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Abstract

The goal of item response theoretic (IRT)

models is to provide estimates of latent traits

from binary observed indicators and at the

same time to learn the item response func-

tions (IRFs) that map from latent trait to ob-

served response. However, in many cases ob-

served behavior can deviate significantly from

the parametric assumptions of traditional IRT

models. Nonparametric IRT models over-

come these challenges by relaxing assump-

tions about the form of the IRFs, but stan-

dard tools are unable to simultaneously es-

timate flexible IRFs and recover ability esti-

mates for respondents. We propose a Bayesian

nonparametric model that solves this problem

by placing Gaussian process priors on the la-

tent functions defining the IRFs. This allows

us to simultaneously relax assumptions about

the shape of the IRFs while preserving the abil-

ity to estimate latent traits. This in turn allows

us to easily extend the model to further tasks

such as active learning. GPIRT therefore pro-

vides a simple and intuitive solution to several

longstanding problems in the IRT literature.

1 INTRODUCTION

Item response theory (IRT) (Rasch, 1960; Lord &

Novick, 1968) is a widely used framework for estimat-

ing latent traits across many application domains, in-

cluding educational testing (Lord, 1980), psychometrics

(Embretson & Reise, 2000), political science (Martin &

Quinn, 2002; Clinton et al., 2004), and more. Like other

dimensionality reduction techniques, the goal is to take

a large set of observed features and map them to a low-

dimensional representation maintaining latent structure.

A prototypical setting is assigning latent ability scores
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to students answering test questions. The observed re-

sponses are typically binary or categorical, making stan-

dard factor analysis inappropriate. Further, in addition

to estimating latent scores, we also seek to simultane-

ously estimate the mapping between latent positions and

observed outcomes. These mappings are themselves

of interest to applied scholars and enable downstream

tasks such as optimal test construction or active learn-

ing procedures like computerized adaptive testing (CAT)

(Weiss, 1982; van der Linden & Pashley, 2010). We re-

fer to these probabilistic mappings from latent ability to

predicted outcome as item response functions (IRFs).

Common IRT models are parametric, typically estimat-

ing a sigmoidal mapping between the latent space and

a binary outcome. Problems arise, however, when re-

spondent behavior deviates from the assumed parametric

representations. For instance, nearly all models assume a

monotonic relationship between a respondent’s position

on the latent scale θ and each observed response y, which

can be violated in settings such as personality measure-

ment (e.g., Meijer & Baneke, 2004). A further problem

is non-saturation, where the probability of observing ei-

ther outcome never fully approaches zero or one (e.g.,

guessing on multiple-choice tests). A more subtle prob-

lem occurs when there is asymmetry in the IRFs. Tests

for cognitive abilities require higher levels of complex

thinking for success such that the shape of the IRF for

respondents with low values of θ do not mirror the shape

for individuals with high values (Lee & Bolt, 2018).

Numerous parametric models have been proposed to ac-

commodate these and other irregularities. A complete in-

ventory of IRT-like models would be prohibitively long,

but notable examples include: (i) the generalized graded

unfolding model (GGUM) (Roberts et al., 2000), which

allows for (symmetric) non-monotonic IRFs; (ii) the

three- (3PL) (Birnbaum, 1968) and four-parameter (4PL)

(Barton & Lord, 1981) logistic models that relaxed sat-

uration assumptions by including “guessing” and “care-

lessness” parameters; and (iii) Samejima’s (2000) logis-



tic positive exponential family models (LPEF), which al-

low for asymmetric IRFs.

A related literature approaches these problems from a

nonparametric framework (see Sijtsma, 1998). Mokken

models (Mokken, 1971; Mokken & Lewis, 1982) relax

functional form assumptions for the IRFs but require

monotonicity (Sijtsma & Molenaar, 2002), which is also

required for other nonparametric techniques (e.g., Poole,

2000). Ramsay (1991) proposes a model based on kernel

smoothing. However, standard nonparametric methods

are unsatisfactory since the IRFs and θ parameters can-

not be estimated simultaneously. A standard approach

for kernel-based IRT models, for instance, is to smooth

over the rank ordering of respondents in terms of their

raw scores on the test. Thus, while the IRFs are flexible,

the smoothing occurs not over the latent parameters θ,

but over “reasonable estimates” of θ constructed from y

(Mazza et al., 2012, p. 4). Further, since inference is not

based on the true likelihood, these models extend poorly

to downstream tasks such as active learning.

