q2

2K2n

)
≤ 1

1600nKR
.

We thus have (7) ≤ a ·1/(1600nKR) ≤ 1/(1600KR),
which, together with (6), gives the first item of the
lemma.

Now we are ready to prove Lemma 7.
Proof of Lemma 7: We first analyze the probability

that Acc ⊆ Topm.

Again let P be the random variable such that θ[P ] =
θ[`](Ii) for a partition Ii. Since at Line 9 of Algorithm 1
we call CentralAppTop with time budget T/4R, we
have that if H〈`〉

∆
〈m〉
[P ]

(V ) ≤ 5H〈m〉/K then

T

4R
≥ T1

(
Ii, `,∆

〈m〉
[P ] /4, 1/(800KR)

)
,

and with probability at least 1/(800KR) · K =
1/(800R), it holds that CentralAppTop

(
Ii, `,

T
4R

)
succeeds for all i ∈ {1, . . . ,K}, which, together with
the first item of Lemma 9, gives that

Pr[Acc ⊆ Topm] ≥ 1− 1

400R
.

By symmetric arguments we can also show that
Pr[Rej ⊆ I \ Topm] ≥ 1− 1/(400R).

C. General Time Horizon T

Theorem 6 only achieves a constant error probability
for a special case of the time horizon T = Θ̃(T0)
where T0 = H〈m〉/K. Our next goal is to consider
general time horizon T ≥ T0, and try to make the error
probability decrease exponentially with respect to T/T0.
More precisely, we have the following theorem.

Theorem 10. Let I be a set of n arms, and m ∈
{1, . . . , n − 1}. Let T be a time horizon. There exists
a collaborative algorithm CollabTopMGeneral that
computes the set of top-m arms of I with probability at
least

1−n·exp

(
−Ω

(
TK

H〈m〉 · (log(H〈m〉K) + log2 n)A

))
,

where A = log log n · log2
(
TK/H〈m〉

)
, using at most

T time steps and O
(

log logn
logK + logK

)
rounds.

High Level Idea.: A standard technique to achieve
an error probability that is exponentially small in terms
of T/T0 is to perform parallel repetition and then take
the majority. This is straightforward if we know the
value T0. Unfortunately, T0 depends on the instance
complexity which we do not know in advance. A
standard trick to handle this issue is to use the doubling
method. That is, we guess T0 = 1, 2, 4, . . ., and for
each value we repeat T/T0 times (ignoring logarithmic
factors). We know that one of these values is very
close to the actual T0. We hope that this value is the
first value in {1, 2, 4, . . .} for which the T/T0 runs of
CollabTopM(I,m, T ) contain a majority output.

The main issue in this approach is that when T ≤ T0,
the output of the algorithm can be consistently wrong,
which leads to a wrong majority. Note that we do not
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have much control on the output of the algorithm when
the time horizon is very small.

We handle this issue by introducing a concept called
top-m certificate. We require each algorithm for top-m
arm identification to output a pair (S, {θ̃i}i∈I), where S
is a subset of I of size m and {θ̃i}i∈I are the estimated
means for all arms in I (not just those in S). We say a
pair (S, {θ̃i}i∈I) is a top-m certificate if it can pass an
additional verification step which checks whether S is
indeed the set of top-m arms of I given the estimated
means {θ̃i}i∈I . With such a verification step at hand, we
do not need to worry about the case that CollabTopM
will output a wrong answer when T is too small, since
a wrong output will simply not pass the verification
step. Finally, we make sure that this verification step is
perfectly parallelizable and thus fit in our time budget.

In the rest of this section we will first give the
definition of the top-m certificate and describe the
verification algorithm, and then give the collaborative
algorithm for general time horizon T .

1) Top-m Certificate:

Definition 2 (Top-m Certificate). Let S ⊆ I . We say
(S, {θ̃i}i∈I) is a top-m certificate of I if

(S = Topm) ∧
(
∀i ∈ I :

∣∣∣θ̃i − θi∣∣∣ < ∆
〈m〉
i /4

)
.

Observation 11. If (S, {θ̃i}i∈I) is a top-m certificate,
then for any i ∈ S and j ∈ I\S, we have θ̃i > θ̃j .

Given an arbitrary pair (S, {θ̃i}i∈I), we can design
an algorithm to verify whether (S, {θ̃i}i∈I) is a top-m
certificate of I; see Algorithm 2 VerTopM. We note that
Algorithm 2 can be easily implemented in O(1) rounds
since the number of pulls on each arm is determined in
advance and can thus be fully parallelised.

The following lemma shows that if (S, {θ̃i}i∈I) is in-
deed a certificate and T is large enough, then VerTopM
returns the set S with a good probability.

Lemma 12. For any I,m, S, {θ̃i}i∈I , γ, T , we have

Pr[VerTopM(I,m, S, {θ̃i}i∈I , γ, T ) 6∈ {Topm,⊥}]
≤ 2n · e−γ . (10)

Moreover, if (S, {θ̃i}i∈I) is a top-m certificate of I , and
T ≥ 200γH〈m〉/K then

Pr[VerTopM(I,m, S, {θ̃i}i∈I , γ, T ) 6= Topm]

≤ 2n · e−γ . (11)

Proof: By Chernoff-Hoeffding, for any i ∈ I , after
64γ∆−2

i pulls, we have Pr[|θ̂i − θi| > ∆i/8] ≤ 2e−γ .
By a union bound we have

Pr[∃i : |θ̂i − θi| > ∆i/8] ≤ 2n · e−γ . (12)

Algorithm 2: VerTopM(I,m, S, {θ̃i}i∈I , γ, T )

Input: a set of n arms I , parameter m, pair
(S, {θ̃i}i∈I), parameter γ, and time
horizon T .

Output: the set of top-m arms, or ⊥.
1 Set `← arg mini∈S θ̃i and

r ← arg maxi∈I\S θ̃i;
2 for each i ∈ S set ∆i ← θ̃i − θ̃r, and for

i ∈ I\S set ∆i ← θ̃` − θ̃i;
3 if ∃i s.t. ∆i ≤ 0 or |S| 6= m then return ⊥;
4 if

∑
i∈I

(
64γ∆−2

i

)
≤ KT then

5 pull i-th arm for 64γ∆−2
i times and let θ̂i be

the empirical mean;
6 if min

i∈S
{θ̂i −∆i/4} > max

i∈I\S
{θ̂i + ∆i/4}

then return S;

7 return ⊥.

We now show that if

∀i : |θ̂i − θi| ≤ ∆i/8, (13)

then Algorithm 2 can only output S when S = Topm.
We prove by contradiction. Suppose Algorithm 2

outputs S when S 6= Topm, then there must exist a
pair (i, j) such that i ∈ S\Topm and j ∈ Topm\S,
and consequently θi < θj . Meanwhile, by Line 6 of
Algorithm 2 we have

θ̂i −∆i/4 > θ̂j + ∆j/4. (14)

Combining (13) and (14) we have

θi > θi −∆i/8 > θj + ∆j/8 > θj ,

which contradicts to the choices of (i, j). This proves
(10).

We next prove (11). If (S, {θ̃i}i∈I) is a top-m cer-
tificate, then by (13) we have

∆
〈m〉
i /2 ≤ ∆i ≤ 3∆

〈m〉
i /2.

Thus if T ≥ 200γH〈m〉/K, then∑
i∈I

(
64γ∆−2

i

)
≤ 200γ

∑
i∈I

(
∆
〈m〉
i

)−2

≤ KT.

We thus only need to show that

min
i∈Topm

{θ̂i −∆i/4} > max
i6∈Topm

{θ̂i + ∆i/4} . (15)

We again prove by contradiction. Suppose that there
exists a pair (i, j) such that i ∈ Topm, j 6∈ Topm, and

11



θ̂i −∆i/4 ≤ θ̂j + ∆j/4, then by (13) we have

θi − θj ≤
3

8
(∆i + ∆j) ≤

3

8

(
∆
〈m〉
i + ∆

〈m〉
j

)
, (16)

which contradicts to the fact that 1
2

(
∆
〈m〉
i + ∆

〈m〉
j

)
≤

θi − θj .
For technical reasons we need the following lemma,

which says that VerTopM is very likely to output ⊥
when the time horizon T is small.

Lemma 13. For any I , m, S, {θ̃i}i∈I , and γ, if T <
γ
16H

〈m〉/K, then

Pr[VerTopM(I,m, S, {θ̃i}i∈I , γ, T ) = ⊥]

≥ 1− 2n · exp(−γ) .

Proof: We can assume that Topm = S, and for
any i ∈ S and j 6∈ S we have θ̃i > θ̃j , since otherwise
VerTopM will simply output ⊥.

If for all i we have ∆i ≤ 32∆
〈m〉
i , then

∑
i∈I

∆−2
i ≥

H〈m〉/1024, and consequently∑
i∈I

(
64γ∆−2

i

)
≥ γ

16
H〈m〉 > KT.

In this case, according to Line 4 of Algorithm 2,
VerTopM will output ⊥.

Now consider the case that there exists i such that
∆i > 32∆

〈m〉
i . We first consider the case i ∈ S. By

(12) we have that with probability 1 − 2n · exp(−γ),
the event holds: ∀i ∈ I : |θ̂i − θi| < ∆i/8; denote this
event by E1. Consequently,

θ̂i −∆i/4 ≤ θi −∆i/8 ≤ θi − 4∆
〈m〉
i . (17)

Consider j such that θj = θ[m+1]. When E1 holds, we
have

θ̂j + ∆j/4 ≥ θj . (18)

Note that at Line 4, Algorithm 2 returns a set only if
θ̂i − ∆i/4 > θ̂j + ∆j/4, which, by (17) and (18), is
equivalent to θi − 4∆

〈m〉
i > θj . We now have

∆
〈m〉
i = θi − θj > 4∆

〈m〉
i .

A contradiction.
The case that i ∈ I\S can be proved by essentially

the same arguments.
2) Algorithm for General Time Horizon: In this sec-

tion we present an algorithm for general time horizon.
We first slightly augment Algorithm 1 CollabTopM
so that it also outputs an estimate of the mean (i.e., the
empirical mean) of each of the n arms. Now the output
of CollabTopM is a top-m certificate (S, {θ̃i}i∈I).

