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On positivity of the CM line bundle
on K-moduli spaces

By CHENYANG XU and ZIQUAN ZHUANG

Abstract

In this paper, we consider the CM line bundle on the K-moduli space,
i.e., the moduli space parametrizing K-polystable Fano varieties. We prove
it is ample on any proper subspace parametrizing reduced uniformly K-
stable Fano varieties that conjecturally should be the entire moduli space.
As a corollary, we prove that the moduli space parametrizing smoothable
K-polystable Fano varieties is projective.

During the course of proof, we develop a new invariant for filtrations
that can be used to test various K-stability notions of Fano varieties.
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1006 CHENYANG XU and ZIQUAN ZHUANG

1.1. Positivity of CM line bundle. The aim of the current paper is to
study the positivity of CM line bundle on the moduli space parametrizing
K-polystable Fano varieties. The CM line bundle was introduced algebraically
in [Tia97] on the base of a family of (possibly singular) projective polarized
varieties, as a generalization of a well studied Hermitian line bundle on the
moduli space parametrizing polarized manifolds with constant scalar curva-
ture (see [Koi83], [Sch83], [Tia87], [FS90], etc.). Its current formulation using
the Knudsen-Mumford expansion was introduced in [PT09] (see also [FRO6],
[PRS08], etc.). In many moduli problems, the CM line bundle is expected to
give a natural polarization of the corresponding moduli spaces. In particular,
[PX17] shows that this holds on the KSB moduli spaces; i.e., on the mod-
uli space parametrizing canonically polarized varieties with semi-log-canonical
singularities, the CM line bundle is ample.

In the Fano case, however, positivity of the CM line bundle has been a
long standing question. By recent works [Jial7], [BX19], [ABHLX20], [BLX19],
[Xu20], we know that the good moduli space My}  parametrizing n-dimen-
sional K-polystable Fano varieties with a given volume v exists as a separated
algebraic space. Conjecturally it is also proper, and the ultimate goal is to
show that the CM line bundle is ample on the (conjecturally proper) space

TE;(, b° which endows it with a projective scheme structure.
The K-moduli space M,E(, P® contains an interesting “main component”

s (see [LWX19], [Odal5]) parametrizing smoothable K-polystable Fano

n,0

varieties, which is known to be proper (see, e.g., [DS14]). In [LWX18b], the

CM line bundle Agy was proved to be big and nef on mmﬂ’Kps and ample
on the open locus ;T,’Kps parametrizing smooth K-polystable Fano varieties.

However, the argument is of an analytic nature, as it uses the positivity of
Weil-Petersson metric and heavily depends on the fact that the generic point
of the moduli space parametrizes a Fano manifold. Also see its log version
extension in [ADL19].

An important progress towards the positivity of CM line bundle, using
only algebro-geometric arguments, is achieved in [CP18]. There they show
that for a general family f: X — B of (possibly singular), Fano varieties over
a proper base, the CM line bundle Ay on B is nef if the fibers are K-semistable,
and big if the family has maximal variation (Definition 2.3) and the fibers are
uniformly K-stable. In their proof, the characterization of K-stability using
the log canonical thresholds with respect to basis type divisors, as developed
in [FO18], [BJ20], plays an essential role.

In this paper, we aim to prove positivity results of the CM line bundle
that conjecturally gives the full projectivity of M,Ié D%, Our first main statement
goes as follows.
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1007

THEOREM 1.1. Let M C Mﬁfﬁ*‘ be a proper algebraic subspace such that
every geomelric point s € M parametrizes a reduced uniformly K-stable Fano
variety Xs. Then the CM (Q-)line bundle Acym|y is ample.

Our proof of Theorem 1.1 is purely algebraic. Here the algebro-geometric
concept of reduced uniform K-stability was introduced in [His16] and developed
systematically in [Li19]. It serves as an analogue of uniform K-stability when
Aut(X) is of positive dimension. Recall that a Fano variety X is said to
be uniformly K-stable if there exists some 1 > 0 such that DNA(X, L) >
n - JNA(X, L) for any test configuration (X, L) of X, where DNA(X, £) is the
Ding-invariant and J NA()C' ,L) is a norm on the space of test configurations
that vanishes exactly on (almost) trivial test configurations (see [Fuj19], [Lil7]
or Definition 2.13). To define reduced uniform K-stability, we simply replace
the JNA_functional by a reduced version J ¥A that is the infimum of JNA among
all test configurations that can be obtained by “twisting” the given one (this
way we get a norm functional on the space of test configurations that vanishes
exactly on product test configurations). We refer to Section 3 for the precise
definition.

By the recent work [Lil9] (see also [BBJ15]|, [LTW19]), reduced uniform
K-stability is equivalent to the existence of (singular) K&hler-Einstein metric.
As all smoothable K-polystable Fano varieties admit Kéhler-Einstein metrics
by [CDS15, Tial5] (see also [LWX19], [SSY16]), we get the following immediate
consequence, which affirmatively answers a question asked by many people (see,
e.g., [Donl18b], [Donl8a, §4.2 the last paragraph| or [Sunl8, §4]).

COROLLARY 1.2. Let k = C. The CM Q-line bundle Acy is ample on
. ——sm,Kps
the proper moduli space M,, ,,

In general, all K-polystable Fano varieties are expected to be reduced
uniformly K-stable (see Conjecture 3.8), just as K-stability is conjectured to
be equivalent to uniform K-stability (see, e.g., [BX19, Conj. 1.5]). Therefore,
at least conjecturally, the assumption of Theorem 1.1 should be satisfied for
all proper algebraic subspaces of M,Ié P, Theorem 1.1 and Corollary 1.2 can
also be extended to the corresponding log version (see Theorems 7.9 and 7.10),
where the log counterpart of mr::}’l{ps is constructed in [ADL19, Th. 1.1] (see
Theorem 2.22).

1.2. Non-negativity of Bx,as(F). During the course of the proof, we de-
velop some new invariants that characterize various K-stability notions (in-
cluding reduced uniform K-stability, in particular), which we believe merit
independent interests.

To explain the results, we fix some notation. Let (X,A) be a log Fano
pair and r a positive integer such that —r(Kx + A) is Cartier. Let F be a

This content downloaded from
71.226.228 213 on Thu, 12 Nov 2020 05:00:42 UTC
All use subject to https://about.jstor.org/terms



1008 CHENYANG XU and ZIQUAN ZHUANG

(possibly non-finitely generated) linearly bounded multiplicative filtration of
R:= HYX,—rm(Kx + A)).
meN
We define a family of invariants Sx a 5(F) parametrized by 6 > 0.

Definition 1.3 (= Definition 4.1). Given a filtration F of R and some
6 € Ry, we define the §-log canonical slope (or simply log canonical slope when

6 =1) px.ns(F) as
(1.1) px A s(F) = sup {t i R|1ct(X,A;I£t)) > é} ,
r

where Iy, \(F) := Im (F*R,,, ® Ox (rm(Kx + A)) — Ox) are the base ideals

of F and Ist) is the graded sequence of ideals given by L(;? = Imm(F). Then
we define

By as(F) = px,a8(F) — S(f)j

where S(F) is the S-invariant of the filtration F (see Section 2.3).

In [Fuj19], [Lil7], valuative criteria of K-stability and related notions have
been developed, which are further extended in [BJ20], [BX19], etc. The anal-
ogous criterion for reduced uniform K-stability is systematically studied in
[Lil9]. Our second main theorem extends these previous works and provides a
new criterion.

THEOREM 1.4. Let (X,A) be a log Fano pair. Then
(1) (X,A) is K-semistable if and only if

Bx a(F)(=Bxai(F)) >0

for any linearly bounded multiplicative filtration JF .
(2) (X,A) is uniformly K-stable if and only if there exists a constant § > 1,
such that Bx a 5(F) > 0 for any linearly bounded multiplicative filtration F.
(3) Fiz a mazimal torus T C Aut(X,A). Then (X,A) is reduced uniformly
K-stable if and only if there exists a constant 6 > 1 such that for any
linearly bounded multiplicative filtration JF,

Bxas(Fe) >0  for some vector field £ € Hom(Gp,T) @z R.

Here F; is the “twist” of the filtration F, and we refer to Section 3 for its
construction.

Remark 1.5. Our invariant Bx a s is a natural extension of the S-invariant,
defined in [Fuj19], [Lil7] for valuations, to more general filtrations. Indeed, it
is not hard to check (see Proposition 4.2) that Sx a(F) > Bx a(Fordg) Where
Ford is the filtration induced by E (Example 2.6). On the other hand, we
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1009

will show that Sx a(F) is bounded from below by the Ding-invariant DNA(F)
(Theorem 4.3). In particular, Theorem 1.4(1) follows immediately from the
corresponding non-negativity statement for DNA(}_ ) as proved in [Fujl8b],
[Lil7].

While Theorem 1.4(2) can be established in a similar way, the proof of the
last statement Theorem 1.4(3) is harder and requires a more technical analysis
of the properties of Duistermaat—Heckman measure.

The connection between Theorem 1.4 and the positivity of CM line bundle
is provided by a special filtration: the Harder-Narashimhan filtration Fpn (see
Section 2.8). Using the Harder-Narashimhan filtration to study positivity of
the CM line bundle is a novel idea initiated in [CP18]. In fact, our definition
of Bx as(F) in some sense is tailor-made to investigate Fyn.

1.3. Owerview of proof. In what follows, we sketch our strategy for the
proof of Theorem 1.1.

Part of our proof is inspired by the work in [CP18|. Recall that the
arguments in [CP18] for the positivity of CM line bundle As 5 for a projective
family of log Fano pairs f: (X,A) — B can be divided into several steps:

Step 1,: One gets the semipositivity of the CM line bundle when the fibers
(Xt, A¢) are K-semistable.

Step 2,: One concentrates on the case that B is a smooth curve and obtains a
uniform nef threshold c (i.e., some ¢ € Q such that —(Kx,p + A) +
c- f*Ara is nef) when a general fiber (X¢, A;) is uniformly K-stable,
where ¢ only depends on 6(X;, A;) and (—(Kx, + A¢))™

Step 34: An ampleness lemma is used to get the strict positivity for higher
dimensional base B, when the fibers are assumed to be uniformly K-
stable and A = 0.

In [Pos19], complementary arguments are also given to show that
Step 4u: Step 3y can be extended to the log case (i.e., when A #0).

In our argument, we follow these steps. However, since we want to treat
the more general case when the fibers are only reduced uniformly K-stable, we
have to develop a number of new tools to substantially enhance the arguments

in [CP18].

Step 1;: Our first new input is going from basis type divisors to filtra-
tions. This has been known as a natural step to extend results from uniformly
K-stable Fano varieties to K-polystable ones. See [BX19] for another example.
By doing so, we also find a more conceptual proof (in our opinion) of Step 1,
in [CP18].

More precisely, a crucial observation in [CP18] is that for a Q-Gorenstein
family of log Fano pairs f: (X, A) — C over a smooth projective curve C, the
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1010 CHENYANG XU and ZIQUAN ZHUANG

subbundles of positive slopes in the Harder-Narasimhan filtration of

R := @ f+Ox(—mr(Kx ¢ + A))

melN

only give boundary divisors D ~g —(Kx/c + A) that fail to be log canonical
along the general fiber of f. Using our [S-invariants, this translates to the
following inequality (Proposition 4.6):

degAfa > (n+1)(—Kx, — A)" - Bx, A, (FuN),

where t € C and Jygn is the restriction of the Harder-Narasimhan filtration on
R to Ry :== @,, H*(X:, —mr(Kx, + A¢)). Combining with Theorem 1.4(1),
we immediately recover the nefness of A\cm as proved in [CP18, Th. 1.7]. This
completes our treatment of the first step. See Section 4.3 for details.

Step 2;: Nevertheless, the full power of considering filtrations Fun (as
opposed to basis type divisors) and the corresponding invariants Sx a s(FHN)
will only be seen when one attacks the ampleness. The main issue is that
nef thresholds as in Step 2, may not exist when the general fibers (X, A¢)
are only reduced uniformly K-stable, e.g., there are families f: (X,A) — C
with degAsan = 0 but —(Kx/c + A) is not nef. To overcome this, we need
a stronger statement Theorem 1.4(3) that guarantees that if a general fiber
(X, A¢) is reduced uniformly K-stable, then we can find a rational vector £ €
Hom(Gy,,T) ®zQ (where T' is a maximal torus of Aut(X;, A¢)) such that after
twisting Fun by £, the resulting filtration (Fyn)¢ satisfies Bx, a, s((Fun)e) > 0
for some uniform § > 1 that only depends on (X3, A;) (but not Fyn and &).
These results are proved in Sections 4.3 and 5.

Geometrically, after possibly passing to a finite base change of C, we can
realize the twisted filtration (Fun)¢ as the Harder-Narasimhan filtration of a
twisted family fe: (X¢, A¢) — C. (Roughly speaking, it is obtained from the
original family f: (X,A) — C via a birational modification that is analogous
to elementary transformations on ruled surfaces; see Section 5 for the actual
construction.) But since 8x, A, s((Fun)¢) > 0, a similar argument as in Step 1,
allows us to conclude that a uniform nef threshold (depending only on a general
fiber (X, A¢)) exists on the twisted family. For families with K-semistable
fibers, the CM line bundle remains the same after the twist; thus for our
ampleness question, we may replace the original family by a twisted one that
achieves the nef threshold.

Step 3;: Over a higher dimensional base, the Harder-Narasimhan filtra-
tion depends on the choice of a covering family of curves and so does the
corresponding twisted family. Therefore to proceed, we need to strengthen the
key ingredient of Step 3., namely, the ampleness lemma (which is originally
based on works in [Kol90, KP17]), to a version that incorporates all twists. For
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1011

this purpose, we carefully track the original argument of the ampleness lemma
and show that it works birationally in a suitably technical sense. This is done
in Section 6.

Step 4;: Finally, to prove the log version of our theorem, we combine the
ampleness lemma obtained in the previous step together with an argument
using perturbation of the coefficients of the boundary divisors, similar to the
one used in [KP17, Posl9]. This is done in Section 7. The main observation
is that although (X, A¢) may no longer be reduced uniformly K-stable after
perturbing the boundary coefficients, the divisor —(Kx,c + A) + ¢ f*Aza
from Step 2, remains pseudo-effective, and this is enough for our purpose.

Finally, in the Appendix A, we define the T-reduced d-invariant o7 (X, A)
for a log Fano pair (X,A) with a torus T-action. Then in Theorem A.5,
we show that if (X, A) is K-semistable and d7(X,A) = 1, it can always be
computed by a quasi-monomial valuation that is not of the form wte (£ €
Hom(Gy,,T)r). This establishes in the reduced version the analogous result

proved in [BLX19, Th. 1.5].

Acknowledgement. We thank Dan Abramovich, Jarod Alper, Chi Li, Yan
Li and Zsolt Patakfalvi for helpful discussions. We are also grateful to the
anonymous referees for useful suggestions. The work on this paper was started
while the authors enjoyed the hospitality of the MSRI, which is gratefully
acknowledged.

2. Preliminaries

In this section, we recall some basic preliminaries related to the study of
K-stability questions on log Fano pairs.

2.1. Notation and conventions. We work over an algebraically closed field
k of characteristic zero. We follow the terminologies in [KM98]. A pair (X, A)
consists of a normal variety X and an effective Q-divisor A C X such that
Kx + A is Q-Cartier. See [KM98, Def. 2.34] for the definition of klt and log
canonical (lc) singularities. A projective variety X is Q-Fano if X has klt
singularities and —Kx is ample. A pair (X, A) is log Fano if X is projective,
—Kx — A is Q-Cartier ample and (X, A) is klt. A big open set U of a variety
X is an open set whose complement has codimension at least two.

2.2. Families of pairs.

Definition 2.1. A generic log Fano locally stable family f: (X,A) — S
of normal pairs over a mormal base (or abbreviated as a generic log Fano
family f: (X,A) — S) consists of a pair (X, A) and a flat projective morphism
f: X — S to a normal variety S such that f has connected and normal fibers,
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1012 CHENYANG XU and ZIQUAN ZHUANG

Supp(A) does not contain any fiber of f, —(Kx,g+A) is f-ample, (X5, A;) is
log canonical for any s € S and a general fiber (Xg, A;) is log Fano. It is called
a Q-Gorenstein family of log Fano pairs if every fiber (X, A;) is log Fano.

The local conditions guarantee that in the above definition (X,A) — S
yields a locally stable family over the normal base S. For the definition of
locally stable families over more general bases, see [Kol20], [Kol19].

Definition 2.2 (Base change). Let f: X — S be a flat projective morphism
between normal varieties with normal fibers, and let A be an effective Weil
@Q-divisor on X whose support does not contain any fiber of f. Let S’ — S be
a morphism from another (normal) variety. Let U C X be the smooth locus
of f. As in [Kol20, 4.1.5] (see also [CP18, §2.4.1]), the base change of f to S’
is set to be the family f': (X', A’) —+ S’ of normal pairs where X' = X xg .5’
and A’ is the unique extension of the pullback of A|y to U' = U xg S’ that is
a big open subset in X’. We call A’ the divisorial pullback of A. If K x5 + A
is Q-Cartier then we have Kx/ /g + A’ ~q m*(Kx g + A), where m: X' — X
is the induced morphism. In particular, being a generic log Fano family is
preserved under base change.

