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Abstract

Single-photon avalanche diodes (SPADs) are a rapidly
developing image sensing technology with extreme low-
light sensitivity and picosecond timing resolution. These
unique capabilities have enabled SPADs to be used in
applications like LiDAR, non-line-of-sight imaging and
fluorescence microscopy that require imaging in photon-
starved scenarios. In this work we harness these capa-
bilities for dealing with motion blur in a passive imaging
setting in low illumination conditions. Our key insight
is that the data captured by a SPAD array camera can
be represented as a 3D spatio-temporal tensor of photon
detection events which can be integrated along arbitrary
spatio-temporal trajectories with dynamically varying in-
tegration windows, depending on scene motion. We pro-
pose an algorithm that estimates pixel motion from pho-
ton timestamp data and dynamically adapts the integra-
tion windows to minimize motion blur. Our simulation
results show the applicability of this algorithm to a vari-
ety of motion profiles including translation, rotation and
local object motion. We also demonstrate the real-world
feasibility of our method on data captured using a 32 x 32
SPAD camera.

1 Introduction

When imaging dynamic scenes with a conventional cam-
era, the finite exposure time of the camera sensor results
in motion blur. This blur can be due to motion in the scene
or motion of the camera. One solution to this problem is
to simply lower the exposure time of the camera. How-
ever, this leads to noisy images, especially in low light
conditions. In this paper we propose a technique to ad-
dress the fundamental trade-off between noise and motion

blur due to scene motion during image capture. We focus
on the challenging scenario of capturing images in low
light, with fast moving objects. Our method relies on the
strengths of rapidly emerging single-photon sensors such
as single-photon avalanche diodes (SPADs).

Light is fundamentally discrete and can be measured in
terms of photons. Conventional camera pixels measure
brightness by first converting the incident photon energy
into an analog quantity (e.g. photocurrent, or charge) that
is then measured and digitized. When imaging in low
light levels, much of the information present in the in-
cident photons is lost due to electronic noise inherent in
the analog-to-digital conversion and readout process. Un-
like conventional image sensor pixels that require 100’s-
1000’s of photons to produce a meaningful signal, SPADs
are sensitive down to individual photons. A SPAD pixel
captures these photons at an instant in time, with a time
resolution of hundreds of picoseconds. Each photon de-
tection can therefore be seen as an instantaneous event,
free from any motion blur. Recently, single photon sen-
sors have been shown to be useful when imaging in low
light, or equivalently, imaging at high frame rates where
each image frame is photon-starved [22].

The data captured by a SPAD camera is thus quite dif-
ferent than a conventional camera: in addition to the two
spatial dimensions, we also capture data on a high resolu-
tion time axis resulting in a 3D spatio-temporal tensor of
photon detection events. We exploit this novel data for-
mat to deal with the noise-blur trade-off. Our key obser-
vation is that the photon timestamps can be combined dy-
namically, across space and time, when estimating scene
brightness. If the scene motion is known a priori, photons
can be accumulated along corresponding spatio-temporal
trajectories to create an image with no motion blur. A
conventional camera does not have this property because
at capture time high frequency components are lost [24].
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Figure 1: Overview of our adaptive motion deblurring
method. (a) The photon frames captured from a rotat-
ing fan contain timestamps for the first detected photon
in each frame. Note the smaller value of timestamps in
brighter regions and vice versa. (b) Flux changepoints ob-
tained after changepoint detection and flux estimation at
pixel location highlighted in cyan in (a). Note the rapidly
varying photon timestamps due to heavy-tailed nature of
the raw timestamp data. (c) A changepoint video (CPV)
maintains sharp edges while providing motion cues to es-
timate inter-frame motion trajectories; the temporal flux
profile of the highlighted pixel in this CPV is the piece-
wise constant function shown in (b). (d) Integrating pho-
tons along estimated spatio-temporal motion trajectories
generates a sharp image with high signal-to-noise ratio.

So even with known scene motion, image deblurring is an
ill-posed problem.

Our method relies on dynamically changing exposure
times, where each pixel can have its own set of exposure
times. An overview of our approach is shown in Fig. [T}
We propose using statistical changepoint detection to in-
fer points in time where the photon flux at a given pixel
changes from one steady state rate to another. This al-
lows us to choose exposure times that adapt to scene mo-
tion. Changepoints allow us to track high contrast edges
in the scene and align “high frequency” motion details
across multiple image frames. We show that for the case
of global motion (e.g., rotation) we can track the varying

motion speeds of different scene pixels and combine pho-
tons spatially to create deblurred images. We also show
that for the case of local scene motion, our method can
provide robust estimates of flux changepoints around the
edges of the moving objects that improves deblurring re-
sults obtained from downstream motion alignment and in-
tegration.

