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Abstract
Nicola Arcozzi, Pavel Mozolyako, Karl-Mikael Perfekt, and Giulia Sarfatti recently
gave the proof of a bi-parameterCarleson embedding theorem.Their proof uses heavily
the notion of capacity on the bi-tree. In this notewe give another proof of a bi-parameter
Carleson embedding theorem that avoids the use of bi-tree capacity. Unlike the proof
on a simple tree in a previous paper of the authors (Arcozzi et al. in Bellman function
sitting on a tree, arXiv:1809.03397, 2018),which used theBellman function technique,
the proof here is based on some rather subtle comparisons of energies of measures on
the bi-tree.

Mathematics Subject Classification 42B20 · 42B35 · 47A30

1 Introduction and notations

Let T denote a finite dyadic tree (of depth N ). By identifying the root of T with
I0 = [0, 1] and each subsequent node in T with the corresponding dyadic subinterval
of I0, we can think of its boundary ∂T as simply DN , i.e. the dyadic subintervals of
I0 of size 2−N .

Consider now T 2 = T ×T , a bi-tree. We identify the root of T 2 with Q0 = [0, 1]2,
and then each node α ∈ T 2 of the bi-tree is identified with a corresponding dyadic
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rectangle Rα ⊂ Q0 in the obvious way. If α and β are nodes of the bi-tree T 2, we say
that α ≤ β if and only if their corresponding dyadic rectangles satisfy Rα ⊂ Rβ .

The boundary ∂T 2 = (∂T )2 will consist of DN × DN , the dyadic sub-squares
of Q0 of side-length 2−N . We will usually denote these boundary nodes ∂T 2 by the
letterω. The small squares of size 2−n ×2−N making up the boundary will be denoted
Rω. In fact, as the nodes of the bi-tree T 2 and dyadic rectangles are in one-to-one
correspondence, we will feel free in what follows to sometimes replace the symbol
Rω by just ω, and Rα by just α. This should not lead to a confusion, and sometimes it
is nice to distinguish between the two objects.

If E is a subset of ∂T 2 (or ∂T ), then we defineUE to be the union of corresponding
squares (intervals for T ):

UE :=
⋃

ω∈E
Rω, ∀E ⊂ ∂T 2,

and RE to be the collection of all dyadic rectangles inside UE (this is a collection of
dyadic intervals if we mean T instead of T 2):

RE := {R : R ⊂ UE }.

We consider measures μ on ∂T 2 (or on ∂T ) that have constant density on each
small square Rω ∈ ∂T 2 (or small interval of ∂T ). Then if R ∈ RE , obviously

μ(R) =
∑

ω∈E, ω⊂R

μ(Rω).

We can also interpret μ in terms of the nodes of the bi-tree. For this, recall the Hardy
operator I : �2(T 2) → �(T 2) on a bi-tree: for any ϕ : T 2 → R let

Iϕ(α) =
∑

β≥α

ϕ(β).

Correspondingly it is defined on T , but then it is called I . Its dual I
∗ is given by the

formula

I
∗ψ(α) =

∑

β≤α

ψ(β).

Then, of course,

μ(Rα) = (I∗μ)(α).

Remark 1.1 The equality above needs perhaps a small clarification, specifically in the
last step below:

(I∗μ)(α) =
∑

β≤α

μ(β) =
∑

ω∈∂T 2; ω≤α

μ(ω).

123



Bi-parameter embedding without capacity 645

The vertices (nodes) of the bi-tree and the dyadic rectangles are the same things (the
same can be said about the nodes of the tree T and the dyadic intervals). However,
notice that given α ∈ T 2\∂T 2 (or α ∈ T \∂T ) we distinguish between μ(α) and
μ(Rα). In fact, μ(α) = 0 for all α ∈ T 2\∂T 2 (or α ∈ T \∂T if we consider just a tree
and not a bi-tree). This is because we assume from the start that the measure lies on
the boundary of the tree. On the other hand,

μ(Rα) =
∑

ω∈∂T 2, ω⊂Rα

μ(Rω) =
∑

ω∈∂T 2, ω≤α

μ(ω) .

At the same time, if ω ∈ ∂T 2 (or ω ∈ ∂T ), then μ(ω) = μ(Rω).

Remark 1.2 As we already mentioned, we assume from the start that the measure lies
on the boundary of the tree. The results of this paper extend to the case when μ is
given on the whole T 2, this is done on our subsequent article.

Definition 1.3 We say that a measure μ on ∂T 2 (or ∂T ) is a C-Carleson measure if
for any subset E ⊂ ∂T 2 we have

∑

R∈RE

μ(R)2 ≤ Cμ(E).

Of course we can give the analogous definitions for a simple tree T .

This is just the condition (1.4) below, when it is tested on characteristic functions.
Sometimes it is called “the dual testing condition” in the literature.

Definition 1.4 We say that a measure μ on ∂T 2 (or ∂T ) is a hereditary Carleson
measure if there exists a constant C such that μ|E is C-Carleson for any subset
E ⊂ ∂T 2 (or ∂T ). Here μ|E denotes the restriction of μ to E :

(μ|E)(ω) :=
{

μ(ω), if ω ∈ E,

0, if ω /∈ E .

So, in terms of rectangles,

(μ|E)(Rα) = μ(Rα ∩UE ). (1.1)

The hereditary Carleson condition can then be restated as:

∑

R∈RF

μ(R ∩UE )2 ≤ Cμ(E ∩ F), ∀E, F ⊂ ∂T 2. (1.2)

It is proved in [3] that to be a Carleson measure on ∂T 2 is the same as to be a
capacitary measure. Capacitary property is hereditary, and so any Carleson measure
on ∂T 2 (or ∂T ) is hereditary Carleson. However, the main goal of this note is to avoid
the use of capacity, and to prove directly the following result.
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646 N. Arcozzi et al.

Theorem 1.5 Let μ be a measure on ∂T 2. Then the following are equivalent:

(1) μ is Carleson;
(2) μ is hereditary Carleson;
(3) μ is an embedding measure for the Hardy operator, in the sense that

∑

ω∈∂T 2

|Iϕ(ω)|2μ(ω) ≤ C1‖ϕ‖2
�2(T 2)

; (1.3)

(4) μ satisfies the second embedding:

∑

α∈T 2

|I∗(ψμ)(α)|2 ≤ C1

∑

ω∈∂T 2

|ψ(ω)|2μ(ω). (1.4)

There are some easy implications, like (2) obviously implies (1). The fact that (3)
is equivalent to (4) is just duality: note that (3) is the same as the boundedness of the
operator I : �2(T 2) → �(T 2; μ), where the inner product in the latter is given by

(ϕ, ψ)�2(T 2; μ) :=
∑

α∈T 2

ϕ(α)ψ(α)μ(α) =
∑

ω∈∂T 2

ϕ(ω)ψ(ω)μ(ω).

Since

(Iϕ,ψ)�2(T 2; μ) =
∑

α∈T 2

ϕ(α)I∗(ψμ)(α) = (ϕ, I
∗(ψμ))�2(T 2),

the adjoint of I : �2(T 2) → �(T 2; μ) is then I
∗(·μ) : �2(T ; μ) → �2(T 2), and (4)

is exactly boundedness of this operator.
Also the claim that (4) implies (1) is easy: let some E ⊂ ∂T 2 and choose in (4) the

function

ψ(α) :=
{
1, if α ∈ E

0, otherwise.