Definition 2.3 (Maximal variation). Let f: X — S be a flat projective
morphism between normal varieties with normal fibers, and let A be an effec-
tive Weil (Q-divisor on X, whose support does not contain any fiber. We say
that the family f: (X, A) — S is isotrivial if (X5, Ag) = (X;, A¢) for any two
general points s,t € S; we say that f has mazximal variation if for any curve
C' C 8§ containing a general point, the base change of f to C is not isotrivial.

LEMMA 2.4. Let f: X — S be a flat projective morphism between normal
varieties with normal fibers, let A be an effective Weil Q-divisor on X, and

let D = Supp(A). Then f: (X,A) — S has mazimal variation if and only if
g: (X,D) — S has mazimal variation.

Proof. Let C C S be a curve passing through a general point. It suffices
to show that the base change of f to C is isotrivial if and only if the same
holds for g. For this we may assume that S = C is a curve. Clearly if
(Xs,Ag) = (X¢, A¢) for any two general points s,t € C, then we also have
(Xs, Dg = Supp(Ag)) = (X¢, Dy = Supp(Ay)).

For the reverse implication, after a finite dominant base change of C, we
can first assume all components of D have geometrically irreducible fibers over
the generic point of C. Then we use induction on the number of irreducible
components of D. The statement is clear when D is irreducible. In general,
let D' (i = 1,...,N) be the irreducible components of D. Let Z;; C C x C
(1 <1i,7 < N) be the image of

Tsomg,.c (X, D%) x C,C x (X,D%)) = C x C,
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1013

~

which is a countable union of constructible subsets such that (X, D) =
(X¢, D) if and only if (s,t) € Zij. Since g: (X, D) — C is isotrivial, U; jZi;
contains a dense open subset of C' x C', and thus the same is true for some Z;;.
It follows that (Xs, Di) = (X, Dg ) for two arbitrary general points s,t € C,
and therefore (X, D) and (X, D7) are both isotrivial over C. (It can happen
that 2 = j.) The result now follows by induction hypothesis after removing the

component D? from both A and D. |

2.3. Filtrations. Applying filtrations to study K-stability questions has
been explored in many recent works. We recall some basic definitions here.
For more background, see, e.g., [BHJ17].

Let L be an ample line bundle on a projective variety X, and let

R=R(X,L):= @ Rm = P H(X,mL)

meM mel

be its section ring.

Definition 2.5. By a (linearly bounded multiplicative) filtration F of R,
we mean the data of a family of vector subspaces FA*R,, C R,, for m € N and
A € R satisfying
(1) F R C FN Ry when A > \';

(2) F*Rpm = Ny rxFY Ry, for all X;
(3) there exists e, e4+ € R such that F™*R,, = 0 for all z > e; and F™ R, =

Ry, for all z < e_;

(4) F Ry - F¥ Ry C FMY Ry

A filtration F of R is a called a Z-filtration if FAR,, = FI*R,, for all m € Z
and A € R. It is called an N-filtration if, in addition, F°R,, = R,, for all m.
To give a Z-filtration F, it suffices to give a family of subspaces FPR,, C R,
for m € N and p € Z satisfying (1), (3), and (4). In particular, every filtration
JF on R induces a Z-filtration JF7 that satisfies that }% = FIM. We say that
an N-filtration F is finitely generated if the algebra € N.Fél?qn is finitely
generated.

m,i€

Ezample 2.6. Let v be a valuation on X (i.e., a valuation k(X)* — R
that is trivial on k). Then it induces a filtration F, of R by setting .}"_t),‘Rm =
{s € Ry |v(s) > A}. It is linearly bounded if v has linear growth (see [BJ20,

§3.1]).

Ezample 2.7. Let (X, A) be a log Fano pair. By [BHJ17, Prop. 2.15], there
exists a one-to-one correspondence between test configurations of (X, A) (see
Definition 2.16) and finitely generated Z-filtrations of R = R(X, —r(Kx + A))
for some sufficiently divisible positive integer r.
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1014 CHENYANG XU and ZIQUAN ZHUANG

Let F be a linearly bounded multiplicative filtration on R. Let
Gr}Rpm = F R/ | ) F Rom.

A=A
We define (cf. [BJ20, §§2.3-2.6])
: 1 Y

and S(F) = limm 00 Sm(F). Note that the above expression is a finite sum
since there are only finitely many A for which Gr}}?m # 0 and the limit exists
by [BC11]. For z € R, we set

vol(F R(m)) = lim dim 77 Fom

m—oo  m™/n!

where n = dim X (the limit exists by [LM09]). Then

vi=— —vol(FR®™)

is the Duistermaat-Heckman measure of the filtration (see [BHJ17, §5]) and we
denote by [Amin(F), Amax(F)] its support. We also have
1

Sm(F)=e-+ G

€+
/ dim F™ Rpdx
e_

and
Amax (.;C )

e b voll FRONde — [ 2 dv
S(F) = Amin(F) + 7y Amm (FR®)de [H dv.

We will need the following result from [BHJ17].

LeEmMA 2.8 ([BHJ17, Th. 5.3]). The function z — vol(}_R(m))% is concave
on (—00, Amax)-

We also need the notion of translations of filtrations. For ¢ € R, we let F,
be the filtration on R defined by

F2Rpm == F* "Ry,
and call it the translation of F by c.

LEMMA 2.9. We have S(Fz) = S(F) and S(F.) = S(F) + ¢ for any
ceR.

Proof. By definition we have Sy (Fe) = Sm(F) + c¢. Letting m — oo,
we get the second equality. Replacing F by a translation we may assume
that FORp, = R, for all m € N. The first equality then follows from [BJ20,
Cor. 2.12]. O
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1015

Definition 2.10 (Base ideals). To a filtration F of R, we associate a family
of graded sequence of base ideals. For m > 0 and A € R, set

Im,)\ = Im,)\(}_) = Im .FARm ® Ox(—mL) — O)() s

where the map is induced by the natural evaluation H°(X,mL) ® Ox —
Ox(mL). Let t € R, and let IS = IS (F) := Lnm(F). Then I is a graded

sequence of ideals on X.

2.4. Invariants associated to log Fano pairs. In this section, we recall
some invariants that are introduced in previous works (e.g., [BHJ17], [Fuj18b],
[Lil7]).

Let (X,A) be a log Fano pair, and let » > 0 be an integer such that
L := —r(Kx + A) is Cartier. Let R = R(X,L).

Definition 2.11. Let v be a valuation of linear growth on X. (By [BJ20,
Lemma 3.1], this is the case if Ax a(v) < oo, where Ax a(v) denotes the log
discrepancy.) Then we define

S(v) = Sxa(v) = :r'_lS(.}"_U) and T(v) =Txa(v):= 'r_lAmax(.FU).

If F is a divisor over X (i.e., F is a prime divisor on some proper birational
model p: Y — X)), we set Sxa(F) = S(ordg) and Tx a(E) = T'(ordg) where
ordg: k(X)* — Z is the discrete valuation given by the order of vanishing
along E. It is not hard to check that

21)  Sxa(E)= m /:o vol(—u*(Kx + A) — zE)dz
and
(2.2) Tx A(E) =sup{z € R|vol(—p*(Kx + A) — zF) > 0}.

Definition 2.12 (f-invariant, alpha invariant and stability threshold). Let
v be a valuation with Ax A (v) < co on X, and let F be a divisor over X. We
define (cf. [Fujl19, Lil7])

Bx,a(v)(=B(v)) = Axa(v) — Sxa(v) and B(E) = B(ordg).

The alpha invariant «(X,A) and the stability threshold (X, A) of the log
Fano pair (X, A) is defined as
Axa(E)
Sxa(E)’

where both infima run over all divisors E over X (see [BJ20]).

. Axa(E) .
Q(X,A)—I%fm, 5(X,A)—l}_]‘_:f

Definition 2.13 (Non-Archimedean invariants). Let (X1,Au1) = (X, A)
x Al and Xo = X x {0}. Let F be a filtration on R, and choose e_ and e as
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1016 CHENYANG XU and ZIQUAN ZHUANG

in Definition 2.5 such that e_,e; € Z. Let e = e; — e_, and for each m € N,
set

I = I;m(F) = Imme, + Immes—1 - t+ -+ Imme_+1 -t™ 4 (™) C Oxyepr-
It is not hard to verify that Iisa graded sequence of ideals. Let
em = 1et(Xp1, Ags + (In) ™73 Xo)
= sup{c € R| (X1, (Apr + cXp) - (fm)#) is sub log canonical }
and coo = limym—00 cm. We then define (cf. [BHJ17])
LN (F) zcoo—l-e?+ -1,

DM(F) = LN (F) — @,

Amax(F) —SFF)

It is not hard to see from the definition that

INAF) =

oo <1 ordx,(I,) <1- ey — /\max(}_)?
r r

hence DNA(F) < JNA(F).

LEMMA 2.14. We have LNA(Fz) = LNA(F) and LN*(F.) = LNA(F) + &
for any c € R.

Proof. By definition we have fm(.}"_ ) = fm(.}"_z), hence the first equality
follows. Choose a sufficiently large common e4 for F and F.. We then have

Im,t‘(}_c) = Im,z’—cm(}_) - Im,z’—[cm] (}_)

and hence Iny(F.) C t=[em] . I,(F). Tt follows that cm(Fe) < cm(F) + 122

“mr
and therefore coo(Fc) < coo(F) + &. Interchanging the role of 7 and F, (note
that F = (F.)_.) we also obtain c(F) < coo(Fe) — 5. Thus equality holds

and
LN(Fo) = LNA(F) + 2
as desired. ]
Combining with Lemma 2.9 we immediately see that
COROLLARY 2.15. For any c € R, we have
DNA(}_) _ DNA(}_C) _ ]:)NA(}—Z)1

and the same equalities hold with DNA replaced by JNA. |
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1017

2.5. K-stability. In this subsection, we recall the definitions of various
K-stability notions for log Fano pairs, which were first introduced in [Tia97] and
algebraically formulated in [Don02|. Here, instead of the original definitions,
we will use some equivalent forms developed later (see, e.g., [Fujl9], [Lil7],
[LWX18a], [BX19]).

Let (X, A) be a log Fano pair.

Definition 2.16. A (normal) test configuration (X, L) of (X, A) consists
of the following data:

e a normal variety X together with a flat projective morphism 7 : X — Al
and a m-ample line bundle £;
e a Gy,-action on (X, £) lifting the canonical action on A! such that

(X, L)1 an\(op = (X, —r(Kx +A)) x (A"\ {0})
for some r € N,

There is a natural Gp-equivariant compactification (X, £) — P! of 7 by gluing
it with (X,L) x (P! \ {0}). Let n = dim X, and let Ax (resp. Aw) be the
closure of A x (A!\ {0}) in X (resp. X). The generalized Futaki invariant of
(X, L) is defined to be

n it " (K= 1+ A~
Fut(X, L) := (—KXI— Ay (n+1 . (fn+l) (£ ( X:E + X))) .

We call (X, L) a product test configuration if (X,Ay) = (X,A) x Al. Ev-
ery one-parameter subgroup £: G, — Aut(X, A) induces a product test con-
figuration, and we denote the corresponding generalized Futaki invariant by

Futx A (&) (or simply Fut(&)).

Remark 2.17. In the original definition of K-(semi,poly)stability in [Tia97],
[Don02], one looks at the sign of Fut(&X, £) for all test configurations (X, L).
Below we use a form that fits better for arguments in this paper.

THEOREM-DEFINITION 2.18. We say that (X, A) is

(1) K-semistable if Sx A(E) > 0 for all divisors E over X;

(2) K-stable if Bx a(F) > 0 for all divisors E over X;

(3) uniformly K-stable if there erists a constant ¢ > 0 depending only on
(X, A) such that Bx aA(F) > c- Sxa(E) for all divisors E over X ;

(4) K-polystable if it is K-semistable and any test configuration (X,Ay, L) of
(X, A) with K-semistable central fiber is a product test configuration.

Proof. The equivalences of the original definitions of K-semistability,
K-stability and uniform K-stability as in [Tia97], [Don02], [BHJ17] to (1)—(3)
are proved in [Fujl9], [Lil7], [BX19]. And the equivalence of K-polystability
with (4) is proved in [LWX18a]. O
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1018 CHENYANG XU and ZIQUAN ZHUANG

It is also known (see [BJ20]) that (X, A) is K-semistable (resp. uniformly
K-stable) if and only if §(X,A) > 1 (resp. > 1). Moreover, it is proved in
[BBJ15], [Fuj19], [Li17], [Li19] that the various K-stability notions are indeed
equivalent to the corresponding Ding-stability notions.

2.6. K-moduli. By combining the works in [Jial7], [BX19]|, [ABHLX20],
[BLX19], [Xu20], we have the following theorem.

THEOREM 2.19 (K-moduli). The moduli functor ME;S of n-dimensional
K-semistable Q-Fano varieties of volume v, which sends S € Schy to

flat proper morphisms X — S, whose geometric fibers
ME;S(S) = are n-dimensional K-semistable Q-Fano varieties
with volume v, satisfying Kollar’s condition

is an Artin stack of finite type and admits a good moduli space ¢: MTIESUS —

M,E(, D° as a separated algebraic space, whose geometric points are in bijection
with n-dimensional K-polystable QQ-Fano varieties of volume v.

Though in general the properness of M, TE;(, P® remains a challenging problem,
we have the following theorem established in [LWX19] (see also [Odal5]), whose
proof relies on deep analytic results (cf. [DS14, CDS15, Tial5]).

THEOREM 2.20. Let k = C. Denote by Mff:;KSS the open substack of

MTIESUS whose geometric points correspond to K-semistable smooth Fano vari-

eties. Denote by _f:],v’KpS the closure of the image QS(M;TU’KSS) n MEES; i.e.,

geometric points of Hf::;Kps correspond to n-dimensional K-polystable Fano
., . K .
varieties with volume v that are smoothable. Then mﬂ, P s proper.

We will also discuss the log version of the above theorems. In fact, Theo-
rem 2.19 can be extended to the log version, thanks to the recent work [Kol19].
We call (X,cD) — S a family of pairs (where c is a rational number) if

(1) X — S is proper and flat;
(2) D is a K-flat family of divisors on X (see [Kol19]); and
(3) —Kx/s — cD is Q-Cartier.

It is called a family of (resp. K-semistable) log Fano pairs if, in addition, the
geometric fibers (Xg, cD;) are (resp. K-semistable) log Fano pairs. Since D is
integral, the coefficients of cD; are contained in I := {nc | n € N} N[0, 1].
Denote by ME;S,C the functor
Ess (8) = { (X,A :=cD) — S a family of K-semistable log }
e Fano pairs, with dim(X) =n and (—Kx, — A)"=v [~
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1019

THEOREM 2.21 (K-moduli for pairs). The moduli functor ME,SUS,C is an
Artin stack of finite type and admits a good moduli space ¢: MTII{,SUS,C — Mwllf ve
as a separated algebraic space, whose geometric points are in bijection with
n-dimensional K-polystable log Fano pairs of volume v whose coefficients are
in 1.

The proof is just putting all known ingredients together, and one can
exactly follow the proof of Theorem 2.19. In fact, the boundedness result
of [Jial7] can be replaced by the corresponding result in the log version (see
[Che20], [LLX20]), and other main technical results in [BX19]|, [ABHLX20],
[BLX19], [Xu20] are already established for log pairs. The only originally
missing ingredient, which is the definition of locally stable family of log pairs
over a general base, is now treated in [Kol19]. Thus we can prove Theorem 2.21
in the way as the arguments for [BX19, Cor. 1.4] and [Xu20, Cor. 1.5], which
we include here for reader’s convenience.

Proof. By [Che20] or [LLX20, Cor. 6.14] the set Mﬁic(k) is bounded.
Hence, there exists a positive integer M so that —M (K x + A) is a very ample

Cartier divisor for all [(X,A)] € MK (k). Furthermore, the set of Hilbert
functions m x(wgzmM] (—mMA)) with [(X,A)] € MES (k) is finite. More-
over, there are only finitely many possible degrees d = D - (—Kx, — Ag)" L.
For every such Hilbert function h, consider the subfunctor MK C Mﬁs’c
parametrizing K-semistable log Fano pairs with Hilbert function k. Note that

MTII{,SUS,C = [[, ME. Set N := h(1) — 1, and let Hilb,(P") be the Hilbert
scheme parametrizing closed subschemes of PV with Hilbert polynomial h.

Next, let U  Hilby (]PN) denote the open subscheme parametrizing nor-
mal, Cohen-Macaulay varieties. By [Koll9, Th. 98|, there is a separated
U-scheme Wj of finite type that parametrizes K-flat divisors D with degree d
for all possible d as above. Write (X,©) — W for the corresponding universal
family.

