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Abstract—Human action recognition is an important topic in
artificial intelligence with a wide range of applications including
surveillance systems, search-and-rescue operations, human-
computer interaction, etc. However, most of the current action
recognition systems utilize videos captured by stationary cameras.
Another emerging technology is the use of unmanned ground and
aerial vehicles (UAV/UGV) for different tasks such as transportation,
smart agriculture, traffic control, border patrolling, wildlife
monitoring, etc. This technology has become more popular in recent
years due to its affordability, high maneuverability, and limited
human interventions. However, there does not exist an efficient
action recognition algorithm for UAV-based monitoring platforms.

This paper considers UAV-based video action recognition by
addressing the key issues of aerial imaging systems such as camera
motion and vibration, low resolution, and tiny human size. In
particular, we propose an automated deep learning-based action
recognition system which includes the three stages of video
stabilization using the SURF feature selection and Lucas-Kanade
method, human action area detection using faster region-based
convolutional neural networks (R-CNN), and action recognition. We
propose a novel structure that extends and modifies the
InceptionResNet-v2 architecture by combining a 3D CNN architecture
and a residual network for action recognition. We achieve an average
accuracy of 85.83% for the entire-video-level recognition when
applying our algorithm to the popular UCF-ARG aerial imaging
dataset. This accuracy significantly improves upon the state-of-the-art
accuracy by a margin of 17%.

Index Terms—Drone video, human detection, action recognition,
deep learning, unmanned aerial systems.

|. INTRODUCTION

Video-based action recognition, an integral part of a class of
Al platforms, is typically designed for capturing human
behaviors and using them in support of decision making
systems [1], [2]. The applications of video-based action
recognition span a wide range including security system [3],
[4], entertainment [5], visual surveillance [6], virtual reality
(VR) [7], athletes training [8], human-computer interaction [9],
smart healthcare [10], etc. Most traditional video-based action
recognition systems use stationary ground cameras to collect
video information.

Recently, the use of unmanned aerial vehicles (UAVs) has
become commonplace in many applications; and video-based
action recognition systems is not an exception. In most of
aerial monitoring systems, autonomous UAVs make on-the-fly
decisions by processing the captured imagery. For instance,
most commercial UAVs nowadays are equipped with the
collision avoidance feature and change their motion paths
when encountering an obstacle [11], [12].

Researchers have already tried to develop human action
recognition systems using stationary cameras in various fields
such as sports [13], surveillance [6], unmanned vehicles [14],
etc. However, the UAV-based human action recognition has

not yet received the deserved attention from the research
community. Implementing UAV-based human action
recognition systems can revolutionize the current practice in
many applications, since drones provide several advantages
over the ground-based monitoring systems. Some of the
advantages include flexible and faster access, on-demand
video streaming with adjustable resolution, focus and angle of
view, and less human intervention and lower risk in harsh and
extreme environments, only to name a few. That is the main
reason that the UAV-based monitoring systems are
experiencing an exponential growth in recent years [12], [15]-
[19].

Recognizing human actions by processing captured video
frames using static platforms is known to be a challenging task
due to its computational complexity, the intrinsic variability
between the actions of the same class, challenges related to
determining the start and end points of each action, and
dealing with mixed actions, and complications of background
removal. This task becomes even more challenging when
applied to UAV-based monitoring systems due to facing
additional problems such as motion-related blurriness, camera
vibration, varying angles of view, and tiny object sizes.

This paper proposes an end-to-end system for UAV-based
action recognition by solving the aforementioned issues. More
specifically, we use non-overlapping 16-frame video segments
for clip-based action classification purpose. In this regard, we
extract labeled 16-frame video segments from the benchmark
UCF-ARG dataset [20] to develop a training dataset for action
recognition. Likewise, we use clip-level classification along
with majority voting for the ultimate video-level action
recognition.