In this article, we propose a Bayesian nonparametric IRT

model based on Gaussian process (GP) regression (Ras-

mussen & Williams, 2006). As we demonstrate, our

model has several clear advantages. First, similar to ex-

isting kernel smoothing methods, the Gaussian process

IRT model (GPIRT) can in principal recover any smooth

IRF with minimal assumptions. However, adopting the

Bayesian framework facilitates building smoothed IRFs

in a more coherent manner based on the actual latent pa-

rameters rather than proxies constructed from y. Second,

GPIRT is a direct extension of Bayesian parametric IRT

models (Albert, 1992; Albert & Chib, 1993). Indeed,

many parametric Bayesian models in the literature can

be viewed as a special case of our more general frame-

work. Finally, it is simple to extend the model for down-

stream tasks such as item diagnostics, test construction,

and computerized adaptive testing.

Below we use GPIRT to generate more accurate esti-

mates of latent ability parameters while simultaneously

capturing smooth IRFs that are non-monotonic, non-

saturating, and asymmetric. We demonstrate its flexibil-

ity with real-world data, including voting records from

the US Congress and responses to a personality inven-

tory measuring narcissism, and contrast the behavior of

GPIRT with parametric baselines. We also demonstrate

how to use GPIRT to implement seamless active learning

by maximizing mutual information to rapidly determine

a new respondent’s latent score from their responses to

adaptively chosen items. This enables dynamic test con-

struction in the tradition of CAT, and we will show it

performs admirably on real-world data.

2 OVERVIEW OF IRT

We start by presenting the groundwork for IRT mod-

els. We then introduce the GPIRT, describe an MCMC

sampling algorithm, extend the model for active learn-

ing, and contrast it with prominent nonparametric IRT

approaches in the literature. We conclude with two ap-

plications. We restrict our discussion to the unidimen-

sional case, where items are assumed to load on a single

underlying latent dimension; however, our model would

extend to the multidimensional setting. The multidimen-

sional case has been explored previously in the nonpara-

metric IRT setting (e.g., Bartolucci et al., 2017), but it

is not as common in practice. We will also focus on the

binary response case, which is the canonical IRT setting.

However, categorical responses can be handled via stan-

dard extensions to the model below.

2.1 OBSERVATION MODEL

Assume we have n binary-response items and m respon-

dents who have each answered some subset of items. We

will encode the response of respondent j on item i as

yij ∈ {−1, 1}, where 1 encodes a positive (or correct)

response and −1 denotes an negative (or incorrect) re-

sponse. This presentation is in keeping with GP classi-

fication models and deviates trivially from standard IRT

presentations where we typically take y ∈ {0, 1}.

IRT assumes a simple probabilistic model for y accord-

ing to (i) a latent score associated with each respondent

and (ii) an item-specific mapping between latent score

and the probability of observing yij = 1. Let Θ be some

latent space (here we take Θ = R) in which we wish to

embed respondents. We assume each respondent j has

some unknown location in this space, θj and that that

each item i has an associated latent function fi : Θ → R

that gives rise to responses via a sigmoidal link function.

Namely, we assume the probability that respondent j an-

swers item i positively is

Pr(yij = 1 | θj , fi) = σ
(

fi(θj)
)

, (1)

where σ : R → (0, 1) is a monotonic sigmoidal “squash-

ing” function such as the logistic or standard normal

CDF (inverse probit). We will further adopt the stan-

dard assumption that multiple responses across a set of

items/respondents are conditionally independent given

the latent scores and latent functions. For a set of ob-

served responses {yij}, this results in the likelihood:

Pr
(

{yij} | {fi}, {θj}
)

=
∏

i

∏

j

Pr(yij | θj , fi), (2)

where the product extends over the set of responses.
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(a) IRFs for standard IRT models
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(b) IRFs for GPIRT

Figure 1: Example IRFs for the 2PL, 4PL, GGUM, and LPEF
models compared to IRFs for GP latent functions.