By [HKO04, Th. 3.11], there is a locally closed subscheme W5 C W; such
that a map T — Wj factors through W5 if and only if there is an isomorphism

wi i (—eMDr) ~ L1 ® Oz (1),

where L1 is the pullback of a line bundle from T and @7 is the divisorial
pullback of ©. In particular, (Xw,, Dw,) — Ws is a Q-Gorenstein family of log
Fano pairs. Since being klt is an open condition in (Q-Gorenstein families, there
exists an open subscheme W3 of W5 parametrizing log Fano pairs. By [BLX19]
or [Xu20] (applied to the family (X,c®) of log pairs over the normalization
of W3), we see that

W = {t € W5 | (X3, ¢D;) is K-semistable}

is open in Wj.
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1020 CHENYANG XU and ZIQUAN ZHUANG

As a consequence of the above discussion, M ~ [W/PGL(N +1)] is an
Artin stack of finite type. Taking the disjoint union over all h yields AMKss

n,v,c*
Since it satisfies ©-reductivity and S-completeness by [ABHLX20]|, it admits
a good moduli space by [AHLH18]| that is Mﬁfﬁf‘c O

The following theorem is a generalization of [LWX19] (see Theorem 2.20)
to the log case.

THEOREM 2.22 ([ADL19, Th. 1.1]). Let k = C. Denote by MK
M,IESUS,C the open substack whose geometric points correspond to log Fano pairs
(X,eD), where X and D are smooth and D ~g —rKx for some r € Q..

——sm,Kps ——sm,Kps

Denote by M, . the closure of (;S(Mflrﬂ;gss) n MTE(,E,SC. Then My, . 1is
proper.

2.7. CM line bundle. In this section we recall the definition and some

basic properties of CM line bundles.

Definition 2.23. Let f: (X, A) — S be a family of pairs of relative dimen-
sion n such that —(Kx /s + A) is f-ample. Let s > 0 be an integer such that
L := —s(Kx;s + A) is Cartier. By [MFK94, appendix to Ch. 5, §D], we have
a Knudsen-Mumford expansion

n+1 m
det £.0x(mL) = Q) ME™)
i=0
for all sufficiently large m € N and for some line bundles M; on S. The CM
(Q-)line bundle of the family is then defined as

/\f,A = —S_n_an+1.

By [CP18, Prop. 3.7], this is equivalent to the original definition in [PT09].
For generic log Fano families, we also have an intersection formula for the CM
line bundle: if f: (X,A) —+ S is a generic log Fano family (see Definition 2.1)
over a proper variety S, then

Ara = —fa(—(Kx/s + A)™H

The formation of CM line bundle is also compatible with base change in
the following sense.

PRrROPOSITION 2.24 ([CP18, Lemma 3.5 and Prop. 3.8|). Let f: (X,A)—S
be a family of log Fano pairs, and let ¢: S" — S be a morphism. Let f': (X', A’)
— 8’ be the base change of f to S'. Then Ap aor = ¢*Afa.

As a consequence, we get a well-defined CM (Q-)line bundle Acm on the

moduli stack M,Il{jic parametrizing K-semistable log Fano pairs with dimen-

sion n, anti-log-canonical volume v and coefficient set I = ¢cNN [0, 1].
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1021

PrROPOSITION 2.25. There erxists a positive integer k, such that /\g& de-
scends to the good moduli space M,E(, e

Proof. This is well known. See, e.g., [LWX18b, §5] or [CP18, Lemma 10.2].
O

Therefore, Acm descends to a @Q-line bundle on ME D%, which we denote
by Acm.

2.8. Harder-Narasimhan filtration. In this section, we introduce some ba-
sic facts of the Harder-Narasimhan filtration. A similar study in the setting of
Arakelov geometry appeared in [Chel0)].

Let C be a smooth projective curve of genus g. Given a vector bundle £
on C, its slope is defined to be

wE) = Ii%((?)-

We also define pimax(€) to be the maximal slope of nonzero subbundles ECeE
and pmin(€) the minimal slope of nonzero quotient bundles £ — £’. For any
vector bundle £ on the curve C, we can define a Harder-Narasimhan filtration
Jun on £ by setting

}_ﬁNc‘: := union of all subbundles & C & with ,umin(E’ ) > A
In other words, }_ﬁNE is the subbundle &; in the Harder-Narasimhan filtration
0=59C81c—--81_1C81C5@+1 Coo=£&

of €, such that the semistable vector bundle &;/&;_1 has slope at least A while
the slope of &1 /&; is strictly less than A.

Let f: (X,A) — C be a surjective morphism from a normal projective
pair, and let L be an f-ample Cartier divisor on X. Note that f,Ox(mL) is
locally free since it is torsion free and C is a smooth curve. We also fix a point
t € C such that the restriction map f.Ox(mL) — H°(X;,mL;) is surjective
for all m € N. (This holds when ¢ € C is general or L is sufficiently ample.)

LEMMA-DEFINITION 2.26. Assume that the general fibers of f are klt.
Then by restricting to the fiber (X¢, L), the HN-filtrations Fun of Rm =
f«Ox(mL) (m € N) induce a linearly bounded multiplicative filtration (which
we also denote by Fun) of

Ry := P Rim = @ H(Xi,mLy),
meN meN
called the Harder-Narasimhan filtration (HN-filtration) of R; induced by the
family f.
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1022 CHENYANG XU and ZIQUAN ZHUANG

Proof. Let £ be the image of the multiplication map

FﬁNRm & .}L_I%]’N??.«mr — Rm+m’-
By [HL10, Th. 3.1.4], we have

tmin(€E) > pmin(FANRmOFANRmr) = min(FANRm) +min(FANRm) > AN,

hence £ C fﬁJﬁA’Rm_,_mr, which implies that FyN is multiplicative.

Fix a point P € C. Since L is f-ample, we may choose some ¢ € Q¢
such that M = L + cf*P is ample. Then for m > 1, [mM| — (Kx,c + 4)
is ample, hence by [CP18, Prop. 6.4], fiOx(|mM|) = Rm ® Oc(|ecmP|) is a
nef vector bundle. In particular, pmin(Rm) > —cm for all m > 1, thus Fun is
linearly bounded from below.

Similarly, let b € Q<o be such that N = L — bf* P is not pseudo-effective.
Then for m > 1, we have

H(C, Ry & Oc(~|bmP))) = HY(C, £.0x(mN1)) = H(X, [mN1) =0,

hence by [CP18, Prop. 5.4], gmax(Rm ® Oc(—|bmP])) < 2g; equivalently, we
have pimax(Rm) < 2g + bm. This shows that Fun is linearly bounded from
above. O

Following the above argument, we define
A_(L) =sup{ceR|L —cf*P is nef },
where P € C is a closed point and
A+(L) =sup{c € R| L — c¢f*P is pseudo-effective }.

Clearly the definition does not depend on the choice of P.
We will use the following simple observation.

LEMMmA 2.27. A_(L) € Q.

Proof. Since A := A_(L) is the nef threshold of L with respect to f*P,
L — Af*P is nef but not ample. By the Nakai-Moishezon criterion, we have
((L=X\f*P)4.Z) = 0 for some subvariety Z C X of dimension d, which reduces
to (L% - Z) = dA(L*!- f*P- Z). (Note that (f*P - f*P) = 0.) It is then clear
that A € Q. O

PrRoOPOSITION 2.28. The Duistermaat-Heckman measure of the Harder-
Narasimhan filtration Fpn precisely supports on [A_(L), Ay (L)].

Proof. Let Amin = Amin(FuN) and Amax = Amax(Fun). From the proof of
Lemma 2.26, we have seen that Amin > A~ := A_(L) and Amax < Ay := A+ (L),
so it suffices to establish the opposite inequalities.

We first prove that Apin < A—. For any rational number ¢ > A_, M =
L — cf*P is not nef by our choice of A_. Since (X, A) is klt along the general
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1023

fiber of f and L is f-ample, by [CDB13, Cor. 4.7] we know that there exists a
subvariety Z C X such that f(Z) = C and

Itz (jmM
multz (M) = lim 2tzmMD

m—00 m

Let Z; be the restriction of Z to X;. Then since

0.

Fiet™ Ry, C Im(H(X, mM) @ Oc — Rum)
for all sufficiently divisible m by [CP18, Prop. 5.7], we have

multz, (Fie ' 9 Rem) > em

for some constant € > 0 independent of m. It follows that vo](}_HNRgc)) <
vol(L;) and therefore Amin < c; see, e.g., [BHJ17, Cor. 5.4]. Letting ¢ —+ A_,
we obtain Amin < A_.

We next prove that Amax > A4. Let ¢ € (A, A;+) be a rational number.
Then M’ = L — ¢/ f*P is big, and thus for sufficiently divisible m,

HO(X,mM') = H(C, Ry, ® Oc(—md' P)) # 0.

In particular, pmax(Rm ® Oc(—mc'P)) > 0, which implies that Amax > .
Letting ¢ — A4, we obtain Amax = A+. The proof is now complete. |

3. Reduced uniform K-stability

In this section, we discuss a relatively more recent notion, the reduced uni-
form K-stability. This concept gives a suitable extension of the definition of
uniform K-stability to the case when the automorphism group is non-discrete.
It was first introduced in [His16] and systematically developed in [Lil9]. In
particular, it was shown there that it is equivalent to the existence of a Kahler-
Einstein metric (see Theorem 3.7). In this section, we will first give the intro-
duction of the basic notion and results, mostly following [Lil19]. Then we will
establish a few new results, some of which will be needed later to get our main
theorems. We also note that later in Section 4, we will establish a criterion to
test reduced uniform K-stability using the S-invariant (for filtrations) that we
are going to introduce.

3.1. Definition and characterization. In this section, we will recall the
definition of reduced uniform K-stability and some related results. Most of
them are from [Lil9)].

Let (X,A) be a log Fano pair with an action by a torus 7' = G%,. Fix
some integer r > 0 such that L := —r(Kx + A) is Cartier, and as before let
R = R(X,L). Let M = Hom(T,Gy,) be the weight lattice and N = M* =
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1024 CHENYANG XU and ZIQUAN ZHUANG

Hom(G,,,T) the co-weight lattice. Then T naturally acts on R and we have a
weight decomposition R, = @ ,cps Bm,a, Where

Rma={s € Ru|p(t)-s=tP* .sforall pe N and t € k*}.

Consider a T-equivariant filtration F on R = @,, H°(X,mL); i.e., s € F R
if and only if g-s € F R for any g € T. We then have a similar weight
decomposition

F Ry = @ (F*Bm)a,

aeM
where (.}"_)‘Rm)ﬂE = F R N Rma-

Definition 3.1. For { € Ng = N ®z R, we define the {-twist F¢ of the
filtration F in the following way: for any s € Ry, o, we have

5 € }?Rm if and only if s € FMR, where \g = A — (, &),

in other words,

FoRm = P *9RN Ry .
acM

One can easily check that F¢ is a linearly bounded multiplicative filtration
if F is.

Let Z = X//chowI be the Chow quotient (so X is T-equivariantly bira-
tional to Z x T'). Then the function field k(X) is (non-canonically) isomorphic
to the quotient field of

K(Z)[M] = P k(2) -1*.

acM

For any valuation g over Z and £ € Ng, one can associate a T-invariant
valuation v, ¢ over X such that

(3.1) vug(f) = min(u(fa) + (&, a))

forall f =3 oy fa 1% € k(Z)[M]. Indeed, every valuation v € Vall (X) (i.e.,
the set of T-invariant valuations) is obtained in this way (see, e.g., the proof of
[BHJ17, Lemma 4.2]) and we get a (non-canonical) isomorphism Val? (X) =
Val(Z) x Ng. For any v € ValT(X ) and £ € N, we can therefore define the
twisted valuation vg as follows: if v = vy, ¢, then

U& = U,u.,ﬁ’—i—ﬁ-
One can check that the definition does not depend on the choice of the bi-

rational map X --+ Z x T. When p is the trivial valuation, the valuations
wtg = v, ¢ are also independent of the birational map X --» Z x T.
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1025

Definition 3.2. Let T be a torus acting on a log Fano pair (X,A). For
any T-equivariant filtration F of R, its reduced J-norm is defined as

INAF) = Eiexgk INA(Fe).

The reduced J-norm JNA(X, L) of a T-equivariant test configuration (X, L)
of (X,A) is defined to be the reduced J-norm of its associated Z-filtration
(Example 2.7).

LEMMA 3.3. Let (X,A) be a K-semistable log Fano pair with a torus T
action. Then for any filtration F of R = R(X,—r(Kx + A)), we have
(1) DNA(F¢) = DNA(F) and S(F¢) = S(F) for any & € Ng;
(2) the function & — INA(F;) is continuous and there exists £ € N such that
IA(F) = A (F).

Proof. Since (X, A) is K-semistable, the Futaki invariant vanishes on all
product test configurations, i.e., Futx A (£§) = 0 for all £ € N, thus (1) follows
from [Li19, Lemma 3.10] and (2) follows from [Lil9, Lemma 3.15]. O

Definition 3.4 (Reduced uniform stability, [His16], [Lil9]). Let n > 0. A
log Fano pair (X, A) is called reduced uniformly Ding-stable with slope at least
n if for some torus T' C Aut(X, A) and for any T-equivariant test configuration

(X,L) of (X,A), we have
(3.2) DN (X, L) > n- T (X, L).

A log Fano pair (X,A) is said to be reduced uniformly Ding-stable if it is
reduced uniformly Ding-stable with some slope n > 0. We define the reduced
uniform K-stability in a similar way by replacing DNA with the generalized
Futaki invariant.

Remark 3.5. Our definition clearly does not depend on the torus 7. In
fact, from the definition we see that if (X, A) is reduced uniformly Ding-stable
(resp. K-stable) with respect to some torus 7' C Aut(X,A), then (X, A) is
K-polystable and T" has to be a maximal torus of Aut(X,A). Since any two
maximal tori are conjugate to each other, to verify the above definition it is
equivalent to consider one maximal torus 7' C Aut(X, A).

Remark 3.6. It can be easily seen that our definition of reduced uniform
stability is equivalent to the notion of G-uniform stability in [Li19] as long as G
contains a maximal torus. There have been other attempts to define “uniform
stability” when there is a group action. See [Lil9, Rem. 1.6] of the relation
between these notions. For our study in this paper, only the concept of reduced
uniform K-stability is relevant, which we believe to be the most intrinsic one,
since we do not have to specify any group.
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1026 CHENYANG XU and ZIQUAN ZHUANG

The following theorem is one of the main results of [Lil9].

THEOREM 3.7 ([Lil9, Ths. 1.2 and 1.3]). Let (X,A) be a log Fano pair

and T a mazimal torus of Aut(X,A). The following are equivalent:

(1) (X,A) is reduced uniformly Ding-stable;

(2) (X,A) is reduced uniformly K-stable;

(3) (X,A) is K-semistable, and there erists some § > 1 such that for any
T-invariant valuation v, there ezists some & € Ng, such that Ax a(ve) >
8- S(ve).

When the base field k = C, they are also equivalent to

(4) (X,A) admits a Kahler-Einstein metric.

The following is the main conjecture about reduced uniform K-stability
(see, e.g., [Lil9, Rem. 1.6(2)], which is the K-polystable version of the conjec-
ture that K-stability implies uniform K-stability (see, e.g., [BX19, Conj. 1.5]).

CONJECTURE 3.8. If (X,A) is K-polystable, then it is reduced uniformly
K-stable.

Next, we extend (3.2) as well as [Lil9, Prop. 3.22] to arbitrary filtrations.
It will be needed in later arguments.

PROPOSITION 3.9. Let (X, A) be a log Fano pair, and let T C Aut(X, A)
be a mazimal torus. Assume that (X,A) is reduced uniformly K-stable with

slope at least n > 0. Then we have, for any T-equivariant filtration F of
R=R(X,—r(Kx +4)),

DY (F) > n- I7A(F).

Proof. By Corollary 2.15, we may replace F by a translation of Fz and
assume that F is an N-filtration. Let F;;, be the m-th approximating filtration
of F;ie.,

(1) for m' < m, FARy = Ry if A <0 and F)\ Ry = 0if A > 0;

(2) for m' = m, FARuy = F Ry for all ),

(3) for m’ > m, FARm = Zﬁf”lﬁn---f”’Rm - Ry —ms, where the sum
runs through all s € Ny and @ = (p,. .., ps) € R® such that ms < m’ and
p1+ -+ pe > Ao (It turns out that the sum can be written as a finite
sum.)

(Roughly speaking, Fr, is the coarsest filtration of R such that .}"_,),‘1}? = F*Rm
for all A\.) We claim that (cf. [Lil9, Prop. 3.16])
1 NA __ gNA

To see this, first note that limy oo Amax(Fm) = Amax(F) by [BHJI17,
Cor. 5.4]. Using Fujita’s approximation theorem for graded linear series [LM09,
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1027

Th. 3.5] we also have lim,,_,«, vol(F, R®®)) = vol(FR®) for all z € R and
hence limy, o0 S(Fm) = S(F) by the dominated convergence theorem. Since
(X, A) is reduced uniformly K-stable, it is K-polystable. Thus by Lemma 3.3
we have S(F¢) = S(F) and S(Fp¢) = S(Fp,) for any £ € Ny and any T-equi-
variant filtration F on R. In particular, by Definition 2.13,
lim JNA (Fme) = JNA (F¢) for any fixed £ € Ng.
T—r 0

Let Ao = sup{\|(F*Rp)a # 0}, and let Ty, = {@ € M |R,, 4 # 0}.
Then there exists a bounded region P C Mp such that %Fm C Pforallm e N.
It follows that

< )‘max(}_) + sup k‘t—ﬂ’f) < /\rnax(}_) +C|£|

acl'm

Amax (Fm,¢) = sup

aclm

)‘m,a + (05; g)
m

for some constant C >0 that only depends on P. Thus the functions JNA (Fyy, ¢)
(m € N) are equicontinuous on N, as the above estimate implies for any m,

| Amax (Fm.g) — Amax (Fm.0)| < Cl€ — &o-

On the other hand, as in the proof of [Li19, Lemma 3.15 and Prop. 3.16], there
exist some constants Cy,C5 > 0 such that

INA(Fe) > C1]€] — Oz and INA(Fpp ) > C1]€] — O3 for all m > 0 and € € Ng,

so the infima infgen, IV (Fne) and infeen, JNA(F¢) are achieved on a fixed
compact subset Z C Np. By the Arzela-Ascoli theorem, the convergence

INA(Fmg) = IV (Fe) (m — oo)
is uniform over = and hence we also get the convergence of infima

T= lim inf I (Fe) = inf 3N = IFA(F),
as claimed (3.3).