The contribution of the proposed works is two-fold: i) we
proposed a fully autonomous UAV-based human action
recognition system that enables the UAVs to precisely detect
and recognize human actions while accommodating aerial
imaging artifacts; ii) we introduced a novel architecture for
neural networks that combines a 3D convolutional network
with a residual network, which substantially improves the
performance of the 3D CNNs [21]. More specifically, our
proposed method when applied to the UCF-ARG dataset,
achieves the classification success rate (CSR) of 73.72% for the
clip-level 5-class action recognition problem. This translates to
entire-video-level accuracy of 85.83% which shows a
substantial improvement over the current state of the art
methods with 68% accuracy [16].

The rest of this paper is organized as follows: In section 2,
related works are discussed. Section 3 elaborates on the
details of the proposed end-to-end action recognition



algorithms using aerial videos. Section 4 demonstrates the
efficiency of the proposed method by providing comparative
results followed by concluding remarks in section 5.

II. RELATED WORKS

Action recognition algorithms, based on their utilized
training and interpretation methods, can be divided into two
main categories, namely conventional and deep learning (DL)
methods.

Conventional methods typically include 3 main sequential
steps of feature extraction, feature representation, and action
classification. The feature extraction step is the process of
extracting key information or indicators from video frames,
which can represent an action. Two main approaches of
feature extraction include global and local feature extraction
methods. In global feature extraction, the shape of a moving
object is considered as a holistic part, and the global features
are extracted through object localization, background
tracking, and the region of interest (ROI) encoding. Two
famous implementations of the global feature extraction
methods include motion energy images (MEI) and motion
history image (MHI) [22], where in the former, the human
motion is captured by accumulating the contrast of the pixel
values between the human object and the background during
an action into one image, while in the latter, the temporal
information is also captured by weighting the pixel values
based on their time [23]. The main advantage of these
methods is the convenience of reducing video-based analysis
into a much simpler problem of image classification. The local
feature extraction methods typically include sequential steps
of i) detecting the local spatio-temporal interest points first, ii)
calculating the local patches around these points, and iii) using
the identified local patches as representative features. There
exist three main local feature extraction methods including
space-time interest points [24], cuboid [25], and dense
sampling [26]. Feature representation is used to represent and
describe the extracted features in a unified way that is
normalized, distinguishable, robust, and invariant to
background clutter, scale, and rotation. This process is also
called feature encoding. The two popular feature
representation methods include bag of vision word (BoV) [27]
and fisher vector [28]. Once the features are extracted and
encoded, the last stage of conventional action recognition
algorithms is the action classification, which is performed
using standard classification methods including support vector
machine (SVM), logistic regression, and K nearest neighbors
(KNN). The improved dense trajectories (IDT) [26] which
combines dense sampling with the BoV method can be
considered as the state-of-the-art among traditional action
recognition methods.

In recent years, deep learning methods have become more
popular in many regression and classification tasks, due to
their superior performance in capturing intricate relations
through stacked hidden layers, generalizability, affordable

computation costs with GPUs, and eliminating the need for
handcrafted feature extraction methods [29]-[32].

There exist three mainstream methods in using DL for video-
based action recognition. The first approach is using two-
stream methods [33], where two separate CNN structures are
used to extract temporal and spatial features from the video,
and then the results are integrated to classify the action. The
second approach is 3D convolutional neural networks (C3D
networks) [21] by considering videos as 3D input, where the
time is the 3rd dimension. In this approach, a 3D convolutional
neural network is used to process videos with no pre-
processing. The third mainstream approach is using the long
short-term recurrent convolutional neural network (LRCN) [34],
where a CNN architecture is used to extract spatial features
from the image sequences and output fixed-length vectors,
and then a long short term memory (LSTM) is used to learn
from the sequenced information.