Then I
∗(ψμ)(α) = μ(Rα ∩ E), and (1.4) becomes

∑

α∈T 2

μ(Rα ∩UE )2 ≤ C1μ(E). (1.5)

Obviously the left hand side is greater than
∑

R∈RE
μ(R ∩ UE )2 = ∑

R∈RE
μ(R)2,

andwe then have theC1-Carleson property.Webriefly remark here that the relationship
in (1.5) describes exactly the notion of restricted energy condition, which we will
encounter shortly.

The implication (3) ⇒ (2) now is also easy: if the measure μ satisfies (1.3), then
obviously any measure smaller than μ also must satisfy (1.3). So, if μ satisfies (3)
then for every E ⊂ ∂T 2, the measureμ|E also satisfies (3)—therefore also (4), which
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Bi-parameter embedding without capacity 647

we showed implies (1). Then μ|E is C1-Carleson for all E ⊂ ∂T 2, proving that μ is
hereditary Carleson. Alternatively, one can take in (4) the function ψ(α) which is 1
when α ∈ E ∩ F and 0 elsewhere. As seen in (1.5), this will give us

∑

α∈T 2

μ(Rα ∩UE∩F )2 ≤ C1μ(E ∩ F),

which then easily implies the hereditary Carleson condition in (1.2).
The difficult implications are (1)⇒ (2) and (2)⇒ (3). To illustrate that (1)⇒ (2) is

highly non-trivial, let us consider the simple case of T (much simpler than the bi-tree
T 2 case). The Carleson property (1) is the same as

∀J ∈ D,
∑

I∈D(J )

μ(I )2 ≤ Cμ(J ). (1.6)

Let us choose a dyadic interval K and let ν = μ|K . If we believe that (1.6) is hereditary
(may be with another constant) then, in particular,

∑

L∈D(I0), K⊂L

ν(L)2 ≤ C ′ν(I0),

but clearly ν(L) = μ(K ), ν(I0) = μ(K ) and we obtain that g(K )μ(K )2 ≤ C ′μ(K ).
Here g(K ) = log 1/|K |, that is the number of the dyadic generation of K . Thus, we
get

μ ∈ (1.6) ⇒ μ(K ) ≤ C ′

g(K )
= C ′

log 1/|K | . (1.7)

One can indeed deduce (1.7) from theCarleson property (1.6) directly, but it requires
some real work, see [4]. Moreover, in [4] we deduced the box capacitary condition

μ(K × J ) ≤ C ′

log 1/|K | log 1/|J | .

from the box condition on bi-tree:

∀R0 ∈ D × D,
∑

R∈D(R0)

μ(R)2 ≤ Cμ(R0). (1.8)

1.1 Restricted energy condition

At this point we are in situation (a) of Fig. 1 below, namely we are left with the difficult
implications (1) ⇒ (2) and (2) ⇒ (3). We will prove these by appealing to a fourth
concept, that of restricted energy condition, which we introduce next.

First, let us define the potential V
μ to be I(I∗μ). Then

V
μ(α) =

∑

β≥α

μ(Rβ), ∀α ∈ ∂T 2.
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648 N. Arcozzi et al.

(A) (B)

Fig. 1 Structure of the Proof of Theorem 1.5. The dark blue arrows indicate implications which have been
already obtained easily, and the red arrows indicate the difficult implications

Also, define the energy

E[μ] def=
∫

V
μ dμ =

∑

α∈T 2

μ(Rα)2 = ‖I
∗μ‖2

�2(T 2)
.

Given a subset E ⊂ ∂T 2, we introduce

EE [μ] def=
∑

R∈RE

μ(R)2.

Of course the same definitions apply to the simple tree T .

Remark 1.6 Notice that E[μ|E] is considerably larger than EE [μ]:

E[μ|E] =
∑

α∈T 2

μ(Rα ∩UE )2 
 EE [μ] =
∑

α: Rα⊂UE

μ(Rα)2.

Definition 1.7 We say μ is a measure with restriction energy condition, denoted
μ ∈ REC , provided that

E[μ|E] ≤ Cμ(E), ∀E ⊂ ∂T 2. (1.9)

Obviously, hereditary Carleson measures are REC—this can be easily seen by
taking F = ∂T 2 in (1.2). Note that the Carleson condition may be written exactly as

Carleson condition: EE [μ] ≤ Cμ(E), ∀E ⊂ ∂T 2,

which is seemingly much weaker than restriction energy condition. In fact, these
conditions are equivalent, as we show below.

Theorem 1.8 The Carleson condition, the restriction energy condition and the hered-
itary Carleson condition are all equivalent.
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Bi-parameter embedding without capacity 649

1.2 Structure of the paper

The big picture is summarized in Fig. 1b: first we are going to prove, in Sect. 2, the
implication:

Theorem 1.9 The restriction energy condition implies the embedding (1.3).

Remark 1.10 Wealready noticed the converse implication, see (1.5), so this establishes
the equivalence of restriction energy condition with embedding (1.3). Of course, The-
orem 1.9 follows from [3], but we wish to give somewhat different proof avoiding the
notion of capacity.

The core result we will use for this is the following

Theorem 1.11 Let μ be a measure on ∂T 2 such that:

• V
μ ≤ 1 on supp(μ);

• V
μ ≥ λ on a set F ⊂ ∂T 2, for some large λ.

Then there exists a positive function ϕ on T 2 such that

• Iϕ(ω) ≥ λ, for all ω ∈ F, and
• ‖ϕ‖2

�2(T 2)
≤ C

λ
E[μ].

Sections 4 and 5 will be dedicated to proving this deeper result.
In Sect. 3 we show that

Theorem 1.12 The bi-parameterCarleson condition implies the restricted energy con-
dition.

2 Embedding theorem for REC measures

We first need the following Lemma, which is the first place where we apply Theo-
rem 1.11.

Lemma 2.1 Let μ, ρ be two REC measures such that

• V
μ ≤ 1 on supp(μ), and

• V
μ ≥ λ on supp(ρ).

Then

|ρ| ≤ C

λ3
|μ| . (2.1)

Proof By Theorem 1.11, there is a function ϕ on T 2 such that

Iϕ(ω) ≥ λ, ∀ω ∈ supp(ρ) and ‖ϕ‖2
�2(T 2)

≤ C

λ
E[μ].

Then:

λ|ρ|=
∫

λ dρ ≤
∫

(Iϕ) dρ =
∫

ϕ(I∗ρ)≤‖ϕ‖�2(T 2)E[ρ]1/2≤C1/2
ρ ‖ϕ‖�2(T 2)|ρ|1/2,
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where we applied the REC property in the last inequality. So

|ρ| ≤ Cρ

λ2
‖ϕ‖2

�2(T 2)
≤ CρC

λ3
E[μ] ≤ CρC

λ3
|μ|,

where the last inequality follows from the first assumption:

E[μ] =
∫

V
μ dμ ≤

∫
dμ = |μ|.

��
Theorem 2.2 Let μ, ρ be two REC measures such that V

μ ≥ λ on supp ρ. Then

|ρ| ≤ C
|μ|
λ7/3

.

Remark that this result is similar to Lemma 2.1, but much stronger as we are
missing the boundedness assumption for V

μ on supp(μ). We will get around this by
constructing two new measures μ1, ρ1 from μ, ρ to which Lemma 2.1 can be applied.

Proof Let Cμ, Cρ denote the REC constants of μ, ρ, respectively, and let

Fε := {ω ∈ ∂T 2 : V
μ(ω) ≥ λε},

for some ε > 0 we will choose later to be 1/3.
Split μ into

μ = μ0 + μ1,

where

μ0 := μ|Fε .