The locations of changepoints can be thought of as
a spike-train generated by a neuromorphic event camera
[9], but with three key differences: First, unlike an event
camera, our method preserves original intensity informa-
tion for each pixel. Second, the numbers and locations of
events, chosen by our algorithm, adapt to each pixel, with-
out the need for a hard-coded change threshold. Third, di-
rect photon measurements are inherently more sensitive,
less noisy, and have a higher time resolution than conven-
tional cameras. Current cameras create an analog approx-
imation of the quantized photon stream (usually a charge
level in a capacitor) and then measure and digitize that
analog quantity. This process introduces noise and does
not take advantage of the inherent quantized properties of
the photons. We therefore expect photon counting meth-
ods to have higher sensitivity, accuracy, and temporal res-
olution than analog cameras, when imaging in low light
scenarios.

Single-Photon Sensitive Cameras for Machine Vision?
Currently, single-photon sensitive image sensors are quite
limited in their spatial resolution compared to con-
ventional complementary metal-oxide—semiconductor
(CMOS) and charge-coupled device (CCD) image sen-
sors. However, single-photon image sensing is a rapidly
developing field; recent work has demonstrated the feasi-
bility of making megapixel resolution single-photon sen-
sitive camera arrays [23| [12]]. Moreover, silicon SPAD
arrays are amenable to manufacturing at scale using the
same photolithographic fabrication techniques as conven-
tional CMOS image sensors. This means that many of the
foundries producing our cellphone camera sensors today
could also make SPAD array sensors at similar cost. Other
current limitations of SPAD sensors are the small fraction
of chip area sensitive to light (fill factor) resulting from
the large amount of additional circuitry that is required
in each pixel. Emerging 3D stacking technologies could
alleviate this problem by placing the circuitry behind the
pixel.



Limitations Our experimental demonstration uses a first
generation commercial SPAD array that is limited to a
32x32 pixel spatial resolution. More recently 256256
pixel commercial arrays have become available [5]. Al-
though current SPAD cameras cannot compete with the
image quality of commercial CMOS and CCD cameras,
with the rapid development of SPAD array technology, we
envision our techniques could be applied to future arrays
with spatial resolution similar to that of existing CMOS
cameras.

Contributions:

e We introduce the notion of flux changepoints; these
can be estimated using an off-the-shelf statistical
changepoint detection algorithm.

e We show that flux changepoints enable inter-frame
motion estimation while preserving edge details
when imaging in low light and at high speed.

e We show experimental demonstration using data ac-
quired from a commercially available SPAD camera.

2 Related Work

Motion Deblurring Motion deblurring for existing cam-
eras can be performed using blind deconvolution [21]].
Adding a fast shutter (“flutter shutter””) sequence can aid
this deconvolution task [24]. We push the idea of a flut-
tered shutter to the extreme limit of individual photons:
our image frames consist of individual photon timestamps
allowing dynamic adaptation of sub-exposure times for
the shutter function. Our deblurring method is inspired by
burst photography pipelines used for conventional CMOS
cameras. Burst photography relies on combining frames
captured with short exposure times [16l], resulting in large
amounts of data that suffer from added readout noise.
Moreover, conventional motion deblurring methods give
optimal performance when the exposure time is matched
to the true motion speed which is not known a priori.

Event-based Vision Sensors Event cameras directly cap-
ture temporal changes in intensity instead of capturing
scene brightness [9]. Although it is possible to create
intensity images from event data in post-processing [3l],
our method natively captures scene intensities at single-
photon resolution: the “events” in our sensing modality

are individual photons. The notion of using photon de-
tections as “spiking events” has also been explored in the
context of biologically inspired vision sensors [30,1]. We
derive flux changepoints from the high-resolution photon
timestamp data. Due to the single-photon sensitivity, our
method enjoys lower noise in low light conditions, and
pixel-level adaptivity for flux changepoint estimation.

Deblurring Methods for Quanta Image Sensors There
are two main single-photon detection technologies for
passive imaging: SPADs [20, [17] and quanta image sen-
sors (QIS) [8]. Although our proof-of-concept uses a
SPAD camera, our idea of adaptively varying exposure
times can be applied to QIS data as well. Existing mo-
tion deblurring algorithms for QIS [13} [14} 22] rely on
a fixed integration window to sum the binary photon
frames. However, the initial step of picking the size of
this window requires a priori knowledge about the motion
speed and scene brightness. Our technique is therefore
complementary to existing motion deblurring algorithms.
For example, our method can be considered as a gener-
alization of the method in [[18]] which uses two different
window sizes. Although we use a classical correlation-
based method for motion alignment, the sequence of flux
changepoints generated using our method can be used
with state-of-the-art align-and-merge algorithms [22] in-
stead.

3 SPAD Image Formation Model

SPADs are most commonly used in synchronization with
an active light source such as a pulsed laser for applica-
tions including LiDAR and fluorescence microscopy. In
contrast, here we operate the SPAD passively and only
collect ambient photons from the scene. In this section,
we describe the imaging model for a single SPAD pixel
collecting light from a fixed scene point whose brightness
may vary as a function of time due to camera or scene
motion.