Interpreted as a function of θj , the marginal probability

of a positive response to item i, Equation (1) is known

as the ith item response function (IRF). The goal of IRT

is to jointly estimate the respondents’ latent locations

{θj} and the IRFs from some set of training observations

{yij}. This may seem daunting since we are in essence

trying to simultaneously learn a latent embedding and

the mappings {fi} using only observed responses. The

problem is tractable if we assume that the latent functions

{fi} are smooth over Θ. In that case, the fact that each

respondent corresponds to a single latent location shared

by all the IRFs gives us hope that we can find an embed-

ding that places respondents with correlated responses in

neighboring regions of the latent space.

2.2 PARAMETRIC IRT MODELS AND CAT

In the two-parameter logistic model (2PL) (Birnbaum,

1968), σ is taken to be the logistic function and we as-

sume a linear parametric form for the latent functions:

fi(θj) = βi0 + βi1θj .

By convention, θj is referred to as the ability parame-

ter for respondent j. These parametric assumptions are

quite restrictive and fail in numerous settings. As a con-

sequence, a wide array of alternative parametric forms

for the {fi} have been proposed, including the GGUM,

3PL, 4PL, and LPEF models discussed above. Example

IRFs for each are shown in Figure 1(a).

Critically, the IRFs are themselves often of interest to

researchers. Sometimes, as in our analysis of the US

Congress below, the shape of the IRF provides im-

portant insights about a specific item. In other cases,

such as measuring personality traits, IRFs are used for

test construction where the goal is to choose a set of

items (i.e., a test in the sense of an examination) that

will reveal as much as possible about the target popula-

tion. This includes computerized adaptive testing, where

items are chosen dynamically during test administration

(Weiss, 1982). CAT is widely used in educational testing

(van der Linden & Pashley, 2010), psychology (Waller

& Reise, 1989), and survey research (Montgomery &

Rossiter, Forthcoming).

A number of CAT algorithms have been proposed in the

literature. Of particular relevance here are the maximum

expected Kullback–Leibler (MEKL) criterion (Chang &

Ying, 1996) and its Bayesian variant, the maximum pos-

terior weighted Kullback-Leibler (MPWKL) criterion

(van der Linden, 1998), which is equivalent to the mu-

tual information between an unknown response and the

latent ability score.1 These methods seek to accelerate

the convergence of our estimate of θ to the true unknown

posterior by maximizing the expected information gain

from each item selected from the larger inventory of po-

tential items. MPWKL can be directly extended to our

GPIRT model. It is worth noting that all of the above

approaches for CAT assume a pre-calibrated parametric

IRT model. To our knowledge Xu & Douglas (2006)

present the only nonparametric IRT CAT algorithm.

3 GPIRT

Our proposed model, the Gaussian process IRT (GPIRT)

model, extends standard models by placing Gaussian

process priors on the latent functions {f}. We then

perform joint inference over latent functions and ability

scores. This procedure allows us to quantify and prop-

agate our typical lack of certainty about the shape of

the IRFs, and allows us to readily adopt the advances in

Gaussian process modeling and inference seen over the

past decade for estimation and active learning.

Although constructing and performing inference in this

model will be straightforward with existing machinery,

GPIRT provides a simple and intuitive solution to sev-

eral longstanding problems in the IRT literature. The

1In the CAT literature the first appearance of MEKL, which
might sound equivalent to mutual information, was defined in
a somewhat idiosyncratic manner.



model makes no assumptions about the shape of IRFs

beyond smoothness over the latent score θ. In princi-

ple, this allows the resulting estimated IRFs to take the

shape of any smooth function (assuming suitable flex-

ibility in the choice of covariance function) and may

be non-monotonic, non-saturating, non-symmetric, or

all of the above. IRFs derived from draws from a GP

prior are shown in Figure 1(b). Further, adopting the

Bayesian framework allows us to simultaneously esti-

mate these flexible IRFs and the latent scores via a sam-

pling approach we will describe below. This removes

potential bias in IRF estimation from error in score es-

timation as well as relaxing the monotonicity assump-

tion of Mokken-like models. Finally, the construction

of the model facilitates item selection in either a manual

or adaptive testing setting by adopting established ideas

from Bayesian experimental design.