We make some quick observations about these measures. First of all, obviously

V
μ1 < λε on supp(μ1). (2.2)

Observe that if we scale by λε we have the first boundedness condition in Lemma 2.1.
So now we need to construct a complementary measure ρ1 such that V

μ1 ≥ cλ on
supp(ρ1).

Second of all, by Chebyshev,

|μ0| = μ(Fε) = μ{Vμ ≥ λε} ≤ 1

λε

∫
V

μ dμ = 1

λε
E[μ] ≤ 1

λε
Cμ|μ|,

so

|μ0| ≤ Cμ

|μ|
λε

. (2.3)
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Bi-parameter embedding without capacity 651

Third, it is easy to see that both μ0 and μ1 are also REC measures with constant Cμ.
Finally, ∫

V
μ0 dρ ≤ (CμCρ|μ0||ρ|)1/2. (2.4)

To see this:

∫
V

μ0 dρ =
∫

I(I∗μ0) dρ =
∫

(I∗μ0)(I
∗ρ)

≤ ‖I
∗μ0‖�2(T 2)‖I

∗ρ‖�2(T 2) = (E[μ0]E[ρ])1/2,

and apply the REC property to the last terms.
Returning now to ρ, we will say that ρ is “good” if

|ρ| ≤ K
|μ|

λ2+ε
, (2.5)

for some large constant K we will choose later. Suppose this is not the case though,
and combine the “badness” of ρ with (2.3) to obtain:

|μ0| ≤ Cμ

|μ|
λε

≤ Cμ

1

λε

λ2+ε

K
|ρ| = Cμ

K
λ2|ρ|.

Then (2.4) gives us ∫
V

μ0 dρ ≤ Cμ

√
Cρ√
K

λ|ρ|. (2.6)

Consider now a fixed, very small δ > 0. Again by Chebyshev:

ρ{Vμ0 > δλ} ≤ 1

δλ

∫
V

μ0 dρ
(2.6)≤ Cμ

√
Cρ

δ
√
K

|ρ|.

Keep in mind now that, by assumption, supp(ρ) ⊂ {Vμ ≥ λ} = {Vμ0 + V
μ1 ≥ λ},

and so

ρ{Vμ0 > δλ} = |ρ| − ρ{Vμ0 ≤ δλ} ≥ |ρ| − ρ{Vμ1 ≥ (1 − δ)λ},

which, combined with the estimate above, leads us to

ρ{Vμ1 ≥ (1 − δ)λ} ≥ |ρ|
(
1 − Cμ

√
Cρ

δ
√
K

)
≥ |ρ|(1 − δ), (2.7)

where the last inequality comes from us finally choosing K large enough so that

Cμ

√
Cρ

δ
√
K

≤ δ.
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For instance, if δ = 0.01, the relationship in (2.7) becomes “on 99% of ρ we have
V

μ1 ≥ 0.99λ.”
Call now F := {Vμ1 ≥ (1 − δ)λ} and set

ρ1 := ρ|F,

so ρ1 is another REC measure of basically the same mass as the original ρ, but it has
the right relationship to V

μ1 to allow for Lemma 2.1. Specifically, if we also let

κ := μ1

λε
,

then κ and ρ1 are two REC measures such that

• V
κ ≤ 1 on supp(κ) by (2.2), and

• V
κ ≥ 1−δ

λε−1 on supp(ρ1) by (2.7).

By Lemma 2.1 we have

|ρ1| ≤ C |μ|
λ3−2ε .

Now note that (2.7) translates to |ρ1| = ρ(F) ≥ |ρ|(1 − δ), so

|ρ| ≤ 1

1 − δ
|ρ1| ≤ 1

1 − δ

C |μ|
λ3−2ε . (2.8)

So, there are two possibilities: either ρ is good, in which case (2.5) holds, or ρ is
bad and then (2.8) holds. If we set 2 + ε = 3 − 2ε, so ε = 1/3, then either estimate
will yield the desired result. ��

2.1 Mutual energy of pieces of RECmeasures

Let μ be an REC measure and let F ⊂ E ⊂ ∂T 2. Below is the trivial estimate of the
mutual energy:

∫
V

μ|Edμ|F =
∫

(I∗(μ|E)) · (I∗(μ|F))

≤ ‖I
∗(μ|E)‖�2(T 2) ‖I

∗(μ|F)‖�2(T 2) = (
E[μ|E]E[μ|F])1/2

≤ Cμ

(
μ(E)μ(F)

)1/2

Here is the improvement.

Theorem 2.3 Let μ be REC measure, and let F ⊂ E ⊂ T 2. Then

∫
V

μ|Edμ|F ≤ Cμ(E)3/7μ(F)4/7 .
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Bi-parameter embedding without capacity 653

Proof Let k ≥ 0. Denote Fk
def= {x ∈ F : V

μ|E ∈ [2k, 2k+1)}. Then by Theorem 2.2
we have

μ(Fk) ≤ 2−7/3kμ(E) .

Put λ
def=

∫
V

μ|Edμ|F
μ(F)

. If λ ≤ 1 then theorem follows trivially with C = 1. Let λ ∈
[2 j , 2 j+1), j ≥ 0. Repeating Lemma 2 of [3] and using this display formula, we get

λμ(F) ≤ λ

2
μ(F) + Cλ−4/3μ(E) ⇒ λ7/3 ≤ C

μ(E)

μ(F)
.

This gives the claim of the theorem. ��

2.2 Embedding theorem for RECmeasures

Proof of Theorem 1.9 We start almost exactly as in [3]. We write

Ek
def= {α ∈ ∂T 2 : Iϕ(α) ≥ 2k}.

Unlike [3] we put μk
def= μ|Ek . Then

∫
|Iϕ|2dμ �

∑
22k |μk | ≤

∑
2k

∫
(Iϕ) dμk =

∑
2k

∫
ϕ(I∗μk)

≤ ‖ϕ‖�2(T 2)‖
∑

2kI∗μk‖�2(T 2).

Expanding the square in ‖∑
2kI∗μk‖2�2(T 2)

we get
∑

k
∑

j≤k 2
j+k

∫
V

μk dμ j . Con-

sider the diagonal part
∑

k 2
2k

∫
V

μk dμk = ∑
k 2

2kE[μ|Ek] ≤ ∑
k 2

2kμ(Ek). The

last inequality uses exactly REC property. Thus the diagonal part is
( ∫

(Iϕ)2 dμ
)1/2.

We are left to prove that off-diagonal part is �
∑

k 2
2kμ(Ek) as well. Here we

follow [1,3]. Using Theorem 2.3 we can write

∑

k

∑

j<k

2 j+k
∫

V
μk dμ j �

∑

k

2k |μk |4/7
∑

j≤k

2 j |μ j |3/7

=
∑

k

28k/7|μk |4/72−k/7
∑

j≤k

2 j |μ j |3/7

≤
(∑

22k |μk |
)4/7(∑

k

2−k/3
(∑

j≤k

2 j |μ j |3/7
)7/3)3/7

.

Now
(∑

j≤k

2 j |μ j |3/7
)7/3

≤
(∑

j≤k

2 j/14 213 j/14 |μ j |3/7
)7/3
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⎛

⎝
(∑

j≤k

(2 j/14)4/7
)7/4

·
(∑

j≤k

(213 j/14 |μ j |3/7)7/3
)3/7

⎞

⎠
7/3

�

⎛

⎝2k/14
(∑

j≤k

213 j/6|μ j |
)3/7

⎞

⎠
7/3

= 2k/6
(∑

j≤k

213 j/6|μ j |
)

.