3.1 Pixelwise Photon Flux Estimator

Our imaging model assumes a frame-based readout mech-
anism: each SPAD pixel in a photon frame stores at most
one timestamp of the first captured ambient photon. This



is depicted in Fig. [T[a). Photon frames are read out syn-
chronously from the entire SPAD array; the data can be
read out quite rapidly allowing photon frame rates of 100s
of kHz (frame times on the order of a few microseconds).

Let Ny denote the number of photon frames, and Ty
be the frame period. So the total exposure time is given
by T' = NyTpr. We now focus on a specific pixel in the
SPAD array. In the jth photon frame (1 < i < Nyy), the
output of this pixel is tagged with a photon arrival times-
tamp ¢, relative to the start of that frame[f] If no photons
are detected during a photon frame, we assume t; = T}y.

Photon arrivals at a SPAD pixel can be modeled as a
Poisson process [[15]. It is possible to estimate the inten-
sity of this process (i.e. the perceived brightness at the
pixel) from the sequence of photon arrival times [20, [17]].
The maximum likelihood brightness estimator ® for the
true photon flux ® is given by [20]:
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where ¢ is the sensor’s photon detection efficiency and 1
denotes a binary indicator variable.

This equation assumes that the pixel intensity does not
change for the exposure time 7'. The assumption is vi-
olated in case of scene motion. If we can determine the
temporal locations of intensity changes, we can use still
use Eq. (1) to estimate a time-varying intensity profile for
each pixel. In the next section we introduce the idea of
flux changepoints and methods to locate them with pho-
ton timestamps.

3.2 Flux Changepoints

Photon flux at a given pixel may change over time in
case of scene motion. This makes it challenging to
choose pixel exposure times a priori: ideally, for pixels
with rapidly varying brightness, we should use a shorter
exposure time and vice versa. We propose an algo-
rithm that dynamically adapts to brightness variations and
chooses time-varying exposure times on a per pixel basis.
Our method relies on locating temporal change locations

*In practice, due to random timing jitter and finite resolution of tim-
ing electronics, this timestamp is stored as a discrete fixed-point value.
The SPAD camera used in our experiments has a 250 picosecond dis-
cretization.

where the pixel’s photon flux has a large change: we call
these flux changepoints.

In general, each pixel in the array can have different
numbers and locations of flux changepoints. For pixels
that maintain constant brightness over the entire capture
period (e.g. pixels in a static background), there will be no
flux changepoints detected and we can integrate photons
over the entire capture time 7. For pixels with motion,
we assume that the intensity between flux changepoints
is constant, and we call these regions virtual exposures.
Photons in each virtual exposure are aggregated to create
a piecewise constant flux estimate. The length of each vir-
tual exposure will depend on how quickly the local pixel
brightness varies over time, which in turn, depends on the
true motion speed.

An example is shown in Fig.[T[b). Note that the photon
timestamps are rapidly varying and extremely noisy due
to a heavy-tailed exponential distribution. Our change-
point detection algorithm detects flux changepoints (red
arrows) and estimates a piecewise constant flux waveform
for the pixel (blue plot). In the example shown, five dif-
ferent flux levels are detected.

3.2.1 Changepoint Detection

Detecting changepoints is a well studied problem in the
statistics literature [4, 26]. The goal is to split a time-
series of measurements into regions with similar statisti-
cal properties. Here, our time series is a sequence of pho-
ton timestamps at a pixel location, and we would like to
find regions where the timestamps have the same mean ar-
rival rate, i.e., the photon flux during this time is roughly
constant.

Using the sequence of photon arrival times {tz}fV:p'l, we
wish to find a subset {¢;,,...,t;, } representing the flux
changepoints. For convenience, we let the first and the last
flux changepoint be the first and the last photons captured
by the pixel (I := 1 and Iz = Npy).

Offline changepoint detection is non-causal, i.e., it uses
the full sequence of photon timestamps for a pixel to es-
timate flux changepoints at that pixel. In Suppl. Note[S.]
we describe an online changepoint detection method that
can be used for real-time applications.

For a sequence of photon timestamps, we solve the fol-
lowing optimization problem [29] (see Suppl. Note|S.1):
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Figure 2: Contrast-Speed Trade-off. We simulate a sin-
gle SPAD pixel measuring a pulse-shaped photon flux sig-
nal to analyze the contrast-speed trade-off when detection
motion. Our method (a) based on PELT changepoint de-
tection adapts to a wider range of contrast and speed com-
binations than the comparison method (b) from Gyongy et
al. [14].
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where &)l is the photon flux estimate given by Eq. H
using only the subset of photons between times ¢;, and
t,,,. Here X is the penalty term that prevents overfit-
ting by penalizing the number of flux changepoints. For
larger test images we use the BOTTOMUP algorithm [28]
which is approximate but has a faster run time. For lower
resolution images we use the Pruned Exact Linear Time
(PELT) algorithm [19] which gives an exact solution but
runs slower. See Suppl. Section [S.4] for results using the
BoTtTOMUP algorithm.

