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Abstract. With C. Monical (2018), we introduced a notion of K-crystals and con-
jectured they exist for all rectangular shapes λ. Here, we establish this conjecture,
yielding the first combinatorial formula (as the sum over flagged set-valued tableaux)
for the Lascoux polynomials Lwλ. We then prove corresponding cases of conjectures of
Ross–Yong (2015) and Monical (2016).
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1 Introduction

In classical Schubert calculus, we can study the cohomology ring of the Grassmannian
Gr(k, n), the set of k-dimensional subspaces of Cn, using the basis of Poincaré duals of
the Schubert varieties Xλ that decompose Gr(k, n). The cohomology classes [Xλ] can
be represented by Schur polynomials sλ, where the partition λ sits inside a k × (n − k)
rectangle. A more modern approach is to use connective K-theory, where the Schubert
class [Xλ] is given as the push-forward of the class for any Bott–Samelson resolution of
Xλ. Here, representatives are symmetric (or stable) β-Grothendieck polynomials [3].

We can describe sλ combinatorially as a generating function for semistandard (Young)
tableaux of shape λ and representation-theoretically as the character of the highest
weight representation V(λ) of the Lie algebra sln of traceless n × n matrices. We can
also compute sλ by applying a product of Demazure operators πw0 for the reverse per-
mutation w0 to the monomial xλ := xλ1

1 · · · xλn
n . We can refine sλ to the key polynomials

κwλ := πwxλ for any permutation w, which are characters of Demazure modules Vw(λ).
Combinatorially, A. Buch [1] showed the symmetric Grothendieck polynomial Gλ

is the generating function for semistandard set-valued tableaux of shape λ. A. Las-
coux [7] deformed the Demazure operators to Demazure–Lascoux operators ϖw, so that

∗pechenik@umich.edu. Oliver Pechenik was partially supported by the National Science Foundation
Mathematical Sciences Postdoctoral Research Fellowship #1703696.

†tcscrims@gmail.com. Travis Scrimshaw was partially supported by the Australian Research Council
DP170102648.

mailto:pechenik@umich.edu
mailto:tcscrims@gmail.com


2 O. Pechenik and T. Scrimshaw

Gλ = ϖw0xλ. The analogous deformation of key polynomials, the so-called Lascoux
polynomials Lwλ = ϖwxλ, remain mysterious as currently there is no known geometric,
representation-theoretic, or combinatorial interpretation, despite recent work [5, 13, 15,
17]. Yet, combinatorial formulas have been conjectured [5, 13, 17].

One way to connect the combinatorics and representation theory associated to key
polynomials is using M. Kashiwara’s crystal bases (see, e.g., [2, 4]). Indeed, Kashiwara
showed that the Demazure module Vw(λ) has a crystal basis and can be described as a
subcrystal Bw(λ)(called a Demazure crystal) of the highest weight crystal B(λ) [4]. For
the quantum group Uq(sln), the crystal B(λ) may be realized as the set of semistandard
tableaux of shape λ and the subcrystal Bw(λ) is characterized by key tableaux [10].

In our previous paper with C. Monical [14], we initiated an analogous approach to
Demazure crystals for Lascoux polynomials. We first gave a Uq(sln)-crystal structure to
semistandard set-valued tableaux. Then we proposed an enriched crystal structure with
the property that the Lascoux polynomials appear as the characters of our K-theoretic
analogs of Demazure subcrystals. We coined this enriched structure a K-crystal. We es-
tablished the existence of K-crystals for single rows and columns, but we discovered that
no such structure exists for general shapes. Nonetheless, we conjectured [14, Conj. 7.12]
that K-crystals exist for all rectangular shapes. Our first main result is a proof of this
conjecture. Our proof gives rise to a combinatorial formula for the class of Lascoux
polynomials indexed by a weight in the Weyl group orbit of a multiple of a fundamental
weight (i.e., a rectangular shape partition). We then use this formula to establish the
corresponding cases of Ross–Yong–Kirillov and Monical conjectures.