There are some recent and ongoing researches that achieve
even higher action recognition accuracies building upon these
works, including (i) fusion stream [35] which develops two-
stream method by inserting multiple fusion layers into both
spatial and temporal streams instead of fusing the results at
the last step, (ii) hidden two stream [36], (iii) spatio-temporal
residual networks (ST-ResNet) [37] which adds residual
connections into both spatial and temporal domains so it can
captures partial-temporal information in both streams
separately, (iv) temporal segment networks (TSN) [38], (v)
pseudo 3D CovNet [39] which uses the idea of decoupling 3D
CovNet into two parts: a 2D spatial convolution filter to extract
spatial information and a 1D temporal convolution filter to
extract temporal information and then uses P3D to replace the
residual unit in ResNet, (vi) temporal 3D ConvNets (T3D) [40],
and (vii) two-stream Inflated 3D (13D) 13D [41]. However, these
methods perform reasonably well for stationary platforms but
do not accommodate the key requirements of aerial imaging
when subjected to shaking, vibration, and varying angle of
views.

The above-mentioned methods follow the dominant trend
of DL-based methods in using raw video frames as their input
without any preprocessing. In a different line of research,
human action can also be captured by monitoring the human
skeleton pose. To mimic the skeleton motion, it is sufficient to
trace the position of joints (key points) in consecutive frames,
which is the core idea behind the skeleton-based action
recognition algorithms [42]-[44]. This approach substantially
reduces the dimensionality of the input data and the
computation complexity of the processing method by
converting video frames into motion trajectories of key points.
However, it has its own challenges, such as the need for
accurate human detection and skeleton extraction methods
that becomes troublesome in the presence of complex
backgrounds, multiple subjects, etc. In particular, it becomes
prohibitively challenging for UAV-based video streaming when
the human body size is tiny and the joints overlap due to the
improper angle of view. Although human action recognition



and UAV-based monitoring systems are both well-studied
topics, there are very few works that bridge these two distinct
research areas to develop an end-to-end solution for efficient
UAV-based action recognition. Ghazal et al. [15] employed
SVM algorithm to classify actions based on the high-level and
stationary features extracted from key video frames using a
CNN architecture. They also extract conceptual features from
the first and last video frames for the human detection part.
However, they use their own dataset which is not available for
comparison. Burghouts et al. [17] proposed a focus-of-
attention mechanism to perform the human action
recognition that includes tracking, human detection and a per-
track analysis. However, their method with its basic
configuration achieves only 57% accuracy for the UCF-ARG
dataset when the entire video is utilized. Hazar et al [16] used
a two-phase method along with the scene stabilization
algorithm. Their method involves human detection through
human vs nonhuman modeling as well as the human action
modeling, where the modeling part is performed offline and
the recognition part is performed on the fly in the inference
phase. However, this method is not good enough since it
achieves only 68% accuracy for the UCF-ARG dataset. Another
work that uses UCF-ARG dataset is [45]. Their focus is to
enhance the action recognition accuracy noting the difficulty
of collecting aerial images by adding two additional sources of
videos including (i) video games, and (ii) generated fake aerial
images using conditional Wasserstein generative adversarial
networks. They achieve the average classification accuracy of
67.9% using the aerial images collected by the authors called
YouTube-Aerial dataset. However, their performance drops to
35.92% when classifying 10 actions using the UCF-ARF dataset.

As mentioned earlier, the majority of action recognition
methods are suitable for stationary cameras and fail in solving
the issues of aerial imaging such as video instability, small
object size, and varying angle of view. The few recent attempts
for developing UAV-based human action recognition systems
have considered this problem and produced some interesting
results, but their performance is still far from satisfactory
highlighting the need for more efficient methods. In this paper,
we propose a fully autonomous human action recognition
system to boost the performance of the action recognition
accuracy for aerial videos using video stabilization, human
detection, and deep neural networks.

IIl. METHODS

Our end-to-end solution includes three steps of (i) video
stabilization, (ii) human detection, and (iii) human action
recognition, while taking necessary considerations to solve
challenges associated with UAV-based video streaming (see
Figure 1). Due to the flight instability and motion dynamics of
commercial UAVs, aerial videos typically suffer from issues like
vibration and camera motion. Therefore, using video
stabilization is a critical need to obtain a stabled video
appropriate for further processing. Furthermore, videos

captured by drones usually include large areas that contain no
information and the targets of interests (humans in this
context) are tiny and barely noticeable. The human detection
stage should be powerful enough to exclude unnecessary
regions and video segments in order to focus only on the areas
with recognizable human objects. In the following sections, we
elucidate the details of each step.