Flux Changepoints for QIS Data The cost function in
Eq. (2) applies to photon timestamp data, but the same
idea of adaptive flux changepoint detection can be used
with QIS photon count data as well. A modified cost func-
tion that uses photon counts (0 or 1) is derived in Suppl.

Note[S.1.21

3.2.2 Single-Pixel Simulations

There is a trade-off between contrast and motion speed
when trying to detect changepoints. For example, it is
harder to detect the flux change with a fast moving object
with a lower contrast with respect to its background. To
evaluate this trade-off, we simulate a single SPAD pixel
for 800 photon frames with a time varying flux signal with
a randomly placed pulse wave. We use the pulse width as
a proxy for motion speed, and vary the contrast by varying
the ratio of the pulse height. We measure the absolute dif-
ference between the number of changepoints detected by
our algorithm and the true number of flux changes (which
is exactly 2 for a single pulse). We call this “annotation
error.”

Fig. [2| shows the annotation errors for different val-
ues of contrast and motion speeds for two different al-
gorithms. For each set of contrasts and motion speeds
we display the average number of annotation errors over
120 simulation runs. We use the PELT algorithm to de-
tect flux changepoints. For comparison, we also show the
fixed windowing approach used by Gyongy et al. [14] 2].
The changepoint detection algorithm is able to adapt to a
wider range of contrasts and speeds.

4 Pixel-Adaptive Deblurring

4.1 Changepoint Video

Using methods described in the previous section we lo-
cate flux changepoints for each pixel in the image. The
changepoints for each pixel represent when a new virtual
exposure starts and stops; photons within each virtual ex-
posure can be used to estimate photon flux using Eq. (I).
We call this collection of piecewise constant functions
over all pixels in the array the changepoint video (CPV).
The CPV does not have an inherent frame rate; since
each pixel has a continuous time piecewise constant func-
tion, it can be sampled at arbitrarily spaced time instants
in [0, T'] to obtain any desired frame rate. We sample the
CPV at non-uniform time intervals using the following
criterion. Starting with the initial frame sampled at ¢ = 0,
we sample the subsequent frames at instants when at least
1% of the pixel values have switched to a new photon
flux. This leads to a variable frame rate CPV that adapts
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Figure 3: Changepoint video deblurring. Photon timestamps for each pixel location in the 3D timestamp tensor are
analyzed for changepoints (a) to generate a changepoint video. Pixels may have different numbers of changepoints, and
hence, dynamically changing frame-rate over time. We estimate motion between successive frames of the changepoint
video (b) and estimate motion parameters. Finally, using this motion estimate, we sum photons (c) from the photon
frames along motion trajectories resulting in a deblurred video. Frames in the deblurred video are registered and

summed (d) to obtain the final deblurred image. (Original images from Freelmages.com)

to changes in scene velocity: scenes with fast moving ob-
jects will have a higher average CPV frame rate.

The CPV preserves large brightness changes in a scene.
For example, the edges of a bright object moving across
a dark background remain sharp. However, finer texture
details within an object may appear blurred.

4.2 Spatio-Temporal Motion Integration

We use global motion cues from the CPV and then com-
bine the motion estimates with the photon frames to cre-
ate a deblurred video. The overall flowchart is shown in
Fig.[3]

We use a correlation-based image registration algo-
rithm to find the motion between consecutive frames in
the CPV. For each location p = [z,y] in the i CPV
frame, we assume it maps to a location p’ in (7 + 1)%
CPV frame. We assume that the mapping is a linear trans-
formation:

3

We constrain A to represent planar Euclidean motion (ro-
tation and translation). Let 6 be the amount of rotation

Ap=7p'.

centered around a point [rg,r,] and let [, 7,] be the
translation vector. Then A has the form:

cosf sinf ry(l—cos@)+r,sinb+1,
A=|—sinf cos® ry(l—cosb)—rysinf+r,
0 0 1

4)
We apply the enhanced correlation coefficient maximiza-
tion algorithm [7] to estimate the transformation matrix
A for consecutive pairs of CPV frames i — i + 1. A
sequence of frame-to-frame linear transformations gen-
erates arbitrarily shaped global motion trajectories. We
aggregate the original photon frame data along these esti-
mated spatio-temporal motion trajectories.

We assume that the rotation center, [r, 1], is the mid-
dle of the image and a change in rotation center can be
modeled as a translation. We solve for 6, 7, and 7, which
we linearly interpolate. Then using the interpolated mo-
tion parameters and Eq. (3), we align all photon frames
corresponding to the time interval between CPV frames
1 — 4 + 1 and sum these frames to get a photon flux im-
age by using Eq. (I)) at each pixel. This generates a motion
deblurred video with the same frame rate as the CPV, but



with finer textures preserved as shown in Fig. [3]

If the final goal is to obtain a single deblurred image,
we repeat the steps described above on consecutive frames
in the deblurred video, each time decreasing the frame
rate by a factor of 2, until eventually we get a single im-
age. This allows us to progressively combine photons
along spatial-temporal motion trajectories to increase the
overall signal to noise ratio (SNR) and also preserve high
frequency details that were lost in the CPV.

