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Abstract—Human action recognition is an important topic in 

artificial intelligence with a wide range of applications including 
surveillance systems, search-and-rescue operations, human-
computer interaction, etc. However, most of the current action 
recognition systems utilize videos captured by stationary cameras. 
Another emerging technology is the use of unmanned ground and 
aerial vehicles (UAV/UGV) for different tasks such as transportation, 
smart agriculture, traffic control, border patrolling, wildlife 
monitoring, etc. This technology has become more popular in recent 
years due to its affordability, high maneuverability, and limited 
human interventions. However, there does not exist an efficient 
action recognition algorithm for UAV-based monitoring platforms. 

This paper considers UAV-based video action recognition by 
addressing the key issues of aerial imaging systems such as camera 
motion and vibration, low resolution, and tiny human size. In 
particular, we propose an automated deep learning-based action 
recognition system which includes the three stages of video 
stabilization using the SURF feature selection and Lucas-Kanade 
method, human action area detection using faster region-based 
convolutional neural networks (R-CNN), and action recognition. We 
propose a novel structure that extends and modifies the 
InceptionResNet-v2 architecture by combining a 3D CNN architecture 
and a residual network for action recognition. We achieve an average 
accuracy of 85.83% for the entire-video-level recognition when 
applying our algorithm to the popular UCF-ARG aerial imaging 
dataset. This accuracy significantly improves upon the state-of-the-art 
accuracy by a margin of 17%. 

Index Terms—Drone video, human detection, action recognition, 
deep learning, unmanned aerial systems. 

I. INTRODUCTION 

Video-based action recognition, an integral part of a class of 

AI platforms, is typically designed for capturing human 

behaviors and using them in support of decision making 

systems [1], [2]. The applications of video-based action 

recognition span a wide range including security system [3], 

[4], entertainment [5], visual surveillance [6], virtual reality 

(VR) [7], athletes training [8], human-computer interaction [9], 

smart healthcare [10], etc. Most traditional video-based action 

recognition systems use stationary ground cameras to collect 

video information. 

Recently, the use of unmanned aerial vehicles (UAVs) has 

become commonplace in many applications; and video-based 

action recognition systems is not an exception. In most of 

aerial monitoring systems, autonomous UAVs make on-the-fly 

decisions by processing the captured imagery. For instance, 

most commercial UAVs nowadays are equipped with the 

collision avoidance feature and change their motion paths 

when encountering an obstacle [11], [12]. 

Researchers have already tried to develop human action 

recognition systems using stationary cameras in various fields 

such as sports [13], surveillance [6], unmanned vehicles [14], 

etc. However, the UAV-based human action recognition has 

not yet received the deserved attention from the research 

community. Implementing UAV-based human action 

recognition systems can revolutionize the current practice in 

many applications, since drones provide several advantages 

over the ground-based monitoring systems. Some of the 

advantages include flexible and faster access, on-demand 

video streaming with adjustable resolution, focus and angle of 

view, and less human intervention and lower risk in harsh and 

extreme environments, only to name a few. That is the main 

reason that the UAV-based monitoring systems are 

experiencing an exponential growth in recent years [12], [15]–

[19]. 

Recognizing human actions by processing captured video 

frames using static platforms is known to be a challenging task 

due to its computational complexity, the intrinsic variability 

between the actions of the same class, challenges related to 

determining the start and end points of each action, and 

dealing with mixed actions, and complications of background 

removal. This task becomes even more challenging when 

applied to UAV-based monitoring systems due to facing 

additional problems such as motion-related blurriness, camera 

vibration, varying angles of view, and tiny object sizes. 

This paper proposes an end-to-end system for UAV-based 

action recognition by solving the aforementioned issues. More 

specifically, we use non-overlapping 16-frame video segments 

for clip-based action classification purpose. In this regard, we 

extract labeled 16-frame video segments from the benchmark 

UCF-ARG dataset [20] to develop a training dataset for action 

recognition. Likewise, we use clip-level classification along 

with majority voting for the ultimate video-level action 

recognition. 