A. Video stabilization

We use a frame-by-frame method for video stabilization.
The overall idea is to extract key points from one frame
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Fig. (1) Conceptual block diagram of the proposed UAVbased
human action recognition. and then finding the corresponding
nodes in the following frame that exhibit consistent spatial
shift, and this continues until we reach the last frame. Then we
guantify the averaged frame by frame motions in terms of 3D
trajectories represented by a transformation. The obtained
cumulative trajectory is smoothed out to represent the actual
motions, while the difference between the original and
smoothed trajectories are considered video instability and is
used to eliminate the vibration from the video by proper

shifting. The following are the details of each step.

1) Keypoints extraction using the speeded up robust
features (SURF): We first use the SURF method to extract key
points from the frames. SURF [46] is a low-complexity image
feature detection method that is an accelerated version of the
scaleinvariant feature transform (SIFT) [47] to extract local
image descriptors. Using a light-weight algorithm such as SURF
is highly desirable for one-the-fly feature extraction by the
drones.



2) Track keypoints to next frame: In the next step, we
use the Lucas-Kanade optical flow [48] to find the mapping
between keypoints among the consecutive frames and
quantify their relative motions. This method assumes that the
displacement of the image content between two adjacent
moments (frames) is small and approximately constant near
the point p under consideration. Therefore, the optical flow
equation can be applied to all pixels in a window centered at
p and the local image flow (velocity) vector (VxV)) can be
written in a matrix form Av = b, where we have
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and pyp2,..,pn are the pixels inside the window, and
Ix(pi),1y(pi),I:(p:) denote the partial derivatives of the image I
with respect to position x, y and time t, evaluated at point p;at
the current time.

This over-determined system which has more equations
than unknowns, can be solved using the least squares method
by

v = (ATA)-1Ah 2)

which provides the following results for the averaged relative
2D motions between the two consecutive frames:
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where the summations are over n points p1,pz,...,pn.
3) Motion Estimation: Suppose that F;, and Fi:1 are the

two adjacent frames, and fi = {p,ph, .. o} and Pi+1 =
(pi+1, pit] ji+1} .
P P2 -5 Pn T are the set of matched points between

frames Fiand Fi.1, respectively, and T is the transformation
matrix between the two frames. Then, we can state:
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where (xi,y/) is the coordinate of point pij, Af;is the rotation
angle, Siis the scale factor, and Ax;and Ay;are the translation
motion vectors in horizontal and vertical directions between
frames F;, and Fi+1. No motion in the 3rd dimension is assumed
(zi= 1). Here, we use the cumulative sum of Ax;,
Ay;, and A; to produce the motion trajectories specified by
¥ ' Y20 S
k=1 AXK,Yi = k=1 Ayk i= k=14 k.
4) Trajectory Smoothing: Finally, we use a Hanning
window to smooth out the obtained cumulative motion
trajectories. Hanning window has no side lobes and is defined

as:
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where N is the window size. The following algorithm
summarizes the stabilization algorithm.
Algorithm 1: Video stabilization Using a method based on
SURF and Lucas-Kanade optical flow.

Xi=

Input: Unstable video Output:

Stabilized video

Initialization:

1. Read the first frame as PreviousIMG; 2. detect

the keypoint using SURF as PreviousPts;

3. Seti=1;set nF=the number of frames.

4. whilei6=nFdo

5.Seti<i+1

6. Read the inframe as CurrentIMG;

7. Track and match PreviousPts from PreviousIMGto

obtain CurrentPts in CurrentIMG using Lucas-Kanade

optical flow;

8. Calculate Tj, the i transformation matrix between

PreviousPts and CurrentPts using equation (5);