Our method fails when motion becomes too large to
properly align images, especially at low resolutions. It can
also fail when not many flux changepoints are detected,
this will occur mainly due to a lack of photons per pixel of
movement. In the worst case, if not enough changepoints
are detected, the result of the algorithm will look similar
to a single long exposure image.

The method of aligning and adding photon frames
is similar to contrast maximization algorithms used for
event cameras [10]. However, unlike event camera data,
our method relies on the CPV which contains both in-
tensity and flux changepoints derived from single-photon
timestamps.

Handling Multiple Moving Objects To handle multiple
moving objects on a static background, we implement a
method similar to Gyogny et al. [[14] and combine it with
our CPV method. We cluster the changepoints for dif-
ferent objects using a density-based spatial clustering al-
gorithm (DBSCAN) [6]. For each cluster, we then cre-
ate a bounding box, isolating different moving objects.
We then apply our motion deblurring algorithm on each
object individually, before stitching together each object
with the areas that are not moving in the CPV. The cluster-
ing step also denoises by rejecting flux changepoints not
belonging to a cluster.

4.3 Simulations

Starting with a ground truth high resolution, high frame
rate video, we scale the video frames to units of pho-
tons per second and generate photon frames using expo-
nentially distributed arrival times. We model a photon
frame readout SPAD array with 8000 bins and bin width
of 256 ps.

We first simulate a rotating orange by applying succes-
sive known rigid transformations to an image and gener-

ating SPAD data by scaling the transformed images be-
tween 10* and 10® photons per second. We rotate the
image by 0.1° for every 10 generated photons for a total
of 1000 photons. We use the BOTTOMUP algorithm [29]
with A = 5 for the changepoint detection step. The results
are shown in Fig.[{a). Our method captures sharp details
on the orange skin while maintaining high quality.

Fig. Ab) shows quantitative comparisons of SNR for
different deblurring methods. The conventional approach
to deblur photon data uses a fixed frame rate; we use
two different window lengths for comparison. We com-
pute the SNR of the deblurred imaging using the ¢2 (root-
mean-squared) distance from the ground truth to and re-
peat this over a range of photon flux levels. We keep
the total number of photons captured approximately con-
stant by extending the capture time for darker flux levels.
Our method dynamically adapts to motion and lighting so
we are able to reconstruct with high SNR even in pho-
ton starved regimes where the SNR of the fixed window
methods degrades rapidly.

To simulate multi-object motion, we captured a ground
truth video of two toy cars rolling down a ramp at dif-
ferent speeds. The video frame pixels are then scaled
between 10 and 10° photons per second and a total of
690 photon frames are generated. A bright slow moving
car has a contrast of 1.2 with respect to the background,
and moves 48 pixels over the duration of video. The dark
car has a contrast of 5.0 with the background, and moves
143 pixels. We use the PELT algorithm [19] with A = 6
for the changepoint detection step. We use € = 7.5 and
MinPts = 40 in the DBSCAN clustering algorithm. The
resulting deblurred images are shown in Fig.[5] Observe
that the method of [14]] blurs out the low contrast white
car in the back. Our method assigns dynamically chang-
ing integration windows extracted from the CPV to suc-
cessfully recover both cars simultaneously with negligible
motion blur. The changepoint clusters used for segment-
ing cars from the static background in our method are are
shown in Fig.[6]

S Experiments
We validate our method using experimental data cap-

tured using a 32x32 InGaAs SPAD array from Prince-
ton Lightwave Inc., USA. The pixels are sensitive to near



infrared and shortwave infrared (900 nm—1.6 um wave-
lengths). The SPAD array operates in a frame readout
mode at 50,000 photon frames per second. Each photon
frame exposure window is 2 ps and sub-divided into 8000
bins, giving a temporal resolution of 250 ps per bin [27].

For this low resolution experimental data, we zero-
order hold upsample both the timestamp frames and the
CPV before step (b) in Fig. [3]in the spatial dimensions.
We then use upsampled photon frames for step (c) result-
ing in sharper images. Upsampling before motion integra-
tion allows photons that are captured in the same pixel to
land in a larger space during the motion integration step.

Fig. [7| shows results from two different scenes. The
“fan” scene shows the performance of our algorithm with
fast rotatiorﬂ The optimal exposure time in this case de-
pends on the rotation speed. Our method preserves the
details of the fan blades including the small black square
patch on one of the fan blades. The “checkerboard” scene
shows deblurring result with purely horizontal global mo-
tion. Note that our method is able to resolve details such
as the outlines of the squares on the checkerboard.

The last row in Fig. [/| shows the upsampled results.
Benefits of upsampling are restricted to the direction of
motion. The “fan” dataset is upsampled 9x compared to
the original resolution. The “checkerboard” dataset is up-
sampled 4 x; this is because the motion is limited to the
horizontal dimension. Note that some of the details in
the vertical edges are sharp, but horizontal edges remain
blurry.