The most critical innovation in the GPIRT model is that

rather than assuming that the functions {fi} belong to

a specific parametric family, we place an independent

Gaussian process prior distribution on each:

p(fi) = GP (fi;µ,K), (3)

where µ is a shared prior mean function that can be cho-

sen according to prior beliefs, and K is a covariance

function between respondents’ latent traits. We could

choose the covariance function as we see fit; however,

for this investigation we took the pervasive squared ex-

ponential covariance function with unit length scale:

K(θ, θ′) = exp
(

− 1

2
(θ − θ′)2

)

. (4)

Note that we will also be taking a standard normal prior

on the latent scores {θ} and thus the unit length scale is

compatible with our expected range of latent scores.

For the mean function, µ ≡ 0 is the most agnostic

(corresponding to a prior IRF assigning 50% probability

to a positive response regardless of location), but does

not leverage prior knowledge about IRF profiles. An-

other reasonable choice is a linear prior mean µ(θ) =
βi0 + βi1θ, which is most appropriate in a context where

monotonic IRFs are expected, but where we prefer not

to impose strict linearity. Note that with a linear mean

we can recover standard two-parameter IRT models by

selecting σ appropriately and taking K to be a linear

covariance. GPIRT therefore provides a nonparametric

generalization where each item is explained by a latent

linear trend with smooth nonlinear deviations.

To complete the model, we place an independent normal

prior over the respondents’ latent scores {θ}:

p
(

{θj}
)

=
∏

j φ(θj),

θ

fiβi
yi

µθ = 0 Σθ = I

µβ

Σβ

ℓ = 1 σf = 1

i = 1, . . . , n

Figure 2: Graphical representation of GPIRT.

where φ is the standard normal PDF. We also place inde-

pendent normal priors over the coefficients {β} for linear

or higher-order polynomial mean functions as necessary.

A graphical representation of the model is shown in Fig-

ure 2. Here, µθ and Σθ are the mean and covariance of

the prior on θ. Similarly, µβ and Σβ are the mean and

covariance of the prior on β. Finally, σf and ℓ are the

scale factor and length scale of K respectively.

3.1 ESTIMATION

Assume we have a set of responses D = {yij}. We wish

to estimate the posterior over the latent functions {f} and

latent scores {θ}, p
(

{f}, {θ} | D
)

. Since the posterior is

analytically intractable, we perform inference via Gibbs

sampling.2 We begin by initializing a Markov chain by

sampling initial latent scores {θ} and mean function co-

efficients {β} from their respective priors. Then, given

{θ} and {β}, we sample the latent function values cor-

responding to the observations {yij}. Let Dj represent

the responses from respondent j only, fi = {fi(θj)} rep-

resent the latent function values associated with all re-

sponses to item i, and θi be the latent scores of all re-

spondents who answered item i. We sample:

fi ∼ N
(

µ(θi; {β}),K(θi,θi)
)

.

Finally, we extend the sampled vectors fi to dense sam-

ples of each latent function. This is feasible since the la-

tent space Θ used in IRT is universally small; in the vast

majority of cases, this dimension is 1 or 2. In our imple-

mentation, we took a dense grid θ∗ spanning from −5
to 5 in increments of 0.01, which is sufficient to densely

2Variational inference with pseudopoints in θ-space for the
items would be possible for large-scale data. This would be a
relatively simple extension using existing approaches such as
Hensman et al. (2015). However, the exact sampling scheme
we outline is sufficient for the applications we investigate.



cover the support of the latent score prior. Now for each

item i, we can sample dense vectors f∗i on this set from

the posteriors induced by θi and fi, which is normal as

the posterior on fi is a Gaussian process:

p
(

f∗i | θ∗,θ, fi, {β}
)

= N (f∗i ;m
∗,C∗),

where

m∗ = µ(θ∗) +K(θ∗,θ)K(θ,θ)−1
(

fi − µ(θ)
)

;

C∗ = K(θ∗,θ∗)−K(θ∗,θ)K(θ,θ)−1K(θ,θ∗),

and the dependence of µ on {β} has been omitted.

With the Markov chain initialized, we proceed as fol-

lows. First we sample new latent function values at

the observations for each item {fi}, using elliptical slice

sampling (Murray et al., 2010). We then extend the {f}
to dense samples {f∗} as described above. Next we sam-

ple each of the latent scores θj from the posterior induced

given the latent function samples {f∗}. Extending these

samples onto a dense grid allows us to compute a dense

approximation of the exact posterior of θj on the grid.