Combining this with the previous display formula, we get

∑

k

∑

j<k

2 j+k
∫

V
μk dμ j �

(∑
22k |μk |

)4/7(∑

k

2−k/6
∑

j≤k

213 j/6|μ j |
)3/7

�
(∑

22k |μk |
)4/7(∑

22k |μk |
)3/7

=
∑

22k |μk | .

��

3 Proof that the bi-parameter Carleson condition implies REC

Proof of Theorem 1.12 We assume the bi-parameter Carleson condition:

EE [μ] =
∑

R∈RE

μ(R)2 ≤ μ(E), ∀ E ⊂ ∂T 2. (3.1)

But let F0 be a subset of ∂T 2 such that for μ0
def= μ|F0 the following holds with a

large constant C .
E[μ0] = C |μ0|. (3.2)

Moreover, we can assume that

C = max
F

E[μ|F]
|μ(F)| . (3.3)

This is because we assumed in Sect. 1 that T 2 is a finite graph (albeit a very large one).
The main ingredient in estimating C is provided by Lemma 6.9 of Sect. 6. We are

going to prove that
C ≤ AC2

6.9, (3.4)

where C6.9 is the constant from Lemma 6.9 of Sect. 6.

3.1 Part 1: making�0 to be almost equilibrium

We start by introducing some additional notation. Given a set E ⊂ ∂T 2 and a measure
ν we defined above the local energy of ν at E

EE [ν] :=
∑

R∈RE

ν(R)2.
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Bi-parameter embedding without capacity 655

In particular, we have EQ0 [ν] = E[ν].
Now we have (3.2), hence

∫
V

μ0 dμ0 =
∫

C dμ0,

which, as we will now see, means that V
μ0 ≥ C

3 on a major part of suppμ0. For now
we want to get rid of those points in suppμ0 where the potential is not large enough
whilst conserving the total energy. We do so by the power of the following lemma

Lemma 3.1 Assume that ν is a non-negative measure on Q0, supp ν = E ⊂ Q0 and

E[ν] =
∫

V
ν dν ≥ Cν(E) = C |ν|.

Then there exists a set Ẽ ⊂ E such that

V
ν̃ ≥ C

3
, on Ẽ,

and

E[ν̃] ≥ 1

6
E[ν].

Here ν̃ := ν|Ẽ .

Proof First we assume that C = 3 (otherwise we just rescale). Let E0 := {t ∈ E :
V

ν ≤ 1} and σ0 := ν|E0 . Assume we have constructed σ j , j = 0, . . . , k − 1, and the
sets E j . We then define Ek to be

Ek =
⎧
⎨

⎩ω ∈ E\
k−1⋃

j=0

E j : V
ν−∑k−1

j=0 σ j (ω) ≤ 1

⎫
⎬

⎭ ,

and we let σk = ν|Ek .
Since T 2 is finite, the procedure must stop at some (possibly very large) number

N , i.e. E j = ∅ for j > N . We let E∞ = E\⋃N
j=0 E j (we do not know yet if this set

is non-empty), σ∞ = ν|E∞ . By construction we have

V
σ∞(ω) ≥ 1, ω ∈ E∞.
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Next we compute the energy of ν,

E[ν] =
∫

V
ν dν =

∑

N≥ j≥0

∑

N≥k≥0

∫
V

σ j dσk = 2
∑

N≥k≥0

∑

N≥ j≥k

∫
V

σ j dσk

= 2
∑

N>k≥0

∫
V

∑
N≥ j≥k σ j dσk + 2

∫
V

σ∞ dσ∞

= 2
∑

N>k≥0

∫
V

ν−∑k−1
j=0 σ j dσk + 2

∫
V

σ∞ dσ∞

≤ 2
N∑

k=0

∫
dσk + 2E[σ∞] = 2|ν| + 2E[σ∞].

Since E[ν] ≥ 3|ν| by assumption, we have

E[σ∞] ≥ 1

6
E[ν],

it remains to let ν̃ := σ∞, Ẽ := E∞, and we are done. ��
We apply this lemma to μ0 and F0 (we remind that μ0 = μ|F0 , so that suppμ0 ⊂ F0)
obtaining the set F1 ⊂ F0 and a measure μ1 = μ0|F1 = μ|F1 that satisfies V

μ1 ≥ C
3

on F1 and

E[μ1] ≥ 1

6
E[μ0] .

Finally we let

E :=
{
t ∈ Q0 : V

μ1(t) ≥ 1

4C6.9
· C
3

}
. (3.5)

3.2 Part 2: why is E the right set to consider? Main Lemma 3.2

First we state another lemma that allows us to estimate the total energy of an almost
equilibriummeasure by its local energy at a certain level set. This is themain ingredient
of proving that bi-parameter Carleson condition implies REC condition. For the proof
of the following lemma see [3] and Lemma 6.9 of Sect. 6 below.

Lemma 3.2 Let ν ≥ 0 be a measure on Q0 such that

V
ν(t) ≥ C1, t ∈ supp ν,

and let

E :=
{
t ∈ Q0 : V

ν(t) ≥ C1

4C6.9

}
.

123



Bi-parameter embedding without capacity 657

Then

EE [ν] ≥ 1

2
E[ν]. (3.6)

We already mentioned that this lemma will be proved in Sect. 6. Now we are going
to use it. Let σ := μ|E . By definition,

C

3 · 4C6.9
|σ | ≤

∫
V

μ1 dσ . (3.7)

On the other hand,

∫
V

μ1 dσ ≤ E[μ1]1/2E[σ ]1/2 ≤ E[μ1]1/2E[μ|E ]1/2 ≤ 21/2EE [μ1]1/2E[μ|E ]1/2,

where the last inequality follows from Lemma 3.2 applied to ν = μ1 and C1 = C/3.
Now by assumption (3.1) we have EE [μ1]1/2 ≤ |μ|F1| = μ(F1) ≤ μ(E) = |σ |.

By assumption (3.3) ofmaximalitywehaveE[μ|E ] ≤ Cμ(E) = C |σ |. Let us combine
this with the last display formula to get

∫
V

μ1 dσ ≤ 21/2C1/2|σ | .

Combine that with (3.7) to obtain

C

3 · 4C6.9
≤ 21/2C1/2,

which gives us C ≤ 288C2
6.9, which we wanted to prove, as C = maxF

E[μ|F]
|μ(F)| . ��

In the next section we start to prepare the proof of Theorem 1.11, whose proof will
be finished in Sect. 5.

4 Lemma onmajorization with small energy. A case of ordinary tree

All trees below can be very deep, but it is convenient to think that they are finite.
Estimates will not depend on the depth.

First, some notation. For every dyadic interval J , we call:

• QJ—the square with base J ;
• TopJ—the top half (rectangle) of QJ .

Let I0 = [0, 1] and identify the dyadic intervals in D(I0) with vertices of the tree
T := T (I0), as before. Let S be a family of disjoint dyadic subintervals of I0, and
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(A) (B)

Fig. 2 Dyadic tree and the sets W (S) and O(S)

define:

W (S) :=
⋃

J∈S
QJ ,

O(S) := QI0\W (S) = ∪�, Top� not in QJ ,J∈ST op�.

To visualize these sets, one may think of the dyadic tree in the usual way, as in Fig. 2a,
but in this section it may be more useful to identify each J ∈ D(I0) with the rectangle
TopJ , as in Fig. 2b.