Algorithm 3: CollabTopMGeneral(I,m, T )

Input: a set of n arms I , parameter m, and
time horizon T .

Output: the set of top-m arms of I .
1 for s = 1, 2, . . . do
2 run 4s copies of

CollabTopM
(
I,m, 3T/(π2s24s)

)
, and

record the returned pair (S, {θ̃i}i∈I);
3 let S(s) be the most frequent answer of the

4s returned sets of top-m arms, and for
each i ∈ [n], let θ̃(s)

i be the median of the
4s estimated means for the i-th arm;

4 run
VerTopM(I,m, S(s), θ̃(s), 4s, 3T/(π2s2))
and let As be the output ;

5 let s? be the maximum s such that As 6= ⊥;
6 if we cannot find such an s? after T time steps

then
7 return an arbitrary set of m arms;

8 else
9 return As? .

We have the following lemma regarding
CollabTopM. The proof is straightforward
based on the properties of CentralAppTop
and CentralAppBtm, which can be found in
Section III-E.

Lemma 14. If T ≥ T0, then CollabTopM(I,m, T ) is
able to output a top-m certificate of I with probability
at least 0.99.

Our final algorithm for the general time horizon is
described in Algorithm 3. It follows the guess-and-
verify framework mentioned earlier. Now we are ready
to prove the main theorem of this section.

Proof of Theorem 10: Let s′ be the largest
s ≥ 1 such that 3T/(π2s24s) ≥ T0, and consequently
4s
′

= Ω
(

T/T0

log2(T/T0)

)
. If no such s exists then Theo-

rem 10 holds trivially. By Lemma 14 and the standard
median trick we have that with probability at least
1− exp(−4s

′
), (S(s′), θ̃(s′)) is a top-m certificate. We

also have

3T/(π2(s′)2) ≥ 200 · 4s
′
· H
〈m〉

K
,

which, combined with Lemma 12, guarantees that the
call of VerTopM at Line 4 in Algorithm 3 returns Topm
with probability at least 1− 2n · exp(−4s

′
). By a union
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bound, we have that

Pr[As′ = Topm] ≥ 1− 4n · exp(−4s
′
). (19)

On the other hand, for each s = s′ + j (j ≥ 1), by
Lemma 12 we have

Pr[As′ 6∈ {Topm,⊥}] ≤ 2n · exp(−4s
′+j). (20)

Combining (19) and (20), we have

Pr[As∗ = Topm]

≥ Pr[As′ = Topm]−
∞∑

j=s′+1

Pr[Aj 6∈ {Topm,⊥}]

≥ 1− 4n
∑
s≥s′

exp(−4s) ≥ 1− 8n · exp(−4s
′
).

Plugging the fact that 4s
′

= Ω
(

T/T0

log2(T/T0)

)
, we have

Pr[As∗ = Topm] ≥ 1− n · exp
(
−Ω

(
T/T0

log2(T/T0)

))
.

Finally, it is easy to see that CollabTopMGeneral
can be implemented in O(log logn

logK + logK) rounds
of communication by Theorem 6, because all runs of
CollabTopM can be done in parallel and VerTopM
requires only the constant number of rounds of commu-
nication.

D. An Improved Algorithm

In this section we further improve the round com-
plexity of Algorithm 1 to O(log logm

logK + logK).
High Level Idea.: The general idea to improve

the log log n term to log logm in the round complex-
ity is to first reduce the number of arms from n to
Õ(m). This idea is relatively easy to implement if we
only target for a constant error probability: We sample
each of the n arms with probability 1/m, getting a
subset V . By an easy calculation, the event that V
contains exactly one top-m arms of I happens with
a constant probability. Conditioned on this event, the
expected sub-instance complexity H〈1〉(V ) is upper
bounded by O(H〈m〉(I)/m). Thus if we sample Õ(m)
sub-instances, and compute the best arm in each sub-
instance , then the collection of the Õ(m) best arms
will be a superset of Topm with a good probability.

As before, our ultimate goal is to make the error
probability exponentially small in terms of T . To this
end we also need to amplify the success probability
of the aforementioned reduction. Unfortunately, using a
verification step as that in Section III-C is not sufficient
here, and once again we need new ideas. We note that
this section is the most technically challenging part in
the whole algorithm design of this paper.

To start with, we again try to guess the sub-instance
complexity using a geometric sequence, and use parallel

repetition to amplify the success probability. Similar as
Section III-C2, the key is to avoid outputting a wrong
majority when the guess is too small. This is possible
if the following statement holds:

For a randomly sampled sub-instance on
which we compute the best arm, the probabil-
ity of outputting any arm inside global Topm
is larger than that of any arm outside Topm.

Unfortunately, this statement does not always hold.
We thus try to prove a slightly weaker version of the
statement. We show that the probability of outputting
any arm inside global Topm is not much smaller than
that of any arm outside Topm.

To show this, we consider three cases. Let V be the
randomly sampled sub-instance. Let T0 be our guessed
complexity of V , and H = H〈1〉(V ) be the real
expected complexity of V .

1) If T0 ≥ λH where λ = logΘ(1)(T0Kn), then
if we apply the best arm identification algorithm
from [55] on V with time budget T , with a
good probability we can successfully identify the
best arm. Note that since our subsampling is
uniform, for any pair of two arms a, b where
a ∈ Topm, b 6∈ Topm, they will be included in
the sub-instance with equal probability. Therefore
the probability of outputting a must be at least
that of outputting b.

2) If T0 ≤ H , then by applying [55] on V with time
budget T0, together with a verification step (Al-
gorithm 2), we can detect with a good probability
that our guess T0 is too small compared with H .

3) To handle the gap H < T0 < λH , we apply the
following trick: We replace T0 by T0 or T0/λ with
equal probability, so as to “reduce” this case to
either the first or the second case, for which we
know how to handle. In this way we can show
that for a ∈ Topm, b 6∈ Topm, the probability
of outputting a is at least half that of outputting
b. We note that this intuitive description is not
entirely precise, but it conveys the idea.

In this section we prove the following theorem.

Theorem 15. Let I be a set of n arms, m ∈ {1, . . . , n−
1}, and T be the time horizon. There exists a collab-
orative algorithm that computes the set of top-m arms
of I with probability at least

1− n · exp

(
−Ω

(
KT

H〈m〉B

))
,

where

B = log6(KT ) log2 (KT/H〈m〉) log n,
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Algorithm 4: A(V, δ, T )

1 Run B(V, T/2), and let the pair ({a}, θ̃) be the
certificate produced by B;

2 return VerTopM(V, 1, {a}, θ̃, log(|V |/δ), T/2).

using at most T time steps and O(log logm
logK + logK)

rounds.

1) Subsampling and Its Properties: We need the
following technical lemma.

Lemma 16. Let V be a set of n arms, and η be the
time horizon. There exists a collaborative algorithm
A(V, δ, η), and functions

f(V, δ, η) = Cf ·
H〈1〉(V )

K
· log3 ηK · log

|V |
δ
, (21)

and

g(V, δ) = Cg ·
H〈1〉(V )

K
· log

|V |
δ
, (22)

where Cf and Cg are universal constants such that
1) A returns an arm from V or ⊥ using at most η

time steps and O(logK) rounds of communica-
tion;

2) Pr[A(V, δ, η) 6∈ {Top1(V ),⊥}] ≤ δ;
3) If η ≥ f(V, δ, η), then

Pr[A(V, δ, η) = Top1(V )] ≥ 1− δ;

4) If η ≤ g(V, δ), then Pr[A(V, δ, η) = ⊥] ≥ 1− δ.

We will show that the algorithm for fixed-time best
arm identification in [55] (denoted by B(V, T ), where
V is the input and T is the time horizon), combined
with Algorithm 2 (setting m = 1), satisfies Lemma 16.

We first recall the following result from [55].

Lemma 17 ([55]). For any V and T and fixed R,
B(V, T ) uses in at most T time steps and R rounds
of communication, and returns the best arm with prob-
ability at least

1− |V | exp

(
−Ω

(
TK(R−1)/R

H〈1〉(V ) · log3 (TK)

))
.

In Algorithm 4 we describe how to augment B(V, T )
with a verification step to construct A(V, δ, T ). By
Lemma 17, Lemma 12, Lemma 13, and setting
R = logK, A(V, δ, T ) satisfies all the four items of
Lemma 16.

By (21) and (22), we have

f(V, δ, η)

g(V, δ)
≤ Cf
Cg
· log3 ηK .

Algorithm 5: A′(I,m, δ, T )

Input: a set of n arms I , parameters m and δ,
and time horizon T .

Output: the top-1 arm in a subset of I obtained
by randomly sampling each arm in I
with probability 1/m.

1 Sample each element from I independently with
probability 1/m; let V be the sampled subset ;

2 choose τ ∈ {T, T/β} uniformly at random;
3 return A(V, δ, τ).

Define
β ,

Cf
Cg
· log3 TK .

We now design another algorithm A′ for finding the
best arm in a random subset of I , using Algorithm 4
as a subroutine. A′ is described in Algorithm 5. The
following lemma says that any arm in the top-m arms
of I will be returned with a good probability by A′.

Lemma 18. For any I , δ ∈
(
0, 1

2

)
and arm a ∈ Topm,

if

T ≥ cA ·
H〈m〉

δKm
· log6 (TK) · log

n

δ
(23)

for a universal constant cA, then we have

Pr [A′(I,m, δ, T ) = a] ≥ (1− δ)2

em
. (24)

Proof: We first note that for each a ∈ Topm and
V ⊆ I sampled at Line 1 in Algorithm 5, if f(V, δ, τ) ≤
T/β and Topm∩V = {a}, then by Item 3 of Lemma 16
we have Pr[A′(I,m, δ, T ) = a] ≥ 1− δ.