Since F, is finitely generated, it comes from a test configuration of (X, A)
[BHJ17, Prop. 2.15]. Hence by the reduced uniform K-stability of (X, A) we
have DNA(F,,) > 7 - J?A(.Fm) for some constant 7 > 0 depending only on
(X,A). By construction, we have Iy,(Fp) = I (F) and Lne(Fn) = In(Fim)®
for all m,£ € N. Tt is thus easy to check that lim,,_,o, LN (F,,) = LNA(F)
and (see, e.g., [Fuj18b, §4.2])

: NA _ NA
(3.4) ﬂlgncoD (Fm) =D72(F).
Hence combining with (3.3) we obtain DNA(F) > n - J¥A(F). O
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1028 CHENYANG XU and ZIQUAN ZHUANG

3.2. Further properties. The second property is related to the behavior of
the slope 7 in a family, which is a partial generalization of the result in [BL18]
to the twisted version. It is needed later in our study of the CM line bundle.

We first need a simple lemma.

LEMMA 3.10. Let n > 0, let (X,A) be a log Fano pair, and let T C
Aut(X,A) be a mazimal torus. Then (X,A) is reduced uniformly K-stable
with slope at least n > 0 if and only if

(3:5) DYA(F) > - IFA(F)
for all finitely generated T-equivariant N-filtrations F with Amax(F) < 1.

Proof. It suffices to prove the backward implication. Let F be a filtration
of R. Choose some M;, My > 0 such that the filtration G on R defined by
G R, = FAMi—mMa R satisfies G°R = R and Apax(G) < 1. It is not hard to
check that DNA(F) = M, - DNA(G) and JNA(F) = M, - INA(G). Hence (3.5)
holds for F if and only if it holds for G.

Replacing F by G, we may assume that F'R = R and Apax(F) < 1. Simi-
larly, as DNA(Fz) = DNA(F) and INA(Fz) = INA(F), it suffices to check (3.5)
for the N-filtration Fz. For each positive integer m, let Fy;, be the m-th ap-
proximating filtration of Fz. Then F;, is a finitely generated T-equivariant N-
filtrations with Amax(Fm) < 1. If (3.5) holds for all such filtrations, then letting
m — oo we see that (3.5) holds for Fz (by (3.3)) and hence for F as well. [

PROPOSITION 3.11. Let T be a torus, and let f: (X,A) — B be a Q-
Gorenstein family of log Fano pairs with a fiberwise T-action. Let n > 0.
Assume that (Xo,Ao) is reduced uniformly Ding-stable with slope at least n for
some 0 € B and T C Aut(Xo, Ao) is a mazimal torus. Then the same is true
for very general fibers of f.

Proof. Let r > 0 be a sufficiently divisible integer, and let
R =P Rm = P f:0x(—mr(Kx/p + A)).

meN mel
By Remark 3.5, it suffices to show that very general fibers of f are reduced uni-
formly Ding-stable with slope at least 1 and with respect to T'. By Lemma 3.10,
this reduces to showing that DNA(F) > 5 - JRA(F) for any T-equivariant
finitely generated N-filtration F on

Ry =R ®k(b) = @ HO(Xb, —mr(Kx, + Ap))

meN
with Amax(F) < 1 (where b € B is very general).

We first construct the parameter spaces of such filtrations. Let m € N
and let Ry, = @,ecpr Rm.a be the weight decomposition. If R is an N-graded
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1029

ring, then we denote by R(™) the subring of R that only consists of the elements
with degree divisible by m.

Clearly giving a T-equivariant N-filtration JF on Rgm) that is generated in
degree m is equivalent to giving an N-filtrations on Ry, o := Ry o ® k(b) for
each a. If, moreover, Apax(F) < 1, then this amounts to choosing a length
m decreasing sequence of subspaces FRm,a,b (i=1,2,...,m) of each Ry, op.
Such a sequence is parametrized by the relative flag variety (of length m) of
Rm,a over B. In other words, if we denote by Fi, the fiber product of these
relative flag varieties (for a fixed m € Ny) over B and let ¢nn: Fy — B
be the natural projection, then for any b € B, there is a bijection between
the geometric points of ¢! (b) and the T-equivariant N-filtrations F on R
with Amax(F) < 1 that are generated in degree m. In particular, for each
t € Fm, we denote by F; the corresponding filtration on Ry ;). Note that
each irreducible component of Fj, (corresponding to different choices of the
signature of the flag) is proper over B.

By [BJ20, Cor. 2.10], there exist constants €, > 0 (m € N;) such that
eém — 1 (m — o0) and S(F) > €m - Sm(F) for all m and all N-filtration F on
Ry. By [Lil9, Lemma 3.15], for any T-equivariant finitely generated filtration
F on Ry, there exists some ¢ € Ng such that DNA(F) > n - JNA(.}"_E); since
(Xo,Ap) is K-semistable, we also have S(F;) = S(F). It follows that

LN(F) > n- N (Fe) + @

=1 mae(Fe) + (1) 2T
SnlF)

> 1 Amax(Fe) + (1= n)em - 7.

Let (Y,I') = (X,A) xp Fn, and let g: (Y,I') — Fi, be the natural projection.
Let L = —m:r'(Kw r,, +I'). By construction, there exists a universal flag of
T-invariant subbundles

F*C-.-CF' of g.Oy(L)=¢5Rm

whose restriction to any geometric point ¢ € F}, is the corresponding filtration
Fion Ry s = ¢35 R @ k().

Let Z,, ; be the image of the composition g* F'® Oy (—L) — ¢*¢.0y (L) ®
Oy (—L) — Oy, and let

Im = Imm + Imm—1 -t + -+ Iy - "1+ (t™) C Oy pr.

Then we have T, ; ® k(y) = I, i(F;) and T ® k(t) = fm(.}"}) for all t € Fp,.

As F; is generated in degree m, we also have I (Ft) = I (F;)¢ for all £ € N
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1030 CHENYANG XU and ZIQUAN ZHUANG

and hence

LNA(F,) = let (Y, x AL, (T x A1) - ()73 Y, x {0}) + % ~1.

By inversion of adjunction, this implies that the function ¢ —+ LNA(F,) on Fy,
is constructible and lower semicontinuous.

Moreover, the functions ¢ — Sp(F;) and ¢ — Amax(Fre) (for each fixed
£ € Ng) are constant on each irreducible component of F,. It follows from
the Noetherian induction that for each m € N4, there exists an open subset
Upm C Fp, containing ¢! (0) such that for all t € Upy,, there exists some £ € Ng
with

LNA(}_t) >n- )‘ma.x(}_;,g) + (1 - r1’?)Em : @
Since Fy, is proper over B, V := (), ¢ (Up,) is the complement of a countable
union of closed sets. It is nonempty as 0 € V. Further shrinking V', we may
also assume that every fiber over V is K-semistable by [BL18, Th. A]. We
therefore deduce that for any b € V and any T-equivariant N-filtration F of
Rp with Amax(F) < 1 that is generated in degree m, we have
(36)  TME 20 IE) 0 2 (1 pen - EnE)

T T

But a filtration that is generated in degree m is also generated in degree
mt for all £ € N, and hence (3.6) remains true if we replace m by mf. Letting
¢ — 0o, we obtain DNA(F) > n- JRA(F) for all b € V and all T-equivariant
finitely generated N-filtrations F of Rj with Apax(F) < 1. By Remark 3.5 and
Lemma 3.10, we conclude that (X3, Ap) is reduced uniformly K-stable with
slope at least n as long as be V. |

4. Bs-invariants for filtrations

In this section, we define and study the Ss-invariants for filtrations of anti-
canonical rings of log Fano pairs. In particular, we will complete the proof of
Theorem 1.4. We believe that for many questions, this gives the appropriate
extension of S-invariants in [Lil7, Fuj19] defined for valuations.

As an immediate consequence, we will also give a more conceptual (in our
opinion) proof of the semi-positivity of CM line bundles [CP18, Th. 1.8].

We fix the following notation: let (X, A) be a log Fano pair, let 7 > 0 be
an integer such that L := —r(Kx + A) is Cartier, and let R = R(X,L).

4.1. Definition of Bs-invariants.

Definition 4.1. Given a filtration F of R and some § € R, we define the
d-log canonical slope (or simply log canonical slope when 6 = 1) px a 5(F) (or
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1031
ps(F) if the pair (X, A) is clear from the context) as
5
(4.1) pix.A.6(F) = sup {t e R|let(X, A; 1) > ;} ,

where I{" = 1" (F) is as in Definition 2.10, and we define
px.86(F) = S(F)

r

Bxas(F) =

We will often suppress the subscripts when the pair (X, A) is clear or § = 1.

We have the following properties, which compare our S-invariants to the
original definition in [Fuj19, Lil7].

PROPOSITION 4.2. For any divisor E over X, we have B(E) > B(Fordy)-
Moreover, equality holds when E is weakly special (i.e., it is induced by a weakly
special test configuration with an irreducible central fiber; see, e.g., [BLX19,

Def. A.1] or Lemma A.9).
Proof. Let F = Fyra,,- By definition we have ordE(IEt) (F)) > t, thus

1
let(X, A; IEt)) <= when t > r- Ax a(F).

It follows that p(F) < r-Ax a(E), and hence 5(F) < B(E) by definition. If E
is weakly special, then by [BLX19, Th. A.2] there exists an effective Q-divisor
D ~g —(Kx + A) such that (X,A + D) is Ic and Ax aA(E) = ordg(D). This
implies that

ICt(X,A;IETIAX‘&(ED) > let(X,A;rD) > 1
r
Thus u(F) > r- Axa(E) and B(F) > B(E). 0

In Lemma A.7, we will prove a partial converse of Proposition 4.2.

In the remaining part of this subsection, we show that the non-negativity
of f-invariants (resp. Bs-invariants for some § > 1) for filtrations character-
izes K-semistability (resp. uniform K-stability). Later in Section 4.3, we shall
see that the [s-invariants can be used to detect reduced uniform K-stability
(Definition 3.4).

THEOREM 4.3. Let (X,A) be a log Fano pair, and let v > 0 be an integer
such that L = —r(Kx + A) is Cartier. Then we have

B(F) = DYA(F)
for any linearly bounded multiplicative filtration F of R = R(X, L).

Proof. Denote by p := pix A(F), Amax = Amax(F) and we have 1 < Apax.
If 4 = Amax, then it is clear that B(F) = JNA(F) > DNA(F). Hence we
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1032 CHENYANG XU and ZIQUAN ZHUANG

may assume that Apay > p in what follows. In particular, I,,, » # 0 for some
A > pm.

For each m, the ideal I, ym4. does not depend on the choice of € > 0 as
long as e is sufficiently small and we set a;, = Iy ym4e Where 0 < e < 1. It is
easy to see that ae is a graded sequence of ideals on X. By the definition of p,
we have

mdm&Am@:mkWKm%mkaMLAﬂﬁm%gl
"

for all m. It follows that let(X, A;ae) < %, and hence by [JM12, Th. A] there

is a valuation v over X such that

(4.2) a:=Axa(v) < %U(a.) < o0.

For each A € R, we set f()) = ’U(IEA)). Since Amax > W, there exists some € > 0
such that f(A) < oo for all A < p+e. Since the filtration F is multiplicative, we
know that f is a non-decreasing convex function. It follows that f is continuous
on (—oo, u + €), and from the construction we see that

F(n) < (@) < lim F(3) = F(u),

hence f(u) = v(as) > ar by (4.2). We then have

f(p) — f(p—h)
h

for all A by the convexity of f. We claim that £ > 0. Indeed, it is clear that
£ > 0 since f is non-decreasing. If £ = 0, then f must be constant on (—oo, pl;

(43) £ > F(u)+6O— ) > ar+€(A— ), where &:= lim

but this is a contradiction since f(u) > ar > 0 while we always have f(e_) = 0.
Hence £ > 0 as desired. Replacing v by £ v, we may assume that £ = 1 and
(4.3) becomes

(4.4) f(A) > A+ar—p.

Now let @ be the valuation on X x A! given by the quasi-monomial com-
bination of v and Xy with weight (1,1). Using the same notation as in Defini-
tion 2.13, we have

me_ —1—3')
m

(Im,me_+i - tme_é) >mf + (me —1)

2m w+ar_'u)+(me_g)
m

=m(et +ar—p) (Vi eN),

where the first inequality follows from the deﬁniﬁion of f(A) and the second
inequality follows from (4.4). It follows that v(l,n) > m(et+ + ar — p), and
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1033

hence by definition of ¢, we obtain
e+ tar—p  p—eq

o (I,
U(m)SaJrl— = +1
mr T T

em < Ax.ayxat(P) —

for all m € N. Thus c < % + 1, and we have

— S(F)

DM(F) = coo + &

_1SLS(}_)
r

! — B(F)
as desired. O

COROLLARY 4.4. A log Fano pair (X,A) is K-semistable if and only if
B(F) > 0 for any filtration F of R = R(X,—r(Kx + A)).

Proof. Suppose that (X, A) is K-semistable. Then combining (3.4) (see
[Fujl8b, §4.2]) and [Fujl9, Th. 6.5], we have DNA(}_) > 0 for any linearly
bounded filtration F of R. Hence (F) > 0 by Theorem 4.3. Conversely, if
B(F) > 0 for any linearly bounded filtration F of R, then by Proposition 4.2
we have B(E) > 0 for all divisors E over X, thus (X, A) is K-semistable. [

More generally, we have

PROPOSITION 4.5. Let (X,A) be a log Fano pair, let r € N be an integer
such that L = —r(Kx + A) is Cartier, and let R = R(X,L). Then

5(X,A) =sup{d > 0| Bs(F) > 0 for any linearly bounded filtration F of R}.

Proof. For any § > §(X,A), there exists some valuation v (with Ax a(v)
< 00) such that Ax A(v) < d-Sx a(v), and from Definition 4.1 we see that

B5(F) = ﬂX,A,a(fz;) — 5(F») < AX?('U)

—Sx.a(v) <0,

where we use the fact that v(I £t)(fg)) > t for any t € R> and therefore if we

take tgp = w, then

let(X, A; (I°)(Fy)) < g

Thus it remains to show that for all 0 < § < §(X, A), we have B5(F) > 0
for any filtration F of R. The argument is very close to the proof of Theo-
rem 4.3, so we only give a sketch. First we may assume that p := px A 5(F) <
Amax = Amax(F). Let am = Impymte, where 0 < € < 1. As in the proof of
Theorem 4.3, we have let(X, Ajae) < g, and thus there exists a valuation v
over X such that

a:=Axa(v) < gv(a.).
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1034 CHENYANG XU and ZIQUAN ZHUANG

For each A € R, let f()) = ’U(IEA)). Then we have f(u) > % by the above

inequality. By convexity we also have
ar
(4.5) FQ) 2 f() +EA —p) 2 = +E(A - p)

for all A € R (where £ = f’(u) > 0). Replacing v by £ 1v, we may assume that
§ = 1. After translating F by ¢ = % — p (which does not change the value
of B(F)), we may further assume that %~ = p and hence f(A) > A for all A.
In other words, FAR C FR for all A (where F, the filtration associated to
the valuation v), hence S(F) < S(Fy). Since p = %, from the definition of
6(X,A), we see that
p—S(F) _a SF) a S(Fv)
e A > _ >
Bo(F) PR S 10 6. B

as desired. |

4.2. Semi-positivity of CM line bundle. Before we proceed to investigate
more on [B-invariants, let us show that the criterion in Corollary 4.4 can be
used to give a direct proof of the semi-positivity of CM line bundle.

PROPOSITION 4.6. Let f: (X,A) — C be a generic log Fano family over
a smooth projective curve C, let t € C be a point such that (X¢, A¢) is a log
Fano pair and let r > 0 be an integer such that L = —r(Kx + A) is Cartier.
Then we have

degAfa > (n+1)(—Kx, — A)" - Bx, A, (FuN),

where n = dim X; and Fun is the HN-filtration on R := R(X:,L¢); see
Section 2.8.

Proof. Let Ry, := f.Ox(mL) so that R, = R, ® k(t). By definition, it

is not hard to see that

1
Sm(F =—— d _
m( HN) mdim R eg R
Hence by Riemann-Roch calculation (see, e.g., [CP18, Lemma A.2]), we have
S(F
(4.6) deg A\fa = —(n+1)(—Kx, — A)"- S(FuN)

r
Thus it suffices to show that p(Fpn) < 0. Suppose that this is not the case, i.e.,
#(Fun) > 0. Then we also have p5(Fun) > 0 for some § > 1 (cf. Lemma 4.13).
Choose some € € Q such that 0 < 2¢ < ps(Fun). Then by the definition
of (6-)log canonical slope, the pair (X;, A; + ﬁfm,gem) is klt for sufficiently
divisible m.