For vertices α of the tree T , we write α ∈ W (S) if there is a β ∈ S such that α ≤ β.
Given a measure σ on T , define:

I ∗
Sσ(α) :=

{
I ∗σ(α), if α ∈ W (S)

0, if α ∈ O(S).

and the local potential:

V σ
S (α) :=

{∑
α′:β≥α′≥α I ∗σ(α′), if α ≤ β, β ∈ S

0, if α ∈ O(S).

Then we conveniently have

∑
I ∗
Sσ(α)2 =

∫
V σ
S dσ . (4.1)

Lemma 4.1 Let σ be a measure on ∂T and S be a collection of disjoint dyadic subin-
tervals of I0 satisfying O(S) �= ∅. Let f ≥ 0 be a function on the tree T such that
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f = 0 on W (S). Let F ⊂ ∂T ∩ W (S), and suppose that for a large λ >> 1, the
potential V σ satisfies:

V σ (ω) ≥ λ, ω ∈ F, (4.2)

and

V σ (α) < 1, α ∈ O(S). (4.3)

Then there exists another function � on T such that, with positive absolute constants
c, C:

I�(ω) ≥ c I f (ω), ω ∈ F, (4.4)

and

‖�‖�2(T ) ≤ C

λ
‖ f ‖�2(T ). (4.5)

Proof Wewill give a formula for�. This functionwill be zero on O(S)—see Fig. 3a—
and on W (S) it is defined as follows: if α ≤ β for some β ∈ S, then

�(α) :=
{

1
λ
I f (β) I ∗

Sσ(α), if
∑

β≥α′≥α I ∗
Sσ(α′) ≤ λ

0, if
∑

β≥α′≥α I ∗
Sσ(α′) > λ.

(4.6)

We prove first (4.4). Let ω ∈ F and let β ∈ S such that ω ≤ β. Since f = 0 on
W (S),

I f (ω) =
∑

α≥ω

f (α) =
∑

α≥β

f (α) = I f (β). (4.7)

For �(ω), we have two cases.

Case 1: �(ω) = 0. Notice that the case I f (ω) = 0, ω ∈ F , is then done: obviously
for ω ≤ β, ω ∈ F , I�(ω) ≥ 0 = I f (ω).

But I f (ω) = I f (β), see (4.7). So without loss of generality we can think below
that I f (β) > 0.

Let ω ∈ F and let γ be the largest ω ≤ γ ≤ β such that �(γ ) = 0; see Fig. 3b.
Remark that γ < β, that is we cannot have �(α) = 0, ∀ω ≤ α ≤ β. Let us explain
that.

Recall that I f (β) > 0. Since �(β) = 1
λ
I f (β) I ∗

Sσ(β) then the first of reasons
why �(β) = 0 is I ∗

Sσ(β) = 0. In other words σ(β) = 0 (since σ is measure only on
the boundary of the tree). The second reason is (see Definition (4.6))

I ∗
Sσ(β) > λ . (4.8)

Let us bring the first reason to contradiction.
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(A) (B)

Fig. 3 Lemma 4.1

For ω ≤ β, ω ∈ F we know that V σ (ω) ≥ λ. Notice that V σ (ω) = V σ (β) if
σ(β) = 0. Thus, we have V σ (β) ≥ λ, but we also have V σ (β̂) < 1 by assumption
(4.3). So

σ(β) ≥ λ − 1 ≥ λ

2
.

But this is impossible: we just wrote that σ(β) = 0. This is a contradiction.
Notice that it follows from the assumption that O(S) �= ∅ that I0 = rootT ∈ O(S),

which gives the following mass estimate for σ :

‖σ‖ = I I ∗σ(I0) = V σ (I0) < 1, (4.9)

by (4.3). But this means that

σ(α) = I ∗σ(α) < 1 <
λ

2
, ∀α ∈ T . (4.10)

So, if �(β) = 0, then by definition of � (see (4.6)) we would have only the second
possibility left: (4.8), namely, this may happen only if σ(β) = I ∗σ(β) = I ∗

Sσ(β) >

λ > 1, a contradiction with (4.10). So the second reason for �(β) to be zero is
disproved as well.

Note also that, once �(α) �= 0, then �(α′) �= 0 for all α ≤ α′ ≤ β:

∑

β≥α′′≥α′
I ∗σ(α′′) ≤

∑

β≥α′′≥α

I ∗σ(α′′) ≤ λ, so �(α′) �= 0.

So, keeping in mind (4.7), we have:

I�(ω) =
∑

β≥α>γ

1

λ
I f (β)I ∗σ(α)
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= 1

λ
I f (ω)

( ∑

β≥α≥γ

I ∗σ(α)

︸ ︷︷ ︸
>λ because �(γ )=0

− I ∗σ(γ )︸ ︷︷ ︸
<1 by (4.10)

)

>
λ − 1

λ
I f (ω).

If we assume, for example, that λ > 3, then λ−1
λ

> 2
3 =: c.

Case 2: �(ω) �= 0. Let β̂ ∈ O(S) be the dyadic parent of β ∈ S. Then

I�(ω) =
∑

β≥α≥ω

1

λ
I f (β)I ∗σ(α)

= 1

λ
I f (ω)

(
V σ (ω)︸ ︷︷ ︸

≥λ by (4.2)

− V σ (β̂)︸ ︷︷ ︸
<1 by (4.3)

)

>
λ − 1

λ
I f (ω).

To prove the energy estimate (4.5), let us recall that

‖�‖2
�2(T )

= 1

λ2

∑

β∈S
[I [ f ](β)]2

∑

α∈Qβ :�(α) �=0

I ∗
S [σ ](α)2

= 1

λ2

∑

β∈S
[I [ f ](β)]2

∫

β

V σ
S,c(ω)dσ(ω) ,

where for ω ≤ β, β ∈ S,

V σ
S,c(γ ) :=

∑

β≥γ ′≥γ :�(γ ′) �=0

I ∗[σ ](γ ′) .

But V σ
S,c(ω) ≤ λ, because this is how � is defined in (4.6).

Let us introduce a newmeasure on T , called σ
f
S , which has masses only on vertices

β ∈ S, and each mass is

σ
f
S (β) := I [ f ](β)I ∗[σ ](β) .

Hence, obviously, we can rewrite the previous estimate of ‖�‖2
�2(T )

as follows:

‖�‖2
�2(T )

≤ 1

λ

∑

β∈S
[I [ f ](β)]2 I ∗[σ ](β)

= 1

λ

∫

S
I [ f ](β)dσ

f
S (β) = 1

λ

∑

α∈O(S)

f (α)I ∗[σ f
S ](α) =: 1

λ
I , (4.11)
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where I := ∫
S I [ f ](β)dσ

f
S (β). To continue, let us make a self estimate of the term

I.

I =
∑

α∈O(S)

f (α)I ∗[σ f
S ](α) ≤ ‖ f ‖�2(T )

( ∑

α∈O(S)

(
I ∗[σ f

S ](α)

)2)1/2

= ‖ f ‖�2(T )

(∫
V σ

f
S dσ

f
S

)1/2

= ‖ f ‖�2(T )

( ∑

β∈S
V σ

f
S (β)σ

f
S (β)

)1/2

We want to show that I ≤ 8‖ f ‖2
�2(T )

. Split S = ∪k∈ZSk , where

Sk =
{
β ∈ S : 2k ≤ I [ f ](β) < 2k+1

}
.

σ
f
Sk

= σ
f
S |Sk .