The contribution of the proposed works is two-fold: i) we 

proposed a fully autonomous UAV-based human action 

recognition system that enables the UAVs to precisely detect 

and recognize human actions while accommodating aerial 

imaging artifacts; ii) we introduced a novel architecture for 

neural networks that combines a 3D convolutional network 

with a residual network, which substantially improves the 

performance of the 3D CNNs [21]. More specifically, our 

proposed method when applied to the UCF-ARG dataset, 

achieves the classification success rate (CSR) of 73.72% for the 

clip-level 5-class action recognition problem. This translates to 

entire-video-level accuracy of 85.83% which shows a 

substantial improvement over the current state of the art 

methods with 68% accuracy [16]. 

The rest of this paper is organized as follows: In section 2, 

related works are discussed. Section 3 elaborates on the 

details of the proposed end-to-end action recognition 
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algorithms using aerial videos. Section 4 demonstrates the 

efficiency of the proposed method by providing comparative 

results followed by concluding remarks in section 5. 

II. RELATED WORKS 

Action recognition algorithms, based on their utilized 

training and interpretation methods, can be divided into two 

main categories, namely conventional and deep learning (DL) 

methods. 

Conventional methods typically include 3 main sequential 

steps of feature extraction, feature representation, and action 

classification. The feature extraction step is the process of 

extracting key information or indicators from video frames, 

which can represent an action. Two main approaches of 

feature extraction include global and local feature extraction 

methods. In global feature extraction, the shape of a moving 

object is considered as a holistic part, and the global features 

are extracted through object localization, background 

tracking, and the region of interest (ROI) encoding. Two 

famous implementations of the global feature extraction 

methods include motion energy images (MEI) and motion 

history image (MHI) [22], where in the former, the human 

motion is captured by accumulating the contrast of the pixel 

values between the human object and the background during 

an action into one image, while in the latter, the temporal 

information is also captured by weighting the pixel values 

based on their time [23]. The main advantage of these 

methods is the convenience of reducing video-based analysis 

into a much simpler problem of image classification. The local 

feature extraction methods typically include sequential steps 

of i) detecting the local spatio-temporal interest points first, ii) 

calculating the local patches around these points, and iii) using 

the identified local patches as representative features. There 

exist three main local feature extraction methods including 

space-time interest points [24], cuboid [25], and dense 

sampling [26]. Feature representation is used to represent and 

describe the extracted features in a unified way that is 

normalized, distinguishable, robust, and invariant to 

background clutter, scale, and rotation. This process is also 

called feature encoding. The two popular feature 

representation methods include bag of vision word (BoV) [27] 

and fisher vector [28]. Once the features are extracted and 

encoded, the last stage of conventional action recognition 

algorithms is the action classification, which is performed 

using standard classification methods including support vector 

machine (SVM), logistic regression, and K nearest neighbors 

(KNN). The improved dense trajectories (IDT) [26] which 

combines dense sampling with the BoV method can be 

considered as the state-of-the-art among traditional action 

recognition methods. 

In recent years, deep learning methods have become more 

popular in many regression and classification tasks, due to 

their superior performance in capturing intricate relations 

through stacked hidden layers, generalizability, affordable 

computation costs with GPUs, and eliminating the need for 

handcrafted feature extraction methods [29]–[32]. 

There exist three mainstream methods in using DL for video-

based action recognition. The first approach is using two-

stream methods [33], where two separate CNN structures are 

used to extract temporal and spatial features from the video, 

and then the results are integrated to classify the action. The 

second approach is 3D convolutional neural networks (C3D 

networks) [21] by considering videos as 3D input, where the 

time is the 3rd dimension. In this approach, a 3D convolutional 

neural network is used to process videos with no pre-

processing. The third mainstream approach is using the long 

short-term recurrent convolutional neural network (LRCN) [34], 

where a CNN architecture is used to extract spatial features 

from the image sequences and output fixed-length vectors, 

and then a long short term memory (LSTM) is used to learn 

from the sequenced information. 