On the other hand, recall that FAY" Ry, is the stalk of

FEIRm = FR (Rm ® Oc(—meP))
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1035

at t € C. Hence by [CP18, Prop. 5.7], once em > 2g, every element of .}"_EIED’}”Rm
can be lifted to a global section of R, ® Oc(—meP) (where P € C), i.e., an
element of H(X, —mr(Kxc + A) — mef*P). Let

f € H'(X,-mr(Kx/c + A) — mef*P)

be a lift of a general member of FZ'R,,, and let D = ﬁ(f =0).
By construction we know that

Kx/o+A+D~g —Sf*P

and (X, Ay + Dy) is klt for general t € C. But then the canonical bundle
formula [Kol07, Th. 8.5.1] implies that Ky,c + A + D ~g f*Q for some
pseudo-effective divisor ) on C; as € > 0, this a contradiction. |

COROLLARY 4.7 ([CP18, Th. 1.8]). Let f: (X,A) — C be a generic log
Fano family over a smooth projective curve C. Assume that the general fibers
are K-semistable. Then degApa > 0.

Proof. This is an immediate consequence of Corollary 4.4 and Proposi-
tion 4.6. O

Remark 4.8. Unlike [CP18], our proof does not use the product trick. We
note that the question on K-(semi,poly)stability of product is recently settled
in [Zhu20].

By a similar strategy, we can also bound the nef threshold of —(K x /C+A)
with respect to the CM line bundle. This will be one of the key ingredients in
proving the ampleness of the CM line bundle.

PROPOSITION 4.9. Use the notation from Proposition 4.6. Assume that
Bxe.Aes(Fun) = 0 for some 6 > 1. Then

—(Kx/c+A4)+ f*Ara

4
(n+1)v(d —1)
is nef, where v := (—Kx, — A¢)".

Proof. First assume that § € Q. By our assumption, we have

rdeg Afa
N (n+1)v

d(?lg:lf)‘i, there exist m > 0 and

some G € |Fgm™ Ry such that (X, A, + 2_@) is klt. As before, by [CP18,

Prop. 5.7] we can lift G to a section of

Fid(Rm ® Oc([(mrX +29)P))) C | — mr(Kx/c + A) + mrAf*P|,

ps(Fun) > S(Fun) =

Thus for any rational numbers A > )\ >
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1036 CHENYANG XU and ZIQUAN ZHUANG

and hence we get an effective divisor D ~q —(Kx,c + A) + Af*P such that
(Xt Ay +6D;) is klt. By [Fujl8a, Th. 1.11], this implies that f.Ox (m(Kx ¢+
A + 4D)) is nef for all sufficiently divisible m € N and hence

f+Ox(m(Kx,c + A+ 6D)) ® Oc(2gP)
is globally generated by [CP18, Prop. 5.7]. As

is f-ample, it follow that m(Kx,c + A + D) + 2gf*P is globally generated
for sufficiently divisible m € N. Letting m — oo we deduce that

Kx/c+A+06D ~g —(6 — 1)(Kx/c + A) + 6Af*P

deg A f.A
(n+1)v

isnef. As A >
is nef.

In the general case let §' € QN (1,6). If Bx, A, s(Fun) > 0, then we also
have Bx, a,.s5/(Fun) > 0. The previous case implies that

5!
(n+1)v(d —1)
is nef. Letting 8’ — § we finish the proof. |

is arbitrary, we see that —(Kx /¢ +A)+Wf*)‘f’lﬁ

—(Kx/c+A)+

f*Ara

COROLLARY 4.10 ([CP18, Th. 1.20]). Use the notation from Proposi-
tion 4.6. Assume that for a very general geometric point t € C, (X, A¢)
is uniformly K-stable, and let § = (X, A;) (by [BL18, Th. B], this is well
defined), v = (~Kx, — A)". Then —(Kx/o + A) + =y [ Ar.a is nef.

Proof. By Proposition 4.5, we have Ss(Fun) > 0. Hence the statement
follows immediately from Proposition 4.9. |

4.3. Relation to reduced uniform K-stability. We would like to have a
similar statement on the nef thresholds as in Corollary 4.10 when general
fibers are only reduced uniformly K-stable. By Proposition 4.9, this would
be true if B5(Fun) > 0 for some § > 1. However, if a general fiber has a
non-discrete automorphism group, there are simple examples (e.g., P'-bundles
f: X =F.— C =P! withe > 0) where deg Ay = 0 while —Kx /¢ is not nef.
(In particular, the nef threshold does not exists.)

It turns out that the right statement is that for a family of reduced uni-
formly K-stable log Fano pairs, the non-negativity G5(F) > 0 (for some § > 1)
is true after a torus twist (see Theorem 4.18). To obtain this result, we need
to have a better understanding of the relation between 85, DN and JNA for
a filtration F. More precisely, we want to establish the following technical
statement.
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1037

PropPOSITION 4.11. Let a,n be two positive numbers and n a positive
integer. Then there exists some § = 6(n,n, ) > 1 with the following property:
for any n-dimensional log Fano pair (X, A) with a(X,A) > a and any linearly
bounded multiplicative filtration F of R = R(X,L) (where L = —r(Kx + A)
is Cartier) that satisfies DNA(F) > - INA(F), we have B5(F) > 0.

Remark 4.12. When F is induced by a special test configuration and v is

the valuation induced by the special test configuration, then one can show as
in Proposition 4.2 that

Ax a(v)
é

Thus the claim is easy to see. However, (unless § = 1) we are not able to

Bs(Fo) = - 28(F.).

argue as in [LX14] by using MMP to reduce the general case to the special test
configurations.

Therefore, to prove Proposition 4.11, we will rely on a detailed study of the
Duistermaat-Heckman measure. We first need to show a number of auxiliary
results.

LEMMA 4.13. For any 0 < s,e < 1, we have

(4-7) lul-i—(l—e)s(}_) EXE lue—l(}_) + (1 - S)Ju(}_)

Proof. Let p = p(F), po = pe-1(F) and p' = py4q_¢s(F). We may
assume that p/ < Apax(F) and p' < p; otherwise the statement is clear.
Similar to the proof of Theorem 4.3 we let a;, = L, ymye Where 0 < € < 1.

Then lct(ay) < w and there exists a valuation v over X such that

a:=Axa(v) < M -v(ay) < oo.

For each A € R, we set f(\) = ‘U(IEA)). Hence we have

(4.8) f(W) = v(ay) > Tx(i—os

On the other hand, by the definition of ps(F), we have
f(ro—m) <e-Axa(v) -7 = ear for any n >0

and similarly f(pu—n) <ar. By the convexity and continuity of f on (—oo, Amax)
we see that

ar
_ < _ e —
f(spo+ (1 —s)p) <ar(es+1—35) < XA os
Combined with (4.8), we get f(n') > f(spo + (1 — s)p), and hence p' >
spo + (1 — s)p as f is non-decreasing. O
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1038 CHENYANG XU and ZIQUAN ZHUANG

LEMMA 4.14. Let 0 < A < T, and let f(z) be a non-negative concave
function on (0,T"). Then
A n+1

/ Cferar> 1) / " fa)de.

Proof. We may assume that f(A) = 1. By assumption, we have f(z) > ¥
when z < A and f(z) < § when z > A. Hence

A n A T n A T n+1

by direct calculation, and the lemma follows. |

LEMMA 4.15. Let (X, A) be a log Fano pair of dimension n, and let L =
—(Kx +A). Then we have
vol(L — A\E) <1 /\a(X,A))“
vol(L) ~  Axa(E)

for any divisor E over X and any 0 < A < %.

Proof. Let T = Tx a(E) (see (2.2)). Let m : Y — X be a log resolution
such that E C Y. Let f(z) = voly ("L — zE), where voly g (-) denotes the
restricted volume and 0 < z < T. By combining [BFJ09, Th. A] and [ELM 09,

Th. 5.2], the function f (;t:)ﬁ is concave on (0,7") and we have

T A
vol(L):\/O f(z)dz and vo](L)—vol(w*L—AE):/D f(z)dz.

Thus we have
vol(L) — vol(L — AE) S i)n S )\a(X,A))n
vol(L) - T/ T Axa(E) ’

where the first inequality follows from Lemma 4.14 and the second inequality

follows from the definition of alpha invariants. This proves the lemma. |

LEMMA 4.16. Let v be a probability measure on R with compact sup-
port such that [ Adv = 0. Assume that g(\) = v{z > A}/ is concave on
(—00, Amax ), where Apax = maxsuppv. Then

g(_t)‘max) > 1-— L fO‘f‘ all t > 0.

Vnt

Proof. The idea is similar to the proof of [BHJ17, Lemma 7.10]. After
rescaling, we may assume for simplicity that Apmax = 1. Since v is the distri-
butional derivative of —g(A)", we have

/01 g(N)™dA = /01 Ady = — /_‘; Adv = [:(1 — g(A)™)dA,
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1039

where the first and third equalities follow from Fubini’s theorem, and the
second equality follows from the assumption that f_l oo Adv = 0.

Let a = —¢/,(—t) > 0 and b = g(—t) € [0,1]. Since g is concave on
(—o0, 1), we have

g(A) < —a(A+1t)+b on (—oo,1).

If @ = 0, then letting A — —oo we see that b = 1 and there is nothing left
to prove. Therefore, we may and do assume a > 0. Let Ay be such that
—a(Ao +t) + b= 1. Then we have

/ 1(—a(A +1t) +b)"dA > f 1 g(A\)™dA
= fo (1—g(A)")dA > /D(l — (—a(A +1) + b)™)dA.
oo "

Computing the integrals, we deduce that
1—(b—at—a)"! ) _1—(b—at)
a(n+1) =0 a '

hence (n + 1)u > n + (u — a)"*!, where u = b — at. Note that
u—a=>b—a(t+1)>g(1) >0,

thus u > HL_H. Asu+at =b= g(—t) <1, we see that u < 1 and a < m-
We then have

T

(n+1)u2n+(u—a)"“2n+u"+1—(n+1)au“2n+u“+l—u7

It follows that

1 —u?

| =

> n(l—u)?

n n
Z%Zn—l—u““—(n—i—l)u:(l—ufz 1
—u

i=1

Therefore, f(—t)=b>u>1-— \/% as desired. O

Proof of Proposition 4.11. After translating F by —S(F) (which does not
change DNA(F), J¥A(F) and fBs5(F)), we may and do assume S(F) = 0.
Let Amax = Amax(F). By Lemma 2.8, we can apply Lemma 4.16 to the
Duistermaat-Heckman measure of F (see Section 2.3). So we have (recall

that L = —r(Kx + A))

vo (—tAmax) " n
(4.9) S I L

for all £ > 0. Let E be a divisor over X. Then we claim there is an inequality

ordp(I™)) _ Axa(E) ,/n
T alX,A) Vi

(4.10)
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1040 CHENYANG XU and ZIQUAN ZHUANG

Otherwise we have F~MAmaxR = C Fi TR (where Ag is the right-hand side
of (4.10)) for all m € N, and thus by Lemma 4.15,

vol(F R(~tAmax)) < vol(—Kx — A — NE) <1 \/ﬁ
(L) = (Kx—-Apr  — 0V

contradicting (4.9).
After rescaling F (which will not change our conclusion), we can assume
Amax = 1. Since E is arbitrary, we infer from (4.10) that

]ct(X,A;IE_t)) > oX,A) 2§/E > @ 2(/3_
T T T T

2
a3
becomes lct(X, A;Iﬁ_to)) > 2 and thus pa(F) > —to. By the assumption and
Theorem 4.3, we also have

Now chooset = tp :=n ( )271. Then the above log canonical threshold estimate

B(F) 2 DNAF) 2 - A (F) = 1,

hence pu(F) > n as S(F) = 0. If we choose § = 1+ 5L (which only depends

on 7, and n), € = % and s = ?.1—?], then it follows from Lemma 4.13 that

Bs(F) = ps(F) = spa(F) + (1 — s)u(F) > 0. O

COROLLARY 4.17. Let (X,A) be a log Fano and T C Aut(X,A) a mazi-
mal torus. Then the following are equivalent:

(1) (X,A) is reduced uniformly K-stable;

(2) there exists some constant n > 0 such that for any T-equivariant filtration
F on R, there ezists some £ € Ng such that DNA(F) > n- INA(F);

(3) (X,A) is K-semistable, and there exists some constant § > 1 such that for
any T-equivariant filtration F on R, there exists some & € Ny such that

Bs(Fe) > 0.

Proof. By Lemma 3.3 and Proposition 3.9, we have that (1) implies (2).
Now we assume (2); in particular, (X, A) is K-semistable. By Proposition 4.11,
we then have (3) since DNA(F¢) = DNA(F) as Fut(€) = 0. Tt remains to show
that (3) implies (1).

Let 6 > 1 be the constant for which (3) holds. Let v be a T-invariant
valuation, and let 7 = JF, be its induced filtration on R. Then there exists some
§ € Ng such that f5(Fy,) = Bs(F¢) > 0. (The first equality holds since Fo,
and F¢ only differ by a translation; see [Lil9, Prop. 3.8].) But it is clear from
the definition that ps(Fy,) < AX“(‘;‘(U‘E), hence we obtain Ax a(ve) > d - S(vg).
By Theorem 3.7, this implies (1). O

Now we can complete the proof of Theorem 1.4.
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1041

Proof of Theorem 1.4. Point (1) (resp. (3)) follows from Corollary 4.4
(resp. Corollary 4.17). One direction of point (2) follows from Proposition 4.5,
since if (X, A) is uniformly K-stable, then §(X,A) > 1. The converse can
be derived from exactly the same argument as in the second paragraph of
Corollary 4.17, without taking a twist by &. |

The following theorem, which will be needed later, is also an easy conse-
quence of Proposition 4.11.

THEOREM 4.18. Let a,p > 0, let (X,A) be a log Fano pair, and let
T C Aut(X,A) be a mazimal torus. Assume that (X, A) is reduced uniformly
K-stable with slope at least n and (X, A) > «. Then there exists a constant
d > 1 depending only on 1, n = dim X and «a such that for any filtration F on
R = R(X,—r(Kx + A)), there ezists some § € Ng such that B5(F¢) > 0.

Proof. Let § = §(n,n,a) > 1 be the constant given by Proposition 4.11.
By definition, we have that DNA(F) > n- J¥A(F) and (X, A) is K-semistable.
By Lemma 3.3, this implies that there exists £ € Ng such that DNA(F;) >
n-INA(F¢). Then B5(F¢) > 0 by Proposition 4.11 and our choice of § > 1. [

5. Twisted families

We will eventually apply Theorem 4.18 to the Harder-Narasimhan filtra-
tions induced by generic log Fano families over curves (see Definition 2.1). To
get nef thresholds through Proposition 4.9, we need to construct a twisted
family whose HN-filtration is the twist of the original HN-filtration. In this
section, we show that this can be done after a suitable modification.

Definition 5.1 (Twisted family). Let T' be a torus, let f: X — S be a
projective flat morphism with a fiberwise T-action, and let L be a T-linearized
f-ample line bundle on X. We have the weight decomposition

Rm = fsOx(mL) = @ Rm,a where M = Hom(T, Grn).
acM
Let A be a Cartier divisor on S, and let £ € N = M* = Hom(G,,,T"). Then
the &-twist of f: (X,L) — S along A is defined to be

(5.1) fe: (X¢ = Projg @ @ Rima ® Os((a,€) - A), L = Ox, (1)) — S.
meN aeM

Note that Zariski locally over S, (X¢, L¢) is isomorphic to (X, L). If Z C X is
a T-invariant closed subscheme, then Z; is naturally a closed subscheme of X¢.
In particular, if f: (X,A) — S is a generic log Fano family with a fiberwise
T-action, then T' naturally acts on L = —r(Kx /s + A) for some sufficiently
divisible » € N and we define the &-twist (X, Ag) of (X, A) as the {-twist
with respect to L.
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1042 CHENYANG XU and ZIQUAN ZHUANG

Ezample 5.2. Consider the trivial Pl-bundle f: X = P! x P! — P! with
the canonical fiberwise G,,-action, and let £ € N = Z be a generator. Then
the &-twist of X along a divisor of degree e > 0 on the base P! is isomorphic to
the ruled surface F.. Therefore the above construction of twisted family can
be viewed as a generalization of elementary transformations on ruled surfaces.

LEMMA 5.3. Let f: (X,A) — S be a generic log Fano family with a
fiberwise T-action, and let £ € N. Then in the notation of Definition 5.1, we
have L¢ ~ —r(Kx, /5 + Ag).

In particular, from (5.1) we see that for families over curves, the HN-
filtration of the &-twist coincides with the &-twist of the HN-filtration of the
original families.