9. Find keypoints in the it frame using SURF as
PreviousPts;

end
10. Compute  trajectory using
oftransformations as trajectory;
11. Smooth out the trajectory using convolutioncalculation
using Hanning window;
12. Calculate the difference between the original and
the smoothed trajectories and apply the difference to
transformation matrix;
13. Apply the new transformation matrix to eachframes and
generate stable video;

cumulative sum



14. Return stabilized video.

B. Human action area detection

Since the video taken by a UAV contains lots of irrelevant
information, to achieve higher accuracies it is desirable to
focus on areas where the humans are located. In deep
learning, there are two main types of object detection
methods: onestage methods and two-stage methods. The
two-stage methods firstly identify a large pool of candidate
regions which may or may not contain the object and then use
a classification method (e.g. CNN) to classify these regions of
interest (ROI) to verify if there exists an object or not. Two-
stage methods require a longer time but achieve better
results. The most successful implementations of the two-stage
methods use fast R-CNN [49] and faster R-CNN [50]. The one-
stage methods (e.g., single shot multi-box detector (SSD) [51]
and you only look once (YOLOV3) [52],) use a similar approach,
but skip the region proposal stage and execute the detection
process directly over a dense sampling of possible locations.
This approach requires only a single pass through the neural
network and predicts all the bounding boxes at the same time.
Thus the one-stage methods can realize a faster detection
speed but with a lower accuracy. In our problem, the detection
accuracy is considered more important than the execution
speed, therefore a two-stage method is more suitable.
Therefore, we applied a two-stage method based the faster R-
CNN for human detection.

sizes while maintaining the overall architecture (i.e., the
number and the order of the layers, pooling approaches,
activation functions, etc.) unchanged.

Note that the Inception-ResNet-V2 has three main parts
including (i) stem block, (ii) Inception-ResNet A,B,C blocks, and
(iii) reduction A,B,C blocks. In the 3D stem block of the revised
version (Figure 2), all kernels with dimensions (hw) are
extended to 3D kernels of size (hwd), where the 3r
dimensional d equals to the first two dimensions, i.e. h = w =
d. Also, the number of output filters in the convolution layers
are divided by 8. For instance, the number of filters 32 is
replaced with 4 in the first layer of the 3D stem block.

The interior module of the network includes 3D-
InceptionResnet-A, 3D-Inception-Resnet-B, and 3D-Inception-
Resnet-C blocks as shown in Figure 3. Instead of using 5
InceptionResnet-A, 10 Inception-Resnet-B, and 5 Inception-
Resnet-C for each block, we use only 1 of each type per block
to reduce the parameter size.

For the 3D reduction A and B blocks, all the kernels of size
(h,w) are extended to 3D versions (hw,d). Unlike the
Inception Resnet A,B,C blocks, here the size of the 3rd
dimension here is d = 1. The number of filters for each block is
reduced by 8. Finally, the average pooling size is (2,2,2) in our
3D-Inception-ResNet network.

IV. EXPERIMENTS

In this section, the performance of the proposed method for
fully autonomous UAV-based human activity recognition is
assessed. We first describe the used dataset, and then provide
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Fig. (2) The architecture of the modified 3D InceptionResNet-v2 networks. The modified blocks and parameters are shown

with blue color.

C. Action recognition

The last stage of the proposed end-to-end system deals with
the action recognition. Inspired by the success of
InceptionResNet-v2 [53] in image classification, we developed
a new architecture for action recognition by modifying and
extending the Inception-ResNet-v2 method to a 3D version,
which called Inception-ResNet-3D. Inception-ResNet-v2 is a
combination of two recent networks, namely the residual
connections [54] and the Inception architecture [55]. The
Inception-ResNet3D network architecture is shown in Fig 2,
which extends the original 2D architecture to a 3D version by
using 3D convolutional neural network, and reducing the filter

a quantitative analysis of the proposed approach along with
comparisons with the state of the art methods.
A. Dataset Description