Let us remark on why our proposed K-crystal structure exists only for rectangular
shapes. With C. Monical [14], we proposed a slightly weaker structure for general λ

that depends on a choice of a reduced expression for w0. The key distinction appears
to be that in the rectangular case the minimal-length coset representatives that index
Lascoux polynomials are all fully-commutative (i.e., all reduced words differ only by
commutations). However, for more general shapes, such as λ = (2, 1) in [14, Fig. 6,7],
one needs to apply the braid relations sisi+1si = si+1sisi+1 to get all possible reduced
expressions. Subsequently, we believe that, in general, K-crystal structures depend on
choosing a commutation class of the reduced words for the appropriate parabolic w0
(see also [14, §7.3]). This fact seems related to a similar dependence for Schubert classes
in cohomology theories more general than connective K-theory (see, e.g., [11]). In the
rectangular case, we have a flagging condition to characterize the tableaux in the K-
Demazure crystal, and we expect a key tableau condition to work for general shapes.

This extended abstract of [16] (where we refer the reader to for more details) is or-
ganized as follows. In Section 2, we recall the necessary background. In Section 3, we
construct a K-crystal structure on set-valued tableaux of rectangular shapes. In Section 4
(resp. Section 5), we prove the conjectural combinatorial interpretation of Lascoux poly-
nomials for rectangular shapes due to Ross–Yong–Kirillov (resp. Monical). In Section 6,
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we describe our conjecture for key tableaux of set-valued tableaux and their relationship
with Lascoux polynomials.

2 Background

Let Sn be the symmetric group with simple transpositions {si | 1 ≤ i < n} and longest
element w0 = [n, . . . , 2, 1]. Let v ≤ w be the (strong) Bruhat order, which means there is a
reduced word for v that is a subword of a reduced word for w. Let x = (x1, x2, x3, . . .) be
a countable vector of indeterminants. For a tuple α = (α1, α2, . . .), define xα = xα1

1 xα2
2 · · · .

We use the English convention for both partitions and tableaux. Consider a partition
λ as a word of length n by appending 0’s as necessary, whence it carries a natural Sn-
action. Let Stabn(λ) = {w ∈ Sn | wλ = λ} denote the stabilizer of λ. Let Sλ

n denote the
set of minimal length coset representatives {⌊w⌋ | w ∈ Sn} of Sn/ Stabn(λ).

A (semistandard) set-valued tableau of shape λ is a filling T of the boxes of λ by finite
nonempty sets of positive integers so that for every set A to the left of a set B in the
same row, we have max A ≤ min B, and for C below A in the same column, we have
max A < min C. We say an integer a ∈ T if there exists a box of T containing a set A
with a ∈ A. A set-valued tableau is a semistandard Young tableau if all sets have size 1.
Let SVn(λ) denote the set of all set-valued tableaux of shape λ with entries at most n.

We recall the crystal structure on SVn(λ) from [14]. We refer to [2] for more details
on crystals. First, we recall the crystal operators ei, fi : SVn(λ) → SVn(λ) ⊔ {0}, where
i ∈ I := {1, . . . , n − 1}. Begin by constructing a sequence by writing + (resp. −) above
each column of T containing i but not i + 1 (resp. i + 1 but not i) and canceling ordered
pairs −+. If every + (resp. −) thereby cancels, then fiT = 0 (resp. eiT = 0). Otherwise,

• if there exists a box b′ immediately to the right (resp. left) of b that contains an i
(resp. i + 1), then remove the i (resp. i + 1) from b′ and add an i + 1 (resp. i) to b;

• otherwise replace the i in b with an i + 1 (resp. i + 1 in b with an i);

where b is the box of the rightmost uncanceled + (resp. leftmost uncanceled −), and the
result is fiT (resp. eiT). See Figure 1 for an example.

Identifying Zn with the multiplicative group generated by (x1, . . . , xn), we define the
weight function wt : SVn(λ) → Zn by wt(T) = ∏n

i=1 xci
i , where ci is the number of A ∈ T

such that i ∈ A. Define |wt(T)| = ∑n
i=1 ci.

Theorem 2.1 ( [14, Thm. 3.9]). SVn(λ) is isomorphic to a direct sum of highest weight crystals.