There are some recent and ongoing researches that achieve 

even higher action recognition accuracies building upon these 

works, including (i) fusion stream [35] which develops two-

stream method by inserting multiple fusion layers into both 

spatial and temporal streams instead of fusing the results at 

the last step, (ii) hidden two stream [36], (iii) spatio-temporal 

residual networks (ST-ResNet) [37] which adds residual 

connections into both spatial and temporal domains so it can 

captures partial-temporal information in both streams 

separately, (iv) temporal segment networks (TSN) [38], (v) 

pseudo 3D CovNet [39] which uses the idea of decoupling 3D 

CovNet into two parts: a 2D spatial convolution filter to extract 

spatial information and a 1D temporal convolution filter to 

extract temporal information and then uses P3D to replace the 

residual unit in ResNet, (vi) temporal 3D ConvNets (T3D) [40], 

and (vii) two-stream Inflated 3D (I3D) I3D [41]. However, these 

methods perform reasonably well for stationary platforms but 

do not accommodate the key requirements of aerial imaging 

when subjected to shaking, vibration, and varying angle of 

views. 

The above-mentioned methods follow the dominant trend 

of DL-based methods in using raw video frames as their input 

without any preprocessing. In a different line of research, 

human action can also be captured by monitoring the human 

skeleton pose. To mimic the skeleton motion, it is sufficient to 

trace the position of joints (key points) in consecutive frames, 

which is the core idea behind the skeleton-based action 

recognition algorithms [42]–[44]. This approach substantially 

reduces the dimensionality of the input data and the 

computation complexity of the processing method by 

converting video frames into motion trajectories of key points. 

However, it has its own challenges, such as the need for 

accurate human detection and skeleton extraction methods 

that becomes troublesome in the presence of complex 

backgrounds, multiple subjects, etc. In particular, it becomes 

prohibitively challenging for UAV-based video streaming when 

the human body size is tiny and the joints overlap due to the 

improper angle of view. Although human action recognition 
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and UAV-based monitoring systems are both well-studied 

topics, there are very few works that bridge these two distinct 

research areas to develop an end-to-end solution for efficient 

UAV-based action recognition. Ghazal et al. [15] employed 

SVM algorithm to classify actions based on the high-level and 

stationary features extracted from key video frames using a 

CNN architecture. They also extract conceptual features from 

the first and last video frames for the human detection part. 

However, they use their own dataset which is not available for 

comparison. Burghouts et al. [17] proposed a focus-of-

attention mechanism to perform the human action 

recognition that includes tracking, human detection and a per-

track analysis. However, their method with its basic 

configuration achieves only 57% accuracy for the UCF-ARG 

dataset when the entire video is utilized. Hazar et al [16] used 

a two-phase method along with the scene stabilization 

algorithm. Their method involves human detection through 

human vs nonhuman modeling as well as the human action 

modeling, where the modeling part is performed offline and 

the recognition part is performed on the fly in the inference 

phase. However, this method is not good enough since it 

achieves only 68% accuracy for the UCF-ARG dataset. Another 

work that uses UCF-ARG dataset is [45]. Their focus is to 

enhance the action recognition accuracy noting the difficulty 

of collecting aerial images by adding two additional sources of 

videos including (i) video games, and (ii) generated fake aerial 

images using conditional Wasserstein generative adversarial 

networks. They achieve the average classification accuracy of 

67.9% using the aerial images collected by the authors called 

YouTube-Aerial dataset. However, their performance drops to 

35.92% when classifying 10 actions using the UCF-ARF dataset. 

As mentioned earlier, the majority of action recognition 

methods are suitable for stationary cameras and fail in solving 

the issues of aerial imaging such as video instability, small 

object size, and varying angle of view. The few recent attempts 

for developing UAV-based human action recognition systems 

have considered this problem and produced some interesting 

results, but their performance is still far from satisfactory 

highlighting the need for more efficient methods. In this paper, 

we propose a fully autonomous human action recognition 

system to boost the performance of the action recognition 

accuracy for aerial videos using video stabilization, human 

detection, and deep neural networks. 

III. METHODS 

Our end-to-end solution includes three steps of (i) video 

stabilization, (ii) human detection, and (iii) human action 

recognition, while taking necessary considerations to solve 

challenges associated with UAV-based video streaming (see 

Figure 1). Due to the flight instability and motion dynamics of 

commercial UAVs, aerial videos typically suffer from issues like 

vibration and camera motion. Therefore, using video 

stabilization is a critical need to obtain a stabled video 

appropriate for further processing. Furthermore, videos 

captured by drones usually include large areas that contain no 

information and the targets of interests (humans in this 

context) are tiny and barely noticeable. The human detection 

stage should be powerful enough to exclude unnecessary 

regions and video segments in order to focus only on the areas 

with recognizable human objects. In the following sections, we 

elucidate the details of each step. 