The unnormalized posterior is:

p
(

θj | {f
∗},Dj

)

∝ p(θj)
∏

i Pr
(

yij | f
∗

i (θj)
)

.

We then use inverse transform sampling to sample a new

latent score for each respondent from their posterior. Fi-

nally, we sample new values for the mean function hyper-

parameters {β} using a Metropolis–Hastings step with

a Gaussian proposal distribution. We have implemented

this inference method in the R package gpirt. Once this

chain has mixed we can then estimate IRFs if desired by

pushing a chain of samples of the dense latent functions

through the chosen sigmoid and averaging.

The posterior distributions in all IRT models exhibit ro-

tational invariance where the sign on the latent parame-

ters {θj} and the shape of the functions {fi} can be al-

tered to produce an identical likelihood. In applications,

generally either the directionality of the latent space is

not interesting, in which case samples from either reflec-

tive mode are useful, or the directionality is known, and

posterior samples stuck in a substantively inappropriate

mode can be replaced or post-processed by imposing the

desired orientation (Stephens, 1997).

3.2 ACTIVE LEARNING

A major benefit of our fully Bayesian model is en-

abling a direct scheme for adaptive testing via sequential

Bayesian experimental design. We consider the follow-

ing task. Suppose we have estimated IRFs from data D,

for the ith item estimating:

πi(θ
∗) = Pr(y∗i = 1 | θ∗,D)

by marginalizing the latent function fi. We then seek to

adaptively present a series of items to some new respon-

dent so as to learn their latent score as quickly as possi-

ble. Here we propose a natural scheme based on maxi-

mizing the mutual information between the unknown re-

sponse to each item and the unknown latent score θ⋆.

Our proposed algorithm works as follows. Let D⋆ rep-

resent a dataset augmenting our training data D by the

(initially empty) available responses from the new re-

spondent. We initialize our belief about θ⋆ to the chosen

prior used during inference: p(θ⋆ | D⋆) = p(θ). Now we

compute the mutual information between the response y⋆i
to item i and θ⋆ given the available data:

I(y⋆i ; θ
⋆ | D⋆) = h(p⋆i )− Eθ⋆

[

h(πi(θ
⋆)) | D⋆]. (5)

Here h(p) is the binary entropy function and p⋆i is the

marginal probability of a positive response to item i:

p⋆i =

∫

πi(θ
∗) p(θ⋆ | D⋆) dθ⋆.

We present the respondent with the item maximizing the

mutual information and augment D⋆ with the response.

We then approximate the updated posterior distribution

on θ⋆ by multiplying the current belief by the IRF for the

chosen item (for a positive response) or its complement

(for a negative response), e.g. if y⋆i = 1 we take:

p(θ⋆ | D⋆, y⋆i ) ∝ p(θ⋆ | D⋆)πi(θ
⋆).

We repeat this process until a stopping condition is met.

This may be a pre-chosen number of items, but could

also be sufficient certainty in θ⋆. This procedure is both

computationally efficient and effective in practice. Al-

though we could refit the entire GPIRT model each time

we get a new response, the extra cost is not likely to be

worth it if the training dataset is reasonably sized.

4 RELATED WORK

Inference in parametric IRT models is often achieved via

some variant of maximum likelihood estimation (MLE),

maximizing (2) as a function of {βi} and {θj}. Unfortu-

nately, maximizing the full joint likelihood has proven to

be difficult and most parametric models therefore are es-

timated using the marginal maximum likelihood (MML)

framework (Bock & Aitkin, 1981). Here, we assume that

the marginal posterior distribution of the latent scores

{θj} is known a priori. We will denote this assumed

marginal distribution q(θ). In MML we estimate each re-

spondent’s contribution to the likelihood (2) by marginal-

izing her latent score under the assumed θ distribution:

Lj ≈

∫

∏

i

Pr(yij | θj , fi) q(θj) dθj , (6)



where Lj represents the component of the likelihood as-

sociated with respondent j in (2). In this procedure, the

item-level parameters are estimated first, marginalizing

the latent scores as in (6). {θj} is then estimated af-

terwards via some procedure such as calculating the ex-

pected a posteriori (EAP) estimate (Rizopoulos, 2006).