According to the uniform subsampling, we have

Pr[Topm ∩ V = {a}] =
1

m
·
(

1− 1

m

)m−1

≥ 1

em
. (25)

For every i ∈ I , let Xi = 1 if i ∈ V and Xi = 0
otherwise. For any V such that V ∩ Topm = {a}, we
have

H〈1〉(V ) ≤ 2
∑

i∈I\Topm

(θa − θi)−2Xi

≤ 2
∑

i∈I\Topm

Xi

(
∆
〈m〉
i

)−2

.

We thus have

E[H〈1〉(V ) | Topm ∩ V = {a}] ≤ 2

m
H〈m〉.
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By a Markov inequality, we have that conditioned on
Topm ∩ V = {a}, with probability (1− δ),

H〈1〉(V ) ≤ 2

δm
H〈m〉 (26)

and so on

f(V, δ, τ) ≤ Cf
H〈1〉(V )

K
· log3 TK · log

n

δ

≤ Cf
2H〈m〉

δKm
· log3 TK · log

n

δ
≤ T

β
≤ τ , (27)

under which

A(V, δ, τ) outputs a with probability (1− δ) (28)

according to Item 3 of Lemma 16.
Finally, we have

Pr[A′(I,m, δ, T ) = a] = Pr[A(V, δ, τ) = a]

≥ Pr[A(V, δ, τ) = a|H〈1〉(V ) ≤ τ,Topm ∩ V = {a}]
· Pr[H〈1〉(V ) ≤ τ | Topm ∩ V = {a}]

· Pr[Topm ∩ V = {a}]
≥ (1− δ) · (1− δ) · 1/(em) = (1− δ)2/(em),

where the last inequality is due to (25), (26) and (28).

The next lemma is critical. It says that the probability
that Algorithm 5 outputs any arm from Topm cannot
be significantly smaller than that of outputting any arm
from I\Topm.

Lemma 19. For any arms a 6∈ Topm, b ∈ Topm and
δ ∈

(
0, 1

2

)
we have

Pr[A′(I,m, δ, T ) = a]

≤ Pr[A′(I,m, δ, T ) = b] +

(
1

2em
+

2δ

m

)
.

Proof: Let us consider a pair of random sets
(U, V ), where V is formed by picking each of the n
arms of I with probability 1/m, and U is the set of V
after exchanging the assignments of a and b. By this
construction we have that

Top1(V ) = a⇒ Top1(U) = b. (29)

Moreover, it is easy to see that the marginal distribution
of U is identical to that of V .

Note that A′(I,m, δ, T ) = A(V, δ, τ). We thus only
need to prove

Pr[A(V, δ, τ) = a]

≤ Pr[A(V, δ, τ) = b] +

(
1

2em
+

2δ

m

)
. (30)

We start from the left hand side.

Pr[A(V, δ, τ) = a]

= Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)]

+ Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) 6= a)]

≤ Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)]

+ Pr[(a ∈ V ) ∧ A(V, δ, τ) 6∈ {Top1(V ),⊥}]
≤ Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)]

+
δ

m
, (31)

where the last inequality follows from the fact that
Pr[a ∈ V ] = 1/m and Item 2 of Lemma 16.

By (29) we have

Pr[(A(U, δ, τ) = b) ∧ (Top1(V ) = a)]

≤ Pr[(A(U, δ, τ) = b) ∧ (Top1(U) = b)]. (32)

Since the marginal distribution of U and V are
identical, we have

Pr[A(U, δ, τ ) = b ∧ Top1(U) = b]

≤ Pr[A(U, δ, τ ) = b]

= Pr[A(V, δ, τ) = b]. (33)

The following claim enables us to connect
Pr[A(V, δ, τ) = a] and Pr[A(V, δ, τ) = b].

Claim 20. For any arm a 6∈ Topm, b ∈ Topm, and
δ ∈ (0, 1

2 ), we have

Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)]

≤ Pr[(A(U, δ, τ ) = b) ∧ (Top1(V ) = a)]

+
1 + δ

2em
. (34)

We will prove Claim 20 shortly. By (31), (34), (32),
(33) (one for each inequality below; in order),

Pr[A(V, δ, τ) = a]

≤ Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)] +
δ

m
≤ Pr[(A(U, δ, τ) = b) ∧ (Top1(V ) = a)]

+
1 + δ

2em
+

δ

m
≤ Pr[(A(U, δ, τ) = b) ∧ (Top1(U) = b)]

+

(
1

2em
+

2δ

m

)
≤ Pr[A(V, δ, τ) = b] +

(
1

2em
+

2δ

m

)
.

This proves Inequality (30) and gives the lemma.
Proof of Claim 20: We first note that if

Top1(V ) = a, then by our construction of U , the fact
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that a 6∈ Topm and b ∈ Topm, and the monotonicity of
functions f and g, we have

f(U, δ, τ ) ≤ f(V, δ, τ) and g(U, δ) ≤ g(V, δ). (35)

We expand the left hand side of (34) by running over
all subsets S ⊆ I .

Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)]

=
∑

S:Top1(S)=a

Pr[(A(V, δ, τ) = a) ∧ (V = S)]. (36)

For each V = S where Top1(S) = a, we analyze
the quantity

Ψ , Pr[(A(V, δ, τ) = a) ∧ (V = S)]

− Pr[(A(U, δ, τ) = b) ∧ (V = S)]

in two cases which cover all possible T , in both cases
we use properties of A from Lemma 16.

1) f(U, δ, T ) ≤ T :

Ψ =
1

2
Pr[(A(V, δ, T ) = a) ∧ (V = S)]

+
1

2
Pr[(A(V, δ, T/β) = a) ∧ (V = S)]

−1

2
Pr[(A(U, δ, T ) = b) ∧ (V = S)]

−1

2
Pr[(A(U, δ, T/β) = b) ∧ (V = S)]

≤ 1

2
+

1

2
− 1− δ

2
− 0

2
≤ 1 + δ

2

2) T
β ≤ g(U, δ):

Ψ =
1

2
Pr[(A(V, δ, T ) = a) ∧ (V = S)]

+
1

2
Pr[(A(V, δ, T/β) = a) ∧ (V = S)]

−1

2
Pr[(A(U, δ, T ) = b) ∧ (V = S)]

−1

2
Pr[(A(U, δ, T/β) = b) ∧ (V = S)]

≤ 1

2
+
δ

2
− 0

2
− 0

2
≤ 1 + δ

2
Combining the two cases, we have that

Pr[(A(V, δ, τ) = a) ∧ (Top1(V ) = a)]

− Pr[(A(U, δ, τ) = b) ∧ (Top1(V ) = a)]

≤ 1 + δ

2

∑
S:Top1(S)=a

Pr[V = S]

≤ 1 + δ

2

(
1− 1

m

)m
1

m

≤ 1 + δ

2
· 1

em
.

Algorithm 6: Reduction(I,m, δ, γ, T )

Input: a set of n arms I , parameters m, δ, and
γ, and time horizon T .

Output: a super set of Topm arms or ⊥.
1 Run independently z = 25m · 4γ/δ2 copies of
A′ (I,m, δ, T/z);

2 let α̂i be the frequency of i-th arm among the z
returned values by A′;

3 if (m-th largest α̂i) < 3/(4em) then
4 return ⊥;

5 else
6 return all arms i for which α̂i ≥ 1/(16em).

2) Reduction to O(m) Arms: With Lemma 19 we
are able to design an algorithm such that given a
time horizon T , it either returns a superset of Topm
of size O(m), or ⊥. The algorithm is described in
Algorithm 6. The following lemma characterizes the
property of Algorithm 6.

Lemma 21. For any I , m, δ ∈
(
0, 1

24

)
, and γ, we have

Pr[(Topm ⊆ Reduction(I,m, δ, γ, T ))

∨ (Reduction(I,m, δ, γ, T ) =⊥)]

≥ 1− n · exp(−4γ).

Moreover, If

T ≥ cR · 4γ ·
H〈m〉

δ3K
· log6 TK · log

n

δ

for a universal constant cR, then

Pr[Topm ⊆ Reduction(I,m, δ, γ, T )]

≥ 1− n · exp(−4γ).

Finally, if Reduction(I,m, δ, γ, T ) 6=⊥, then the
number of returned arms is bounded by O(m).

Proof: Let αi be the probability that A′ returns the
i-th arm, that is,

αi , Pr

[
A′
(
I,m, δ,

T

z

)
= i

]
.

Let H = {i ∈ I | αi ≥ 5
8em}. By Chernoff-Hoeffding

we have that

∀i ∈ I\H : Pr

[
α̂i ≥ (1 + δ) · 5

8em

]
≤ exp

(
− 5δ2z

24em

)
≤ exp(−4γ).
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Since 5(1+δ)
8em < 3

4em , it holds that

Pr

[
∀i ∈ I \H : α̂i <

3

4em

]
≥ 1− n · exp(−4γ). (37)

For the first part of the lemma, we consider two cases
regarding H .

1) |H| < m: By (37), Algorithm 6 returns ⊥ with
probability at least 1− n · exp(−4γ).

2) |H| ≥ m: We must have Topm ⊆ H or H \
Topm 6= ∅. In the first case, by the definition of
H we have that ∀i ∈ Topm : αi ≥ 5

8em ≥
1

8em .
In the second case, by Lemma 19 we have

∀i ∈ Topm : αi ≥
3

4em
−
(

1

2em
+

2δ

m

)
≥ 1

8em
.

By Chernoff-Hoeffding we have

∀i ∈ Topm : Pr

[
α̂i <

1

16em

]
≤ Pr

[
α̂i < (1− δ) · 1

8em

]
≤ exp

(
− δ2z

8em

)
≤ exp(−4γ).

Therefore with probability at least

1− n · exp(−4γ),

Algorithm 6 outputs a super set of Topm.
Combining the two cases, with probability at least 1−
n · exp(−4γ), Algorithm 6 outputs either ⊥ or a super
set of Topm.

For the second part, since

T

z
≥ cT ·

H〈m〉

25δKm
log6(TK) log

n

δ

≥ cA ·
H〈m〉

δKm
log6(TK) log

n

δ

for a large enough constant cT , by Lemma 18 we have
αi ≥ (1−δ)2

em for any i ∈ Topm. By Chernoff-Hoeffding
we have

∀i ∈ Topm : Pr

[
α̂i ≤

(1− δ)3

em

]
≤ exp

(
−δ

2(1− δ)2z

em

)
≤ exp(−4γ).