A. Video stabilization 

We use a frame-by-frame method for video stabilization. 

The overall idea is to extract key points from one frame 

 

Fig. (1) Conceptual block diagram of the proposed UAVbased 

human action recognition. and then finding the corresponding 

nodes in the following frame that exhibit consistent spatial 

shift, and this continues until we reach the last frame. Then we 

quantify the averaged frame by frame motions in terms of 3D 

trajectories represented by a transformation. The obtained 

cumulative trajectory is smoothed out to represent the actual 

motions, while the difference between the original and 

smoothed trajectories are considered video instability and is 

used to eliminate the vibration from the video by proper 

shifting. The following are the details of each step. 

1) Keypoints extraction using the speeded up robust 

features (SURF): We first use the SURF method to extract key 

points from the frames. SURF [46] is a low-complexity image 

feature detection method that is an accelerated version of the 

scaleinvariant feature transform (SIFT) [47] to extract local 

image descriptors. Using a light-weight algorithm such as SURF 

is highly desirable for one-the-fly feature extraction by the 

drones. 
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2) Track keypoints to next frame: In the next step, we 

use the Lucas-Kanade optical flow [48] to find the mapping 

between keypoints among the consecutive frames and 

quantify their relative motions. This method assumes that the 

displacement of the image content between two adjacent 

moments (frames) is small and approximately constant near 

the point p under consideration. Therefore, the optical flow 

equation can be applied to all pixels in a window centered at 

p and the local image flow (velocity) vector (Vx,Vy) can be 

written in a matrix form Av = b, where we have 

Ix(p1) 

 

Ix(p2) 

 

A =  

 ... 

 

 

 

Ix(pn) 

Iy(p1)  −It(p1)  

    

Iy(p2)  Vx  −It(p2)  

.. ,v = Vy ,b =  ... , 

.  

    

    

Iy(pn) −It(pn) 

(1) 

and p1,p2,...,pn are the pixels inside the window, and 

Ix(pi),Iy(pi),It(pi) denote the partial derivatives of the image I 

with respect to position x, y and time t, evaluated at point pi at 

the current time. 

This over-determined system which has more equations 

than unknowns, can be solved using the least squares method 

by 

 v = (ATA)−1ATb (2) 

which provides the following results for the averaged relative 

2D motions between the two consecutive frames: 

    P Ix(pi)2 Pi Ix(pi)Iy(pi) −1 

 Vx i 

   =   

 Vy Pi Iy(pi)Ix(pi) Pi Iy(pi)2 

−Pi Ix(pi)It(pi)  

 ·   (3) 

−Pi Iy(pi)It(pi) 

where the summations are over n points p1,p2,...,pn. 

3) Motion Estimation: Suppose that Fi, and Fi+1 are the 

two adjacent frames, and  and Pi+1 = 

 are the set of matched points between 

frames Fi and Fi+1, respectively, and T is the transformation 

matrix between the two frames. Then, we can state: 

  (4) 

  , (5) 

where (xij,yji) is the coordinate of point pij, ∆θi is the rotation 

angle, Si is the scale factor, and ∆xi and ∆yi are the translation 

motion vectors in horizontal and vertical directions between 

frames Fi, and Fi+1. No motion in the 3rd dimension is assumed 

(zi = 1). Here, we use the cumulative sum of ∆xi, 

xi = k=1 ∆xk,yi = k=1 ∆yk i = k=1 ∆ k. 

4) Trajectory Smoothing: Finally, we use a Hanning 

window to smooth out the obtained cumulative motion 

trajectories. Hanning window has no side lobes and is defined 

as: 

  , (6) 

where N is the window size. The following algorithm 

summarizes the stabilization algorithm. 

Algorithm 1: Video stabilization Using a method based on 

SURF and Lucas-Kanade optical flow. 