Most nonparametric methods build from Equation 6. The

most relevant approaches here focus on relaxing assump-

tions about the link function σ (but see, e.g., Woods &

Thissen, 2006). However, problems arise since it is dif-

ficult to simultaneously estimate {fi} and {θj}. Indeed,

the entire idea of the MML approach is to marginalize

out {θj}. Therefore, standard nonparametric IRT mod-

els estimate the IRF not based on {θj} but instead based

on the observed data as a proxy.

For instance, in kernel-based IRT (Ramsay, 1991) we

first transform respondents’ scores (number correct) into

quantiles of a specified latent trait distribution q(θ). That

is, if respondent j is in the empirical sj th percentile in

raw average score across the items, we first estimate their

latent score with θ̂j = Q−1(sj), where Q−1 is the in-

verse CDF for q(θ). Fixing these proxies for the latent

scores, we can then use Nadaraya–Watson (Nadaraya,

1964; Watson, 1964) regression to estimate the IRFs by

kernel smoothing over the training data.

Due to the inherent difficulties associated with simulta-

neously estimating IRFs and {θj}, adopting a Bayesian

framework is an attractive option (Albert, 1992). Given

the likelihood in Equation (2), all that we need to com-

plete the model is a prior on θ and (optionally) on the pa-

rameters defining {fi}. Albert & Chib (1993) used nor-

mal priors in the context of the normal ogive model and

developed a complete Gibbs sampler for the resulting

model. Imai et al. (2016) estimates this same model us-

ing the expectation-maximization (EM) approach, which

is the method we use in the Congress application be-

low. Subsequent work has developed Bayesian versions

of nearly all of the common parametric models.

Previous research has also been done in the area of

Bayesian nonparametric IRT. Karabatsos & Sheu (2004)

considered Bayesian inference under the monotone non-

parametric framework of Mokken while Arenson &

Karabatsos (2018) approximated monotone IRFs using a

finite mixture of beta distributions. Duncan & MacEach-

ern (2008) places a Dirichlet process (DP) prior on the

q(θ) distribution while retaining the 2PL form for the la-

tent functions and further reported a variant that instead

models the IRFs as a DP as well (see also San Martı́n

et al., 2011). However, we are aware of no existing model

that adopts the GP approach we outline above.

The most closely related GP approach to our own might

be Gaussian process latent variable models, or GPLVM

(Lawrence, 2004). GPLVM is not particularly well-

suited for IRT as there is a fundamental mismatch in the

choice of likelihood, which is naturally binomial but nor-

mal in the GPLVM. A further issue is that GPLVM typi-

cally assumes that all “dimensions” (items) have a com-

mon/shared error term, which fits poorly in the measure-

ment model domain most closely related to IRT. More-

over, the mismatch in likelihood makes response predic-

tion less principled than the IRFs provided by GPIRT.

Nonetheless, we include GPLVM in our benchmarks.

5 APPLICATIONS

We illustrate the benefits of GPIRT with two applications

to real-world observational data. First we embed Mem-

bers of the US House of Representatives from the 116th

Congress (elected in 2018) from their roll-call records.

Here we focus on finding interesting attributes of the

IRFs that standard scaling cannot uncover due to their re-

strictive functional form assumptions. We then apply the

model to a survey dataset, where respondents were given

a narcissism battery. With this data we focus on improv-

ing predictive performance, and also illustrate that the

model performs strongly in an active learning task.

5.1 ROLL CALL VOTING IN THE HOUSE OF

REPRESENTATIVES

Members of the U.S. House of Representatives give

recorded “yea” and “nay” votes on the various propos-

als the House considers. There is a long history in po-

litical science of using these votes to embed the legisla-

tors in a latent space, with a one-dimensional left–right

ideological continuum being of interest in recent ses-

sions. The gold standard ideological scores for mem-

bers of Congress are the DW–NOMINATE scores (Poole

& Rosenthal, 1997) and Bayesian IRT models (Clinton

et al., 2004). Similarly to the 2PL model described

above, the NOMINATE procedure assumes a specific

(monotonic) functional form for IRFs.

The monotonicity assumption in 2PL and NOMINATE

often holds and these models are highly predictive both

in-sample and out-of-sample. In the Supplementary Ma-

terial, we show that GPIRT performs equally well and

sometimes better than the 2PL, although prediction is

rarely a task in this setting. However, the strong para-

metric assumptions can obscure important dynamics in

key roll-call votes, which can in turn result in embed-

dings that correspond poorly with other evidence about

members’ ideology.