6 Discussion and Future Work

Euclidean Motion Assumption In the case of camera
shake, most of the motion will come from small rotations
in the camera that result in 2D translations and rotations in
the image frames. The short distance translations of shak-
ing camera would cause translations in the frames that are
similar in nature, but smaller in magnitude.

Translation of the camera over larger distances would
result in parallax while motion within the scene can re-
sult in more complex changes. In these cases our model
captures scene changes only approximately. It applies to

TThe background behind the fan is covered with absorbing black
felt material. This allows us to treat the data as having global rotation,
because there is hardly any light captured from the background.

frame to frame motion over short time-scales and limited
to regions in the scene. Ideas for extending our model to
deal with larger motion will be the subject of future work.

Dealing with Local Motion The techniques presented in
this paper assume multiple moving objects exhibiting eu-
clidean motion, with no occlusions. We can extend our
approach to more complex motions. We can use a patch-
wise alignment and merging methods to deal with more
complex local motion and occlusions [[16} 22].
Deblurring algorithms developed for event camera data
can be adapted to SPAD data, because the flux change-
points represent changes in brightness similar to the out-
put of event cameras. Current event camera algorithms
are able to recover complex motion in scenes [10, 25],
and they could be improved with a fusion based approach
where image intensity information is also available [11].

Data Compression With increasing number of pixels,
processing photon frames with high spatio-temporal reso-
lution will be quite resource intensive. Our online change-
point method takes some initial steps towards a potential
real-time implementation. The CPV can be used for video
compression with variable frame rate: by tuning the reg-
ularization parameter of the changepoint detection algo-
rithm a tradeoff between image fidelity and data rate can
be achieved.
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mark, manufacturer, or otherwise does not necessarily constitute or im-
ply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

References

[1] S. Afshar, T.J. Hamilton, L. Davis, A. Van Schaik, and D.
Delic. Event-based processing of single photon avalanche



(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

diode sensors. IEEE Sensors Journal, pages 1-1, 2020.
Alan Agresti and Brent A. Coull. Approximate is better
than “exact” for interval estimation of binomial propor-
tions. The American Statistician, 52(2):119-126, 1998.
Patrick Bardow, Andrew J Davison, and Stefan Leuteneg-
ger. Simultaneous optical flow and intensity estimation
from an event camera. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages
884-892, 2016.

Michele Basseville, Igor V Nikiforov, et al. Detection
of abrupt changes: theory and application, volume 104.
Prentice Hall Englewood Cliffs, 1993.

Vinit Dhulla, Sapna S Mukherjee, Adam O Lee, Nanditha
Dissanayake, Booshik Ryu, and Charles Myers. 256 x 256
dual-mode cmos spad image sensor. In Advanced Photon
Counting Techniques XIII, volume 10978, page 109780Q.
International Society for Optics and Photonics, 2019.
Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In Proceedings of
the Second International Conference on Knowledge Dis-
covery and Data Mining, KDD’96, page 226-231. AAAI
Press, 1996.

Georgios D Evangelidis and Emmanouil Z Psarakis. Para-
metric image alignment using enhanced correlation coeffi-
cient maximization. /IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 30(10):1858-1865, 2008.
Eric R Fossum, Jiaju Ma, Saleh Masoodian, Leo Anzagira,
and Rachel Zizza. The quanta image sensor: Every photon
counts. Sensors, 16(8):1260, 2016.

G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B.
Taba, A. Censi, S. Leutenegger, A. Davison, J. Conradt, K.
Daniilidis, and D. Scaramuzza. Event-based vision: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1-1, 2020.

Guillermo Gallego, Henri Rebecq, and Davide Scara-
muzza. A unifying contrast maximization framework for
event cameras, with applications to motion, depth, and op-
tical flow estimation. Proceedings / CVPR, IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, 06 2018.

Daniel Gehrig, Henri Rebecq, Guillermo Gallego, and Da-
vide Scaramuzza. EKLT: Asynchronous, photometric fea-
ture tracking using events and frames. Int. J. Comput. Vis.,
2019.

Abhiram Gnanasambandam, Omar Elgendy, Jiaju Ma,
and Stanley H Chan. Megapixel photon-counting color
imaging using quanta image sensor. Optics express,
27(12):17298-17310, 2019.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

I. Gyongy, T. A. Abbas, N. Dutton, and R. Henderson.
Object tracking and reconstruction with a quanta image
sensor. In Proceedings of the International Image Sensor
Workshop, 2017.

Istvan Gyongy, Neale AW Dutton, and Robert K Hender-
son. Single-photon tracking for high-speed vision. Sen-
sors, 18(2):323, 2018.

Samuel W. Hasinoff. Photon, Poisson Noise, pages 608—
610. Springer US, Boston, MA, 2014.

Samuel W Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew
Adams, Jonathan T Barron, Florian Kainz, Jiawen Chen,
and Marc Levoy. Burst photography for high dynamic
range and low-light imaging on mobile cameras. ACM
Transactions on Graphics (TOG), 35(6):1-12, 2016.