UCF-ARG dataset is a benchmark dataset for action
recognition which includes a set of hard-to-distinguish tasks
based on videos taken by stationary ground and mobile aerial
cameras [20]. More specifically, this dataset includes actions
performed by 12 actors recorded by a ground camera, a
rooftop camera at a height of 100 feet, and a UAV-mounted
camera. Here, we only use the aerial videos. This dataset
contains 10 human action classes: boxing, carrying, clapping,
digging, jogging, open-close trunk, running, throwing, walking,
and waving. Except for the open-close trunk, all other actions
are performed 4 times by each actor in different directions,
while the open-close trunk is performed only 3 times by each



actor. Therefore, we have 48 videos for each action (36 for the
actions of type open-close trunk). Since most of the former
research projects on human detection and human action
recognition, focused on 5 classes: digging, running, throwing,
walking, and waving [16], [17], [56], we choose the same set
of classes for a fair and meaningful comparison. Also, we have
shorter videos for the running class which we compensate for
it by using data augmentation as explained later.

B. Implementation Details

1) Video stabilization: For the SURF feature point
detection method, we used the python cv2 package with the
hessian Threshold 500. For the Lucas-Kanade optical flow
method, we use the iterative Lucas-Kanade algorithm with
pyramids, following the implementation details presented in
[57]. Since the video clips include only 16 frames, we wouldn’t
expect that clips include multiple camera motion episodes.
Therefore, we set the Hanning window size to 16, which is
equal to the number of frames to realize a global stabilization
rather than local short-term stabilization.

2) Human detection: A pre-trained faster R-CNN model
with implementation details of a version previously applied to
the COCO dataset [58] is used for human detection. We
consider that a clip contains a valid action, if a human subject
is detected in at least one frame. Otherwise, the clip is not
used for the further processing of action detection. The size
and the width-height ratio of the rectangular box containing a
human subject can be different from one frame to another. To
avoid the issue of bias to the object size that can reduce the
performance of the human action recognition, we extend the
detected rectangular box to the smallest square box that
encompasses all the identified rectangular boxes.This concept
is visualized in Fig. 4. We crop the video frames
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Fig. (3) The schematic for interior grid modules of the
Inception-ResNet-3D network.

to include only the extracted boxes for enhanced accuracy in
the action recognition. Therefore, the action recognition stage
that is applied to the reproduced 16-frame video clips is scale-
invariant and rotation-invariant with respect to the human
objects. If more than one humans are detected, we choose the
one closer to the center of the frame.

0.




Fig. (4) Human detection: the smallest square box containing
the identified rectangular boxes in frames F1 to F4 are used to
cop the video frames for the subsequent action recognition
stage.

3) Data augmentation: Since the data size is limited and
noting the imbalanced number of recordings for different
classes (e.g., the number of video clips for the running classes
is about 1/3 of other classes because of shorter videos), we
implemented data augmentation before applying the
Inception-ResNet-3D network. More specifically, to solve the
imbalanced number of samples, we produced two extra sets
of video clips for the running class by adding videos with
altered blurriness and sharpness effects. Likewise, to increase
the number of samples, we produce two new video clips by
horizontal flipping and adding Gaussian Noise with zero mean
and unit variance to the original video frames. Consequently,
the number of training samples increased by a factor of 6 for
the running class and doubled for other classes.

4) Human action recognition: To realize a uniform input
size, we resized the video frames into (74 ,74) since the
detected human boxes typically fit into 74 pixel by 74 pixel
image segments. For a fair comparison with other works [16],
[17], a leave-one-out cross-validation (LOO CV) is used to split
the dataset into training and test sets, where each test is
corresponding to one person. The dropout rate of 0.5 is used
in our method. The popular Adam optimizer is used with the
learning rate of 0.001 and decay = 0. The network is trained
for the clip-level samples. The entire-video-level action
recognition is based on applying the majority voting to the
obtained clip-level labels.