Our focus in this application, therefore, is on recover-

ing interesting aspects of IRFs and the qualitative value
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(a) IRF for HR2722, the “Securing
America’s Federal Elections Act”
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(b) IRF for an amendment to HR2500
ending the Cyprus arms embargo
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(c) IRF for HJRES31, a budgetary reso-
lution to avoid a government shutdown
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(d) 2PL IRF for HR2722
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(e) 2PL IRF for the Cyprus amendment
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(f) 2PL IRF for HJRES31

Figure 4: Example IRFs for three roll call votes in the U.S. House of Representatives’ first session of the 116th Congress. θ
estimates for members who voted “Yea” are displayed in a rug at the top of the plots, while θ estimates for members who voted
“Nay” are displayed in a rug at the bottom. Rug lines for members of the Squad are drawn in red.

Table 1: Fit for GPIRT, 2PL, GPLVM, and kernel-

smoothed IRT models on NPI responses with 20% of the

data held out. ε ≈ 2.2× 10−16 is machine epsilon.

Model L/N t-test vs. GPIRT AUC Accuracy

GPIRT -0.52 0.82 0.74
2PL -0.73 0.20 (p < ε) 0.66 0.63
GPVLM -1.39 0.87 (p < ε) 0.71 0.66
KS IRT -0.62 0.10 (p ≈ 10ε) 0.68 0.68

istic curve (AUC) for the the held out observations using

the trained model; we repeated this procedure 20 times.

The mean log likelihood for the held out observations is

reported in Table 1.

For the NPI dataset, the GPIRT outperformed the com-

parison models, with a higher mean log likelihood than

any model in the comparison set. A paired t-test con-

firms these are significant improvements in model fit, and

is also confirmed by comparing the mean accuracy and

AUC across the 20 simulations.

5.3 ACTIVE LEARNING

We also used these datasets to evaluate our adaptive test-

ing procedure. For the NPI dataset, we compare our pro-

cedure to a published reduced-form NPI battery (Ames

et al., 2006). The reduced-form battery contains 16 ques-

tions deemed by experts to be a suitable subset.

Table 2: RMSE for 1000 responses to 16 items

CAT Fixed Random

RMSE 0.257 0.338 0.321
Improvement vs. random 20% −5.5% —

For 1,000 randomly selected respondents that were not

included in our initial training sample, we estimated their

latent traits using their actual responses to the full 40-

item battery and our estimated GPIRT IRFs. For each

respondent, we then estimated their latent trait using the

16-item reduced-form battery from Ames et al. (2006),

16 items chosen using our adaptive testing scheme, and

16 randomly selected items. We calculated the root mean

squared error (RMSE) of these batteries’ θ estimates

with the full-battery estimates; the results are presented

in Table 2. Notably the RMSE for the adaptive bat-

tery gives a 20% improvement over randomly selected

items, whereas the reduced-form battery actually per-

forms worse than random selection.

6 CONCLUSION

In this article we provided a fully Bayesian nonparamet-

ric IRT model that allows for the simultaneous estima-

tion of ability parameters and IRFs while allowing for

high levels of flexibility in the IRF shapes. We showed

that this model performs better than standard parametric

models in terms of estimating unusual IRFs, predictive



accuracy, and in an active learning setting.

Trivial extensions include allowing for multiple dimen-

sions and categorical response functions. Additionally,

we could avoid the independence assumption on the

items and couple them together via a multi-task ker-

nel. For example if the items were parameterized by

some vector x we could take a product kernel such

as K(x, x′)K(θ, θ′). While a strength of the method

is avoiding potentially unfounded assumptions about

monotonicity, saturation, and symmetry, we could im-

pose monotonicity via EP to impose derivative con-

straints (e.g. Riihimäki & Vehtari, 2010), saturation via

a slightly modified likelihood, and symmetry via an ap-

propriately modified kernel (e.g. it would suffice to take

K(|x− c|, |x′ − c|), where K is a desired base kernel, to

impose symmetry around c). Other potential extensions

are to include feature vectors in the learning kernel to al-

low, for instance, smooth changes in ability over time or

differential item functioning for subgroups.
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