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Abstract

Nicola Arcozzi, Pavel Mozolyako, Karl-Mikael Perfekt, and Giulia Sarfatti recently
gave the proof of a bi-parameter Carleson embedding theorem. Their proof uses heavily
the notion of capacity on the bi-tree. In this note we give another proof of a bi-parameter
Carleson embedding theorem that avoids the use of bi-tree capacity. Unlike the proof
on a simple tree in a previous paper of the authors (Arcozzi et al. in Bellman function
sitting on a tree, arXiv:1809.03397,2018), which used the Bellman function technique,
the proof here is based on some rather subtle comparisons of energies of measures on
the bi-tree.

Mathematics Subject Classification 42B20 - 42B35 - 47A30

1 Introduction and notations

Let T denote a finite dyadic tree (of depth N). By identifying the root of 7 with
Ip = [0, 1] and each subsequent node in 7 with the corresponding dyadic subinterval
of Iy, we can think of its boundary a7 as simply Dy, i.e. the dyadic subintervals of
I of size 27V,

Considernow T2 = T x T, a bi-tree. We identify the root of T2 with Qo =[O0, 1]2,
and then each node o € T? of the bi-tree is identified with a corresponding dyadic
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rectangle R, C Qo in the obvious way. If o and f are nodes of the bi-tree 72, we say
that @ < B if and only if their corresponding dyadic rectangles satisfy Ry C Rg.

The boundary AT? = (8T)2 will consist of Dy x Dy, the dyadic sub-squares
of Qo of side-length 27", We will usually denote these boundary nodes 372 by the
letter w. The small squares of size 27" x 2~ making up the boundary will be denoted
R,,. In fact, as the nodes of the bi-tree 72 and dyadic rectangles are in one-to-one
correspondence, we will feel free in what follows to sometimes replace the symbol
R, by just w, and R, by just . This should not lead to a confusion, and sometimes it
is nice to distinguish between the two objects.

If E is a subset of 37 (or dT), then we define U, to be the union of corresponding
squares (intervals for T'):

Ug = | J Ro. YE COT?,

weE

and R g to be the collection of all dyadic rectangles inside U (this is a collection of
dyadic intervals if we mean T instead of T2):

Reg:={R:R CUg}.

We consider measures p on 972 (or on 97 that have constant density on each
small square R, € dT? (or small interval of aT). Then if R € RE, obviously

R = D u(Rw).

weE, wCR

We can also interpret p in terms of the nodes of the bi-tree. For this, recall the Hardy
operator I : £2(T?%) — £(T?) on a bi-tree: for any ¢ : T> — R let

Tp(@) =) ¢(B).

p>a

Correspondingly it is defined on 7', but then it is called /. Its dual I* is given by the
formula

Ty (o) = Y ¥ (B).

B=a
Then, of course,
n(Ry) = (I* ) ().

Remark 1.1 The equality above needs perhaps a small clarification, specifically in the
last step below:

) =Y n@B= Y ).

B=<a wedT?; w<a
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Bi-parameter embedding without capacity 645

The vertices (nodes) of the bi-tree and the dyadic rectangles are the same things (the
same can be said about the nodes of the tree 7 and the dyadic intervals). However,
notice that given o € T2\8T2 (or « € T\oT) we distinguish between (o) and
W(Ry). In fact, u(a) =0 foralla € T2\8 T? (oro € T\OT if we consider just a tree
and not a bi-tree). This is because we assume from the start that the measure lies on
the boundary of the tree. On the other hand,

WRO= Y, wR)= ) ).

wedT?, wCRy wedT?, w<a

At the same time, if v € 372 (or w € 3T), then p(w) = w(Ry).

Remark 1.2 As we already mentioned, we assume from the start that the measure lies
on the boundary of the tree. The results of this paper extend to the case when u is
given on the whole T2, this is done on our subsequent article.

Definition 1.3 We say that a measure ;2 on 872 (or 3T) is a C-Carleson measure if
for any subset E C T2 we have

Y u(R? < Cu(E).

ReRE

Of course we can give the analogous definitions for a simple tree 7T'.

This is just the condition (1.4) below, when it is tested on characteristic functions.
Sometimes it is called “the dual testing condition” in the literature.

Definition 1.4 We say that a measure p on dT? (or 8T) is a hereditary Carleson
measure if there exists a constant C such that u|E is C-Carleson for any subset
E C 8T? (or T). Here u| E denotes the restriction of p to E:

ww), ifwekE,

(MIE) (@) = 0. ifwdE.

So, in terms of rectangles,
(M|E)(Ry) = n(Ro N UE). (1.1)
The hereditary Carleson condition can then be restated as:

Z w(RNUE)? <Cu(ENF), YE,F C aT>. (1.2)
ReRf

It is proved in [3] that to be a Carleson measure on dT? is the same as to be a
capacitary measure. Capacitary property is hereditary, and so any Carleson measure
on 372 (or 3T) is hereditary Carleson. However, the main goal of this note is to avoid
the use of capacity, and to prove directly the following result.
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646 N. Arcozzi et al.

Theorem 1.5 Let i be a measure on dT?. Then the following are equivalent:

(1) wis Carleson;
(2) w is hereditary Carleson;
(3) w is an embedding measure for the Hardy operator, in the sense that

Y @) u@) < Cillplipgoy; (1.3)

wedT?

(4) u satisfies the second embedding:

D@l <Cr Y W) ). (1.4)

aeT? wedT?

There are some easy implications, like (2) obviously implies (1). The fact that (3)
is equivalent to (4) is just duality: note that (3) is the same as the boundedness of the
operator I : 02(T?) — €(T?; w), where the inner product in the latter is given by

(0. V)2, ) = Z )y ()p(e) = Z p(@)Y () pu(w).

aeT? wedT?

Since

A, V)22 = Y 9@ W w)(@) = (9. T (Y072,

aeT?

the adjoint of I : £2(T?) — £(T?; ) is then T*(-) : £2(T; ) — €2(T?), and (4)
is exactly boundedness of this operator.