 

Input: Unstable video Output: 

Stabilized video 

Initialization: 

1. Read the first frame as PreviousIMG; 2. detect 

the keypoint using SURF as PreviousPts; 

3. Set i = 1; set nF = the number of frames. 

4. while i 6= nF do 

5. Set i ← i + 1 

6. Read the ith frame as CurrentIMG; 

7. Track and match PreviousPts from PreviousIMGto 
obtain CurrentPts in CurrentIMG using Lucas-Kanade 
optical flow; 

8. Calculate Ti, the ith transformation matrix between 
PreviousPts and CurrentPts using equation (5); 

9. Find keypoints in the ith frame using SURF as 

PreviousPts; 

end 

10. Compute trajectory using cumulative sum 

oftransformations as trajectory; 

11. Smooth out the trajectory using convolutioncalculation 

using Hanning window; 

12. Calculate the difference between the original and 

the smoothed trajectories and apply the difference to 

transformation matrix; 

13. Apply the new transformation matrix to eachframes and 

generate stable video; 
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14. Return stabilized video. 

 

B. Human action area detection 

Since the video taken by a UAV contains lots of irrelevant 

information, to achieve higher accuracies it is desirable to 

focus on areas where the humans are located. In deep 

learning, there are two main types of object detection 

methods: onestage methods and two-stage methods. The 

two-stage methods firstly identify a large pool of candidate 

regions which may or may not contain the object and then use 

a classification method (e.g. CNN) to classify these regions of 

interest (ROI) to verify if there exists an object or not. Two-

stage methods require a longer time but achieve better 

results. The most successful implementations of the two-stage 

methods use fast R-CNN [49] and faster R-CNN [50]. The one-

stage methods (e.g., single shot multi-box detector (SSD) [51] 

and you only look once (YOLOV3) [52],) use a similar approach, 

but skip the region proposal stage and execute the detection 

process directly over a dense sampling of possible locations. 

This approach requires only a single pass through the neural 

network and predicts all the bounding boxes at the same time. 

Thus the one-stage methods can realize a faster detection 

speed but with a lower accuracy. In our problem, the detection 

accuracy is considered more important than the execution 

speed, therefore a two-stage method is more suitable. 

Therefore, we applied a two-stage method based the faster R-

CNN for human detection. 

with blue color. 

C. Action recognition 

The last stage of the proposed end-to-end system deals with 

the action recognition. Inspired by the success of 

InceptionResNet-v2 [53] in image classification, we developed 

a new architecture for action recognition by modifying and 

extending the Inception-ResNet-v2 method to a 3D version, 

which called Inception-ResNet-3D. Inception-ResNet-v2 is a 

combination of two recent networks, namely the residual 

connections [54] and the Inception architecture [55]. The 

Inception-ResNet3D network architecture is shown in Fig 2, 

which extends the original 2D architecture to a 3D version by 

using 3D convolutional neural network, and reducing the filter 

sizes while maintaining the overall architecture (i.e., the 

number and the order of the layers, pooling approaches, 

activation functions, etc.) unchanged. 

Note that the Inception-ResNet-V2 has three main parts 

including (i) stem block, (ii) Inception-ResNet A,B,C blocks, and 

(iii) reduction A,B,C blocks. In the 3D stem block of the revised 

version (Figure 2), all kernels with dimensions (h,w) are 

extended to 3D kernels of size (h,w,d), where the 3r 

dimensional d equals to the first two dimensions, i.e. h = w = 

d. Also, the number of output filters in the convolution layers 

are divided by 8. For instance, the number of filters 32 is 

replaced with 4 in the first layer of the 3D stem block. 

The interior module of the network includes 3D-

InceptionResnet-A, 3D-Inception-Resnet-B, and 3D-Inception-

Resnet-C blocks as shown in Figure 3. Instead of using 5 

InceptionResnet-A, 10 Inception-Resnet-B, and 5 Inception-

Resnet-C for each block, we use only 1 of each type per block 

to reduce the parameter size. 

For the 3D reduction A and B blocks, all the kernels of size 

(h,w) are extended to 3D versions (h,w,d). Unlike the 

Inception Resnet A,B,C blocks, here the size of the 3rd 

dimension here is d = 1. The number of filters for each block is 

reduced by 8. Finally, the average pooling size is (2,2,2) in our 

3D-Inception-ResNet network. 

IV. EXPERIMENTS 

In this section, the performance of the proposed method for 

fully autonomous UAV-based human activity recognition is 

assessed. We first describe the used dataset, and then provide 

a quantitative analysis of the proposed approach along with 

comparisons with the state of the art methods. 