Since (1−δ)3
em > 3

4em , Algorithm 6 outputs a superset of
Topm with probability at least 1− n · exp(−4γ).

Finally, since
∑
i∈I α̂i ≤ 1, there are at most O(m)

arms i with α̂i ≥ 1/(16em).

Algorithm 7: ReductionGeneral(I,m, T )

Input: a set of n arms I , parameter m, and
time horizon T .

Output: a super set of top-m arms.
1 for s = 1, 2, . . . do
2 Bs ← Reduction

(
I,m, 1

25 , s,
6T
π2s2

)
;

3 let s? be the largest s such that Bs 6= ⊥;
4 if there is no such s then
5 return an arbitrary set of m arms;

6 else
7 return Bs? .

We now use Algorithm 6 as a building block for
designing the reduction algorithm for general time hori-
zon. The final reduction is described in Algorithm 7.

The following lemma summarizes the property of
Algorithm 7.

Lemma 22. For any I,m and T , the collaborative
algorithm ReductionGeneral(I,m, T ) returns a
super set of Topm of size O(m) with probability at
least

1− 2n · exp

(
−Ω

(
KT

H〈m〉C

))
,

where C = log6(TK) log2(TK/H〈m〉) log n.

Proof: Let s′ be the largest s such that 6T
π2s2 ≥

4s · cRH
〈m〉

δ3K log6 TK log n
δ with δ = 1

25 . If there is no
such s then the lemma follows trivially. Otherwise we
have

4s
′

= Ω

(
KT

H〈m〉C

)
. (38)

By Lemma 21 we have

Pr [Topm ⊆ Bs′ ] ≥ 1− n · exp(−4s
′
). (39)

For any s = s′ + j (j ≥ 1), by Lemma 21 we have

Pr [(Topm ⊆ Bs) ∨ (Bs =⊥)] ≥ 1− n · exp (−4s) .
(40)

By (39) and (40) we have

Pr[Topm ⊆ Bs? ] ≥ Pr[Topm ⊆ Bs′ ]

−
∞∑

s=s′+1

Pr[(Topm 6⊆ Bs) ∧ (Bs 6=⊥)]

≥ 1− n · exp(−4s
′
)− n ·

∞∑
s=s′+1

exp(−4s)

≥ 1− 2n · exp(−4s
′
),
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Algorithm 8: CollabTopMImproved(I,m, T )

Input: a set of n arms I , parameter m, and
time horizon T .

Output: the set of top-m arms of I .
1 B ← ReductionGeneral(I,m, T/2);
2 return CollabTopMGeneral(B,m, T/2).

which, combined with (38), concludes the lemma.
Now we are ready to prove Theorem 15.

Proof of Theorem 15: We describe the algorithm
in Algorithm 8. We first use Algorithm 7 to reduce the
number of arms to O(m), and then call Algorithm 3
CollabTopMGeneral to compute the set of top-m
arms.

The success probability of Theorem 15 follows di-
rectly from Lemma 22 and Theorem 10.

The round complexity follows from Lemma 16, The-
orem 10, and the ways Algorithm 7, Algorithm 6,
and Algorithm 5 are designed (they can be perfectly
parallelized). Basically, the first term O

(
log logm

logK

)
comes from Algorithm 6 in which we reduce the number
of arms from O(m) to O(K10). The second term
O(logK) comes from two sources. One is from Line 2
of Algorithm 8 where we have used the best arm
identification algorithm in [55] (setting R = logK), and
the other is due to the run of CollabTopMSimple on
the remaining K10 arms (setting R = log n = logK10).
The round complexities introduced by other steps are
negligible.

We comment that we can make the the second term in
the round complexity of Theorem 15 to be an arbitrary
number R, at the cost of slightly reducing the speedup.
These can be accomplished by using the general round-
speedup of Lemma 17 and Lemma 28, by setting round
complexity to R and 10R respectively. On the other
hand, the first term O

(
log logm

logK

)
remain the same

even we target a Θ̃(
√
K) speedup. We will show in

Section IV that this is inevitable.

Theorem 23. Let I be a set of n arms, and m ∈
{1, . . . , n − 1}. Let T be a time horizon and R be a
parameter (1 ≤ R ≤ logK). There exists a collabora-
tive algorithm that computes the set of top-m arms of
I with probability at least

1− n · exp

(
−Ω

(
TK(R−1)/R

H〈m〉 ·D · log log n

))
,

where D = (log(H〈m〉K)+R log n)·log2
(
TK/H〈m〉

)
,

using at most T time steps and O
(

log logm
logK +R

)

Algorithm 9: LUCB(I,m, ε, δ)

Input: a set of n arms I , parameter m,
parameters ε, δ ∈ (0, 1)

Output: the set of m arms such that each arm
is (ε,m)-top

1 Pull each arm once; ∀i, pi ← 1;
2 for t = |I|+ 1, |I|+ 2, . . . do
3 Let H be the set of m arms with highest

estimated mean θ̂i, and L← I \H;
4 h? ← arg mini∈H{θ̂i − β(pi, t)}, and

l? ← arg maxi∈L{θ̂i + β(pi, t)};
5 if (θ̂l? + β(pl? , t))− (θ̂h? − β(ph? , t)) < ε/2

then
6 return H;

7 pull h? and l?, and increment pl? and ph? .

rounds.

If we want to present Theorem 23 in the form of
round-speedup tradeoff, we have the following corol-
lary.

Corollary 24. There is a collaborative algorithm for
the top-m arms identification problem that achieves
Ω̃(K(R−1)/R) speedup using at most O(log logm

logK +R)
rounds of communication.

E. Auxiliary Algorithms

1) PAC Top-m Arm Identification: Let

β(u, t) :=

√
1

2u
log

(
5nt4

4δ

)
.

We first recall the LUCB algorithm from [37], which is
described in Algorithm 9.

The following lemma summarizes the properties of
Algorithm 9.

Lemma 25 ([37]). Algorithm 9 LUCB(I,m, ε, δ) re-
turns the set of (ε,m)-top arms with probability at least
(1 − δ) using at most O

(
H
〈m〉
ε log

(
H
〈m〉
ε /δ

))
time

steps. Moreover,

Pr[∀i ∈ I : |θ̂i − θi| ≤ max{∆〈m〉i /4, ε/4}] ≥ 1− δ.

Note that Algorithm 9 is used to minimize the time
(number of pulls) given PAC parameters ε and δ. In our
task we need to (implicitly) minimize ε given T and δ.
For this purpose we need to modify Algorithm 9 a bit;
we described our new algorithm in Algorithm 10.
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Algorithm 10: CentralAppTop(I,m, T, δ)

Input: a set of n arms I , parameter m, time
horizon T , and parameter δ.

Output: the set of m arms such that each arm
is (ε,m)-top.

1 Pull each arm once; ∀i, pi ← 1 and set set
t← n;

2 while t ≤ T − 2 do
3 let H be the set of m arms with highest

estimated mean θ̂i, and L← I \H;
4 h? ← arg mini∈H{θ̂i − β(pi, t)}, and

l? ← arg maxi∈L{θ̂i + β(pi, t)};
5 pull h? and l?, update θ̂l? and θ̂l? , set

t← t+ 2, and increment pl? and ph? ;

6 return H.

The following lemma summarizes the properties of
Algorithm 10. It can be proved in essentially the same
way as that for Lemma 25 in [37].

Lemma 26. If T ≥ c1H
〈m〉
ε log

(
H
〈m〉
ε /δ

)
for a

large enough constant c1, then with probability at least
(1− δ), CentralAppTop(I,m, T, δ) returns a set of
(ε,m)-top arms. Moreover,

Pr[∀i ∈ I : |θ̂i − θi| ≤ max{∆〈m〉i /4, ε/4}] ≥ 1− δ.

The algorithm CentralAppBtm is almost iden-
tical to CentralAppTop: we can just follow
CentralAppTop, but replace all the sample values
x with 1− x.

Lemma 27. If T ≥ c1H
〈n−m〉
ε log

(
H
〈n−m〉
ε /δ

)
for a

large enough constant c1, then with probability at least
(1− δ), CentralAppBtm(I,m, T, δ) returns a set of
(ε,m)-bottom arms and

Pr[∀i ∈ I : |θ̂i − θi| ≤ max{∆〈n−m〉i /4, ε/4}] ≥ 1− δ.

2) A Simple Collaborative Algorithm for Top-m
Identification: The CollabTopMSimple algorithm,
described in Algorithm 11, is a slightly modified version
of the successive accepts and rejects (SAR) algorithm
in [5]. The goal of the modification is to achieve a small
number of rounds of communication in the collaborative
setting.

Lemma 28. For any fixed R, Algorithm 11
CollabTopMSimple(I,m, T ) uses at most T
time steps and R + 1 rounds of communication, and
returns a top-m certificate (S,Θ) with probability at

Algorithm 11: CollabTopMSimple(I,m, T )

Input: a set of arms I , parameter m, and time
horizon T .

Output: the set of top-m arms.
1 I0 ← I , m0 ← m, Acc1 ← ∅, Θ← ∅;
2 T0 ← 0, Tr ←

⌊
nr/RT

n1+1/R(R+1)

⌋
for

r = 1, . . . , R + 1;
3 nr ←

⌊
n

nr/R

⌋
for r = 0, . . . , R + 1;

4 for r = 0, . . . , R do
5 each agent pulls each arm i ∈ Ir for

(Tr+1 − Tr) times;
6 let θ̂(r)

i for i ∈ Ir be the aggregated mean of
i-th arm after KTr pulls;

7 let σr : {1, . . . , |Ir|} → Ir be the bijection
such that θ̂(r)

σr(1) ≥ θ̂
(r)
σr(2) ≥ . . . ≥ θ̂

(r)
σr(|Ir|);

8 for i ∈ Ir define empirical gaps ∆
(r)
i ={

θ̂
(r)
i − θ̂

(r)
σr(mr+1), if θ̂(r)

i ≥ θ̂
(r)
σr(mr),

θ̂
(r)
σr(mr) − θ̂

(r)
i , if θ̂(r)

i ≤ θ̂
(r)
σr(mr+1)

;

9 let Er be the set of (nr − nr+1) arms from
Ir with the largest gaps ∆

(r)
i ;

10 Accr+1 ←
Accr ∪

{
i ∈ Er | θ̂(r)

i ≥ θ̂
(r)
σr(mr)

}
;

11 for i ∈ Er add θ̂(r)
i to Θ;

12 set Ir+1 ← Ir \ Er and
mr+1 ← m− |Accr+1|;

13 return (AccR+1,Θ).

least

1−2n(R+1)·exp

(
−KT

256 · n1/RH〈m〉 · (R+ 1) log 2n

)
.