Also the claim that (4) implies (1) is easy: let some E C 97?2 and choose in (4) the
function

1, ifaekE

0, otherwise.

V() =

Then I* (Y ) (o) = w(Ry N E), and (1.4) becomes

Y R NUE) < Cru(E). (15)

aeT?

Obviously the left hand side is greater than )" g0 - (R N Ugp)? = YRRy w(R)?,
and we then have the C-Carleson property. We briefly remark here that the relationship
in (1.5) describes exactly the notion of restricted energy condition, which we will
encounter shortly.

The implication (3) = (2) now is also easy: if the measure u satisfies (1.3), then
obviously any measure smaller than p also must satisfy (1.3). So, if u satisfies (3)
then for every E C 972, the measure | E also satisfies (3)—therefore also (4), which
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Bi-parameter embedding without capacity 647

we showed implies (1). Then u|E is Cy-Carleson for all E C aT?, proving that pu is
hereditary Carleson. Alternatively, one can take in (4) the function ¥ (o) which is 1
when @ € E N F and O elsewhere. As seen in (1.5), this will give us

Y w(Ra NUgnp)* < CLu(E N F),

aeT?

which then easily implies the hereditary Carleson condition in (1.2).

The difficult implications are (1) = (2) and (2) = (3). To illustrate that (1) = (2) is
highly non-trivial, let us consider the simple case of 7' (much simpler than the bi-tree
T2 case). The Carleson property (1) is the same as

VIieD, Y ud)?=cCud). (1.6)
1€DJ)

Letus choose adyadic interval K andletv = p|K. If we believe that (1.6) is hereditary
(may be with another constant) then, in particular,

Yo v = v,

LeD(lp), KCL

but clearly v(L) = u(K), v(lp) = u(K) and we obtain that g(K)u(K)2 < C'u(K).
Here g(K) = log 1/|K|, that is the number of the dyadic generation of K. Thus, we
get
C’ C’
g(K) logl/IK|’
One canindeed deduce (1.7) from the Carleson property (1.6) directly, butitrequires
some real work, see [4]. Moreover, in [4] we deduced the box capacitary condition

w e (1.6) = n(K) < 1.7

C/
K xJ) < .
m )= oz 1/IK Tog 1/7]

from the box condition on bi-tree:

VRy € D x D, Z w(R)? < Cu(Ry). (1.8)
ReD(Ry)

1.1 Restricted energy condition

At this point we are in situation (a) of Fig. 1 below, namely we are left with the difficult
implications (1) = (2) and (2) = (3). We will prove these by appealing to a fourth
concept, that of restricted energy condition, which we introduce next.

First, let us define the potential V* to be I(I* ). Then

VA (o) = Z/J.(Rﬂ), Vo € 3T>.

Bza
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Fig. 1 Structure of the Proof of Theorem 1.5. The dark blue arrows indicate implications which have been
already obtained easily, and the red arrows indicate the difficult implications

Also, define the energy

def

e [ Vidi = 3 wR? = I 1l

aeT?

Given a subset E C 972, we introduce

ElIE Y n(R?,

ReRE
Of course the same definitions apply to the simple tree 7.

Remark 1.6 Notice that £[u|E] is considerably larger than Eg[u]:

EllEl= Y w(Re NUE)* > Eelul= Y n(Ra).

aeT? a: RyCUE

Definition 1.7 We say u is a measure with restriction energy condition, denoted
n € REC, provided that

EIR|E] < Cu(E), VE C dT>. (1.9)

Obviously, hereditary Carleson measures are REC—this can be easily seen by
taking F = 87T in (1.2). Note that the Carleson condition may be written exactly as

Carleson condition: Eg[u] < Cu(E), VE C aT>?,

which is seemingly much weaker than restriction energy condition. In fact, these
conditions are equivalent, as we show below.

Theorem 1.8 The Carleson condition, the restriction energy condition and the hered-
itary Carleson condition are all equivalent.
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Bi-parameter embedding without capacity 649

1.2 Structure of the paper

The big picture is summarized in Fig. 1b: first we are going to prove, in Sect. 2, the
implication:

Theorem 1.9 The restriction energy condition implies the embedding (1.3).

Remark 1.10 We already noticed the converse implication, see (1.5), so this establishes
the equivalence of restriction energy condition with embedding (1.3). Of course, The-
orem 1.9 follows from [3], but we wish to give somewhat different proof avoiding the
notion of capacity.

The core result we will use for this is the following

Theorem 1.11 Let jx be a measure on dT? such that:

o V* <1 onsupp(p),
o VA > Aonaset F CdT?, for some large M.

Then there exists a positive function ¢ on T? such that

o lp(w) > A, forallw € F, and
o ll} o, = $EIL

Sections 4 and 5 will be dedicated to proving this deeper result.
In Sect. 3 we show that

Theorem 1.12 The bi-parameter Carleson condition implies the restricted energy con-
dition.
2 Embedding theorem for REC measures

We first need the following Lemma, which is the first place where we apply Theo-
rem 1.11.

Lemma 2.1 Let u, p be two REC measures such that

e V* <1 onsupp(u), and
e V¥ > X on supp(p).

Then c
lo] < A—3|M|~ 2.1

Proof By Theorem 1.11, there is a function ¢ on T2 such that
2 C
Ip() 2 4, Ve € supp(p) and ll@llyz(72) < - Elul-
Then:

Mpl= / rdp< / (Ip) dp= / 0T ) < llgll 272, €101 < C gl 2 sy 1012,
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650 N. Arcozzi et al.

where we applied the R EC property in the last inequality. So

Co

c,C c,C
ol < SN0 ltaray < —5-Elul < =5 lul,

where the last inequality follows from the first assumption:

8[u1=/wau§/du=|m.