Proof. By choosing local trivialization Oy (A) = Oy (where U C S is
open), we get isomorphisms R, o ® Og((,§) - A) = Ry, o for all m,a and
hence an identification of (X¢, A¢, L¢) with (X, A,L) over U and also an iso-
morphism Oy (L¢) = Oy (—r(Kx, s + A¢)) since L = —r(Kx;s + A) (where
V = f~1(U)). Different trivializations Oy (A) = Oy differ by a unit u € O},.
It can be lifted to an automorphism of (X,A) over U through the compo-
sition U = Gy, % T. The T-action on Oy (1) and on Oy (—r(Kx/s + A))
coincides, hence the action of u commutes with the isomorphism Oy (L¢) =
Oy (—r(Kx /S T Ag¢)). Thus these isomorphisms glue to give an isomorphism
OXE (LE) = OXE (_T(KXQ’S + AE)) |

COROLLARY 5.4. Let T be a torus, and let f: (X,A) — S be a generic log
Fano family with a fiberwise T-action. Assume that the general fibers (X, A)
are K-semistable. Then for any & € N and any Cartier divisor A on S, we
have Af A ~Q Af A, where fe: (X¢, Ag) — S is the &-twist of f along A.

Proof. By the definition of CM line bundle and Lemma 5.3, —"t1) f.A

(resp. —r"T1A fe.A e) is the leading term of the Knudsen-Mumford expansion of
(mr)nt1

L (resp. L¢), e.g., ci(fxOx(mL)) = — e LA T+ O(m™). By the construc-
tion of twisted family (5.1) we then have

)‘fE?AE ~Q AfA + (n+1)(—Kx, — Ay)™ - Futx, a,(§) - A.

Since (X, A¢) is K-semistable, we have Futy, A,(§) = 0, hence the result
follows. 0

So far we realize the &-twists of an HN-filtration as HN-filtrations of
twisted families for all £ € N. By passing to finite covers, one can also con-
struct families that realize £-twists when £ € Ng. However, the twisted family
seems unlikely to exist if £ is not a rational vector. Fortunately, as we will
show in the remaining part of this section, for HN-filtrations, the twist vectors
£ in Theorem 4.18 can be chosen to be rational.
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1043

LEMMA 5.5. Let T' be a torus, and let f: (X,A) — C be a generic log
Fano family over a smooth curve with a fiberwise T-action. Let F be the
induced Harder-Narasimhan filtration on R = R(X;,—r(Kx, + A;)) where
t € C is a general closed point. Then S(F) € Q, and for any § € Ng, we have

)‘min(}_ﬁ) S Q

Proof. By assumption, the filtration F is T-equivariant. By (4.6), S(F)
is a rational multiple of deg Ay, and hence is rational. Let d be an integer
such that d§¢ € Ng. Let C' — C be a finite morphism of degree d, and let
'+ (X',A") — C' be the base change of f. Let P € C’ be a smooth point,
and consider the (d§)-twist g: (Xé,A'g) — C" of f’ along P. Let G be the
Harder-Narasimhan filtration on R induced by g.

Since the pullback of a semistable vector bundle with slope pe under
C’ — C is still semi-stable with slope deg(C"/C) - pc, by Lemma 5.3 we can
check that G*Rm = F./*Rm for all A,m, hence Amin(G) = d - Amin(Fe). By
Lemma 2.27 and Proposition 2.28 we have Apin(G) € Q, thus Apin(F¢) € Q as
well. O

PRroPOSITION 5.6. Use the notation from Lemma 5.5, and let e, > 0.
Assume that very general fibers (X, A;) are reduced uniformly K-stable with
slope at least n > 0, T C Aut(X;, A;) is a mazimal torus and a(Xy, A¢) > o.
Then there erxists some constant § = §(n,n,a) > 1 such that B5(F¢) > 0 for
some § € Ng.

Proof. By assumption and Corollary 4.17, there exists some & € Ny such
that DNA(Fg,) > 1 - INA(F,). We claim that

(5.2) DNA(Fg) 2 3 - INA(Fo)

for some £ € Ng. Indeed, when JNA(Fg,) > 0 this follows from DNA(F;) =
DNA(F) and the continuity of JNA(F;) with respect to £ (Lemma 3.3), so it
suffices to consider the case when JNA(F¢,) = 0; in other words,

Amax (F&y) = Amin(Fgo) = 5(Feo) =: Ao
As (X, A¢) is K-semistable, we have S(F¢,) = S(F) by Lemma 3.3, and
thus Ao € Q by Lemma 5.5. Let Am,o = sup{A| (.F&R,ﬂa = Rma}, and let

Im = {a € M|Rpa # 0}. Let P C Mg be the convex hull of Up 2Ty, As
Amax(F¢y) = Amin(Fg,) = Ao, we also have

. SUPqer )\m,a . infaer,, Am,a
lim —2& m ™% lim — T m TME _ N
M— o0 m m— oo m

It follows that for any fixed £ € Ng, we have

Amn(Fe) = lim Dlaeln(Ama + (008 = &)

m—oo m

= /\l] + ﬁilelg:'(a’g - 50)
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Since Amin(F¢) € Q by Lemma 5.5, we deduce that inf,ep(a,& — &) € Q for
all { € Ng. As R=@p,,, , Rm. is finitely generated, P is a rational polytope.
This implies that & & I,VQ and, in particular, (5.2) holds with £ = &, € Ng.
The lemma now follows directly from (5.2) and Proposition 4.11. O

COROLLARY 5.7. Use the notation and assumptions from Proposition 5.6.
Then there erists a constant § = 6(n,n,a) > 1 such that for any finite cover
C’" — C of sufficiently divisible degree, we can find £ € N, which satisfies that
Bs(G) > 0 where G is the HN-filtration induced by the {-twist g: (Xé, Aé) —
of (X,A) xc C" along a smooth point P € C".

Proof. By Proposition 5.6, there exist § = d(n,n,a) > 1 and & € Ng
such that Ss(Fg,) > 0. Let C" — C be a finite cover of degree d with dy € N.
Let & = d&, and let g be the &-twist of (X, A) x¢ C” along a smooth point
P € . Then as in the proof of Lemma 5.5, we have G*R, = .F?OMRm for all

A, m, and hence f5(G) = d - Bs(Fg,) > 0 as desired. O

6. Ampleness lemma

Our next ingredient is an enhanced version of the ampleness lemma (see
[Kol90, §3] and [KP17, §5]) that gives a simultaneous treatment of all twisted
families. We first introduce some definitions and notation that are necessary
for the statement.

Definition 6.1. Let f: (X,A;L) — S be a polarized family of normal
pairs; i.e., S is a normal variety, f: X — S is a flat projective morphism with
normal fibers, A is a Weil QQ-divisor on X whose support does not contain any
fiber of f in its support, and L is an f-ample line bundle. Let D = Supp(A)
and let d € N;. We say that f: (X,A;L) — S satisfies condition (*)4 if the
following hold:

(1) Lis f-very ample;

(2) HY(Xs,mLs) = H)(Ds,mLg) = 0 for all s € S and all j,m € N;;

(3) for every s € S, the embeddings of X, and D via Ls are cut out (set
theoretically) by degree < d equations; and

(4) both natural maps Sydeﬂ(Xg,Lg) — H°(X,,dLs) — H%(Ds,dL;) are

surjective.

Remark 6.2. By assumption, every component of A dominates S, hence
f|p is flat over all codimension one points of S [Har77, Prop. II1.9.7] and,
in particular, there exists a big open set S° C S such that f|p is flat over
S°. Let f°: D° = (f|lp)~'(S°) — S°. Condition (*)4 then implies that the
formation of fiOx(mL) and f?Ope(mL|po) commutes with base change for
all m € N (see [Har77, Th. II1.12.11]). Note also that if f: (X,A;L) — S
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1045

admits a fiberwise T-action (where T is a torus) and satisfies condition (*)g4
for some d € N, then so does its {-twists (for any £ € N = Hom(G,,,,T') and
along any Cartier divisor A on 5).

Definition 6.3. Let v: S’ --» S be a dominant rational map between quasi-
projective normal varieties, and let f: (X,A;L) —+ S (resp. f': (X',A"; L")
— S’) be a polarized family of normal pairs. We say that f’ is a birational
pullback of f if there exist an open subset U C S’ where v is defined and a
diagram

(6.1) (X", A L") =—2(Xu,Ap; Ly) — (X, A3 L)
/| P
s w U Y S

¥

where both squares are Cartesian.

Remark 6.4. Similarly, we can define birational pullbacks between generic
log Fano families f: (X,A) — S using L = —r(Kx,g+A) for some sufficiently
divisible » € N;. It is easy to see that if f' (resp. f”) is a birational pullback
of f (resp. f’), then f” is also a birational pullback of f. Moreover if f admits
a fiberwise T-action (T being a torus), then any &-twist of f (where £ € N) is
a birational pullback of f (over the same base 5).

Notation 6.5. We keep the notation of Definition 6.3. Let d € N4, and
consider a diagram as in (6.1), where both f and f’ satisfy condition (*)4. Let
S D S be a compactification, and let H be a line bundle on S. Let v*H be the
rational pullback of H (i.e., v*H = p,p*H, where p': S — S’ is a log resolution
that resolves the indeterminacy locus of S’ --» Sand p=vop': S — S). Let

D = Supp(A) and W = f,Ox(L),Q = f«Ox(dL) ® f«Op(dL|p);

similarly we define I, W’ and @’ with f’ in place of f. Let w and g be the
ranks of W and @), respectively. Note that we have a natural surjective map

(S}y‘rndi/’V)EB2 — @ (similarly with W/, @' in place of W, Q) by condition (*)g4.

THEOREM 6.6. In the situation of Notation 6.5, assume that the fam-
ily f: (X,A) — S has mazimal variation. Then there erists some m € Ny
depending only on d, H and the family f such that there is a non-zero map

Sym m(W'®4w) = Ogi(—v*H) ® det(Q')®™
for any birational pullback family as in Definition 6.3.

Proof. We follow the argument of [Kol90, §3] and [KP17, §5]. First observe
that if (X, A) — S has maximal variation, then so does (X, D) by Lemma 2.4,
hence we may assume A = D. Replacing S’ and S by some big open subset,
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1046 CHENYANG XU and ZIQUAN ZHUANG

we may also assume that f|p and f’|ps are flat. (Since W’ is locally free,
the obtained non-zero map over the big open subset then extends to a non-
zero map over the original B’ by pushforward.) Let V = W%2 and let v =
rank(V) = 2w. Let P = Pg(®}_,V™*) be the projectivized space of matrices
with columns in V and let w: P — S be the projection. Consider the universal
basis map ®;_,O0p(—1) — 7©*V, or equivalently

C: OF — ™V @ Op(1),

sending a matrix to its columns. Let G C P be the divisor of matrices of
determinant zero. Then ( is surjective outside . Taking symmetric power
and composing with the surjective maps Sym?V — (Syde)®2 — Q, we get
the following map:

Ucr: Sym?® (0%") — 7*Sym?V ® Op(d) — 7*Q ® Op(d),

which is also surjective outside . Further taking the ¢-th exterior power on
both sides of Ug,, we obtain an induced map

u: Z Op — 7" det(Q) ® Op(dq),

which is again surjective over P — G. This gives a morphism
u:P— G — Gr:= CGr(w',q) CPV,

where w’ is the rank of Sym¢? (C)E‘,?U) and the Grassmannian is embedded in PV
via the Pliicker embedding. Let g: P — P be the normalization of the blowup
of the ideal sheaf corresponding to the image of u. Then the map u extends
to P (which we still denote by u) and there exists an effective Cartier divisor

E C P such that
(6.2) g* (7" det(Q) ® Op(dq)) = u* Oc:(1) ® Og(E).

Let Y be the image of the product map (7o g,u): P— S x Gr, let Y be its
closure in S x Gr, and let m; (resp. m3) be the projection to S (resp. Gr):

By assumption, every X, and D, is cut out by degree < d equations, and thus
the isomorphism class of X, ;) is uniquely determined by m(t) for a general
t €Y. Since f has maximal variation, it follows that m3: Y — Gr is generically
finite and hence 730¢; (1) is big on Y. In particular, there exists some m € N
such that 73O (m) ® mfOz(—H) on Y has a non-zero section. Pulling back
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to P, we see that u*Ogr(m) ® g*7*Os(—H) also has a non-zero section. By
(6.2), this implies

HO (P, Op(dgm) @ 7*(Os(—H) ® det(Q)™)) # 0.

Pushing down to B, we obtain a nonzero map
(6.3)
Sym#™ (W) = Sym™™ (V) = (1,0p(dgm))* — det(Q)™ @ Os(—H).

We claim the same choice of m works for the family f': (X', A’;L) — 5’
as well. Indeed, most of the constructions here are functorial, namely, we have
a corresponding 7': P = Pg/(?_,V"*) — S’ (where V/ = W'®2) and a rational
map u': ' ——» Gr that extends to a proper birational model ¢': P — P’ such
that

(6.4) g™ (7" det(Q") ® Om(dq)) = v Oc:(1) ® O, (E')

for some effective Cartier divisor E’ on P (As before we still denote the
induced map P’ — Gr by «’.) We claim that

(6.5) HO(P',u*Og(m) @ ¢"*n"*Og(—v*H)) # 0.

Indeed, by (6.1) we have W'|y = Wy, thus the restriction of v’ to P’ xg U
factors through P and we may choose [ such that the restriction of g toPxgU
factors through P as well. In particular, we have the following commutative
diagram:

where the rational P’ --» Y is dominant. Since m30g;(m) ® m1Og(—H) has
a non-zero section, so does its rational pullback to P. Asv/: P — Grisa
morphism and both P+ S and Y — S are proper, the rational pullback
equals u”*Ogr(m) ® " 7"*Og/(—v*H), and this proves (6.5). By (6.4) and the
same argument that proves (6.3), this is enough to conclude the proof of the
theorem. O

7. Positivity of CM line bundle

In this section, we will put all ingredients together to prove Theorem 1.1.
The log case requires additional argument, which will be developed in Sec-
tion 7.3. Our approach is inspired by the earlier works [KP17], [Pos19] in the
log settings.
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1048 CHENYANG XU and ZIQUAN ZHUANG

7.1. General setup. Our goal is to show that the CM line bundle is big
for any family of reduced uniformly K-stable Fano varieties with maximal
variation. The idea is to apply [BDPP13] to show that its intersection with
any movable curve C is at least the intersection of C' with some fixed big (Q-line
bundle (see (7.2)). However, the situation is more complicated if we start with
a proper subspace M of the K-moduli (as in Theorem 1.1), since a priori we
only get a family over a big open set of some generically finite cover of M. For
this reason, we consider the following somewhat technical set-up.

Notation 7.1. Let T be a torus, let S be a normal projective variety, and
let
f:(X°,A°%) = 85°
be a generic log Fano family over an open subset S° of S with maximal variation
and a fiberwise T-action. Assume that very general fibers (X, A;) are reduced
uniformly K-stable with slope at least n > 0 (for some > 0) and T' C
Aut(Xg, Ag) is a maximal torus. We further introduce the following additional
notation and assumptions, which will be fixed throughout the entire section:
(1) Let n = dim X and v = (=K x, — Ag)™.
(2) Choose some a > 0 such that a(Xs, As) > a holds for the general fibers
(Xs, Ag) (such «a exists by, e.g., [BL18, Th. B]).
(3) Let 6 = é(c,m,m) > 1 be the constant given by Corollary 5.7. Decreasing
= —9% __ andlet
(0—-1)(n+1)v>
0 < € < 57 be such that the Weil Q-divisor —(Kx, + (1+€)A) is big for
all s € S°.
(4) Let H be an ample line bundle on S. Let

d if necessary, we may assume that § € Q. Let ~

(7.1) U-2-5

“i

be a covering family of curves on S i.e., u is a smooth projective morphism
of relative dimension one, and p is dominant and does not contract the
general fibers of u. We further assume that p is generically finite (this can
be achieved by taking hyperplane sections on V') and V is smooth.

(5) Let r,d € Ny with 7y € N, and let g: (X,A) — U be a generic log
Fano family with a fiberwise T-action that is birational to the pullback of
f:(X°,A®°) — S° such that

L:=—r(Kxw+A)+ 2rvg" Ag.A

is Cartier and g-very ample and all fibers (X, Ay; Ly,) of g satisfy condition
(*)q from Definition 6.1.
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1049

(6) Let C' be the geometric generic fiber of u, let ¢: C' — S be the induced
map, let h: (Y, Ay ) — C be the base change of g (i.e., Y = X xgyC and Ay
is the divisorial pullback of A), and let F be the induced HN-filtration
on R = R(X;,—r(Kx, + A;)), where t € C is a general closed point. Let
Ly = n*L, where m: Y — X is the natural projection.

Our goal is to prove the following more general statement.

THEOREM 7.2. In the above setup, there exists a constant cg > 0 depend-
ing only on the family f, the line bundle H, and the integers r,d (in particular,
it does not depend on U or the birational pullback (X, A)) such that

(7.2) deg(Agalc) = deg Apa, > codegq™H.

As a first step, we use the twisted families introduced in Section 5 to make
the following reduction.

LEMMA 7.3. For the proof of Theorem 7.2, we may assume [s(Fc) > 0.