For 1 ≤ i < n, the Demazure–Lascoux operator ϖi acts on Z[β][x1, . . . , xn] by

ϖi f = πi
󰀃
(1 + βxi+1) · f

󰀄
= πi f + β · πi(xi+1 · f ), where πi f =

xi · f − xi+1 · si f
xi − xi+1

,
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is the Demazure operator. The Demazure–Lascoux operators (and Demazure operators)
satisfy the braid relations. Thus for any w ∈ Sn, one may unambiguously define ϖw :=
ϖi1 · · ·ϖiℓ , where si1 · · · siℓ is some reduced expression for w (and similarly for πw).

Since ϖw does not depend on the choice of reduced expression, we can define the
Lascoux polynomials [7] for any a ∈ Zn

≥0 as

La(x; β) := ϖwxλ,

where λ is the sorting of a to a partition and w ∈ Sλ
n is the unique element such that

a = wλ. The symmetric Grothendieck polynomial can be defined as the n variable truncation
of Lw0λ(x; β) and is known [1, Thm. 3.1] to be given combinatorially by

Lw0λ(x; β) = ∑
T∈SVn(λ)

wtβ(T), where wtβ(T) := β|wt(T)|−|λ| wt(T) is the β-weight.

(2.1)
We now recall two conjectural combinatorial descriptions of Lascoux polynomials.

The first conjectural combinatorial rule was introduced in [17]. To state it, we begin
by recalling the notion of a K-Kohnert diagram to be a subset D of Zn

>0, which we realize
as boxes, and a subset M ⊆ D of boxes that are marked. Now start with some a =
(a1, . . . , an) ∈ Zn

≥0 and draw the initial K-Kohnert diagram as a skyline diagram by putting
a box at each position {(i, y) | i ∈ [n], 1 ≤ y ≤ ai} (in Cartesian coordinates), marking no
boxes. Then we successively apply any sequence of the following operations.

Kohnert move: Move any unmarked box at the top of a column into the rightmost open
position to its left and in the same row so that it does not pass over a marked box.1

K-Kohnert move: Perform a Kohnert move but leave a marked box behind.

Let Da denote the resulting set of K-Kohnert diagrams obtainable from the original
skyline diagram for a. Define the β-weight of D ∈ Da by wtβ(D) := βe ∏n

i=1 xci
i , where e

(resp. ci) is the number of marked boxes (resp. boxes in column i) in D.

Conjecture 2.2 ( [17, Conj. 1.4], [5, Fn. 14]). We have La(x; β) = ∑D∈Da wtβ(D).

The second conjectural combinatorial rule is from [13]. We fill a skyline diagram with
finite nonempty sets of positive integers that satisfy the following conditions. Call the
largest entry in a box the anchor and the other entries free. (S.1): Entries do not repeat in
a row. (S.2): If B is below A, then min B ≥ max A (i.e., the columns are weakly increasing
top-to-bottom in the set-valued sense). (S.3): For every triple of boxes of the form

C · · · A
B

A · · · C
B

right column weakly taller left column strictly taller

1In [17], it is misstated that a Kohnert move could move the unmarked box over a marked box.
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the anchors a, b, c of A, B, C, respectively, must satisfy either c < a or b < c. (S.4): Every
free entry is in the leftmost cell of its row such that (S.2) is not violated. (S.5): Anchors
in the bottom row equal their column index. We call such a tableau a (semistandard) set-
valued skyline tableau, and let SLTa denote those of shape a. We define the weight, excess,
and β-weight for a set-valued skyline tableau the same way as for a set-valued tableau.

Let ϖi = ϖi − 1. Define the Lascoux atom to be Lwλ(x; β) := ϖwxλ.

Conjecture 2.3 ( [13, Conj. 5.2]). We have Lwλ = ∑S∈SLTwλ
wtβ(S).

Note Conjecture 2.3 is equivalent to [13, Conj. 5.3] by [15]. Also from [13, Thm. 5.1],

Lwλ(x; β) = ∑
v≤w

Lvλ(x; β), (2.2)

where the inequality is (strong) Bruhat order on permutations.

3 K-crystals for rectangular shapes

We aim to prove the proposed K-theory analog of crystals from [14] exists on SVn(λ)
when λ is a rectangle. Recall that a Uq(sln)-crystal B is called a K-crystal if it is enhanced
with K-crystal operators, eK

i , f K
i : B → B ⊔ {0} that satisfy the following properties:

(K.1) The set B is generated by a unique element u ∈ B that satisfies eiu = 0 and eK
i u = 0

for all i ∈ I. The element u is called the minimal highest weight element.