Theorem 2.2 Let i, p be two REC measures such that V#* > A on supp p. Then

Il
lol < CW-

Remark that this result is similar to Lemma 2.1, but much stronger as we are
missing the boundedness assumption for V#* on supp(u). We will get around this by
constructing two new measures (1, p1 from u, p to which Lemma 2.1 can be applied.

Proof Let C > Cp denote the REC constants of t, p, respectively, and let
F.:={we dT? : VM(w) > A},

for some € > 0 we will choose later to be 1/3.
Split u into

M=o+ K,

where
Ko = p|Fe.
We make some quick observations about these measures. First of all, obviously
VH < A€ on supp(iq). (2.2)

Observe that if we scale by A€ we have the first boundedness condition in Lemma 2.1.
So now we need to construct a complementary measure p; such that V4! > cX on

supp(p1)-
Second of all, by Chebyshev,

1 1 1
ol = w(F2) = V¥ > 2] < ;fw die = €1l = - Culnl

o) l
uw
[ol = CM)L_E' (2.3)
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Bi-parameter embedding without capacity 651

Third, it is easy to see that both g and p; are also R EC measures with constant C,.
Finally,

/ VH dp < (CuCpluollo)'/?. 2.4)

To see this:

/ VA dp — / (o) dp = / (I* o) (I*p)

< 1T woll2r2y T pll 22y = (ELmolELPD 2,
and apply the REC property to the last terms.
Returning now to p, we will say that p is “good” if

[

lpl < KW’

(2.5)

for some large constant K we will choose later. Suppose this is not the case though,
and combine the “badness” of p with (2.3) to obtain:

|l 1 A2te C
ol < Cug = Cuse = lol = 224 %Ipl.
Then (2.4) gives us
Cc,/C
/ v dp < il 2.6)

Consider now a fixed, very small § > 0. Again by Chebyshev:
) Cu.yC
p{VH0 = 53} < —/WOd "

Keep in mind now that, by assumption, supp(p) C {V* > A} = {VF0O + VI > A}
and so

p{VH > 83} = |p| — p{VH0 < 62} = |pl — p(V*! = (1 — §)A),
which, combined with the estimate above, leads us to

pVA = (1 - 8)) = |p|< "r) > |pl(1 - 8), @7

where the last inequality comes from us finally choosing K large enough so that

Cu/C, s
SVK ~
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For instance, if 6 = 0.01, the relationship in (2.7) becomes “on 99% of p we have
VH > 0.991.”
Call now F := {V#! > (1 — §)A} and set

p1:=p|F,

so p1 is another R E'C measure of basically the same mass as the original p, but it has
the right relationship to V#! to allow for Lemma 2.1. Specifically, if we also let

M
e

)

then « and p; are two R EC measures such that

e V¥ <1 on supp(x) by (2.2), and
o VK > ;E;j on supp(p1) by (2.7).

By Lemma 2.1 we have

Clul
232

lp1l <

Now note that (2.7) translates to [p1| = p(F) > |p|(1 —§), so

Clul
§ A3-2€”

1 1
< < 2.8
ol = T—leil = 7= (28

So, there are two possibilities: either p is good, in which case (2.5) holds, or p is

bad and then (2.8) holds. If we set 2 + € = 3 — 2¢, so € = 1/3, then either estimate
will yield the desired result. O

2.1 Mutual energy of pieces of REC measures

Let i be an REC measure and let F C E C dT2. Below is the trivial estimate of the
mutual energy:

/ YHIE g F = / [ (WIE)) - (T (Ul F))

< 1Tl E)ll 22y 1T (el )l 272y = (EIIEIE[1| F1)
< Cu(w(Eu(r)'"?

1/2

Here is the improvement.

Theorem 2.3 Let it be REC measure, and let F C E C TZ2. Then

/ VHEGUF < Cu(EY u(FY" .
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Bi-parameter embedding without capacity 653

Proof Let k > 0. Denote Fy = {x e F : VME ¢ [2k 2k+1)}. Then by Theorem 2.2
we have

n(F) <277 u(E) .
def [VHEqpu|F
Putrh = —m
[27,2/%1), j > 0. Repeating Lemma 2 of [3] and using this display formula, we get

If A < 1 then theorem follows trivially with C = 1. Let A €

u(E)

A
u(F) < Spu(F) + CL*BuE) =13 <c==2
w(F)

This gives the claim of the theorem. O

2.2 Embedding theorem for REC measures

Proof of Theorem 1.9 We start almost exactly as in [3]. We write

Er & (o € dT? : Tp(a) > 2¢).

Unlike [3] we put iz & ¢| Ey. Then

[ i < Y it = X2 [ a0 =32 [ o)

< llellezer2 Z 26T le2(72y-

Expanding the square in || ZZ"]I*M;{||%2(T2) weget )y > i 204k [V« dp ;. Con-
sider the diagonal part Y, 2% [VHk dpy = 37, 22K E[u|Ex] < Y, 2% u(Ey). The
last inequality uses exactly R EC property. Thus the diagonal part is ( i (Ip)*d ,u,) 12

We are left to prove that off-diagonal part is < ), 22ku(Ek) as well. Here we
follow [1,3]. Using Theorem 2.3 we can write

ZZZ/+ka“k dpj S ZZkIMkIMZzJ RE

k j<k j<k
— 228/{/7|Mk|4/72—k/7 22] |MJ|3/7
k i<k
4/7 ) 7/3\ 3/7
< (Zzz"mu) (Zz"”(zzf |u,-|3/7) ) :
k j<k
Now
7/3 7/3
(sz |Mj|3/7) < (sz/m 213)/14 |Mj|3/7)
J<k j<k
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) 7/4 ) 3/7
(2(2//14)4/7> _ (2(213,/14 les/v)m)
Jj<k Jj<k
7/3
' 3/7 _
<k j<k

Combining this with the previous display formula, we get

4/7 37
ZZW"/V’” duj < (Zzzkmu) (22"/622””%0
k

k j<k Jj<k

477 3/7

< 22k / 2k / B P

N [kl ek ] [kl -
m]

3 Proof that the bi-parameter Carleson condition implies REC

Proof of Theorem 1.12 We assume the bi-parameter Carleson condition:

Eelul = ) u(R)? < u(E), VECIT 3.1
ReRE

But let Fy be a subset of 372 such that for def u| Fo the following holds with a

large constant C.