Proof: The R + 1 round complexity is clear from
the description of the algorithm. The running time can
be upper bounded by

R∑
r=0

nr · Tr+1 ≤
R∑
r=0

n

nr/R
· nr/RT

n(R+ 1)
= T.

We next bound the error probability. The argument is
very similar to the one in [5], and we include it here
for completeness.

Let π : {1, . . . , n} → I be the bijection such that

∆
〈m〉
π(1) ≤ ∆

〈m〉
π(2) ≤ . . . ≤ ∆

〈m〉
π(n) .

Consider the event

E2 :
{
∀i ∈ I, ∀r = 0, . . . , R : |θ̂(r)

i − θi| ≤ ∆
〈m〉
π(nr+1)/8

}
.
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We have

Pr
[
Ē2
]

≤
∑
i∈I

R∑
r=0

Pr
[
|θ̂(r)
i − θi| > ∆

〈m〉
π(nr+1)/8

]
(41)

≤
∑
i∈I

R∑
r=0

2 exp

(
−KTr+1 ·

(
∆
〈m〉
π(nr+1)/8

)2
)

(42)

≤ 2n(R+ 1) · exp
(

−KT
256·n1/RH〈m〉·(R+1) log 2n

)
(43)

where (41) → (42) is due to Chernoff-Hoeffding, and
(42) → (43) we have used an inequality from [5]:

max
i∈I

{
i/
(

∆
〈m〉
π(i)

)2
}
≤ log 2n ·H〈m〉.

Once E2 holds, the proof for that fact that the returned
pair (S,Θ) is a top-m certificate is straightforward.

IV. LOWER BOUNDS FOR THE FIXED-TIME CASE

In this section, we prove the following lower bound
theorems for the fixed-time setting.

Theorem 29. For every K, m (m ≤ K), and α
(α ∈ [1,K0.1]), if a fixed-time collaborative algorithm
A with K agents returns the top-m arms for every
instance J with probability at least 0.99, when given
time budget α

17K ·H
〈m〉(J), then there exists an instance

J ′ such that A uses Ω(logK/(log logK + logα))
rounds of communication in expectation given instance
J ′ and time budget α

17K ·H
〈m〉(J ′).

In other words, to achieve (K/α) speedup for identi-
fying the top m arms, the collaborative algorithm needs
Ω(logK/(log logK + logα)) communication rounds.

We will prove Theorem 29 in Section IV-A. It is
relatively easy and resembles the round complexity
lower bound Ω(logK/(log logK + logα)) for top arm
identification in the fixed-time setting [55].

Theorem 30. For every large enough K and m such
that K ≥ Ω(log4m), if a fixed-time collaborative
algorithm A with K agents returns the top-m arms
for every instance J with probability at least 0.99,
when given time budget 1√

K
·H〈m〉(J), then there exists

an instance J ′ such that A uses Ω(log(logm/ logK))
rounds of communication given instance J ′ and time
budget 1√

K
·H〈m〉(J ′).

In other words, even if one only aims at
√
K speedup,

the collaborative algorithm needs

Ω(log(logm/ logK))

rounds of communication.

Theorem 30 will be proved in Section IV-B. It
marks the different round complexity requirement for
collaborative multiple arm identification compared to
the best arm identification problem. It is known that
only constant number of round is needed to achieve
0.99 success probability using Õ(K−ζ ·H〈m〉(J)) time
budget (i.e., Õ(Kζ) speedup) for every constant ζ ∈
(0, 1) [31], [55]. However, Theorem 30 rules out such
possibility for the multiple arm identification problem,
proving it much harder than best arm identification in
the collaborative setting. We note that we only prove
the lower bound for ζ = 1/2, for the simplicity of the
exposition. However, the proof can be easily extended
to any constant ζ > 0. The only differences are that, in
the theorem statement, the constraint K ≥ Ω(log4m)
will become K ≥ logf(ζ)m, and the round complexity
lower bound will become 1

f(ζ) ·log(logm/ logK) where
f(ζ) > 0 increases as ζ approaches 0.

A. Proof of Theorem 29

The proof of Theorem 29 is via a simple reduction
from the following lower bound for the best arm iden-
tification problem.

Theorem 31 (Theorem 10 in [55]). For every K
and α (α ∈ [1,K0.1]), if a fixed-time collaborative
algorithm B with K agents returns the best arm for
every instance I with probability at least 0.99, when
given time budget α

K · H
〈1〉(I), then there exists an

instance I ′ with H〈1〉(I ′) ≥ K such that 1) the mean
reward of the best arm in I ′ is less or equal to 1/2
and 2) B uses Ω(logK/(log logK + logα)) rounds
of communication in expectation given instance I ′ and
time budget α

K ·H
〈1〉(I ′).

Proof of Theorem 29: Given an algorithm A to
identify the top-m arms, we construct an algorithm B
to identify the best arm as follows.

For every instance I where the mean reward of the
best arm is at most 1/2, we create (m − 1) artificial
arms with mean reward 3/4, and together with I we
have an instance J . We have that H〈m〉(J) ≤ 16(m−
1) + H〈1〉(I). When H〈1〉(I) ≥ K ≥ m, we further
have H〈m〉(J) ≤ 17H〈1〉(I). If A is given time budget
T , the algorithm B will simulate A with instance J and
time budget T . Whenever an artificial arm is queried by
A, B will generate a sample from a Bernoulli variable
with mean 3/4; otherwise, B queries the real arm in
I and feed the observation back to A. The total time
used by B (only counting queries to the real arms) is at
most T , satisfying the time budget constraint. When A
returns the identified arms, B will return any real arm
from the set (or declare failure if no such arm exists). If
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A returns the correct top m arms in J (which happens
with probability at least 0.99), B will also return the
correct best arm of I .

Now invoking Theorem 31, we know that there exists
an instance I ′ with H〈1〉(I ′) ≥ K such that B uses
Ω(logK/(log logK + logα)) rounds of communica-
tion in expectation for instance I ′ and time budget
T = α

K · H
〈1〉(I ′). Therefore, we have that A uses

Ω(logK/(log logK+logα)) rounds of communication
in expectation for the corresponding instance J ′ (con-
structed from I ′) and time budget T . Also note that
T ≥ α

17KH
〈m〉(J ′), and we complete the proof.

Remark 32. Given the above proof, one may observe
that the m ≤ K constraint in Theorem 29 can be
relaxed to admit much bigger m if Theorem 31 can be
strengthened to provide lower bound instances I ′ such
that H〈1〉(I ′) � K. We highly believe this is possible,
and we do have a proof sketch in the core of which is
an improved argument of Section 3.2 in [55]. Since the
proof is quite involved and not directly related to this
paper, we leave the formal proof as a future work.

B. Proof of Theorem 30

1) The Hard Instances and the Proof Intuition: For
any fixed K (the number of agents), we define a dis-
tribution of instances I(C, µ, n) with n Bernoulli arms,
where we assume n is an odd integer, the parameter
C ∈ (0, 1/4) denotes the gap between the mean rewards
of the top arm and the bottom arm, the parameter
µ ∈ (3/8, 5/8). We always set m = (n − 1)/2, i.e.,
the goal is to identify the top half arms (not including
the median arm).

When n ≤ K10, we set I(C, µ, n) to be a determin-
istic instance where the (n− 1)/2 top arms have mean
reward (µ+C/2), and the (n−1)/2 bottom arms have
mean reward (µ − C/2). There is 1 middle arm with
mean reward µ sandwiched between the top and the
bottom arms.

When n > K10, we define a random sample I ∼
I(C, µ, n) in a recursive fashion as follows (and illus-
trated in Figure 1). Let η be the smallest odd integer that
is greater than 4

√
n. There are ((n− η(2η+ 1))/2 + ξη)

top arms with mean reward (µ + C/2), and there are
((n − η(2η + 1))/2 − ξη) bottom arms with mean
reward (µ − C/2), where the bias ξ is an integer
independently and uniformly sampled from [−η, η]. For
the rest η(2η+1) arms in the middle, we make (2η+1)
independent samples I1, I2, . . . , I2η+1 (each of which
has η arms), such that for each j ∈ [2η + 1], we have

Ij ∼ I
(
C
√
η/n, µ+

j − η − 1

8
· Cn−1/4, η

)
.

mean reward0 1μμ – C/2 μ + C/2

!"# $#%&
$ − ()

bottom arms

*& *#%& *$#%&… … … …

!"# $#%&
$ + ()
top arms

2) + 1 blocks (each has ) arms)

Figure 1: Illustration of the mean rewards of the arms
in I ∼ I(C, µ, n) for n > K10.

The final instance I consists of the union of the arms in
Ij (j ∈ [2η + 1]) together with the top and the bottom
arms. We also say that the arm is in the j-th block if it
is an arm in Ij .

Below we will claim a few properties about our
constructed hard instances. First, it is straightforward
to verify the lemma.

Lemma 33. For sufficiently large n, we have the
following claims.

1) For any arm in the j-th block, its mean reward
θ ∈ 1

2 + Cn−1/4 · ( j−η−1
8 ± 1

100 ). Therefore, the
mean rewards of all middle arms are sandwiched
between the top and the bottom arms, and any
two distinct blocks do not overlap.

2) The median arm of I is the median arm of Iξ+η+1.

In the following lemma, we show the order of the
complexity measure of the constructed instances.

Lemma 34. For each instance I in the support of
I(C, µ, n), we have

H〈m〉(I) = Θ

(
C−2n · log

(
e+

log n

logK

))
.