Proof. First note that we are free to replace U by a finite cover or V by
a generically finite cover (and then replace U and (X, A) by its corresponding
base change): in either case we multiply the CM degree and deg ¢*H by the
same constant. As (X, A;) is reduced uniformly K-stable with slope at least
1 and maximal torus T for some closed point ¢t € C, after replacing U by a
finite cover of sufficiently divisible degree, we may assume by Corollary 5.7
that there exists some £ € N = Hom(G,,T') such that Bs(G) > 0, where G
is the HN-filtration on R = R(X;, —r(Kx, + A¢)) induced by the &-twist of
(Y, Ay) along a smooth point P € C. Replacing V by a generically finite
cover, we may assume that u admits a section A that is Cartier as a divisor
on U. Let (X¢, A¢) be the &-twist of (X, A) along A. Then (X¢, A¢) xu C
coincides with the &-twists of (Y, Ay) along the smooth point AN C. Thus
after replacing (X, A) by (X¢, A¢) (which is still birational to the pullback of
f), we may assume (by our choice of §) that 8;(Fc) > 0, and this completes
the proof. |

In view of Lemma 7.3, we will henceforth add the following assumption
to Notation 7.1:

(7) We may assume S5(F¢) > 0.

7.2. Product trick. The proof of Theorem 7.2 eventually boils down to
comparing both sides of (7.2) to certain degrees of Ly. In this subsection,
we combine the ampleness lemma with the product trick as in [KP17, §7] or
[Pos19, §6.3] to provide the first part of the comparison.
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1050 CHENYANG XU and ZIQUAN ZHUANG

LEMMA 7.4. In the situation of Notation 7.1 (in particular, Bs(Fc) > 0),
there exists some constant ag > 0 depending only on the family f, the line
bundle H and the integers r,d such that

(L¥™) + (LY - Ay) > ag - deg ¢*H.

Proof. Let Dy=X, Dy =D=Supp(A), W=g,0x(L), Qi=9.0p,(dL|p,)
(i=0,1) and @Q=Qo @ Q1. Since g|p is flat over the codimension one point of
U, we may shrink V' and assume that g|p is flat. As all the fibers (X, Ay; Ly)
satisfy condition (x)q, W and @ are locally free and their formation commutes
with base change. By Theorem 6.6, there exists |, m € N4 depending only on
r,d, H and the family f such that there exists a non-zero map

(7.3) W - Oy (—p*H) @ det(Q)®™.
We claim that W|c is nef. Indeed, since 35(Fc) > 0, we see that
—(Ky,c + Ay) +vh*Apay
is nef and deg Ap A, > 0 by Corollary 4.7 and Proposition 4.9, hence Ly and
Ly — (Ky;c + Ay) = (r + 1)(—=(Ky,¢ + Ay) + Yh*Anay ) + (1 — 1)vh" Ap Ay

are both nef and h-ample on Y. It follows that W|c = h«Oy(Ly) is nef by
[CP18, Prop. 6.4]. Now let ¢; = rank@; (¢ =0, 1) and consider the product

Z = D xy D,

where we use the notation X(@ = X xy --- xp X (a times) for a family
X — U. Since g and g|p are both flat, the same holds for v: Z — U and it is
not hard to see that Z is reduced. Let p;;: Z - D; (0<i<1,1<j<g¢)
be the natural projections to factors. Let Ly = @), i Pij (L|p,)- Then by the
flatness of g|p, and the projection formula we have the equality v.Oz(dLz) =
®); ; Qi- Through the natural embeddings det(Q;) — ?;1 Q; we then get an
embedding det(Q) < v«Oz(dLz) over U and hence by adjunction of v, and
v* also a non-zero map v* det(Q) — Oz(dLz). Composing with the map (7.3)
and restricting to C, we get a non-zero map

(7.4) vt W) = Ozc(dmLz —v*q*H),

where Zo = Z xgy C. In particular, (7.4) is non-zero on some irreducible
component

7 — Al X XCAQG—HH

of Zo, where each A! is either Y or an irreducible component of Ay. Let
pi: Z' — A' be the natural projections, and let L' = Lyz|z. Then L' =
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Q7 p}(Ly|a:). As W|c and Ly are both nef, by (7.4), we see that L’ is nef
and dmL’' — v*q*H is pseudo-effective on Z’, hence

(dm + 1) 2" vol(L') = vol((dm + 1)L')
>vol(L'+v*¢"H) = (L'+ u*q*H)dimz’)
> (Lf)dimZ*_l . V*q*H) _ VOl(Li) . deg q*H?

where t € C' is a general closed point. It is clear that

q
vol(Lg) = [ vol(Ly|a:)

i=1
is bounded from below by some positive constant that only depends on the
family f. Indeed, we have d; := vol(Ly|,;) = r" L (—Kx, — A" 1 Al unless
A" =Y, in which case vol(Ly| at) =r"(—Kx, — At)". Hence there exists some
constant a; > 0 depending only on r,d, H and the family f such that

vol(L’) > a; - degq"H.
On the other hand, it is straightforward to check that
(L¥™) + (LY - Ay) > az - vol(L)

for some constant a; > 0 depending again only on r,d, H and f (indeed, vol(L’)
is a linear combination of (L{*') and (L} - Al) with positive coefficients
depending on the various d;; see, e.g., [Posl9, (6.3.5.1)]). The lemma now
follows immediately from the above two inequalities. |

7.3. Perturbing the boundary. In this subsection, we prove the other part
of the comparison by perturbing the boundary.

LEMMA 7.5. In the situation of Notation 7.1 (in particular, Ss(Fc) > 0),
there exists some constant by > 0 depending only on the family f such that

(L¥™) + (LY - Ay) < bo - deg Ay -
A key ingredient is given by the following result.

LEMMA 7.6. In the situation of Notation 7.1, —(Ky,c + (1 + €)Ay) +
Yh*Ahay is pseudo-effective (as a Weil Q-divisor).

Proof. We may assume that € € Q. Since (Y, Ay) is locally stable over C
and klt along a general fiber, it is klt. By [BCHMI10, Cor. 1.4.4], there exists
a proper QQ-factorial modification w: Z — Y that is small. Let Az be the

birational transform of Ay on Z, and let ¢ = how: Z — C.

deg Ap Ay
(n+1)v >

there exists some effective divisor D ~g —(Ky,c + Ay )+ Ah*P (where P € C

As in the proof of Proposition 4.9, for any rational number A >

This content downloaded from
71.226.228 213 on Thu, 12 Nov 2020 05:00:42 UTC
All use subject to https://about.jstor.org/terms
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is a smooth point) such that (Y, Ay + D) is kit along the general fibers of h.
It follows that the pair

(Z,T:=(1—¢€(6—1))Az + 67" D)
is also klt along the general fibers of ¢. (Note that I is effective by our choice

of ) Let ¥: W — (Z,T') be a log canonical modification, whose existence
follows from [OX12]. Then ¢ is an isomorphism over a open set of C. Write

V' (Kz +T) -G = Ky + ¢ 'T + Ex(¥).

Then G > 0 by the definition and Supp(G) is vertical over C.
It is straightforward to verify that

and over a general closed point ¢ € C,
Kz, +Ti=—(0 — )" (Kx, + (1 + €)As);

hence by our assumption Kz, +1I'; is big. For any sufficiently large and divisible
integers m > 0, &, := ¢.O0z(m(K z,c+T)) # 0, and there is an exact sequence

0— (¢po)u(m(Kw + ¢;'T +Ex(¢))) = Em = G — 0
for some skyscraper sheaf Gy,. By [Fujl7, Th. 1.1], we know

(6 09)s(m(Kw + ¢;'T + Ex(v)))
is a nef vector bundle, which implies that &, is nef.
This means that for any ample line bundle A on C' and any integer a >
0, there exists some b € N; such that Sym®(Ep) ® Oc(bA) is generically
generated by global sections. Via the natural map

¢* Sym™(Em) @ Oc(bA)) — Sym™(¢*Em) @ Oz(bp* A)
— OZ(GM(KZXC + F) + bqf)*A),

it follows that am(Kz,c +T') + ¢*A is effective. Letting a — oo we see that
deg Ap Ay

Kz,c +1T' is pseudo-effective. Pushing forward to Y and letting A — —
O

we obtain the desired statement.

Proof of Lemma 7.5. Recall that Ly is nef as in the proof of Lemma 7.4.
It is not hard to check that
d+1
(7.5) (L) = (—Ky)o— Ay)"™ + (n+1)v-2ydeg Ay ay = % deg M A,
as deg Apay = —((—Ky/c — Ay)™1). By Lemma 7.6, Ly — €Ay is pseudo-
effective. Hence as Ly is nef, we have (L} - (Ly — eAy)) > 0, or equivalently,

(7.6) (L - Ay) < (L),

Note that the constants § and e only depend on the family f, hence the result

follows directly from (7.5) and (7.6). O
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7.4. Proof of main results.

Proof of Theorem 7.2. This follows directly from Lemmas 7.3, 7.4 and 7.5.
O

We give some applications of Theorem 7.2.

THEOREM 7.7. Let T' be a torus, let S be a normal projective variety,
and let f: (X,A) — S be a generic log Fano family with mazimal variation
and a fiberwise T-action. Assume that very general fibers (Xs, Ag) are reduced
uniformly K-stable and T C Aut(Xs, Ag) is a mazimal torus. Then the CM
Q-line bundle Afa on S is big.

Proof. We verify the conditions in Section 7.1. By assumption and Propo-
sition 3.11, there exists some 1 > 0 such that the very general fibers (X, Ag)
are reduced uniformly K-stable with slope at least 7. Fix v € Q4 as in Nota-
tion 7.1(3). Let r € Ny be such that L := —r(Kx/s+A)+2ryf*As A is Cartier
and f-very ample, and choose d € N such that all the fibers (Xs, Ag; Lg) sat-
isfy the condition (*)g4 from Definition 6.1. Then for any covering family of
curves as in (7.1), the family g: (Xv, Av) = (X,A) xg U — U satisfies all the
assumptions of Theorem 7.2. Hence by Theorem 7.2, for any fixed ample line
bundle H on S, there exists some constant cyp > 0 depending only on r,d, H
and the family f such that (Afa - C) = (Agay - C) = co- (H - C), where C
is a very general member of the covering family. Since the covering family is
arbitrary, it follows that Ar A —coH is pseudo-effective by [BDPP13] and hence
Az,a is big. |

Let MXsS be the Artin stack defined in Section 2.6 and ¢: MES

n,u,c n,u,c
M,E(, D the corresponding good moduli space (see Theorem 2.21). Let Acum be
the CM Q-line bundle on M,ES,SC (see Proposition 2.25).

THEOREM 7.8. In the above notation, let M C MTE(,E,SC be a proper alge-
braic subspace such that for a very general point s € M, the corresponding
K-polystable log Fano pair is reduced uniformly K-stable. Then Acm|m is big.

Proof. Tt suffices to show that 7* Acy is big for any dominant generically
finite morphism w: § — M. We can also assume S is a normal projective
variety.

Since ¢: M := ¢~} (M) — M is a good moduli space, étale locally around
any point of M, it has the form ¢4: [Spec(A)/G] — Spec(A%) for a reduc-
tive group G acting on an affine variety Spec(A). For the orbit geometry
of ¢a, see [NewT8, §3.3]. Let §(S) be the geometric generic point of S,
ie., 7(S) = Spec(k(S)) for an algebraic closure of k(S) C k(S). Then the
morphism 7(S) — S — M has a lifting 7: 7(S) — M. Moreover, replacing
the image of 7; by its K-polystable reduction, i.e., the unique closed point in
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the preimage of M x s 7(S), we may assume the log Fano pair obtained by
pulling back over 7;): 7j(S) — M is K-polystable. (We remark this uniqueness
is proved in [LWX18a] and encoded in the good moduli space construction;
see [New78, Th. 3.5.v] or [AHLH18, Lemma 3.24].) This descends to a mor-
phism Spec(T') — M, where k(S) — k(T) is a finite extension. Spreading
out Spec(T') — M, it implies we may replace S by a finite cover and assume
that there exists an open subset S° C S such that the map 7° := 7|go lifts to
w°: §° — M. We may further assume (after possibly shrinking S°) that for
all s € 8°, °(s) is the unique closed point lying over 7(s) € M, as the closed
point locus form a constructible subset of M. Indeed, the constructibility of
such locus can be seen étale locally on [Spec(A)/G] — Spec(A®), where the
locus consists of [V/G] for

V := {z € Spec(A) | dim(G - z) < dim(G - y), for any y € ¢;;*(¢a(z))}.

As a consequence, we get a Q-Gorenstein family f: (X°, A°) — S° of K-poly-

stable log Fano pairs induced by the morphism 7°. Since the automorphism

functor Autge.(X°, A°) of (polarized) pairs is represented by an algebraic group
scheme over S° (of finite type), shrinking S° we can assume Autge (X°, A°) —

S° is a smooth group scheme. Then replacing by another finite cover and

shrinking S°, we may also assume that the maximal torus of Autge(X°, A°)

is split over S°, i.e., that f admits a fiberwise T-action (7" being a torus) such
that T C Aut(X,, Ag) is a maximal torus. By assumption, any very general
fiber (X, Ag) is reduced uniformly K-stable, hence by Proposition 3.11 we may
find some 7 > 0 such that a very general fiber (Xs, A;) is reduced uniformly

K-stable with slope at least 7.

Now fix the constant v € Q4 as in Notation 7.1(3), and choose r,d € N4
such that

(1) ryn*Acm is Cartier;

(2) for any K-semistable log Fano pairs (X, A) with dim X = n, vol(—Kx —A)
= v and A = ¢D for some integral Weil divisor D, we have that —r(Kx+A)
is Cartier and very ample and the triple (X, A; —r(Kx + A)) satisfies the
condition (*)g from Definition 6.1. (This is possible since the set of such
log Fano pairs is bounded by [Jial7], [Che20], [LLX20].)

Let H be a fixed ample line bundle on S. Let V + U — S be a covering
family of curves as in (7.1). By [AHLH18, Th. A.8], after possibly replacing
U by a finite cover and shrinking V', we may extend the birational pullback
of f to a Q-Gorenstein family g: (X,A) — U of K-polystable log Fano pairs.
In addition, since M is ©-reductive (see [AHLH18, Def. 3.10] and [ABHLX20,
Th. 1.1]—this is part of the requirement for a stack to have a good moduli
space) and [(Xy,Ay)] € M is a closed point for every u € U, every Gp,-action
on the generic fiber of g induces a Gy,-action on (X4, Ay) for every codimension
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ON POSITIVITY OF THE CM LINE BUNDLE ON K-MODULI SPACES 1055

one point u € U. In particular, after possibly shrinking V' we may assume that
the family g has a fiberwise T-action. Note that we also have m;;Acm = Ag A,
where 7y : U — M is the induced map. By our choice of r and d, it is clear
that the family ¢ satisfies the assumptions of Theorem 7.2, and hence there
exists some constant cp > 0 depending only on r,d, H and the family f such
that

(?T*ACM C) = (/\g,A C) >cy- (H C)

Since the covering family of curves is arbitrary, it follows that 7*Acy — coH
is pseudo-effective, and therefore m* Aoy is big as desired. |

The following is a natural generalization of Theorem 1.1 into a log version.

THEOREM 7.9. In the above notation, let M C M,Efgfc be a proper alge-
braic subspace such that every geometric point s € M parametrizes a reduced
uniformly K-stable log Fano pair. Then Acm|m is ample.

Proof. Since Acm|m is nef by [CP18, Th. 1.8] (or Corollary 4.7), this
directly follows from Theorem 7.8 and the Nakai-Moishezon criterion. |

Using analytic tools and Theorem 2.22, we also have the following theorem.

THEOREM 7.10. Let k = C, and use the notation as in Theorem 2.22.

.. ——sm,K
Then the restriction of Acm on M Sm.ps

npve S ample.

Proof. By Theorem 2.22, Hf::;,}jps is known to be proper. By [TW19] (see

also [ADL19, Th. 3.6]), we know the log Fano pairs parametrized by C-valued
points of H‘:?L’L{ps all admit weak conical Kéhler-Einstein metrics, thus they
are reduced uniformly K-stable by [Lil9] (see also [BBJ15]). Therefore, we

conclude by Theorem 7.9. |

Appendix A. Reduced é-invariants

In this section, we develop a reduced version of d-invariant for log Fano
pairs (X, A) with a torus group action. Results in this section are not needed
in the main part of the current article.

Throughout, we fix a torus group T" and let N = Hom(G,,,,T") = M*. Let
(X,A) be a log Fano pair with a T-action. Recall from Section 3.1 (see also
[Li19, §2.3]) that any £ € Nr determines a valuation wtg given by

wte: f= Z fa — min(a, §).

aEM, fo#0
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1056 CHENYANG XU and ZIQUAN ZHUANG

Definition A.1. Using the notation from Section 3.1, for any T-equivariant
valuation v that is not of the form wtg and Ax a(v) < co, we can define !

Bx,a(v)
Al dxar(v) =1+ sup .———=
— ) ¢eNg Sx.a(v)
(or abbreviated as d7(v) if (X, A) is clear). We define the T'-reduced é-invariant
as

(A.2) or(X,A) := inf Sx A 7(v),
v

where v runs through all T-equivariant valuations with Ax a(v) < oo that are
not of the form wt,.

Remark A.2. We are mostly interested in the case where Fut(&§) = 0 for
all { € N; e.g., (X,A) is K-semistable. In this case, we have 3(v) = (v¢) by
[Lil9, Prop. 3.12], thus

Ax,a(ve) Ax,a(Yue)
dxar(v) = sup ———= and 57(X,A) = inf sup ——= B52
) eeNg Sxa(ve) (X8 =1 ¢ Sxa(vug)
where in the second expression the first infimum runs through all non-trivial
valuations u on the Chow quotient Z such that Ax a(v,¢) < oo for some (and
equivalently any) £ € Ng, and the second supremum runs through all £ € Ng.