Elmol = Cluol. (3.2)
Moreover, we can assume that
Eln|F
C = max ST (3.3)
Fou(F)|

This is because we assumed in Sect. 1 that 72 is a finite graph (albeit a very large one).
The main ingredient in estimating C is provided by Lemma 6.9 of Sect. 6. We are

going to prove that
C<ACiy (3.4)

where Cg ¢ is the constant from Lemma 6.9 of Sect. 6.

3.1 Part 1: making Lto to be almost equilibrium

We start by introducing some additional notation. Given a set E C 972 and a measure
v we defined above the local energy of v at E

Eelv] i= Z V(R)?.

ReRE
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Bi-parameter embedding without capacity 655

In particular, we have £g,[v] = £[v].
Now we have (3.2), hence

/VMOdM():/CdMo,

which, as we will now see, means that VA0 > % on a major part of supp wo. For now

we want to get rid of those points in supp o where the potential is not large enough
whilst conserving the total energy. We do so by the power of the following lemma

Lemma 3.1 Assume that v is a non-negative measure on Qq, suppv = E C Qo and
Ev] = /V” dv > Cv(E) = C|v|.

Then there exists a set E C E such that
- C
VV>—, onkE,
3
and
- 1
E] > 65[1}].

Here v := v|.

Proof First we assume that C = 3 (otherwise we just rescale). Let Eg := {t € E :
V¥ < 1} and o9 := v|g,. Assume we have constructed o, j =0,...,k — 1, and the
sets E ;. We then define Ej to be

k—1
k=1 .
Ex={weE\| JE : V" XZi=% W) <1},
j=0

and we let oy = V|g,.

Since T2 is finite, the procedure must stop at some (possibly very large) number
N,ie. Ej =@for j > N.Welet E, = E\ ijzo E j (we do not know yet if this set
is non-empty), 0o = V|E,,. By construction we have

Vo (w) > 1, o€ Ex.
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Next we compute the energy of v,

6[v]=/V”dv= DD /VU-’de=2 >y fV”-fdak

Nzj=0 N=k=0 N=k=0N=j>k

=2 Z /VZszZk"f doy, +2/V"°° doso

N>k>0

k-1
=2 Z /V”_Z.i=0”f doy + ZfVUOO doso

N=>k>0

N
< 22] dog + 2E[00] = 2|v| + 2[00 ]-
k=0

Since £[v] > 3|v| by assumption, we have
1
Elox] = 65[\1],

it remains to let V := o, E = E~o, and we are done. |

We apply this lemma to o and Fo (we remind that ;1o = | g, so that supp uo C Fo)

obtaining the set F; C Fp and a measure (1 = uolr, = p|r, that satisfies VA1 > %

on F| and

1
Elpur] = gﬁ[uo].

Finally we let

1 C
- . 123 R
E := {t € Qo: V(1) > iCeo 3 } . 3.5)

3.2 Part 2: why is E the right set to consider? Main Lemma 3.2
First we state another lemma that allows us to estimate the total energy of an almost
equilibrium measure by its local energy at a certain level set. This is the main ingredient

of proving that bi-parameter Carleson condition implies REC condition. For the proof
of the following lemma see [3] and Lemma 6.9 of Sect. 6 below.

Lemma3.2 Let v > 0 be a measure on Qq such that
VY() > Cy, t € suppv,

and let

._ LY G
E = {te Qo: V() > —4C6.9}'
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Bi-parameter embedding without capacity 657

Then |
Eelv] = 55[\1]. (3.6)

We already mentioned that this lemma will be proved in Sect. 6. Now we are going
to use it. Let o := u|g. By definition,

C
——o| < /V’“ do . 3.7
3-4Cg9

On the other hand,
/V*“ do < ELu1"2E[01"? < ELun' el e]V? < 22812 E Ll £112,

where the last inequality follows from Lemma 3.2 applied to v = pq and C; = C/3.

Now by assumption (3.1) we have SE[,ul]l/2 < |u|F1| = n(F1) < u(E) = |o|.
By assumption (3.3) of maximality wehave E[|g] < Cu(E) = Clo|. Letus combine
this with the last display formula to get

fwl do <2'2C? 6.
Combine that with (3.7) to obtain
<2l2¢c1)2
3-4Cgo9 — ’

ElulF]

which gives us C < 288C% 9° which we wanted to prove, as C = maxp O
In the next section we start to prepare the proof of Theorem 1.11, whose proof will
be finished in Sect. 5.

4 Lemma on majorization with small energy. A case of ordinary tree

All trees below can be very deep, but it is convenient to think that they are finite.
Estimates will not depend on the depth.
First, some notation. For every dyadic interval J, we call:

e (O j—the square with base J;
e Topj—the top half (rectangle) of Q.

Top,

<

J J

Let Ip = [0, 1] and identify the dyadic intervals in D(ly) with vertices of the tree
T := T (lp), as before. Let S be a family of disjoint dyadic subintervals of Iy, and
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Iy Qi

0(s) /’

o(s)

w(s)

(A) (B)

Fig.2 Dyadic tree and the sets W(S) and O(S)

define:

wS) = 0.
JeS
0(8) :== Q1 \W(S) = Up, Topgnotin0;,7esTope.

To visualize these sets, one may think of the dyadic tree in the usual way, as in Fig. 2a,
but in this section it may be more useful to identify each J € D(I) with the rectangle
Topy, as in Fig. 2b.

For vertices « of the tree T, we write « € W(S) if thereisa 8 € S such thata < 8.
Given a measure o on T, define:

N I*o(a), ifae W(S)
Igo(a) = )
0, ifa € O(S).
and the local potential:
Via) = Yopraza IF0@), ifa<B, peS
ST o ifa € 0S).