We will estimate now
∑

β∈S V σ
f
S (β)σ

f
S (β) ≤ 64‖ f ‖2

�2(T )
as follows:

∑

β∈S
V σ

f
S (β)σ

f
S (β)≤2

∑

k

∑

β∈Sk

∑

j,k: j≤k

V
σ

f
S j (β)σ

f
Sk

(β)

≤2
∑

k

∑

β∈Sk

∑

j,k: j≤k

2 j+1V σ (β)σ
f
Sk

(β)≤2
∑

k

2k+1V σ (β)σ
f
Sk

(β)

≤8
∑

k

∑

β∈Sk

I [ f ](β)σ
f
S (β) ≤ 8

∑

β∈S
I [ f ](β)σ

f
S (β)=8I

≤8‖ f ‖�2(T )

( ∑

β∈S
V σ

f
S (β)σ

f
S (β)

)1/2

.

We used here that by by (4.3) and (4.10) β’s in S are all such that

V σ (β) ≤ 2 .

Therefore,

I ≤ 4‖ f ‖2
�2(T )

.

Combining with (4.11), we see that the energy estimate (4.5) is proved, and, thus, the
lemma is completely proved. ��

5 Majorization on bi-tree

We finish here the proof of Theorem 1.11. Let us recall this theorem, it is the following
result.
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Theorem 5.1 Let μ be a positive measure on ∂T 2 such that V ≤ 1 on supp(μ) and,
for some large λ, V

μ ≥ λ on a set F ⊂ ∂T 2. Then there exists a positive function ϕ

on T 2 such that:

• ϕ satisfies Iϕ(ω) ≥ λ for all ω ∈ F.
• ‖ϕ‖2

�2(T 2)
≤ C

λ
E[μ].

Proof All of our dyadic rectangles are inside the unit square Q0 = I0 × I0.
Let us consider the family of dyadic rectangles γx × αy with a fixed vertical side

αy , and define

G(γx ) := Gαy (γx ) :=
∑

α′≥αy

μ(γx × α′).

Then note that

IxG
αy (γx ) = V

μ(γx × αy).

Moreover,
Gαy (γx ) ≤ 1, ∀γx , αy . (5.1)

Indeed, let τy be the biggest (if it exists) dyadic I0 ≥ τy ≥ αy such that (γx × τy) ∩
supp(μ) = ∅ (see Fig. 4). Then

Gαy (γx ) =
∑

α′≥αy
α′≤τy

μ(γx × α′) +
∑

α′>τy

μ(γx × α′).

The first term above is obviously 0, and the second term is ≤ 1 because it is less than
V

μ for some point in supp(μ). In case τy does not exist, obviously Gαy (γx ) = 0.
Now, (5.1) implies that we may consider the family S := S(αy) of maximal

stopping intervals βx ∈ Tx such that IxGαy (βx ) = V(βx × αy) > 1. Then

IxG
αy (βx ) = V(βx × αy) ≤ 2, ∀βx ∈ S(αy).

To see this, let βx ∈ S(αy) and β̂x be its dyadic parent. Then IxGαy (β̂x ) ≤ 1, so

IxG
αy (βx ) =

∑

γx≥βx

Gαy (γx ) = Gαy (βx )︸ ︷︷ ︸
≤1 by (5.1)

+ IxG
αy (β̂x )︸ ︷︷ ︸
≤1

≤ 2.

Another immediate property of the collection S(αy) is

βx ∈ S(αy) ⇒ (βx × αy) ∩ supp(μ) = ∅.

Otherwise, suppose Q ∈ ∂T 2 is in this intersection. Then

IxG
αy (βx ) = V

μ(βx × αy) ≤ V
μ(Q) ≤ 1,
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Fig. 4 Examples of various τy for a fixed αy

a contradiction. It is then obvious that

βx ∈ S(αy) ⇒ μ(β ′
x × αy) = 0, ∀β ′

x ≤ βx . (5.2)

We claim next that

If for some ωx : V
μ(ωx × αy) ≥ λ

3
, then S(αy) �= ∅ and O(S(αy)) �= ∅. (5.3)

Recall that λ is large, so obviously V
μ(ωx × αy) > 1, and then S(αy) is non-empty.

Also, IxGαy (rootTx ) = Gαy (rootT x ) ≤ 1, therefore any interval in S(αy) is strictly
smaller than I0.We therefore have a non-empty familyS(αy)of largest dyadic intervals
in Tx such that IxGαy (βx ) > 1, and all these intervals are strictly smaller than I0.

For any small square ω = ωx × ωy ∈ F , let α(ω) denote the first from the top
(largest) dyadic interval containing ωy such that

V
μ(ωx × α(ω)) ≥ λ

3
.

Then by definition

V
μ(ωx × α) ≥ λ

3
, ∀α : ωy ≤ α ≤ α(ω). (5.4)

In particular, for any ω ∈ F and for any αy such that ωy ≤ αy ≤ α(ω), we obtained
a family S(αy) of disjoint dyadic subintervals of Tx such that

∀αy : ωy ≤ αy ≤ α(ω) ⇒ S(αy) �= ∅, O(S(αy)) �= ∅. (5.5)
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Fig. 5 Construction of the function �αy (1)

Given αy , we constructed a function Gαy on Tx × αy , and a family S(αy) ⊂ Tx of
disjoint subintervals. Now we need another function on Tx × αy , namely

f (γx ) := f αy (γx ) := μ(γx × αy).

Recall that W (S) = ∪β∈SQβ .
Fix αy and construct a special function �αy as follows.

• If the dyadic strip I0 × αy does not contain any ω ∈ F , then put �αy = 0.
• Otherwise (see Figs. 5, 6), let

Fαy := {ωx : ω = ωx × ωy ∈ F s.t. ω lies in I0 × αy and αy ≤ α(ω)}.

If Fαy = ∅, again put �αy = 0. Otherwise, for some ωx ∈ Fαy , by (5.5):

αy ≤ α(ω) ⇒ S(αy) �= ∅ and O(S(αy)) �= ∅.

We claim that we are now in the situation of Lemma 4.1.

Let σ be a measure on ∂Tx defined by:

σ(ωx ) :=
∑

α′≥αy

μ(ωx × α′), ∀ωx ∈ ∂Tx .

Then

Gαy (γx ) = I ∗
x σ(γx ).

By (5.4):

λ

3
≤ V

μ(ωx × αy) = IGαy (ωx ) = I I ∗σ(ωx ) = V σ (ωx ),
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Fig. 6 Construction of the function �αy (2)

so Fαy ⊂ ∂Tx ∩ W (S(αy)) – otherwise, we would have V
μ(ωx × αy) ≤ 1, a contra-

diction. We make note of the fact that

V σ (ωx ) ≥ λ

3
, ∀ωx ∈ Fαy . (5.6)

Also, by definition of S(αy),

V σ (γx ) = V
μ(γx × αy) < 1, ∀γx ∈ O(S(αy)).

By (5.2),
f αy = 0 on W (S(αy)). (5.7)

So, we are now indeed under the assumptions of Lemma 4.1, so we have a non-
negative function �αy on Tx such that, with positive absolute constants c, C :

I�αy (ωx ) ≥ cI f αy (ωx ), ∀ωx ∈ Fαy . (5.8)

‖�αy‖2
�2(Tx )

≤ C

λ
‖ f αy‖2

�2(Tx )
. (5.9)

Now put

ϕ(γx , αy) := �αy (γx ).

Summing (5.9) over all αy ∈ Ty :

‖ϕ‖2
�2(T 2)

=
∑

γx ,αy

(
�αy (γx )

)2

=
∑

αy

‖�αy‖2
�2(Tx )
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≤ C

λ

∑

γx ,αy

μ(γx × αy)
2 = E[μ].