(K.2) The K-Demazure crystal Bw := {b ∈ B | (eK
iℓ
)maxemax

iℓ
· · · (eK

i1
)maxemax

i1
b = u} does not

depend on the choice of reduced expression w = si1 · · · siℓ . Moreover, Bw0 = B.

(K.3) Let λ = wt(u). The β-character chβ(Bw) := ∑b∈Bw β|wt(b)|−|λ|xwt(b) = Lwλ(x; β).

Our construction of the K-crystal operators are based off the heuristics given in [14],
which come from the following K-theory analog of the decomposition of a crystal into
i-strings (i.e., restricting to the action of ei and fi for a fixed i ∈ I) based on the definition
of the Demazure–Lusztig operators. Indeed, by considering only the action of a fixed
i ∈ I, the K-crystal is expected to decompose into (maximal) subcrystals of the form

b • • · · · • •

• • • · · · •

i i i i i

i i i ii

where the solid (resp. dashed) arrow represents the fi (resp. f K
i ) action. Such a subcrystal

was coined an i-K-string in [14]. We say an i-K-string has length ℓ := max{k | f k
i b ∕= 0}.
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Figure 1: The K-crystal for SV3
󰀓 󰀔

with the K-crystal operators as dashed lines.

Note that f ℓ−1
i f K

i b ∕= 0 and f ℓi f K
i b = 0. It is easy to see that for b such that eib = 0, the

β-character of the i-K-string starting at b equals ϖi wt(b).

Lemma 3.1. Let λ be an r × s rectangle. For any w ∈ Sλ
n , there exists a reduced word of w equal

to (sik · · · sr−k+1sr−k) · · · (si1 · · · srsr−1)(si0 · · · sr+1sr) for some k < r and ik < · · · < i0 ≤ n.

Definition 3.2. Let T ∈ SVn(λ) and fix some i ∈ I.

f K
i : If i /∈ T or eiT ∕= 0, then f K

i T = 0. Otherwise, let b be the rightmost box that contains
an i corresponding to an unpaired +. If i and i + 1 are both in a box weakly to the
right of b, then f K

i T = 0. Otherwise, define f K
i T by adding an i + 1 to b.

eK
i : If there does not exist a box with both an i and i + 1 or eiT ∕= 0, then eK

i T = 0.
Otherwise, let b be the rightmost box that has both an i and i + 1. If there exists an
i corresponding to an unpaired + strictly to the right of b, then eK

i T = 0. Otherwise,
define eK

i T by removing the i + 1.

For an example, see Figure 1; additional examples may be found in [14]. Note that it
is clear that if f K

i T ∕= 0 (resp. eK
i T ∕= 0), then f K

i T ∈ SVn(λ) (resp. eK
i T ∈ SVn(λ)).

Lemma 3.3. Let λ be an r × s rectangle. Let T, T′ ∈ SVn(λ). We have eK
i T′ = T if and only if

T′ = f K
i T. Moreover, for any i ∈ I, we have that SVn(λ) is a union of i-K-strings.

Consider some w ∈ Sλ
n , and let ik < · · · < i0 be from the reduced expression of w

given by Lemma 3.1. For all k < j < r, define ij = r − j. Define F(λ; w) to be the subset
of SVn(λ) such that row r − j has all entries at most ij + 1. We call such a set-valued
tableau a flagged set-valued tableau. This flagging characterizes the K-Demazure crystal.
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Lemma 3.4. Let λ be an r × s rectangle. For w ∈ Sn, then SVn
w(λ) = SVn

⌊w⌋(λ) = F(λ; ⌊w⌋).

Theorem 3.5. Let λ be an r × s rectangle. Then SVn(λ) is a K-crystal.

We also have the following K-theoretic analog of [4, Prop. 3.3.4].

Corollary 3.6. Let λ be an r × s rectangle. Consider an i-K-string S of SVn(λ), and let b be the
highest weight element of S. Then, the set SVn

w(λ) ∩ S is either empty, S, or {b}.