Then we conveniently have

> Iso(@)? =/V§dcf. (4.1)

Lemma 4.1 Let o be a measure on dT and S be a collection of disjoint dyadic subin-
tervals of Iy satisfying O(S) # 0. Let f > 0 be a function on the tree T such that
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f =0o0on W(S). Let F C aT N W(S), and suppose that for a large . >> 1, the
potential V° satisfies:

Vi (w)> XA, weF, “4.2)
and
Vo) <1, aec0(S). 4.3)

Then there exists another function ® on T such that, with positive absolute constants
¢, C:

I[P (w)>clf(w), weF, “4.4)

and

C
I®lle2(ry < I||f||el(T)- (4.5)

Proof We will give a formula for ®. This function will be zero on O (S)—see Fig. 3a—
and on W(S) it is defined as follows: if « < B for some 8 € S, then

FIf(B) TG0 (@), if Y 4o py I50(@) <A

O (a) :=
(@) 0, if Zﬁza’za [So(@) > A

(4.6)

We prove first (4.4). Let w € F and let 8 € S such that w < B. Since f = 0 on
W(S),
If(@) =) fly=>Y_ fl@)=IfPp). 4.7)

azw a>p
For ®(w), we have two cases.

Case 1: ®(w) = 0. Notice that the case [ f(w) = 0, w € F, is then done: obviously
forow <B,we F,[®(w)>0=1f(w).

But If(w) = I1f(B), see (4.7). So without loss of generality we can think below
that 7f(B8) > 0.

Let w € F and let y be the largest w < y < B such that ®(y) = 0; see Fig. 3b.
Remark that y < B, that is we cannot have ® () = 0, Vo < @ < . Let us explain
that.

Recall that 7f(8) > 0. Since ®(B) = %If(ﬂ) I§a (B) then the first of reasons
why ®(8) =01is I;g (B) = 0. In other words o () = 0 (since o is measure only on
the boundary of the tree). The second reason is (see Definition (4.6))

I50(B) > A. (4.8)
Let us bring the first reason to contradiction.
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Beocs
o Beo(s)
BeS
@ =00n0(S)
V7 < 1 on 008) @ + 0 here
Beow)
BES
[ | [ [
F [T] [] @ =0 here
V?>210nF IIIIIIIII
f=00nW(S)
(A) B)

Fig.3 Lemma4.1

For w < B, w € F we know that V°(w) > A. Notice thaAt Vo (w) = V2(B) if
o(B) = 0. Thus, we have V?(B) > X, but we also have V?(8) < 1 by assumption
(4.3). So

SIES

o) zr—1=

But this is impossible: we just wrote that o (8) = 0. This is a contradiction.
Notice that it follows from the assumption that O (S) # @ that Iy = rootr € O(S),
which gives the following mass estimate for o:

loll =1%o (lp) = V7o) < 1, (4.9)

by (4.3). But this means that
N A
ol)=I"c(x) <1< 5 YaeT. (4.10)

So, if ®(B) = 0, then by definition of ® (see (4.6)) we would have only the second
possibility left: (4.8), namely, this may happen only if o (8) = "0 (8) = 50 (B) >
A > 1, a contradiction with (4.10). So the second reason for ® () to be zero is

disproved as well.
Note also that, once ® () # 0, then ®(a’) £ Oforalla < o’ < B:

Y. Ife@) < ) I"o@) < s0d() #0.

p=a">a’ Bza">a

So, keeping in mind (4.7), we have:

1
19 = Y ~If ('@

Bza>y
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=%If(a))( > Io@) — I'o(y)

pzazy

<1by 4.10)
> because @ (y)=0
)
> —If(w).
A
If we assume, for example, that A > 3, then )‘T_l > % =:c.

Case 2: @ (w) # 0. Let E € O(S) be the dyadic parent of 8 € S. Then

1
1o@ = Y ~IfBl'o@
B>a>w
1 ~
:le(a))( Vi) — V7(B)
~—— S——
>Aby(42) <lby4.3)

k—ll

To prove the energy estimate (4.5), let us recall that

1
191y = 53 2 ULABE Y I5lol@?

BeS aeQp:®(a)#0
1
=53 SUAGF [ VE @)oo,
BeS p
where forow < 8,8 € S,
Vi = Y I'loli).

B>y'>y:®(y")#0

But V¢ (w) < A, because this is how & is defined in (4.6).
f

Let us introduce a new measure on 7', called o 5> which has masses only on vertices

B € S, and each mass is

ol (B) = ILFIBI"[01(B) .

2

Hence, obviously, we can rewrite the previous estimate of || P || )

1
191527y = 5 D_ULABIPI o168
BeS

as follows:

1 1 ) |
= X[SI[f](ﬁ)dog(ﬂ)=x Z fle) [a;f](a) = XI, 4.11)

ae0(S)
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where 7 := fS I[f](ﬁ)dag (B). To continue, let us make a self estimate of the term
Z.

2\ 1/2
> f(a)l*[agl(a)iIIfIIzz(r)< > (1*[a§1(a>))

ac0(S) ac0(S)

. 1/2 _
= ||f||/é2(T)</ ves d0§> = ||f||42(T)< Z Vs (,B)Ug(ﬁ))

BeS

172

We want to show that 7 < 8||f||%2(T). Split S = UgezSk, where

Sk = {ﬁ e S: 2k <I1f1(B) < 2! }

ng = a§|8k.

f
We will estimate now Zﬂes Vs (ﬁ)ag(ﬁ) < 64||f||?2(T) as follows:

: of
> foé(ﬁ)ag(ﬁ)gzz Yoy v (ﬂ)ogk(ﬁ)