C. Result

Fig 5 presents the video stabilization stage for two
exemplary actions: digging and throwing. The top row in each
sub-figure shows the original frames while the bottom row
shows the stabilized frames. The green lines points to a fixed
point close to the human object in the video frames. We can
see that the human moves considerably with respect to the
intersections of the green lines from one frame to another in
the original video, while remaining stationary in the stabilized
video frames. This indicates that the video stabilization part is
successful in eliminating the camera vibration and motion
effects. The figures illustrate that a small vibration in the UAV
camera can translate to a large shift of the human object in the
entire video which can be multiple times of a human size. Since
this effect is not clearly visible in the original videos, we show
the zoomed-in version of the throwing action. The shift in the
human object location can cause a severe performance
degradation in the action classification if not properly
addressed. Therefore, video stabilization is a necessary step of
the proposed method for aerial imaging.

Table | presents the action recognition accuracy of the
proposed method as well as the two state of the art methods
[16], [17] which use the same dataset (UCF-ARG). The results
are provided per test (i.e. a sample recording) for the proposed
method and Hazar et al. [16], but only the average accuracy is
available for Burghouts et al [17]. The results confirm that the
proposed method improves upon both methods with a
significant margin. If we consider the clip-level results, our
method achieves an average accuracy of 68% which is
significantly higher than the Burghouts et al [17] method with
accuracy 57% and the Hazar et al. [16] method with accuracy
68%. The achieved gain is even higher if we consider the
ultimate result of the entire-video-level action recognition
which achieves the high accuracy of 85.83%. It significantly
improves the state of the art results by more than 17%
increase in the action recognition accuracy. It is noteworthy
that our method also outperforms [45] that achieves an
accuracy of 35.92%. However, this comparison is not fair since
they use 10 action classes (unlike 5 classes for our method),
and also a different training/test splitting method.

Similar results are presented in Table Il in terms of average
action recognition accuracy per class for the three methods.
Again the achieved gain is higher for the entire-video-level
classification as expected. Our method consistently
outperforms the competitor methods with a significant
margin. The only exception is the running class, where our
method with accuracy 89.58% slightly under-performs the [17]
method with an accuracy of 91%. Perhaps a better video
augmentation method can help improve the accuracy for this
class. The higher gain is achieved for the waving class that
improves the best method by 33.58%.

Fig 6 shows the confusion matrix for all classes, where we
can see that the running, walking, and waving actions are well
classified with the accuracy above 90%. However, the digging
and throwing actions relatively lower accuracies of 81% and
73%. The potential reason is that these two classes may have
some similar action components in the utilized 16-frame video
clips.

V. CONCLUSION AND DISCUSSION

Noting the lack of an effective action recognition algorithm
which is capable of accommodating specific requirements of
aerial monitoring systems, in this paper, we proposed an
endto-end system for UAV-based action recognition. The
proposed method includes three stages of video stabilization,
action area detection, and action recognition, where the video
stabilization solves the camera motion and vibration issue, and
the action area detection deals with the small human sizes in
aerial images. Also, the classification algorithm is trained for
top-view



stabilized video clip. The relative human position to a fixed
point (represented by the intersection of green lines) varies
from one frame to another in the original video clip, while

TABLE (I) Comparison of the performance of the proposed
method with the state of the art in terms of action recognition
accuracy per test video.

Test Burghouts Hazar et Our Method
set etal. [17] al. [16] 16-frame Entire-Video level
level
1 65% 68.7% 75%
2 55% 71.5% 80%
3 75% 77.5% 90%
4 55% 71.7% 80%
5 85% 75.9% 95%
6 35% 78.2% 80%
7 60% 68.2% 85%
8 70% 72.5% 90%
9 60% 66.2% 75%
10 85% 77.4% 95%
11 75% 82.1% 90%
12 90% 82.7% 95%
average 57% 68% 73.7% 85.83%

remaining constant in the stabilized video.

images, where action recognition is more challenging than the
front-view and side-view. Our experiment results show that
our algorithm achieves a very high accuracy of 85.83% when
Frame# 1 frame# ¢ Frame# 11 Frame# 14 applied to the benchmark UCF-ARG dataset. This accuracy is
significantly higher than the previously reported accuracy of
68% (by a margin of 17%), therefore it is appropriate for aerial
monitoring systems for action recognition tasks.
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