Proof: We prove this lemma via induction, where
the base case n ≤ K10 is straightforward to verify.

When n > K10, let η be defined in the construction
of the instances. Let I1, I2, . . . , I2η+1 be any instances
such that Ij is in the support of I(C

√
η/n, µ+ j−η−1

8 ·
Cn−1/4, η) for each j ∈ [2η + 1]. Let ξ ∈ [−η, η]
be any integer, and let I be the instance constructed
using the parameters above. Let θ[m] and θ[m+1] be the
mean rewards of the m-th and the (m+ 1)-th best arm,
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respectively. We have

H〈m〉(I) =(
n− η(2η + 1)

2
+ ξη

)
·
(

1 + C

2
− θ[m+1]

)−2

+

(
n− η(2η + 1)

2
− ξη

)
·
(

1− C
2
− θ[m]

)−2

+

ξ+η∑
j=1

∑
arm i in block j

(θi − θ[m])
−2

+

2η+1∑
j=ξ+η+2

∑
arm i in block j

(θi − θ[m+1])
−2

+H〈(η−1)/2〉(Iξ+η+1). (44)

By Lemma 33, we have θ[m], θ[m+1] ∈ 1
2 + Cn−1/4 ·

( ξ8 ±
1

100 ). Therefore, we have(
n− η(2η + 1)

2
+ ξη

)
·
(

1 + C

2
− θ[m+1]

)−2

+

(
n− η(2η + 1)

2
− ξη

)
·
(

1− C
2
− θ[m]

)−2

∈
[
C−2n

4
, 16C−2n

]
. (45)

and

ξ+η∑
j=1

∑
arm i in block j

(θi − θ[m])
−2

+

2η+1∑
j=ξ+η+2

∑
arm i in block j

(θi − θ[m+1])
−2

≤
2η∑
k=1

η ·
(
Cn−1/4 · (k/16)

)−2

≤ 256ηC−2n1/2 · π
2

6
≤ 512C−2n3/4. (46)

Combining (44), (45), and (46), for sufficiently large n,
we have

H〈m〉(I) ∈
[
C−2n

4
, 17C−2n

]
+H〈(η−1)/2〉(Iξ+η+1).

Apply induction hypothesis to H〈(η−1)/2〉(Iξ+η+1) and
we prove the lemma.

Proof Intuition.: The intuition about our lower
bound instance distribution is as follows. As pointed
out in Lemma 33 (Item 2), the top m = (n − 1)/2
arms consists of the top arms, the blocks from Iξ+η+2

to I2η+1, and finally the top half (excluding the median)
arms in block Iξ+η+1. Therefore, two necessary tasks

are i) to complete is to identify the value of ξ, and ii)
to identify the top half arms in Iξ+η+1.

For the first task, in Section IV-B2, we will intro-
duce a sub-problem named “learning the bias”. Via
studying this problem, we will show that, any agent,
if using at most H〈m〉(I)/

√
K queries, cannot learn

the correct value of ξ with probability ω(n−1/4). Note
that since there are only 2η + 1 = O(n1/4) possible
values for ξ, this means that the agent cannot do
much better than random guessing. Also, we note that
we prove the impossibility statement for agents with
even Θ(nC−2/ log(n/C)) queries, which is a stronger
statement as Lemma 34 shows that H〈m〉(I) is always
Θ̃(nC−2).

The above discussion suggests that a communication
step is needed for the agents to collectively decide the
exact value of ξ. It also suggests that not too many
queries are made to the block Iξ+η+1 before the first
communication step (more specifically, the amount is at
most O(n−1/4 fraction of the total number of queries
before the communication step, see Item 2 of Lemma 37
for detailed justification), which is negligible for further
identifying the top half arms in Iξ+η+1 (the second
necessary task). On the other hand, by Lemma 34,
H〈(η−1)/2〉(Iξ+η+1) is still Θ̃(nC−2). Therefore, we
can recursively apply the similar argument to Iξ+η+1,
yielding a communication round lower bound that is
proportional to the number of hierarchies in the defini-
tion of I(C, µ, n), which is Θ(log(log n/ log k)).

This recursive (or inductive) argument is presented in
Section IV-B3. Note that in the simplified explanation
above, we neglected the extra queries made to the
Iξ+η+1 before the first communication step. To formally
deal with these extra queries, we need to strengthen
the inductive hypothesis, and introduce the definition
of augmented algorithms where the agents enjoy a
small number of free (and shared) queries before the
very first communication round. We will show that the
communication round lower bound still holds even for
augmented algorithms.

2) The “Learning the Bias” Sub-problem and Its
Analysis: In this subsection, we identify a critical
sub-problem for identifying the top m arms in our
constructed hard instances. We then prove the sample
complexity lower bounds for the sub-problem, which
will be a crucial building block for the ultimate lower
bound theorem for identifying the top m arms.

We first define the sub-problem as follows.

Problem Definition (Learning the Bias). There are n
Bernoulli arms. Given the parameters ε ∈ (0, 1/8),
µ ∈ (3/8, 5/8), and a distribution D supported on
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{±1}n (which are publicly known), a hidden vector
(b1, b2, . . . , bn) is sampled from D, and the mean re-
ward of the i-th arm is set to be θi = µ + biε (also
hidden from the algorithm). The algorithm has a budget
of T adaptive samples from the arms, and the goal is
to decide the bias B = b1 + b2 + · · ·+ bn.

The following lemma shows the sample complexity
lower bound for learning the bias when D is the uniform
distribution.

Lemma 35. Assume that D is the uniform distribution
of {±1}n. For sufficiently large n, if

T ≤ nε−2/(20000 log(n/ε)) ,

then the probability that the player correctly identifies
B is at most O(n−1/2).

Proof: Without loss of generality we can assume
that the player makes the guess about B after using all
T samples. Let τ = (i1, y1, i2, y2, . . . , iT , yT ) be the
transcript of all samples, where it ∈ [n] denotes the
arm sampled from at time t, and yt ∈ {0, 1} denotes
the observation at time t. The player will finally uses
an algorithm A(τ) to decide the guess about the bias.
The probability that the player makes a correct guess is

Pr[correct guess] = E
τ

Pr
(b1,...bn)∼D

[A(τ) = B|τ ]

≤ E
τ

max
β

{
Pr

(b1,...bn)∼D
[B = β|τ ]

}
= E

τ
max
β

{
Pr

(b1,...bn)∼D(τ)
[B = β]

}
, (47)

where we let D(τ) be the posterior distribution of
(b1, b2, . . . , bn) given τ .

For fixed τ , let ri,t be the number of 1’s the player
observes among the first t samples made from the i-th
arm. Also let Ti be the total number of samples made
from the i-th arm, we have T = T1 + T2 + · · · + Tn.
Since D is a product distribution, we have

D(τ) = ⊗ni=1Di(ri,Ti , Ti), (48)

where Di(ri,Ti , Ti) is the posterior of bi given that ri,Ti
1’s are observed from Ti samples from arm i.

Note that the posterior distribution Di(ri,Ti , Ti) is
completely determined by the posterior probability pi ,
Pr [bi = +1|ri,Ti , Ti]. Let σ2

i , Var[Di(ri,Ti , Ti)] =
4pi(1−pi) for every arm i. Let σ2 , σ2

1 +σ2
2 + · · ·+σ2

n

(where σ ≥ 0). By (48) and invoking the Berry-Esseen

theorem (Theorem 42) with ρ = 8, we have

∀x ∈ R,

Pr
(b1,...bn)∼D(τ)

[
σ−1

n∑
i=1

(bi − (1− 2pi)) ≤ x

]
∈ Φ(x)± 4.5nσ−3/2. (49)

Since Φ(x) is a continuous function, we have

∀β ∈ R, Pr
(b1,...bn)∼D(τ)

[B = β] ≤ 9nσ−3/2. (50)

Now we will estimate the posterior probability pi and
give a lower bound on σ2 to upper bound the probability
in (50).

Via standard concentration inequalities (e.g., Hoeffd-
ing’s inequality), we have

∀i, t,Pr
τ

[
|ri,t − tθi| ≤ 2

√
t log(n/ε)

]
≥ 1− 2(ε/n)8.

Therefore, if we define E4 be the event

E4 , {∀i, t, |ri,t − tθi| ≤ 2
√
t log(n/ε)},

we have Prτ [E4] ≥ 1− 1/n6.
Say an arm i is sufficiently explored if Ti ≥

ε−2/(10000 log(n/ε)). By Markov’s inequality, there
are at most n/2 sufficiently explored arms. Fix an arm
i, let r = ri,Ti for notational convenience. Conditioned
on the event E4 and that it is insufficiently explored, we
have |r−Tiθi| ≤ 1/(50ε). Since θi = µ± ε, we further
have

|r − µTi| ≤
1

50ε
+ εTi ≤

1

40ε
. (51)

By the definition of pi, we have

pi

=
(µ+ ε)r(1− µ− ε)Ti−r

(µ+ ε)r(1− µ− ε)Ti−r + (µ− ε)r(1− µ+ ε)Ti−r

=
1

1 + (µ−εµ+ε )
r( 1−µ+ε

1−µ−ε )
Ti−r

. (52)

By (51), for ε ∈ (0, 1/8) and µ ∈ (3/8, 5/8), we have
that

Note that(
µ− ε
µ+ ε

)r (
1− µ+ ε

1− µ− ε

)Ti−r
=

(
µ− ε
µ+ ε

)µTi+(r−µTi)(1− µ+ ε

1− µ− ε

)(1−µ)Ti+(µTi−r)

,

(53)
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and for ε ∈ (0, 1/8), µ ∈ (3/8, 5/8), and Ti ≤
ε−2/10000, it holds that

(
µ− ε
µ+ ε

)µTi (1− µ+ ε

1− µ− ε

)(1−µ)Ti

∈ [0.99, 1.01].