BeS k BeSy j.k:j<k

<ZZZ Z 2]+1V0(ﬂ)0_8 (ﬂ)<222k+lva('3)0_8 (ﬁ)

k BeSy j.k:j<k

<83 S I1BLB) <8 I[f](ﬂ)og (B)=8T
k BeSk BeS

. 1/2
58||f||zzm<2 VoS (ol (ﬁ)) :
BeS

We used here that by by (4.3) and (4.10) 8’s in S are all such that
Vep) <2.
Therefore,
2
Combining with (4.11), we see that the energy estimate (4.5) is proved, and, thus, the
lemma is completely proved. O
5 Majorization on bi-tree

We finish here the proof of Theorem 1.11. Let us recall this theorem, it is the following
result.
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Theorem 5.1 Let  be a positive measure on dT? such that V < 1 on supp(u) and,
for some large ., V* > ) on a set F C dT?>. Then there exists a positive function ¢
on T? such that:

o ¢ satisfies lo(w) > X forall w € F.
o 1015 < $EIL)

Proof All of our dyadic rectangles are inside the unit square Q¢ = Iy x .
Let us consider the family of dyadic rectangles y, x a, with a fixed vertical side
ay, and define

Gy) =G () = Y ulye x o).

a'>ay
Then note that
LG* (yy) = VF(yx x O‘y)~

Moreover,
Ga"(J/x) <1, Yy, Ay. 5.D

Indeed, let 7, be the biggest (if it exists) dyadic Ip > 7, > @y such that (y, x 7,) N
supp() = ¥ (see Fig. 4). Then

G ()= D nlxa)+ > ulye xa).

o' >ay a'>1y

o' <ty
The first term above is obviously 0, and the second term is < 1 because it is less than
V¥ for some point in supp(u). In case 7y, does not exist, obviously G*” (yx) = 0.

Now, (5.1) implies that we may consider the family S := S(a,) of maximal
stopping intervals By € T, such that I, G% (B,) = V(B x ay) > 1. Then
LG (By) = V(By x ay) <2, VB € S((Xy)'

To see this, let By € S(ay) and B\x be its dyadic parent. Then I, G*¥ (//3;) <1,s0

LG (B =Y. GU(r) = G (B) + LG (B) <2.
Yx =Py <lby (5.1) =1

Another immediate property of the collection S(«ay) is
Bx € S(aty) = (Bx x ary) Nsupp(p) = V.
Otherwise, suppose Q € 3T is in this intersection. Then

LG (Bx) = V(B x Oly) <VH(Q) <1,
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Iy -
o,
Iy -
L T I )
7y = Io l I—»Ty = I
supp (L) Ty =10
Ja (Gis Ohere)

Fig.4 Examples of various 1y for a fixed oy

a contradiction. It is then obvious that
Bx € S(ay) = M(,B)/c X Oly) =0, Vﬂ; < Bx. (5.2)
We claim next that

A
If for some w, : V*(wy x ay) > 3 then S(ay) # ¥ and O(S(ay)) =Y. (5.3)

Recall that A is large, so obviously V#(wy x ay) > 1, and then S(ay) is non-empty.
Also, 1, G% (rootr,) = G* (rootry) < 1, therefore any interval in S(ay) is strictly
smaller than /. We therefore have a non-empty family S («,,) of largest dyadic intervals
in Ty such that 7, G*(By) > 1, and all these intervals are strictly smaller than /.

For any small square ® = wy x wy € F, let a(w) denote the first from the top
(largest) dyadic interval containing wy, such that

A
VH*(wy x a(w)) > 3
Then by definition
A
VH(wy x a) > 3 Va: o, <a < a(). 5.4)

In particular, for any w € F and for any ay such that w, < @y < a(w), we obtained
a family S(ay) of disjoint dyadic subintervals of T such that

Va, : oy <oy <a(w) = S(ay) #0, 0(S(ay)) #9. (5.5)
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Iy x o, does not

hayl

contain any w € F

a(w)
ay {

supp(/) wa
F w & y

Fig.5 Construction of the function ®%» (1)

Given ay, we constructed a function G** on Ty x oy, and a family S(ay) C T of
disjoint subintervals. Now we need another function on 7, x ay, namely

fra) i= 9 (va) = plyx x ay).

Recall that W(S) = Uges Op.
Fix ay and construct a special function ®*> as follows.

o If the dyadic strip Iy x ay does not contain any w € F', then put ®*» = 0.
e Otherwise (see Figs. 5, 6), let

Fo, :={wy : 0 =y X 0y € Fst.wliesin Iy x ay and ay < a(w)}.
If Fy, = , again put ®*» = 0. Otherwise, for some w, € Fy,, by (5.5):
ay < a(w) = S(ay) # ¥ and O(S(ay)) # 0.

We claim that we are now in the situation of Lemma 4.1.

Let o be a measure on 97, defined by:

o(wy) == Z wlwy x o), Yo, € 9T.

a'>ay
Then
G% (yx) = I;G(Vx)~

By (5.4):

= Vu(wx X ay) = IGay(a)x) = II*U(wx) = Vg(a)x)y

Wi >
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supp (1)
F
ﬁ (we X aw)) > %
a(w)

Wy

Fig.6 Construction of the function ®*» (2)

$0 Fo, C 9T N W(S(ay)) — otherwise, we would have V¥ (wy x ay) < 1, a contra-
diction. We make note of the fact that

Va(a))>& VYo, € F, (5.6)
X)) 37 X O[y~ .

Also, by definition of S(ay),
VG(Vx) = Vﬂ(yx X ay) <1, Yy € O(S(ay))-

By (5.2),
f% =0o0n W(S(ay)). (5.7)

So, we are now indeed under the assumptions of Lemma 4.1, so we have a non-
negative function ®* on T, such that, with positive absolute constants ¢, C:

1O% (wy) = cIf* (wx), Vo € Fy,. (5.8)
C
19 2y < I Wz (5.9)
Now put
Oy, ay) = DU (yy).
Summing (5.9) over all ay € Ty:
2
l@l1F272) = D (cb“y(m) =Y 1 %,
Yx, Oy Ay
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C
= x yz}; m(yx X Oly)2 =&l

Given w = wy X wy € F,sum (5.8) in ay: wy < ay < a():

Ip@) = Y 199> Y 19 (wy)

ay>wy ayiwy<ay<a(w)

c Z If*(wy) =c Z Z n(w' x ay)

ay:wy<ay<a(w) ay:wy<ay<a(w) o' >y

= c( Z ww xa’) — Z n(w x 05/))

o' >wy o' >wy
o' >wy o' >a(w)

A%

—_—
=c| VM(wy x wy) — V¥(wr x a(w))
> because VA>)  <A/3by defn. of a(w)
2
> c—.