Atul Ingle, Andreas Velten, and Mohit Gupta. High flux
passive imaging with single-photon sensors. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 6760-6769, 2019.

Gyongy Istvan, Dutton Neale, Luca Parmesan, Davies
Amy, Saleeb Rebecca, Duncan Rory, Rickman Colin, Dal-
garno Paul, and Robert K Henderson. Bit-plane processing
techniques for low-light, high speed imaging with a spad-
based qis. In International Image Sensor Workshop, pages
1-4, 2015.

R. Killick, P. Fearnhead, and I. A. Eckley. Optimal
detection of changepoints with a linear computational
cost. Journal of the American Statistical Association,
107(500):1590-1598, 2012.

Martin Laurenzis. Single photon range, intensity and pho-
ton flux imaging with kilohertz frame rate and high dy-
namic range. Optics Express, 27(26):38391-38403, 2019.
Anat Levin, Peter Sand, Taeg Sang Cho, Frédo Durand,
and William T Freeman. Motion-invariant photography.
ACM Transactions on Graphics (TOG), 27(3):1-9, 2008.
Sizhuo Ma, Shantanu Gupta, Arin C. Ulku, Claudio Brus-
chini, Edoardo Charbon, and Mohit Gupta. Quanta burst
photography. ACM Trans. Graph., 39(4), July 2020.
Kazuhiro Morimoto, Andrei Ardelean, Ming-Lo Wu,
Arin Can Ulku, Ivan Michel Antolovic, Claudio Bruschini,
and Edoardo Charbon. Megapixel time-gated spad im-
age sensor for 2d and 3d imaging applications. Optica,
7(4):346-354, 2020.

Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded
exposure photography: motion deblurring using fluttered
shutter. In ACM SIGGRAPH 2006 Papers, pages 795-804.
ACM, 2006.

Timo Stoffregen, Guillermo Gallego, Tom Drummond,
Lindsay Kleeman, and Davide Scaramuzza. Event-based



[26]

[27]

(28]

[29]

(30]

motion segmentation by motion compensation. In Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, pages 7244-7253, 2019.

Alexander Tartakovsky, Igor Nikiforov, and Michele Bas-
seville.  Sequential analysis: Hypothesis testing and
changepoint detection. CRC Press, 2014.

Princeton Lightwave/AMS Technologies. 32 x
32  Geiger-mode Avalanche Photodiode (GmAPD)
Camera, 2012 (accessed June 20, 2020).

http://www.amstechnologies.com/
fileadmin/amsmedia/downloads/4796_
gmapdcameradatasheet .pdf.

C. Truong. ruptures Python Package, 2017 (accessed
June 20, 2020). https://ctruong.perso.
math.cnrs.fr/ruptures—docs/build/html/
index.htmll

Charles Truong, Laurent Oudre, and Nicolas Vayatis. Se-
lective review of offline change point detection methods.
Signal Processing, 167:107299, 2020.

Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, and
Yonghong Tian. Retina-like visual image reconstruction
via spiking neural model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1438-1446, 2020.

(a) Global Rotation
_ Ground Truth

Long Exposure

Proposed

) "
a 154
=
e~
101
% ----- Theoretical SNR
—— Variable # photons (Proposed)
5 —— 25 photon frames \ Fixed window
—— 100 photon frames / (Conventional)
O 4
10° 102 10" 10°
#photons per pixel
Figure 4: Comparison of SNR for different deblur-

ring window sizes. (a) A ground truth video of a ro-
tating orange used for creating simulated SPAD photon
frames. A long exposure image is quite blurry while a
short exposure image is very noisy. Our deblurring algo-
rithm strikes a balance between noise and blur to get a
sharp high-quality image. (b) By varying the brightness
of the orange scene, we compare the simulated SNR us-
ing our method compared to a conventional method with
fixed windows. Notice the proposed method stays above
20 dB at all photon rates, while the fixed photon window
SNRs decrease in the low photon count regime. (Original
image from Freelmages.com)


http://www.amstechnologies.com/fileadmin/amsmedia/downloads/4796_gmapdcameradatasheet.pdf
http://www.amstechnologies.com/fileadmin/amsmedia/downloads/4796_gmapdcameradatasheet.pdf
http://www.amstechnologies.com/fileadmin/amsmedia/downloads/4796_gmapdcameradatasheet.pdf
https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/index.html
https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/index.html
https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/index.html

Ground Truth Frame Short Exposure Long Exposure

N B etg e e

Gyongy et al. 2018 CPV Frame (t = 0.1ms) Proposed
s g G R B 1 s oty CEL

Figure 5: Simulated Motion Deblurring for Multiple Moving Objects. We simulate SPAD data from video of
toy cars, a fast moving black car and slow moving white car. (Top row) A sample frame from the ground truth frame
sequence is shown. The short and long exposure images show the results of using integrating the first 75 and 250
photon frames, respectively. Notice that the short exposure preserves the black car while the white car is quite noisy,
on the other hand, the long average blurs the black car but preserves details of the white one better. (Bottom row) The
method of Gyogny et al. [14]], fails to reconstruct the white car (blue arrow) due to its low contrast. A sample frame
from our changepoint video shows both moving cars. Finally, our deblurring algorithm is able to reconstruct both the
black and white car with negligible motion blur.