(54)

Also, by (51) and the ranges for ε and µ, we have

0.75 ≤
(

(µ− ε)(1− µ− ε)
(µ+ ε)(1− µ+ ε)

)1/(40ε)

≤
(
µ− ε
µ+ ε

)r−µTi (1− µ+ ε

1− µ− ε

)µTi−r
≤
(

(µ+ ε)(1− µ+ ε)

(µ− ε)(1− µ− ε)

)1/(40ε)

≤ 1.3. (55)

Combining (52), (53), (54), and (55), and conditioned
on E4 and that arm i is insufficiently explored, we have
that pi ∈ [0.4, 0.6], meaning that σ2

i ≥ 0.96. Condi-
tioned on E4, since there are at most n/2 sufficiently
explored arms, we have that σ2 ≥ 0.48n. Using (50),
we have

E
τ

max
β

{
Pr

(b1,...bn)∼D(τ)
[B = β]

}
≤ E

τ

[
max
β

{
Pr

(b1,...bn)∼D(τ)
[B = β]

} ∣∣∣E4]+ Pr[E4]

≤ 9n(0.48n)−3/2 + n−6 ≤ 30n−1/2.

Together with (47), we prove the lemma.
To analyze the lower bound for our hard instances
I(C, µ, n), we need to adapt Lemma 35 to a different
distribution D, as shown in the following corollary.

Corollary 36. For any S ⊆ [n] (S 6= ∅), let D = D(S)
be the following distribution supported on {±1}n: first
sample a uniformly random integer s from S, and then
sample a uniformly random vector from {±1}n such
that the number of +1’s in the vector is exactly s.
Let q = mins∈S{2−n

(
n
s

)
}. For sufficiently large n, if

T ≤ nε−2/(20000 log(n/ε)), then in the learning the
bias problem, the probability that the player correctly
identifies B is at most O(n−1/2q−1 · |S|−1)

Proof: Construct the joint distribution with proba-
bility mass function p for the random variables

(b1, b2, . . . , bn, Y ) ∈ {±1}n × {0, 1}

as follows (where we let β =
∑n
i=1(bi + 1)/2 be the

number of +1’s in the vector (b1, b2, . . . , bn)),

p(b1, b2, . . . , bn, Y ) =
0 when β 6∈ S and Y = 1
2−n

(
n
β

)
when β 6∈ S and Y = 0

q
(
n
β

)−1
when β ∈ S and Y = 1

2−n
(
n
β

)
− q
(
n
β

)−1
when β ∈ S and Y = 0

.

It is clear that the marginal distribution on
(b1, b2, . . . , bn) is uniform over {±1}n and the
conditional distribution on (b1, b2, . . . , bn) given that
Y = 1 is D(S). Therefore, the probability that the
player correctly guesses B given D = D(S) is

Pr
(b1,b2,...,bn)∼D(S)

[correct guess]

= Pr
(b1,b2,...,bn,Y )∼p

[correct guess|Y = 1]

≤
Pr(b1,b2,...,bn,Y )∼p[correct guess]

Pr(b1,b2,...,bn,Y )∼p[Y = 1]
≤ O(n−1/2)· 1

q|S|
,

where in the last inequality, we invoked Lemma 35.
3) The Lower Bound Theorems for Communication

Rounds and Concluding the Proof: The following
lemma helps to relate the lower bound results derived
for the learning the bias problem in Section IV-B2 to
the form of top m arm identification.

Lemma 37. For sufficiently large K, any odd integer
n such that n > K10, any C ∈ (0, 1/8), and any
µ ∈ (3/8, 5/8), consider a random instance from
I(C, µ, n). For any player that makes at most T se-
quential samples, when T ≤ nC−2/(40000 log(n/C)),
we have the following claims.

1) The probability that the player correctly identifies
the top m arms is at most O(n−1/4) (recall that
m = (n− 1)/2).

2) The expected number of samples made to any arm
in the block that contains the median arm is at
most O(n−1/4T ).

Proof: We prove the lemma by reducing the learn-
ing of the bias problem to the top-m-arm identification
problem for the instance distribution I(C, µ, n)

Let us consider the learning the bias problem with
n′ = n − η(2η + 1) arms (note that n′ ≥ n/2),
ε = C, the same µ parameter, and the distribution
D = D(S) where S = {n′/2 + zη : z ∈ {−η, η +
1, . . . , η − 1, η}}. Once the expected rewards of the
n′ arms are determined by a sample from D, let J
be set of the arms. To construct a top-m-arm iden-
tification problem instance, we independently sample
smaller problem instances I1, I2, . . . , I2η+1 such that
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Ij ∼ I(C
√
η/n, µ + j−η−1

8 · Cn−1/4, η) for each
j ∈ [2η + 1]. Let I = J ∪ I1 ∪ I2 ∪ · · · ∪ I2η+1. One
can verify that I follows the distribution I(C, µ, n).

Now we prove the first claim. Suppose that the player
correctly identifies the top m arms with probability
p. According to Lemma 33, only the arms in block
(z + η + 1) have non-empty intersection with both
the set of top m arms and the set of the remaining
arms. Therefore, when conditioned on that the top m
arms are correctly identified, by checking the identified
set of arms, the player can find out the value of z,
and deduce that the bias B = 2zη. Therefore, there
exists an algorithm correctly identifying the bias with
probability at least p. Invoking Corollary 36, and noting
that |S| = Θ(n−1/4), q = Θ(1), we have that

p ≤ O
(

(n′)−1/2q−1 · |S|−1
)
≤ O(n−1/4).

Regarding the second claim, let us consider the
player, after making at most T samples, guessing
z = z̃ with probability tz̃+η+1/T , where tj is the
number of samples made to the j-th block, and finally
guessing B = 2z̃η. The probability that the player
successfully identifies the bias B is E[tz+η+1/T ]. In-
voking Corollary 36, we have that this value is upper
bounded by O(n−1/4). Therefore, we have E[tz+η+1] ≤
O(n−1/4T ), which proves the claim by noting that
block (z+ η+ 1) contains the median arm in I , due to
Lemma 33.

Definition of Augmented Algorithms and Uniform
Upper Bound p.: For fixed and sufficiently large K,
let A(α)

R,T be the set of R-round K-agent augmented
algorithms defined as follows. Any algorithm in A(α)

R,T

has R rounds of communication, where during each
round, the time budget is T/

√
K. Before the first round,

there is an augmented round where a single thread is
allowed to make αT sequential samples and broadcast
the observations to all agents. Let

p
(α)
R,T (C, n) , sup

A∈A(α)
R,T

sup
µ:|µ−1/2|<1/8−C

Pr
I∼I(C,µ,n),A

[A identifies the top m = (n− 1)/2 arms]

(56)

be the best success probability of augmented algorithms
in A(α)

R,T when the input instance follows I(C, µ, n) for
any µ : |µ−1/2| < 1/8−C, where the subscript of Pr
specifies that the probability is taken over both I and
the randomness of algorithm A. Clearly, if we can prove
that p(α)

R,T (C, n) < 0.1 for any α, we obtain the round
complexity lower bound R for fixed-time algorithms

with time budget T . In what follows, we will prove
upper bounds for p(α)

R,T (C, n) via induction.

Lemma 38. For any positive C ∈ (0, 1/8), any constant
ι ≥ 0, suppose n > K10, R ≥ 2, and

√
K ≥

80000 logι+1(nC−2). Let T = (nC−2) logι(nC−2),
and let η be the smallest odd integer that is greater
than 4

√
n. It holds that

p
(n−1/8)
R,T (C, n) ≤ O

(
n−3/32

)
+ p

(η−1/8)
R−1,T (C

√
η/n, η).

Proof: Fix any algorithm A ∈ A(α)
R,T and any

µ ∈ (3/8 + C, 5/8 − C), we will upper bound the
success probability of A given the input instance I ∼
I(C, µ, n).

Recall in the construction of the instance I ∼
I(C, µ, n), (2η+ 1) blocks are independently sampled.
Let ζ ∈ [2η + 1] be the block which the median
arm is in. Let n0 be the number of samples made in
the augmented round to arms in block ζ, and let ni
be the number of samples made in the first round to
arms in block ζ by agent i. For every agent i, by the
second claim of Lemma 37 (and observing that the total
number of samples made in the augmented round and
the first round by agent i is at most T/

√
K+n−1/8T ≤

T (K−1/2 + K−5/4) ≤ nC−2/(40000 log(n/C))), we
have that

E
I∼I(C,µ,n),A

[n0 + ni] ≤ O
(
nC−2 · n−1/4

)
.

Therefore,

E
I∼I(C,µ,n),A

[n0 + n1 + n2 + · · ·+ nK ]

≤ O
(
n3/4C−2 ·K

)
≤ O

(
n7/8C−2

)
.

Let E5 be the event that n0 + n1 + n2 + · · · + nK ≤
nC−2 · η−1/8. By Markov’s inequality, we have

Pr
I∼I(C,µ,n),A

[E5] ≥ 1− O(n7/8C−2)

nC−2 · η−1/8

= 1−O
(
n−3/32

)
. (57)

Our next goal is to establish (58) for every j ∈
[2η + 1]. Fix such j, consider the following algorithm
B that works for an instance Ij ∼ I(C

√
η/n, µ +

j−η−1
8 · Cn−1/4, η). The algorithm first samples Ij′ ∼

I(C
√
η/n, µ+ j′−η−1

8 ·Cn−1/4, η) for all j′ 6= j. The
algorithm B also creates ((n−η(2η+1))/2+(j−η−1)η)
Bernoulli arms with mean reward (µ + C/2), and
((n−η(2η+ 1))/2− (j−η−1)η) Bernoulli arms with
mean reward (µ−C/2). Combining all the arms (includ-
ing those in I1, I2, . . . , I2η+1), we have an instance I[

of n arms. The algorithm B simulates algorithm A with
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input instance I[ in the following manner. Whenever A
is to sample an arm in Ij , B queries the real arm in
Ij , otherwise B simulates a sample to the artificial arm,
and feed the observation to A. More importantly, only a
single thread is used to simulate A during the augmented
round and the first round. Then, if event E5 holds, all
K agents are used to simulate the corresponding agents
in A from the second round and reports Ij intersecting
the set of top arms returned by A; otherwise, B reports
failure and terminates.

Note that B ∈ A(η−1/8)
R−1,T . By the definition in (56), we

have

Pr
Ij ,B

[B identifies the top (η − 1)/2 arms in Ij ]

≤ p
(η−1/8)
R−1,T (C

√
η/n, η).