Remark A.3. By Theorem 3.7, a K-semistable log Fano pair (X,A) is
reduced uniformly K-stable if and only if d7(X,A) > 1 for some maximal
torus T in Aut(X,A).

Remark A.4. If Bx a(v) > 0 and Fut(§) = O for all £ € N, then the
supremum in (A.1) is a maximum. Indeed, by [BJ20, Prop. 3.11], we have

1 1 A
) > >
(A.3) S(ve) > . 1T(U£) S 1.] (Foe),
where n = dim X. Hence by the properness estimate in [Lil9, Lemma 3.15],

we know that it suffices to take the supremum in (A.1) over a compact subset
of Ng, and therefore it is achieved for some £ by the continuity of £ — S(vg).

The above definition is a modification of the characterization of é-invariant
given by [BJ20, Th. C]. We want to prove the following theorem, which is an
analogue of [BLX19, Th. 4.5].

THEOREM A.5. Let (X,A) be a log Fano pair with a T-action. If (X, A)
is K-semistable and d7(X,A) = 1, then it can be calculated by a T-invariant

1WWe want to thank the referee for suggesting this definition.
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quasi-monomial valuation v # wtg; that is, there erxists a quasi-monomial
T'-invariant valuation v that is not of the form wtg and satisfies that

Axa(ve) B B
7SX,A(’U§) =or(v) =r(X,A) =1
for all £ € Np.

We first prove a number of lemmas. To this end, let (X,A) be a log
Fano pair (not necessarily K-semistable), let » be a positive integer such that

—r(Kx + A) is Cartier, and let R be the section ring R(X, —r(Kx + A)).

LEMMA A.6. Let F be a T-equivariant filtration on R and p = p(F).
Let v be a T-invariant valuation that computes the log canonical threshold of

Iﬁ’u)(}_). Then p = p(Fe) and ve computes the log canonical threshold of
I (Fe).

Proof. Let I, ) (resp. Ifn ,) be the base ideals of F (resp. F¢), and let
Ima (resp. I‘ri,)\,or) (a € M) be their weight-a part, e.g.,

Inpa = In((F*Rim)a ® Ox(mr(Kx + A)) = Ox).
As in the proof of Theorem 4.3, after rescaling v, by (4.4) we have

(Imaa) > v(Imy) > m-o(IM™) > A+ m(rAx a(v) — p)

for any o € M. Then for any ¢, letting 0¢(v) = Ax a(ve) — Ax.a(v), we have

V6L 1m,) = V& (Im.om—(¢.).0)
= V(I tm—(¢,a),a) + (& @) +mrbe(v)
>m(t+ 10 (v) + rAxa(v) — p)
=m(t+rAx.a(ve) — ),
where the second equality follows from [Lil9, Prop. 3.8].
Taking t = p, we see that UE(ISI,pm,Q) > mrAx a(ve) and hence

(A.4) v (I§

m,p.m) 2> mT’AX,A(Uﬁ)‘
Thus p(F¢) < p(F). Since we can take a (—&)-twist of F¢ to get F, this implies
that

p(Fe) < p(F) < p(Fe)-

It follows that equality holds and then (A.4) implies that v¢ computes the log
canonical threshold of I )(}_g). O

Recall that for an lc pair (X, A), an lc place E is a divisorial valuation
over X such that Ax A(E) =0. If (X, A) is a log Fano pair, an N-complement
is a Q-divisor D such that N(Kx +A+D) ~ 0 and (X, A+ D) is log canonical.
A Q-complement of a log Fano pair is an N-complement for some N € N;.

This content downloaded from
71.226.228 213 on Thu, 12 Nov 2020 05:00:42 UTC
All use subject to https://about.jstor.org/terms



1058 CHENYANG XU and ZIQUAN ZHUANG

LEMMA A.7. A divisor E over X is an lc place of a Q-complement of
(X,A) if and only if gry R = @m,z‘eN GrE;:ERm is finitely generated and
,u(}_g) = T‘AX,A(E).

Proof. Assuming FE is an Ic place of a Q-complement of (X, A), then grr, R
is finitely generated and p(Fg) = rAx a(E) by Proposition 4.2. Conversely,
if u(Fg) =rAxa(F) and grg, R is finitely generated, then since the function
t — let(X, A; Iﬁt)) is continuous on (0,Tx A (E)] (which in turn follows from
the fact that the function ¢t ’U(IP:)) is piecewise linear for any valuation v
on X), we have lct(X, A; I?”'AX’&(E))) > % by the definition of log canonical
slope. On the other hand, it is clear that

Ax a(E) Ax a(E) 1

(r-Ax,a(E))
let(X, A Iy~ < < =,
( ) ordE(IET'AX"B‘(ED) r-Axa(E) T

thus let(X ,A;IE?'AX‘&(E))) = % If, in addition, grz,_ R is finitely generated,
then for some sufficiently divisible m,

let(X, A; IET'AXA(ED) =m - 1ct(X, A; Ly mray A (E)) = L
! T

This means there is a divisor D € |—mr(Kx+A)| with ordg(D) > mrAx a(F)
and (X, A+ -LD) is log canonical. Thus E is an lc place of (X,A+-LD). O

For the next lemma we use the following notation: if E is a T-invariant
divisor over X, v = ordg and £ € Ng, then v¢ is also a divisorial valuation
over X, and we define E¢ as the divisor over X such that v = c- ordg, for
some ¢ € Q.

LEMMA A.8. If E is an lc place of a Q-complement, then for any £ € Ng,
E¢ is also an lc place of a Q-complement.

Proof. Since gry R is finitely generated by assumption and gry R =
grfEﬁR, we know the latter is also finitely generated. By Lemma A.7, it

suffices to prove p(Fg,) = rAx a(E¢), or equivalently

ﬂ(}_v.s) = rAx,a(ve),

where v = ordg. Since pu(JFy) = rAxa(v) by Lemma A.7, we have pu((Fy)e) =
rAx a(v) by Lemma A.6. By [Lil9, Prop. 3.8], Fy, differs from (Fy)¢ by a
translation of r - f¢(v). It is then clear that

p(Foe) = p((Fo)e) + 1 0¢(v) = r(Ax,a(v) + 0¢(v)) = rAx a(ve),

and we are done. O
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LEMMA A.9 ([BLX19]). Let (X,A) be a log Fano pair, and let E be a
divisor over X . There ezists an integer N > 0 depending only on dim(X) and
the coefficients of A such that the following are equivalent:

(1) E is an lc place of a Q-complement;
(2) E is an lc place of an N -complement;
(3) E is induced by a weakly special test configuration with irreducible central

fiber.
Proof. The equivalence between (1) and (2) follows from [BLX19, Th. 3.5]

whose proof relies on [Birl9], whereas the equivalence between (2) and (3)

follows from [BLX19, Th. A.2]. O

To prove Theorem A.5, we also need a constructibility result (similar
to [BLX19, Prop. 4.1]) of é7(v) when the valuation varies in a family. The
following definition is a refinement of [BLX19, Def. 2.2] and will be needed in
the proof of Theorem A.5.

Definition A.10. Let f;: (X3, Ai + M;) — B (i = 1,...,m) be projective
pairs over B (where each A; is a divisor on X; and M; is a Q-linear system,
ie., M; = a;M; for some a > 0 and some linear series M; on X;) such that
the X;’s are birational to each other over B. We say that ¢: Y — B gives a
simultaneous fiberwise log resolution of the f;’s if

(1) there are proper birational morphisms g;: Y — X; such that ¢ = fj o g;
for all ;

(2) we can write gf M; = ®; + F;, where F; (resp. ®;) is the fixed (resp.
movable) part over B such that ®; is base point free over B,

G = Supp (Z(Exc(g@) + (gi_l)*A'i + Fz))

i=1

is an snc divisor, and each stratum of G is smooth over B with irreducible

fibers.

Consider now the following setup: Let B be a smooth variety, and let
(X,D) — B be a Q-Gorenstein family of log Fano pairs with a fiberwise
T-action. Let M ~g —(Kx,g + D) be a T-invariant Q-linear system such
that (X, Dy + Mp) is Ic for all b € B, and let g: Y — (X,D + M) be a
fiberwise T-equivariant log resolution (i.e., g is T-equivariant and is a fiberwise
log resolution in the sense of Definition A.10).

LEMMA A.11. In the above setup, let £ be a toroidal divisor over Y with
respect to G such that Ax ptm(E) < 1. Then dx, p, (&) is independent of
b e B.
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1060 CHENYANG XU and ZIQUAN ZHUANG

Proof. We follow the proof of [BLX19, Prop. 4.1], which is in turn based
on [HMX13, Th. 1.8]. We may assume B is affine and £ is a prime divisor on
Y (by repeatedly blowup centers of £ on )). We aim to show that the natural
restrictions

(A.5) H(Y, —mg*(Ky + D) — £€) — H°(Yy, —mg* (Kx, +Dp) — L&)

are surjective for all sufficiently divisible integers m, £ € N.

By Bertini’s theorem, there are effective Q-divisors H ~g —(Kx,p + D)
and M € M such that g is also a fiberwise log resolution of (X¥,I'=D+eH +
(1—€e)M), (X, L) is kit for all b € B and Axr(€) < 1. (Note that (X,I') no

longer has a T-action but this does not affect the proof.) We may write
Ky+4+a€£+T1 -1 :g*(K;( +T) ~q0,

where a = 1 — Ay p(€), I'1 and I'y are effective without common component
and I'y is g-exceptional. Since (A}, 1) is klt, so does (Vp, (I'1)p) for all b € B.
We then have

14
a
for some effective H' ~g —%g"(Kx + D) such that (Vs (I'1)s + Hy) is klt for
all b € B. From the proof of [HMX13, Th. 1.8(1)], we see that the natural maps

y4 ¢
—mg*(KX—I—D)—JE’E—i— FQ ~ E(Ky—i-rl)—mg*(KX —i—D) ~ E(Ky—l—l—‘l —i—H’)

l
H° Y,—mg*(Kx + D) — (£ + EPQ)

. 14
— H° Yy, —mg*(Kx, + Dp) — €& + E(F2)b)

are surjective for all sufficiently divisible m,{ € N. However since (I'p); is
gp-exceptional, the two H?’s above can be identified with the ones in (A.5)
and thus (A.5) follows.

Since Y — B admits a fiberwise T-action, the maps in (A.5) are T-equi-
variant and hence are also surjective on each component of the weight de-
composition. It follows that for each sufficiently divisible m,£ € N and each
ac M, Cli].’n(.}"_gbRb,m)ﬂf is independent of b € B (where Ry, is the section ring of
—7(Kx, +Dp)). Recall that F,, differs from (F,)¢ by a translation of r - 0¢(v)
(see [Lil9, Prop. 3.8]) and Amin(F») = 0 for any valuation v. Then for each
£ € Ng,

O¢(vp) = —Amin((Foy)e)

is independent of b € B (where vp = ordg,). Clearly Ax, p,(vp) is also inde-
pendent of b € B. As a consequence,

Ax,p,((ve)¢) and Sx, p,((vs)e)

are both independent of b € B as well. It is now evident from the definition
(A.1) that dx, p,7(&p) is independent of b € B. O
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We are now ready to present the proof of Theorem A.5. The strategy is
quite similar to the proof of [BLX19, Th. 4.5]: using the constructibility result
Lemma A.11, we aim to find a sequence of lc places of a fized complement that
approximately computes d7(X,A) and take their limit in the dual complex.
However, we are in trouble if the limit valuation is of the form wt¢ for some
& € Ngr. A naive approach is to twist the valuations by some & € Np before
taking the limit, but a priori this also changes the complement and the resulting
valuations may no longer be lc places of a fized pair. To avoid these issues, we
take a common log resolution of (X, A+ M) (where M is the complement) and
(suitable compactification of) T' x (X//T') in family (i.e., over some parameter
space of bounded complement) in the sense of Definition A.10. The additional
T x (X//T') then takes care of the wtg; component of the lc places and ensures
that it stays constant when moving along the family.

Proof of Theorem A.5. Let N be the integer from Lemma A.9. By Lem-
mas A.8 and A.9, if F is a T-invariant divisor over X that is an lc place of an
N-complement, then so is E¢ for any £ € Ng.

We first prove that there exists a sequence of T-invariant divisors FE;
over X, each of which is an Ic place of an IV-complement, such that ordg, # wt,
for any £ € Ng and lim; , 0r(E;) = 1. In fact, if this fails, then by
Lemma A.9, there exists some constant ¢ > 0 such that for any divisorial
valuation v = ordg that is induced by a T-equivariant special test configura-
tion (X', Ays), we have ér(v) > 1+ a. Thus by the definition of ér, there is
a twist £ € Ng such that

a NA a NA
Bxa(v) 2 a-S(ve) 2 == I (Foe) 2 =737 (F),

where the first inequality follows from the definition of ér(v), the second in-
equality follows from (A.3), and the last inequality follows from Corollary 2.15
and the fact that JF,, differs from (Fy)¢ by a translation. Since Bxa(v) =
DNA(X*, Ays) by [Fuj19, Th. 5.1], it follows that

DNA (X, Ays) > nj‘rngA(x%A,ﬁ)
for any T-equivariant special test configuration (X%, Ays) of (X, A). By [Lil9,

§4] (which uses equivariant MMP and a similar argument as in [LX14]), this
implies

DNAX, Ax) 2 5 - I (X, Ax)

for any T-equivariant test configuration (X,Ax). Hence (X,A) is reduced
uniformly K-stable and é7(X,A) > 1, a contradiction.

Fix a sequence E; (i € N) with the aforementioned properties and a T-equi-
variant birational map X --» T x Z, where Z is proper and T is a toric
variety that compactifies T. Via (3.1) we get a (non-canonical) isomorphism

Val(Z) x Ng = Val? (X) sending (u,£) — vpe and let m: Val? (X) — Ng be
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the induced projection. By Lemma A.8, we may replace each E; by a twist
and assume that m(ordg,) = 0.

We now run a modified argument of [BLX19, proof of Th. 4.5]. Consider
the parameter space B of T-invariant linear series M C | — N(Kx + A)| that
give strict N-complement of (X, A), i.e., let(X, A; Mp) = % There exists a
locally closed decomposition B = UB; and étale maps B;- — Bj such that the
B; ’s are smooth and the universal family (X x B, A x B; M) together with
(T,T) x Z x B (where T is the sum of torus invariant divisors on T) admits a
simultaneous fiberwise T-equivariant log resolution over each B;.

For any E;, the linear system

M; = Fp XA EIHO(Ox (~N(Kx + A))) € H(Ox (~N(Kx + A)))

is a T-invariant linear system that satisfies that let(X, A’; M;) = % and F; is
an lc place of (X, A+ %M;) In particular, M; yields a point on B. Passing to
a subsequence of F; and restricting to some component B’, we may and do as-
sume that B is irreducible, simultaneous fiberwise T-equivariant log resolutions

R
(X x B,A x B+ M) (T,T)xZ x B

exist over B, and every Fj is an lc center of (X, A + %Mbi) for some b; € B.
In particular, there exists an lc place &; of (X x B,Ax B+ %M) that restricts
to E; over b;.

Fix bp € B. Since 7((&;)p) = 0 if and only if the center of (&;)p is not con-
tained in any component of g;*(I' x Z) and the latter statement is independent
of b € B, we see that w((&;)p,) = 0 as the same holds over b;. By Lemma A.11,
we also have

ox.AT(Ei) = 0x.a1((E)by)-
Therefore, we may replace the sequence E; by (&;)p, and assume that the E;’s
are lc places of a fix lc pair (X, A + %Mbg)-

By [BLX19, Lemma 2.3|, we know that v; := m(ord&) converges
to a T-invariant quasi-monomial valuation v over X. Since 7(v;) = 0 and
Ax a(vi) = 1, we see that 7(v) = 0 and Ax a(v) = 1 as well; in particular,
v # wtg for any £ € Ng. We will show for such v that ér(v) = 1.

After twisting by &, we also have (vi)¢ — ve and Ax A ((vi)e) = Ax a(ve).
By [BLX19, Prop. 2.4], we have S(v;) — S(v), and therefore as

S(ve) = Ax,a(ve) — Axa(v) +S(v) + Fut(§)  (by [Lil9, (130)]),
we also have S((v;)¢) — S(vg) for all £ € Ny. It follows that for any £ € Ny,

Axa(g) _ o Axa(vide) _ oy
S AR TS (e S amor(u) =1
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and hence ér(v) < 1. Since we always have ér(v) > 1 (Remark A.2), thus
0r(v) = 1. By Remark A.4, we also know that dr(v) = AX%{S‘*) = 1 for some
§ € Nr. It follows that B(v) = B(ve) = 0 for all £ € Ng. In other words,

Ax.a(ve) _
%‘f)f—lf(}raﬂfef\ﬁg. O

CONJECTURE A.12. Let (X,A) be a K-semistable log Fano pair and T a
torus acting on (X, A). If o7(X,A) = 1, then there exists a divisorial valuation
v not of the form wt¢ such that

Axa(v)
Sx.a(v)

Remark A.13. Theorem A.5 answers the expectation in [Lil9, Rem. 3.25].
By [BX19, Th. 4.1], Conjecture A.12 implies Conjecture 3.8.

= dxar(v)=6p(X,A)=1.
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