We also have the following interpretation of certain Lascoux polynomials as instances
of (β-)Grothendieck polynomials, which recall from [3, 6, 8, 9] are defined by

Gw0si1
···siℓ

:= ∂
β
i1
· · · ∂

β
iℓ

xn−1
1 · · · x1

n−1x0
n, where ∂

β
i f =

(1 + βxi) · f − (1 + βxi+1) · si f
xi − xi+1

.

Corollary 3.7. Let λ be an r× s rectangle. Let w = (sk · · · s2s1) · · · (sk+r−1 · · · sr+1sr) for some
k ≥ 1, and let 󰁨w = sm−1(sm−2sm−1) · · · (sr+1 · · · sm−1)(sr · · · sk−1) · · · (s1 · · · sk−1) ∈ Sm
where m = s + k + 1. Then, we have Lwλ(x; β) = Gw0 󰁨w−1(x; β).

The permutations w0 󰁨w−1 appearing in Corollary 3.7 are vexillary (i.e., 2143-avoiding).
Since the greatest term of Lwλ(x; 0) in reverse lexicographic order is xwλ and the greatest
term of Gw0 󰁨w−1(x; 0) in the same order is the Lehmer code of w0 󰁨w−1, we see wλ is the
Lehmer code of w0 󰁨w−1. Hence, w0 󰁨w−1 are Grassmannian, and so the Grothendieck
polynomials from Corollary 3.7 are actually symmetric Grothendieck polynomials, but
symmetric only in some initial segment of the variables x.

Example 3.8. For λ be a 2 × 2 rectangle, Ls1s2λ(x; β) = Gw0(s2s1)s2(s4s3)s4
(x1, . . . , x5; β), and

Ls2s1s3s2λ(x; β) = Gw0(s3s2s1)(s3s2)(s5s4s3)(s5s4)s5
(x1, . . . , x6; β).

The Lascoux polynomials from Corollary 3.7 are are not the only ones equal to a
Grothendieck polynomial; e.g., Ls2λ(x; β) = Gw0(s2s4s3s4)

(x1, . . . , x5; β) for λ = .
Yet, this is the only such coincidence when λ is a rectangle. T. Matsumura and S. Sugi-
moto have informed the authors [12, Thm. 3.3] can be extended to show every flagged
Grothendieck polynomial is a Lascoux polynomial and will appear in their future work.

4 Bijection with K-Kohnert diagrams

Recall that there is a natural bijection between the set of semistandard Young tableaux
of shape 1r with entries at most n and the collection of subsets of {1, . . . , n} of size
r. For row i (starting from the bottom row and going up) of a K-Kohnert diagram D,
consider the subset of {1, . . . , n} given by the horizontal coordinates of the unmarked
boxes. Construct column i (from right to left) of a tableau T by applying the natural
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bijection given above to this subset. Now, for every marked box in position (x, i) of D,
there is a rightmost unmarked box (x′, i) to the left of (x, i). Insert x into the cell of
column i containing x′. In other words, we insert x into the topmost possible cell of
column i such that the column is semistandard. Write φ(D) for the resulting tableau T.

It is straightforward to see that the map φ is invertible and β-weight preserving. We
will show below that φ(D) is in fact always a semistandard set-valued tableau.

Proposition 4.1. Let λ be an r × s rectangle. For any w ∈ Sλ
n , φ restricts to a β-weight

preserving bijection φ : Dwλ → SVn
w(λ).

Example 4.2. Consider λ be a 2 × 2 square and w = s2. Under φ described above,

1 1

3 3

1 1

2 3

1 1

2,3 3

1 1

2 2

1 1

2 2,3

where we have shaded in the selected boxes and put a • in the marked boxes.
We continue to w′ = s1s2 to obtain all of SV3

w′(λ) = SV3(λ) under φ:

2 2

3 3

1 2

3 3

1,2 2

3 3

1 2

2 3

1 2

2,3 3

1 1,2

3 3

1 1,2

2 3

1 1,2

2,3 3

To prove Proposition 4.1, we construct (K-)Kohnert moves on set-valued tableaux.