Given ω = ωx × ωy ∈ F , sum (5.8) in αy : ωy ≤ αy ≤ α(ω):

Iϕ(ω) =
∑

αy≥ωy

I�αy (ωx ) ≥
∑

αy :ωy≤αy≤α(ω)

I�αy (ωx )

≥ c
∑

αy :ωy≤αy≤α(ω)

I f αy (ωx ) = c
∑

αy :ωy≤αy≤α(ω)

∑

ω′≥ωx

μ(ω′ × αy)

= c

( ∑

ω′≥ωx
α′≥ωy

μ(ω′ × α′) −
∑

ω′≥ωx
α′>α(ω)

μ(ω′ × α′)
)

= c

(
V

μ(ωx × ωy)︸ ︷︷ ︸
≥λ because Vμ≥λ

− V
μ(ωx × α̂(ω))︸ ︷︷ ︸

<λ/3by defn. of α(ω)

)

≥ c
2λ

3
.

��

6 The proof of Lemma 3.2

The proof of Lemma 3.2 is also based on Theorem 5.1, but rather on a modification
of it. Hence we need a a special modification of Theorem 5.1. Let

E1 := {(τ × α) : V
μ(τ × α) < 1} .

This set can be empty because we do not assume anything on μ ≥ 0 at this moment.
Put

V
μ
1 (τ × α) :=

∑

τ ′≥τ,α′≥α,(τ ′,α′)∈E1

μ(τ ′ × α′) .

For any positive function on T 2 we denote

I1ϕ :=
∑

τ ′≥τ,α′≥α,(τ ′,α′)∈E1

ϕ(τ ′ × α′) .

Denote E1[μ] := ∫
V

μ
1 dμ. Then,

E1[μ] =
∫

V
μ
1 dμ =

∑

τ×α∈E1

(
μ(τ × α)

)2
.
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Theorem 6.1 Let μ is a positive measure on ∂T 2 such that V
μ
1 ≥ λ >> 1 on a set

F ⊂ ∂T 2. Then there exists positive ϕ on T 2 such that

• ϕ satisfies Iϕ(ω) ≥ λ for all ω ∈ F,
• ‖ϕ‖2

�2(T 2)
≤ C

λ
E1[μ].

Proof If E1 = ∅, there is nothing to prove as the set F of large values of V
μ
1 will be

empty (since V
μ
1 = 0 identically).

Now we follow closely the proof of Theorem 5.1. Again fix αy ∈ Ty . As before we
introduce two function (notice the modification):

g1(τx ) :=
∑

α′
y≥αy ,(τx×α′

y)∈E1

μ(τx × α′
y) ,

f1(τx ) := μ(τx × αy), τx × αy ∈ E1; 0 otherwise .

Of course we should keep in mind that these functions have implicit superscript αy .
Notice that

Ig1(γx ) =
∑

γ ′
x≥γx ,α′

y≥αy ,(γ ′
x×α′

y)∈E1

μ(γ ′
x × α′

y) = V
μ
1 (γx × αy) .

So, consider the family S = Sαy of maximal dyadic intervals (= nodes of Tx ) such
that

Ig1(βx ) ≥ 1 . (6.1)

As before consider W (S) and O(S). Given E1 �= ∅, we conclude that for some αy

the set O(S) is non-empty and that

Ig1 < 1 on O(S) . (6.2)

Consider

Fαy := {ωx : ω = ωx × ωy ∈ F s.t. ω lies in I0 × αy and αy ≤ α(ω)}.

Now α(ω) is computed with respect to potential V
μ
1 : the largest such α that V1(ωx ×

α) ≥ λ
3 .

Non-emptiness of E1 also implies μ(I0 × I0) < 1 and thus (6.2) can be comple-
mented by

Ig1 ≤ 2 for all β ∈ S . (6.3)

However, if F ∩ (
Tx × αy

) �= ∅, then on Fαy ⊂ ∂Tx

Ig1 ≥ λ

3
. (6.4)

Next, following the scheme of the proof of Theorem 5.1, let us check that

f1 = 0 on W (S) . (6.5)
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Fig. 7 Lemma 6.2 construction

Indeed, let γ ∈ W (S), so there exists β ∈ S such that γ ≤ β. Then, using (6.1), we
get

V
μ
1 (γ × αy) = Ig1(γ ) ≥ Ig1(β) ≥ 1,

and, hence, by the definition of f1, f1(γ ) = 0.
We are almost in the assumptions of Lemma 4.1. In fact, we have W (S), O(S),

function f1 that plays the part of f and function g1 that plays the part of G, and we
have assumption (6.2) that is like (4.3) and assumption (6.4) that is like assumption
(4.2). There is a difference though, because the property G = I ∗[σ ] is missing, g1 is
more complicated. But we will be able to circumvent this difficulty in a rather easy
way.

It is clear that we are interested only in those αy , for which f1 �= 0, therefore, we
are interested only in those αy , for which O(S) �= ∅.

Remembering this, next consider (6.4). If (6.4) happens (there are many αy’s for
which this will happen, namely, those for which F ∩ (

Tx ×αy) �= ∅), then, obviously,
(6.4) may happen only on the part of ∂Tx that lie inside some of the intervals β ∈ S.

To reduce everything to Lemma 4.1wewill need one property of g1 that will replace
the property G = I ∗[σ ] that is missing. Namely, we have

Lemma 6.2 Let τx = τ 1x ∪ τ 2x , τ
i
x being two children of τx . Then

g1(τx ) ≥ g1(τ
1
x ) + g1(τ

2
x ) .

Proof Let αi
y ≥ αy be the smallest interval such that τ ix × αi

y belongs to E1. And let
τx × α̂y be the smallest interval such that τx × α̂y belongs to E1. Without the loss of
generality we assume that α1

y ≤ α2
y . Then (see Fig. 7) τx ×α1

y contains τ 1x ×α1
y ∈ E1,

and we conclude that τx × α1
y also belongs to E1. But τx × α̂y is the smallest such

rectangle. Therefore,

τx × α̂y ⊂ τx × α1
y, and so α̂y ≤ α1

y ≤ α2
y .
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In the definition of g1(τx )we have the sum ofμ’s over τx ×α, α = Genk α̂y , k ≥ 0,
where Genk(I ) means the predecessor of I , which is 2k times larger than I . We write

g1(τx ) =
∑

k

μ(τx × Genk α̂y) =
∞∑

k=0

μ(τ 1x × Genk α̂y) +
∞∑

k=0

μ(τ 2x × Genk α̂y)

≥
∞∑

k=0

μ(τ 1x × Genkα
1
y) +

∞∑

k=0

μ(τ 2x × Genkα
1
y) = g1(τ

1
x ) + g1(τ

2
x ) ,

where the inequality holds because there are less predecessors for larger intervals. ��
Definition 6.3 Function g satisfying g(τ ) ≥ g(τ 1) + g(τ 2) for any τ ∈ T and its two
children τ 1, τ 2 is called two point super-harmonic. Function G satisfying G(τ ) =
G(τ 1)+G(τ 2) for any τ ∈ T and its two children τ 1, τ 2 is called two point harmonic.

This property of g1 implies immediately the following property of Ig1:

Lemma 6.4 Function Ig1 on T is three point super-harmonic. In other words, let
τ ∈ T has two children τ 1, τ 2 and father τ3. Then

Ig1(τ ) ≥ 1

3

(
Ig1(τ1) + Ig1(τ2) + Ig1(τ3)

)
.

Proof Let c = g1(τ ), a = g1(τ1), b = g1(τ2). The above mentioned inequality is
obviously equivalent to saying that

1

3
(a + c) + 1

3
(b + c) ≤ c .