A. Dataset Description 

UCF-ARG dataset is a benchmark dataset for action 

recognition which includes a set of hard-to-distinguish tasks 

based on videos taken by stationary ground and mobile aerial 

cameras [20]. More specifically, this dataset includes actions 

performed by 12 actors recorded by a ground camera, a 

rooftop camera at a height of 100 feet, and a UAV-mounted 

camera. Here, we only use the aerial videos. This dataset 

contains 10 human action classes: boxing, carrying, clapping, 

digging, jogging, open-close trunk, running, throwing, walking, 

and waving. Except for the open-close trunk, all other actions 

are performed 4 times by each actor in different directions, 

while the open-close trunk is performed only 3 times by each 

 

Fig. (2) The architecture of the modified 3D InceptionResNet-v2 networks. The modified blocks and parameters are shown 
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actor. Therefore, we have 48 videos for each action (36 for the 

actions of type open-close trunk). Since most of the former 

research projects on human detection and human action 

recognition, focused on 5 classes: digging, running, throwing, 

walking, and waving [16], [17], [56], we choose the same set 

of classes for a fair and meaningful comparison. Also, we have 

shorter videos for the running class which we compensate for 

it by using data augmentation as explained later. 

B. Implementation Details 

1) Video stabilization: For the SURF feature point 

detection method, we used the python cv2 package with the 

hessian Threshold 500. For the Lucas-Kanade optical flow 

method, we use the iterative Lucas-Kanade algorithm with 

pyramids, following the implementation details presented in 

[57]. Since the video clips include only 16 frames, we wouldn’t 

expect that clips include multiple camera motion episodes. 

Therefore, we set the Hanning window size to 16, which is 

equal to the number of frames to realize a global stabilization 

rather than local short-term stabilization. 

2) Human detection: A pre-trained faster R-CNN model 

with implementation details of a version previously applied to 

the COCO dataset [58] is used for human detection. We 

consider that a clip contains a valid action, if a human subject 

is detected in at least one frame. Otherwise, the clip is not 

used for the further processing of action detection. The size 

and the width-height ratio of the rectangular box containing a 

human subject can be different from one frame to another. To 

avoid the issue of bias to the object size that can reduce the 

performance of the human action recognition, we extend the 

detected rectangular box to the smallest square box that 

encompasses all the identified rectangular boxes.This concept 

is visualized in Fig. 4. We crop the video frames 

 

(a) 3D-Inception-ResNet-A 

 

(b) 3D-Inception-ResNet-B 

 

(c) 3D-Inception-ResNet-C 

Fig. (3) The schematic for interior grid modules of the 

Inception-ResNet-3D network. 

to include only the extracted boxes for enhanced accuracy in 

the action recognition. Therefore, the action recognition stage 

that is applied to the reproduced 16-frame video clips is scale-

invariant and rotation-invariant with respect to the human 

objects. If more than one humans are detected, we choose the 

one closer to the center of the frame. 
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Fig. (4) Human detection: the smallest square box containing 

the identified rectangular boxes in frames F1 to F4 are used to 

cop the video frames for the subsequent action recognition 

stage. 

3) Data augmentation: Since the data size is limited and 

noting the imbalanced number of recordings for different 

classes (e.g., the number of video clips for the running classes 

is about 1/3 of other classes because of shorter videos), we 

implemented data augmentation before applying the 

Inception-ResNet-3D network. More specifically, to solve the 

imbalanced number of samples, we produced two extra sets 

of video clips for the running class by adding videos with 

altered blurriness and sharpness effects. Likewise, to increase 

the number of samples, we produce two new video clips by 

horizontal flipping and adding Gaussian Noise with zero mean 

and unit variance to the original video frames. Consequently, 

the number of training samples increased by a factor of 6 for 

the running class and doubled for other classes. 

4) Human action recognition: To realize a uniform input 

size, we resized the video frames into (74 ,74) since the 

detected human boxes typically fit into 74 pixel by 74 pixel 

image segments. For a fair comparison with other works [16], 

[17], a leave-one-out cross-validation (LOO CV) is used to split 

the dataset into training and test sets, where each test is 

corresponding to one person. The dropout rate of 0.5 is used 

in our method. The popular Adam optimizer is used with the 

learning rate of 0.001 and decay = 0. The network is trained 

for the clip-level samples. The entire-video-level action 

recognition is based on applying the majority voting to the 

obtained clip-level labels. 