3

6 The proof of Lemma 3.2

The proof of Lemma 3.2 is also based on Theorem 5.1, but rather on a modification
of it. Hence we need a a special modification of Theorem 5.1. Let

Ei={txa): V(1 xa) <1}.

This set can be empty because we do not assume anything on © > 0 at this moment.
Put

Vit x o) = Z w@ xa).

'>1,0'>a,(t',0')eE

For any positive function on 72 we denote

Tip = Z e’ xa').

v'>t,0/>a, (7,0’ )eE]

Denote &[] := [ V{ dyu. Then,

sl = [Van= 3 (uexa)’.

TXaeE]
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Theorem 6.1 Let 1 is a positive measure on T2 such that V’f > A >> 1onaset
F C 9T?. Then there exists positive ¢ on T? such that

o ¢ satisfies lop(w) > A forall w € F,
o 160542, < FELuL.

Proof If E| = 0, there is nothing to prove as the set F of large values of V’]‘ will be
empty (since V’f = 0 identically).

Now we follow closely the proof of Theorem 5.1. Again fix o, € Ty. As before we
introduce two function (notice the modification):

g1(1y) = > u(te x o),

o) >ay, (Te X} )EE]
f1(Ty) = p(ty X ay), Ty x ay € E1; 0 otherwise.

Of course we should keep in mind that these functions have implicit superscript oy .
Notice that

Igi(yy) = > n(ye x ah) = Vi(ye x ay).

VeZyx,oy oy, (yy xa))EE)

So, consider the family S = §%' of maximal dyadic intervals (= nodes of Ty) such
that

Ig1(By) > 1. (6.1)

As before consider W(S) and O(S). Given E| # (J, we conclude that for some o
the set O(S) is non-empty and that

Igi <1 on O(S). (6.2)
Consider
Fo, i={ox i 0 =wy Xy € Fst.oliesin Iy x ay and oy < a(w)}.

Now «(w) is computed with respect to potential V‘f : the largest such « that Vi (w, x

A

Non-emptiness of E also implies u(lp x Ip) < 1 and thus (6.2) can be comple-
mented by
Ig; <2 forall BeS. (6.3)

However, if F N (Tx X ozy) # (), then on Fay C 0Ty

A

Next, following the scheme of the proof of Theorem 5.1, let us check that

fi=0 on W(S). (6.5)
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Fig.7 Lemma 6.2 construction N
1
Qy
Qy
— ()[2
1|2 Y
Cym Ty
Tx

Indeed, let y € W(S), so there exists 8 € S such that y < B. Then, using (6.1), we
get

Vi(y xay) = Igi(y) > Ig1(B) > 1,

and, hence, by the definition of f1, fi(y) = 0.

We are almost in the assumptions of Lemma 4.1. In fact, we have W(S), O(S),
function f] that plays the part of f and function g; that plays the part of G, and we
have assumption (6.2) that is like (4.3) and assumption (6.4) that is like assumption
(4.2). There is a difference though, because the property G = I*[o] is missing, g; is
more complicated. But we will be able to circumvent this difficulty in a rather easy
way.

It is clear that we are interested only in those ay, for which f; # 0, therefore, we
are interested only in those «,,, for which O(S) # 9.

Remembering this, next consider (6.4). If (6.4) happens (there are many «,’s for
which this will happen, namely, those for which F N (Tx X ay) # (), then, obviously,
(6.4) may happen only on the part of 97, that lie inside some of the intervals g € S.

To reduce everything to Lemma 4.1 we will need one property of g that will replace
the property G = I*[o] that is missing. Namely, we have

Lemma 6.2 Let T, = t! U2, ! being two children of . Then
g1(m) = 21(t) +81(z)) .

Proof Let oc; > ay be the smallest interval such that 7! x oz; belongs to E1. And let
Ty X &y be the smallest interval such that 7, x &y belongs to E1. Without the loss of
generality we assume that Ot)l, < ag. Then (see Fig. 7) 7, x Ol;, contains rxl X a}l, e Ey,
and we conclude that 7, x a; also belongs to E;. But 7, x o), is the smallest such
rectangle. Therefore,

A 1 A 1 2
Ty X oy C Tx Xy, and so ay Say <.

@ Springer



670 N. Arcozzi et al.

In the definition of g1 (t,) we have the sum of ©’s over 7y X o, ¢ = Genk&y, k>0,
where Geny (1) means the predecessor of I, which is 2% times larger than 7. We write

o0 o0
g1(ty) = Z/L(TX x Genyay) = Zu(rxl x Genyay) + Z/L(rf x Genyay)
k k=0 k=0

oo oo
= ) u(ry x Gengarg) + )ty x Gemary) = g1(1g) + 81(77)
k=0 k=0

where the inequality holds because there are less predecessors for larger intervals. O

Definition 6.3 Function g satisfying g(7) > g(th) + g(z?) for any T € T and its two

children 7!, 72 is called two point super-harmonic. Function G satisfying G(r) =

G(H+G(1?) for any t € T and its two children 71, t2is called two point harmonic.

This property of g1 implies immediately the following property of 7g1:

Lemma 6.4 Function Igy; on T is three point super-harmonic. In other words, let
7 € T has two children t', 2 and father t3. Then

1
Ig1(7) = 5(181(71) + 1g81(12) + 181(13)) .

Proof Let ¢ = g1(t),a = gi1(t1),b = g1(12). The above mentioned inequality is
obviously equivalent to saying that

1 1
§(a+C)+§(b+C) <c.