Definition 4.3. Let T ∈ SVn(λ). Consider x ∈ Z such that x ∈ T. Let C be the leftmost
column of T containing an x in box b. Let x′ be minimal such that x′+ 1, x′+ 2, . . . , x ∈ C,
and let b′ be the box in C containing x′ + 1. If {x′ + 1}, . . . , {x − 1} are not in C (i.e., the
corresponding boxes only have 1 entry), x′ = 0, or x ∕= min b, then we do not have a
(K-)Kohnert move. Otherwise, define the Kohnert move on T to remove x from b, moving
all entries x′ + 1, . . . , x − 1 down one row (which inserts x − 1 into b), and inserting x′

into b′. A K-Kohnert move is the same as before except we leave x ∈ b.

Lemma 4.4. Let T ∈ SVn(λ). Applying any (K-)Kohnert move to T results in T′ ∈ SVn(λ).

Now we prove Proposition 4.1 by using our flagging characterization of K-Demazure
crystals from Lemma 3.4 and showing that φ intertwines the (K-)Kohnert moves on K-
Kohnert diagrams with the (K-)Kohnert moves on set-valued tableaux.
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Example 4.5. Let λ = 32 be a 2× 3 rectangle and consider n = 4. We exhibit the sequence
of (K-)Kohnert moves described in the proof of Proposition 4.1 to obtain the element

1 1,2 2

2,3 3 3,4
∈ SV4

s1s3s2
(λ) from the initial tableau 2 2 2

4 4 4
(below is the diagram under φ−1):

1 1,2 2

2,3 3 3,4
←− 1 1,2 2

2,3 3 4
←− 1 1,2 2

2,3 4 4
←− 1 1,2 2

3 4 4
←− 1 1,2 2

4 4 4
←− 1 2 2

4 4 4
←− 2 2 2

4 4 4

←− ←− ←− ←− ←− ←−

Remark 4.6. The proof of the intertwining of (K-)Kohnert moves did not require λ to be
a rectangle, but φ does require it as otherwise the image might not be a partition.

Theorem 4.7. The Ross–Yong–Kirillov Conjecture (Conjecture 2.2) holds for La when a is any
weak composition with a unique nonzero part size; i.e., La(x; β) = ∑D∈Da wtβ(D).

5 Bijection with set-valued skyline tableaux

Conjecture 2.3 is equivalent to showing that

Lwλ = chβ

󰀓
SV

n
w(λ)

󰀔
, where SV

n
w(λ) := SVn

w(λ) \
󰁞

v<w
SVn

v(λ), (5.1)

with the union taken over all v strictly less that w in Bruhat order, by inclusion-exclusion,
applying Möbius inversion on (strong) Bruhat order, and Equation (2.2)

Proposition 5.1. Let λ be an r × s rectangle. For any w ∈ Sλ
n , there exists a β-weight preserving

bijection ψ : SLTwλ → SV
n
w(λ).

We prove Proposition 5.1 by explicitly defining the bijection as follows. Consider
some S ∈ SLTwλ and define T := ψ(S) by (1) sorting the anchor entries in each row in
increasing order left to right; (2) placing each free entry f in the leftmost box of its row
such that f is less than the anchor entry; (3) constructing the i-th column of T from the
(r + 1 − i)-th row of the result from the previous step, as in Section 4.

Example 5.2. Let λ be a 2 × 2 rectangle and n = 3. Then the set-valued skyline tableaux
SLTs2λ and their corresponding elements in SV

3
s2
(λ) under ψ are given by

1 · 3

1 · 3
󰀁−→ 1 1

3 3
, 1 · 2

1 · 3
󰀁−→ 1 1

2 3
, 1 · 2,3

1 · 3
󰀁−→ 1 1

2,3 3
, 1 · 2

1 · 2,3
󰀁−→ 1 1

2 2,3
.

Theorem 5.3. Monical’s Skyline Conjecture (Conjecture 2.3) holds for La when a is any weak
composition with a unique nonzero part size; i.e., La = ∑S∈SLTa wtβ(S).
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6 K-key tableaux

A key tableau K is a semistandard tableau such that the entries in the j-th column of K
are a subset of those in the (j − 1)-st column of K. Every semistandard tableau T has a
unique (right) key tableau k(T) associated with it, and a Demazure atom can be computed
as a generating function for all semistandard tableaux T with k(T) = Kwλ [10]. Let ≺
denote the partial order on semistandard tableaux of shape λ such that T ≼ T′ if and
only if every entry of T is at most the corresponding entry in T′. A Demazure character
κwλ can be given by summing over all semistandard Young tableaux T of shape λ such
that k(T) ≼ Kwλ, where Kwλ is the unique key tableau of shape λ and weight wλ [10].