C. Result 

Fig 5 presents the video stabilization stage for two 

exemplary actions: digging and throwing. The top row in each 

sub-figure shows the original frames while the bottom row 

shows the stabilized frames. The green lines points to a fixed 

point close to the human object in the video frames. We can 

see that the human moves considerably with respect to the 

intersections of the green lines from one frame to another in 

the original video, while remaining stationary in the stabilized 

video frames. This indicates that the video stabilization part is 

successful in eliminating the camera vibration and motion 

effects. The figures illustrate that a small vibration in the UAV 

camera can translate to a large shift of the human object in the 

entire video which can be multiple times of a human size. Since 

this effect is not clearly visible in the original videos, we show 

the zoomed-in version of the throwing action. The shift in the 

human object location can cause a severe performance 

degradation in the action classification if not properly 

addressed. Therefore, video stabilization is a necessary step of 

the proposed method for aerial imaging. 

Table I presents the action recognition accuracy of the 

proposed method as well as the two state of the art methods 

[16], [17] which use the same dataset (UCF-ARG). The results 

are provided per test (i.e. a sample recording) for the proposed 

method and Hazar et al. [16], but only the average accuracy is 

available for Burghouts et al [17]. The results confirm that the 

proposed method improves upon both methods with a 

significant margin. If we consider the clip-level results, our 

method achieves an average accuracy of 68% which is 

significantly higher than the Burghouts et al [17] method with 

accuracy 57% and the Hazar et al. [16] method with accuracy 

68%. The achieved gain is even higher if we consider the 

ultimate result of the entire-video-level action recognition 

which achieves the high accuracy of 85.83%. It significantly 

improves the state of the art results by more than 17% 

increase in the action recognition accuracy. It is noteworthy 

that our method also outperforms [45] that achieves an 

accuracy of 35.92%. However, this comparison is not fair since 

they use 10 action classes (unlike 5 classes for our method), 

and also a different training/test splitting method. 

Similar results are presented in Table II in terms of average 

action recognition accuracy per class for the three methods. 

Again the achieved gain is higher for the entire-video-level 

classification as expected. Our method consistently 

outperforms the competitor methods with a significant 

margin. The only exception is the running class, where our 

method with accuracy 89.58% slightly under-performs the [17] 

method with an accuracy of 91%. Perhaps a better video 

augmentation method can help improve the accuracy for this 

class. The higher gain is achieved for the waving class that 

improves the best method by 33.58%. 

Fig 6 shows the confusion matrix for all classes, where we 

can see that the running, walking, and waving actions are well 

classified with the accuracy above 90%. However, the digging 

and throwing actions relatively lower accuracies of 81% and 

73%. The potential reason is that these two classes may have 

some similar action components in the utilized 16-frame video 

clips. 

V. CONCLUSION AND DISCUSSION 

Noting the lack of an effective action recognition algorithm 

which is capable of accommodating specific requirements of 

aerial monitoring systems, in this paper, we proposed an 

endto-end system for UAV-based action recognition. The 

proposed method includes three stages of video stabilization, 

action area detection, and action recognition, where the video 

stabilization solves the camera motion and vibration issue, and 

the action area detection deals with the small human sizes in 

aerial images. Also, the classification algorithm is trained for 

top-view 
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(a) 

 

(b) 

 

(c) 

Fig. (5) Two examples of video stabilization result for actions: 

(a) digging, (b) throwing (original size), (c) throwing (zoomed-

in view). In each sub-figure, the top row shows sample frames 

of the original 16-frame clip, and the bottom row shows the 

stabilized video clip. The relative human position to a fixed 

point (represented by the intersection of green lines) varies 

from one frame to another in the original video clip, while 

remaining constant in the stabilized video. 

images, where action recognition is more challenging than the 

front-view and side-view. Our experiment results show that 

our algorithm achieves a very high accuracy of 85.83% when 

applied to the benchmark UCF-ARG dataset. This accuracy is 

significantly higher than the previously reported accuracy of 

68% (by a margin of 17%), therefore it is appropriate for aerial 

monitoring systems for action recognition tasks. 
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