This is of course true by Lemma 6.2. O

Remark 6.5 Notice that this claim simultaneously proves that if o is a positive measure
ondT andif G(t) := I*o(t), T € T,then IG = V7 is three point harmonic. Indeed,
if we use the same proof with /G = V replacing /g, we would come to ¢ = a + b,
which is I*o (1) = I'*o(t1) + I*0 (12) which is of course correct.

Now let us use (6.4) as follows. Let p be an equilibrium measure on Fy, =
Projr,[F N (T x ay)]. In particular V* = 1 on F,, . Denote

o = gp .
Then by (6.4) we have:

Vi=t on o= Proin[F0 (T )], 9
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Remark 6.6 One can now think that maximum principle on tree 7 would now imply
that super-harmonic /g is bigger than harmonic /G, G = [*o, on the whole tree T
because on the boundary they satisfy (6.6). However, this is not the right reasoning
because of two important obstacles: (1) (6.6) holds not on the whole boundary of T
but only on some part of it; (2) for 3 point subharmonic functions minimum principle
claims that minimum is either on the boundary or at the root of the tree. And we have
seemingly no information about the behavior of super-harmonic /g and harmonic
I1G = I(I*o) at the root. One needs another minimum principle. It is in Lemma 6.7
below.

Denote G := [*o. It is a two point harmonic function, and the set of the boundary
dT, where it is strictly positive is by definition inside supp o = supp p. So on the set,
where G is strictly positive we have IG = V7 < Ig; by (6.4) and (6.6).

Hence, we are in a position to use Lemma 6.7 and Remark 6.5 that imply

VP <Igy on T.

This and (6.2) gives
Vo <1 on O(S). 6.7)

Now (6.6) and (6.7) correspond to (4.3) and (4.2) of Lemma 4.1. We use this lemma
and get ® claimed in it. Then the end of the proof of Theorem 6.1 repeats verbatim
the reasoning of Sect. 5. O

Lemma 6.7 Let g, G be two non-negative functions on T. Let g be two point super-
harmonic, and G be two point harmonic functions. Assume that G < Ig on the set
P ={w e dT : G(w) > 0}. Then IG < 1g on the whole tree T.

Proof Assume that at a certain 8 € T we have Ig(8) < IG(B). If simultaneously
g(B) < G(B) we call this B good. If it is not good, thus, g(B8) > G(B), then clearly
1g(B1) < IG(B1), where B denotes the father of §. Again we query whether B is
good. If not we come to B, which is the father of 8;. Eventually we will find a good
vertex. May be it will be the root of the tree, where Ig = g, IG = G.

As soon as we find good y € T, thatis y such that simultaneously

Ig(y) < IG(y) (6.8)

and g(y) < G(y), we notice that one of the children y1 (let us call it y;) will also
satisfy g(y1) < G(y1). In fact,

gy +egly ) <gly) <Gy) =G +Gy).

Now, by recursion, we find a child y» of y; such that g(y») < G(y2). We continue
doing that till we come to the boundary, namely, to a certain y,, =: w € a7, such
that g(v,) < G(yy,). Vertices y1, ..., ¥, form the branch of the tree from y; till
¥n = w € dT. We can now add all inequalities g(y;) < G(y;),i =1, ..., n, and also
add to this inequality (6.8).
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As a result we get two things: one is that G(w) > g(w) > 0 (that is w lies in the
set P), the second one is

Ig(w) < IG(w) weP.
But this is a contradiction to the assumption that /g > IG on P. O
Define
Es ={(txa): V¥t xa) <§}.
Put

VE(r x ) = Z Iu(t’ x o).

t'zt.a'>a,(t,a')EESs

For any positive function on 72 we denote

Isp = Z o’ x o).

t'>1,0'>a,(t,a’)EEs

Denote &[] := [ V§ dju. Then,

2
Gl = [Vidi= Y (uir xa).
Txa€eEs
Let 8 € (0, 1]. By rescaling pt := p/8 we get

Theorem 6.8 Let ju is a positive measure on dT? such that Vf; > A > 1ona set
F C 8T?. Then there exists positive ¢ on T? such that

e ¢ satisfies lp(w) > X forallw € F,
o 16072, < C3Eslul.

Lemma 6.9 Assume that i is a positive measure on 3T > such that V* > 1 on supp .
Then

Eslul < C8'2Equ]. (6.9)
In particular,
2
Epnsgll = > u®*= Y [Fu@)]
RCATZN{V1>§} aeT?:VH(a)=>§

= Elp] — Eslpl = (1 — C8YHE(l.
Proof If the first display inequality is proved, then the second display inequality fol-
lows because given o € T2 such that V# () > §, we immediately see that for each

point x € supp u of the dyadic rectangle R corresponding to « we have V#(x) > §.
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To prove the first inequality we will use Theorem 6.8. Fix a small positive ¢ to be
chosen soon. Consider Ey C 9T? suchthat Ex = {x € supp pu : 2871 < Vi (x) < 2Ky,

k = —¢elog %, ...,0,1, ... Then construct ®; from Theorem 6.8 with data » = 2,
6. Then
2uEn = [ 1endn = [ndi= Y o
Ey T2

S\ 1/2
< Dl 2E[0]'? < (z—k) Eslu]2E ]2 |

Now sum over k and use that ||| < fV“ du = E[n] as VH > 1 on supp u:
o
sa[u]=/vg*du=/ Vg‘du+/ Vi dp < 8%l +2 ) 2 n(Er)
Vi <se Vi >6¢ =0

S\1/2
3 k 3 1/2 122
<4 E[u]+2k202 W(Ey) < 8°E[u] + CEs[] /“En] (85)

One of the terms on the right is bigger than another. Thus, either Es[u] < C§4E[u] or
Elul<C sl—eg [w]. Either way, choosing ¢ = % we get the result of the lemma. O

The second display inequality of Lemma 6.9 proves Lemma 3.2.
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