Note that I[ constructed above follows the conditional
distribution I(C, µ, n) given that the median arm is in
the j-th block. Also note that when E5 holds and A is
correct, B is also correct. Therefore, we have

Pr
I∼I(C,µ,n),A

[

A identifies the top (n− 1)/2 arms in I|ζ = j]

≤ Pr
I∼I(C,µ,n),A

[

A identifies the top (n− 1)/2 arms in I

∧ E5|ζ = j] + Pr
I∼I(C,µ,n),A

[E5|ζ = j]

≤ Pr
Ij ,B

[B identifies the top (η − 1)/2 arms in Ij ]

+ Pr
I∼I(C,µ,n),A

[E5|ζ = j]

≤p(η−1/8)
R−1,T (C

√
η/n, η) + Pr

I∼I(C,µ,n),A
[E5|ζ = j], (58)

where ζ is the block which the median arm is in.
Since (58) holds for all j ∈ [2η + 1]. We have

Pr
I∼I(C,µ,n),A

[A identifies the top (n− 1)/2 arms in I]

≤ p
(η−1/8)
R−1,T (C

√
η/n, η) + Pr

I∼I(C,µ,n),A
[E5].

(59)

Combining (57) and (59), we conclude the proof of the
lemma.

When R = 1, the agents do not communicate except
for the shared observation from the augmented round.
Therefore, Lemma 37 implies that for C ∈ (0, 1/8), any
constant ι ≥ 0, n > K10,

√
K ≥ 80000 logι+1(nC−2),

and T = (nC−2) logι(nC−2), it holds that

p
(n−1/8)
1,T (C, n) ≤ O

(
n−1/4

)
. (60)

Algorithm 12: Collaborative algorithm for
fixed-confidence setting.

Input: a set of arms I , parameter m, and a
confidence parameter δ.

Output: a set of top-m arms of I .
1 Initialize I0 ← I , m0 ← m, Acc0 ← ∅,

Rej 0 ← ∅, r ← 0, T−1 ← 0;
2 for r = 0, 1, . . . , let εr = 2−(r+1) and

Tr = 8 log(4n(r + 1)2δ−1)/(Kε2r);
3 while Ir 6= ∅ do
4 each agent pulls each arm in Ir for

Tr − Tr−1 times;
5 for each i ∈ Ir, let θ̂(r)

i be the estimated
mean of the i-th arm in Ir after KTr pulls
(over all rounds and agents so far);

6 let πr : {1, . . . , |Ir|} → Ir be the bijection
such that θ̂(r)

πr(1) ≥ θ̂
(r)
πr(2) ≥ . . . ≥ θ̂

(r)
πr(|Ir|);

7 Accr+1 ← Accr ∪ {i ∈ Ir : θ̂
(r)
i >

θ̂
(r)
πr(mr+1) + εr};

8 Rej r+1 ← Rej r ∪ {i ∈ Ir : θ̂
(r)
i <

θ̂
(r)
πr(mr) − εr};

9 mr+1 ← m− |Accr+1|;
10 Ir+1 ← Ir \

(
Accr+1 ∪ Rej r+1

)
;

11 r ← r + 1;

12 return Accr.

Combining Lemma 38 and (60), we have the follow-
ing lemma.

Lemma 39. For C ∈ (0, 1/8), any constant ι ≥
0, n > K10,

√
K ≥ 80000 logι+1(nC−2), T =

(nC−2) logι(nC−2), and R = dlog4
logn

10 logK e, it holds
that

p
(n−1/8)
R,T (C, n) ≤

R−1∑
r=0

O
(
n−4−r·3/32

)
≤ O(K−1/5).

Theorem 30 is proved by setting ι = 1 and C =
1/10 in Lemma 39, together with Lemma 34 and the
discussion below the definition of p (Equation (56)).

V. THE FIXED-CONFIDENCE CASE

In this section we discuss the fixed-confidence case.
We first present a collaborative algorithm for the fixed-
confidence case. The algorithm is inspired by [31]
and [12], and described in Algorithm 12.

Theorem 40. There is an algorithm (Algorithm 12)
that solves top-m arm identification with probability
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at least 1 − δ, using O
(

log
(

1/∆
〈m〉
[m]

))
rounds of

communication and O
(
H〈m〉

K log
(
n
δ logH〈m〉

))
time.

Proof: First, by Chernoff-Hoeffding we have that
for any r ≥ 0 and i ∈ Ir,

Pr
[∣∣∣θ̂(r)

i − θi
∣∣∣ ≥ εr

4

]
≤ 2 exp

(
−ε

2
r

8
KTr

)
≤ δ

2n(r + 1)2
.

By a union bound, the event

E3 : ∀i, r,
∣∣∣θ̂(r)
i − θi

∣∣∣ ≤ εr/4
holds with probability at least 1− δ.

It suffices to show that conditioned on event E3, the
algorithm does not make any error and terminates using
the stated time and rounds. We prove this by induction
on r. We have the following induction hypothesis:

1) mr = |Topm ∩ Ir|,
2) Accr ⊆ Topm and Rej r ⊆ I \ Topm,
3) {i ∈ I | ∆〈m〉i ≥ 4εr} ∩ Ir+1 = ∅.
It is easy to see that the base case (r = 0) holds

trivially. Let us assume that the hypothesis holds for
round (r − 1), and consider round r. By event E3 we
have

∀i ∈ Ir :
∣∣∣θ̂(r)
i − θi

∣∣∣ ≤ εr/4. (61)

And for any a ∈ {1, . . . , |Ir|} we have

θ[a](Ir)− εr/4 ≤ θ̂
(r)
πr(a) ≤ θ

(r)
[a] (Ir) + εr/4 . (62)

If θ̂(r)
i > θ̂

(r)
πr(mr+1) + εr, in which case the algorithm

adds i to Accr+1, then by (61) and (62) we have

θi+εr/4 ≥ θ̂(r)
i > θ̂

(r)
πr(mr+1)+εr ≥ θ[mr+1](Ir)+3εr/4.

We thus have θi − θ[mr+1](Ir) > εr/2, which implies
that θi ≥ θ[mr](Ir). By the first and second items of
the induction hypothesis, we have i ∈ Topm, which
implies mr+1 = |Topm ∩ Ir+1| and Accr+1 ⊆ Topm.
Similarly we can also show Rej r+1 ⊆ I \ Topm.

We next consider the third item of the induction
hypothesis. For an arm i ∈ Ir ⊇ Ir+1 such that
∆
〈m〉
i ≥ 4εr and θi ≥ θ[m], we have

θ̂
(r)
i ≥ θi − εr/4 = ∆

〈m〉
i + θ[m+1] − εr/4

≥ θ[mr+1](Ir) + ∆
〈m〉
i − εr/4

≥ θ̂
(r)
πr(mr+1) + ∆

〈m〉
i − εr/2

≥ θ̂
(r)
πr(mr+1) + 2εr.

Thus the i-th item in I will be added into Accr+1,
and thus will not appear in Ir+1. By the same line of

arguments, we can show that for any arm i ∈ Ir, if
∆
〈m〉
i ≥ 4εr and θi ≤ θ[m+1], then i ∈ Rej r+1 and will

not appear in Ir+1.
With the three items in the induction hypothesis, we

prove the correctness of the algorithm and analyze its
time and round complexities. By the definition of εr,
when r ≥ r0 = log(4/∆

〈m〉
i ), we have {i ∈ I | ∆〈m〉i ≥

4εr} = I . We have the followings:
1) By the third item of the induction hypothesis, the

algorithm will terminate in r0 rounds.
2) By the second item of the induction hypothesis,

we have Accr0 = Topm.
3) Note that if εr ≤ ∆

〈m〉
i /4, then each agent pulls

the i-th arm for at most Tr = 8 log(4n(r +
1)2δ−1)/(Kε2r) times. Let r(i) = minr{εr ≤
∆
〈m〉
i /4}; we thus have ∆

〈m〉
i /8 ≤ εr(i) ≤

∆
〈m〉
i /4. By the third item of the induction hy-

pothesis, each agent pulls the i-th arm for at most

Tr(i) ≤
512

K
(

∆
〈m〉
i

)2 log

(
16n

δ
log2

(
4/∆

〈m〉
i

))

times. Therefore, the total running time is
bounded by∑

i∈I
Tr(i) = O

(
H〈m〉

K
log
(n
δ

logH〈m〉
))

.

Finally we comment on the lower bound. In [55]
it was shown that for the special case when m = 1,
to achieve a running time of Õ(H〈1〉/K) with suc-
cess probability 0.99 one needs at least log

(
1/∆

〈1〉
[1]

)
rounds. Therefore the upper bound in Theorem 40 is
tight up to logarithmic factors.
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APPENDIX

Lemma 41. Let X1, . . . , Xn ∈ [0, d] be independent

random variables and X =
n∑
i=1

Xi. Then

Pr[X > E[X] + t] ≤ exp

(
− 2t2

nd2

)
and

Pr[X < E[X]− t] ≤ exp

(
− 2t2

nd2

)
.

Moreover, if X1, . . . , Xn ∈ [0, 1] and

µL ≤ E[X] ≤ µH ,

then we also have for every δ ∈ [0, 1],

Pr [X ≥ (1 + δ)µH ] ≤ exp

(
−δ

2µH
3

)
and

Pr [X ≤ (1− δ)µL] ≤ exp

(
−δ

2µL
3

)
.

Theorem 42 (Berry-Esseen, [33]). Let X1, X2, . . . , Xn

be independent random variables with E[Xi] = 0,
E[X2

i ] = σ2
i and E[|Xi|3] ≤ ρ for all i ∈ [n]. Let

S =
X1 +X2 + · · ·+Xn√
σ2

1 + σ2
2 + · · ·+ σ2

n

.

Let F be the cumulative distribution function of S, and
Φ be the cumulative distribution function of the standard
normal distribution. It holds that

sup
x∈R
|F (x)− Φ(x)| ≤ 0.5601 · ρn

(
n∑
i=1

σ2
i

)−3/2

.
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