Based on the bijection from Proposition 5.1 and the (K-)Kohnert moves on set-valued
tableaux (Definition 4.3), the following is a natural possible extension of key tableaux
to the K-theory setting. For T ∈ SVn(λ), define K(T) := k

󰀃
max(T)

󰀄
, where max(T)

is semistandard tableau obtained by taking the greatest entry in each box of T. Thus
Theorem 3.5 and Lemma 3.4 imply that for λ and r × s rectangle

Lwλ(x; β) = ∑
T∈SVn(λ)
K(T)≼Kwλ

wtβ(T), Lwλ(x; β) = ∑
T∈SVn(λ)
K(T)=Kwλ

wtβ(T), (6.1)

or equivalently summed over SVn
w(λ) and SV

n
w(λ) respectively. However, these formulas

do not work for general λ as, for example, K

󰀳

󰁃 1 1,2,3

2,3

󰀴

󰁄 = 1 3

3
, but it can only

contribute to the Lascoux polynomial/atom corresponding to w0λ, where λ = 21, as it
has an excess of 3. Moreover, the weak K-crystal in [14, Fig. 7] does not decompose the
K-crystal into atoms, as 1 2,3

3
should not be in the atom for to w0.

Instead, we conjecture that (6.1) modifies as follows. Recall that the Lusztig involu-
tion on the highest weight crystal B(µ) is defined by sending the highest weight element
U to the lowest weight element U∗ and extending to B(µ) by

ei(T∗) = ( fn−iT)∗, fi(T∗) = (en−iT)∗, wt(T∗) = w0 wt(T). (6.2)

We can extend this naively to SVn(λ) by acting on each irreducible component B(µ).
Define the (right) K-key tableau of a set-valued tableau T ∈ SVn(λ) by

K(T) := k(min(T∗)∗),

where min(T) is obtained from T by taking the least entry in each box of T.
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Conjecture 6.1. Let λ be a partition. Define the sets

SVn
w(λ) := {T ∈ SVn(λ) | K(T) ≼ Kwλ}, SV

n
w(λ) := {T ∈ SVn(λ) | K(T) = Kwλ}.

Then we have Lwλ(x; β) = ∑T∈SVn
w(λ)

wtβ(T), and Lwλ(x; β) = ∑T∈SVn
w(λ)

wtβ(T).

We show (6.1) establishes Conjecture 6.1 when λ is a rectangle by constructing a K-
Lusztig involution 󰂏 : SVn(λ) → SVn(λ) that also satisfies (6.2). However, it is a twist
of the Lusztig involution by permuting the connected Uq(sln)-components of SVn(λ).
Let λ be a rectangle and T ∈ SVn(λ). Define T󰂏 to be the set-valued tableau obtained
by rotating the tableau 180◦ and then replacing each i 󰀁→ n + 1 − i. We note this is a
well-known description of the Lusztig involution on semistandard tableaux of shape λ.

Proposition 6.2. Let λ be a rectangle. The K-Lusztig involution 󰂏 satisfies (6.2). For T ∈
SVn(λ) as a tensor product of rows T = R1 ⊗ · · ·⊗ Rk, we have T󰂏 = R∗

k ⊗ · · ·⊗ R∗
1 .

This also suggests that Conjecture 6.1 holds for a definition of a (right) K-key tableau
K′(T) := k(min(T†)∗), where T† is constructed from T according to any automorphism
of SVn(λ) such that wt(T†) = w0 wt(T). However, given a (weak) K-crystal structure
on SVn(λ), it would be preferable to have a T† construction that matches the labeling
of tableaux T by K-keys K′(T) with the decomposition of the K-crystal by K-Demazure
subcrystals, as is the case with our K-Lusztig involution T󰂏. Furthermore, it is likely that
in general we want T󰂏 = R∗

k ⊗ · · ·⊗ R∗
1 as in Proposition 6.2, but this would require an

appropriate K-rectification or insertion scheme in order to obtain a result back in SVn(λ).
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