This is of course true by Lemma 6.2. ��
Remark 6.5 Notice that this claim simultaneously proves that if σ is a positivemeasure
on ∂T and if G(τ ) := I ∗σ(τ), τ ∈ T , then IG = V σ is three point harmonic. Indeed,
if we use the same proof with IG = V σ replacing Ig1, we would come to c = a + b,
which is I ∗σ(τ) = I ∗σ(τ1) + I ∗σ(τ2) which is of course correct.

Now let us use (6.4) as follows. Let ρ be an equilibrium measure on Fαy =
ProjTx

[
F ∩ (

Tx × αy
)]
. In particular V ρ = 1 on Fαy . Denote

σ := λ

3
ρ .

Then by (6.4) we have:

V σ = λ

3
, on Fαy = ProjTx

[
F ∩ (

Tx × αy
)]

. (6.6)
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Remark 6.6 One can now think that maximum principle on tree T would now imply
that super-harmonic Ig1 is bigger than harmonic IG,G = I ∗σ , on the whole tree T
because on the boundary they satisfy (6.6). However, this is not the right reasoning
because of two important obstacles: (1) (6.6) holds not on the whole boundary of T
but only on some part of it; (2) for 3 point subharmonic functions minimum principle
claims that minimum is either on the boundary or at the root of the tree. And we have
seemingly no information about the behavior of super-harmonic Ig1 and harmonic
IG = I (I ∗σ) at the root. One needs another minimum principle. It is in Lemma 6.7
below.

Denote G := I ∗σ . It is a two point harmonic function, and the set of the boundary
∂T , where it is strictly positive is by definition inside supp σ = supp ρ. So on the set,
where G is strictly positive we have IG = V σ ≤ Ig1 by (6.4) and (6.6).

Hence, we are in a position to use Lemma 6.7 and Remark 6.5 that imply

V σ ≤ Ig1 on T .

This and (6.2) gives
V σ < 1 on O(S) . (6.7)

Now (6.6) and (6.7) correspond to (4.3) and (4.2) of Lemma 4.1. We use this lemma
and get � claimed in it. Then the end of the proof of Theorem 6.1 repeats verbatim
the reasoning of Sect. 5. ��
Lemma 6.7 Let g,G be two non-negative functions on T . Let g be two point super-
harmonic, and G be two point harmonic functions. Assume that IG ≤ Ig on the set
P = {ω ∈ ∂T : G(ω) > 0}. Then IG ≤ Ig on the whole tree T .

Proof Assume that at a certain β ∈ T we have Ig(β) < IG(β). If simultaneously
g(β) < G(β) we call this β good. If it is not good, thus, g(β) ≥ G(β), then clearly
Ig(β1) < IG(β1), where β1 denotes the father of β. Again we query whether β1 is
good. If not we come to β2, which is the father of β1. Eventually we will find a good
vertex. May be it will be the root of the tree, where Ig = g, IG = G.

As soon as we find good γ ∈ T , that is γ such that simultaneously

Ig(γ ) < IG(γ ) (6.8)

and g(γ ) < G(γ ), we notice that one of the children γ± (let us call it γ1) will also
satisfy g(γ1) < G(γ1). In fact,

g(γ+) + g(γ−) ≤ g(γ ) < G(γ ) = G(γ+) + G(γ−) .

Now, by recursion, we find a child γ2 of γ1 such that g(γ2) < G(γ2). We continue
doing that till we come to the boundary, namely, to a certain γn =: ω ∈ ∂T , such
that g(γn) < G(γn). Vertices γ1, . . . , γn form the branch of the tree from γ1 till
γn = ω ∈ ∂T . We can now add all inequalities g(γi ) < G(γi ), i = 1, . . . , n, and also
add to this inequality (6.8).
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As a result we get two things: one is that G(ω) > g(ω) ≥ 0 (that is ω lies in the
set P), the second one is

Ig(ω) < IG(ω) ω ∈ P .

But this is a contradiction to the assumption that Ig ≥ IG on P . ��
Define

Eδ := {(τ × α) : Vμ(τ × α) < δ} .

Put

V
μ
δ (τ × α) :=

∑

τ ′≥τ,α′≥α,(τ ′,α′)∈Eδ

Iμ(τ ′ × α′) .

For any positive function on T 2 we denote

Iδϕ :=
∑

τ ′≥τ,α′≥α,(τ ′,α′)∈Eδ

ϕ(τ ′ × α′) .

Denote Eδ[μ] := ∫
V

μ
δ dμ. Then,

Eδ[μ] =
∫

V
μ
δ dμ =

∑

τ×α∈Eδ

(
μ(τ × α)

)2
.

Let δ ∈ (0, 1]. By rescaling μ := μ/δ we get

Theorem 6.8 Let μ is a positive measure on ∂T 2 such that V
μ
δ ≥ λ ≥ 1 on a set

F ⊂ ∂T 2. Then there exists positive ϕ on T 2 such that

• ϕ satisfies Iϕ(ω) ≥ λ for all ω ∈ F,
• ‖ϕ‖2

�2(T 2)
≤ C δ

λ
Eδ[μ].

Lemma 6.9 Assume that μ is a positive measure on ∂T 2 such that V
μ ≥ 1 on suppμ.

Then
Eδ[μ] ≤ Cδ1/2E[μ] . (6.9)

In particular,

ET 2∩{Vμ≥δ}[μ] =
∑

R⊂∂T 2∩{Vμ≥δ}
μ(R)2 ≥

∑

α∈T 2:Vμ(α)≥δ

[
I
∗μ(α)

]2

= E[μ] − Eδ[μ] ≥ (1 − Cδ1/2)E[μ].

Proof If the first display inequality is proved, then the second display inequality fol-
lows because given α ∈ T 2 such that V

μ(α) ≥ δ, we immediately see that for each
point x ∈ suppμ of the dyadic rectangle R corresponding to α we have V

μ(x) ≥ δ.
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To prove the first inequality we will use Theorem 6.8. Fix a small positive ε to be
chosen soon.Consider Ek ⊂ ∂T 2 such that Ek = {x ∈ suppμ : 2k−1 < V

μ(x) ≤ 2k},
k = −ε log 1

δ
, . . . , 0, 1, . . . Then construct �k from Theorem 6.8 with data λ = 2k ,

δ. Then

2kμ(Ek) ≤
∫

Ek

I(�k)dμ ≤
∫

I(�k)dμ =
∑

T 2

�kI
∗[μ]

≤ ‖�k‖�2E[μ]1/2 ≤
( δ

2k

)1/2
Eδ[μ]1/2E[μ]1/2 .

Now sum over k and use that ‖μ‖ ≤ ∫
V

μ dμ = E[μ] as V
μ ≥ 1 on suppμ:

Eδ[μ] =
∫

V
μ
δ dμ =

∫

V
μ
δ ≤δε

V
μ
δ dμ +

∫

V
μ
δ >δε

V
μ
δ dμ ≤ δε‖μ‖ + 2

∞∑

k=0

2kμ(Ek)

≤ δεE[μ] + 2
∞∑

k=0

2kμ(Ek) ≤ δεE[μ] + CEδ[μ]1/2E[μ]1/2
( δ

δε

)1/2
.

One of the terms on the right is bigger than another. Thus, either Eδ[μ] ≤ CδεE[μ] or
Eδ[μ] ≤ Cδ1−εE[μ]. Either way, choosing ε = 1

2 we get the result of the lemma. ��
The second display inequality of Lemma 6.9 proves Lemma 3.2.
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