Clustered Flux Changepoints

Figure 6: Clustered Flux Changepoints Two clusters
of flux changepoints are detected using frames from the
changepoint video for the toy car scene. These change-
point clusters are used for segmenting the moving cars
from the static background.
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Figure 7: Experimental Results. The first row shows a single raw data frame from the photon timestamp tensor; each
photon has an associated timestamp with a 250 ps bin resolution. Integration over a long exposure (2 ms for the fan
and 0.2 ms for checkerboard scene) this gives a low noise but blurry result. Using a short exposure time (40 us for
both scenes) produces very noisy results. The second row shows a sequence of three frames from the final deblurred
video. The third row shows the result with upsampling. Note that in the checkerboard scene due to purely horizontal

motion, some vertical edges (yellow arrow) are sharper but not the horizontal edges (cyan arrow). See supplementary
video results.
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S.1 Flux Changepoint Detection

S.1.1 Offline Algorithm: Cost Function Derivation

Consider a set of photon time stamp measurements {z;}% ;. Here each z; is a valid measurement, and in the frame-
readout capture mode, described in the main text, this is different than the ¢;’s. If no photon is detected in a frame we
add the frame length to the next detected photon. We do this so each x; will be i.i.d. and distributed exponentially.
We again wish to find a set of change points, {z;,,...,2;, }. In general, the optimization problem for changepoint
detection is given by Eq. (P2) in [29]:

(IHE 1—argm1nz livdiy1) AL (S1)

b, de 55
The summation term represents the likelihood that each segment in between changepoints come from the same
underlying distribution, while the regularization term is needed because the number of changepoints are not known a
priori. For our case ¢(-) is the negative log likelihood for a set of exponentially distributed measurements. Let f(x)
be the exponential density function with rate parameter ®, and let <f>b be the maximum likelihood estimate for ® for

the set of measurements {x;, ...z, }. Note that the maximum likelihood estimator maximizes the log likelihood.
To derive ¢(-), we begin with Eq. (C1) from [29]:
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where the last line comes from the fact that <I> = (zl:l*llil) Plugging Eq. (S6) into Eq. (S1)), the last term sums to a
j=1; Tij

constant N and can be dropped from the optimization. “Then we convert to the direct measurments t; by expanding
out where no photons where found to get Eq. (2).



S.1.2 QIS: Offline Cost Function

A quanta image sensor (QIS) is another sensor type capable of measuring single photons. Unlike a SPAD, the QIS
senor only gives a binary output for each photon-frame corresponding to whether or not a photon was detected. Note
that we can convert our experimental SPAD data to QIS data by stripping the SPAD data of the timing information.
Let n; = 0 if the i** QIS photon-frame detects no photons and n; = 1 otherwise. Let 73, be the temporal bin width
for each photon-frame. Suppose the jot is exposed to a flux of @, then the probability of detecting a photon during
photon-frame 1 is:

p=Pn;=1)=1- e 9% (87

Where q is the quantum efficiency. We can model measuring multiple photon-frames with the QIS jot as a Bernoulli
Trial, with probability of success given by Eq. For a set of IV photon-frames the maximum likelihood estimator,
®g1s, is given by [17],

- -1
dors = —In(1—p (S8)
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b N (59)

This flux estimator should also be used in SPAD sensors under very high fluxes, where their is significant probability
of detecting more than one photon in a period equal to the SPAD’s time quantization. Similarly, the MLE in Eq. [T|can
be used in low light conditions for a QIS sensor.

We derive the changepoint cost function in the raw data domain. Following the steps of the earlier derivation, with
f(n;) being the Bernoulli distribution with parameter p:

Liv1
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Where p; = li’:il; .

S.1.3 Online Flux Changepoint Detection Algorithm

Offline changepoint detection is suitable for offline applications that capture a batch of photon frames and generate
a deblurred image in post-processing. In some applications that require fast real-time feedback (e.g. live deblurred
video) or on-chip processing with limited frame buffer memory, online changepoint detection methods can be used. We
use a Bayesian online changepoint detection method [31]]. This algorithm calculates the joint probability distribution of
the time since the last flux changepoint. For exponentially distributed data, it uses the posterior predictive distribution
which is a Lomax distribution (see Suppl. Note [S.I.3). We assume that the flux changepoints appear uniformly



randomly in the exposure window 7T'. Because detecting a flux changepoint after only one photon is difficult we use
a look-behind window that evaluates the probability of the photon 20—40 photon frames into the past as being a flux
changepoint. Using a look-behind window greatly increases detection accuracy and introduces only minor latency (on
the order of tens of microseconds). We also found that it is helpful to use a small spatial window that spreads out flux
changepoints in space to increase the density of changepoints. In general, online detection will work better for slower
motion as the algorithm learns from past data. We compare online and offline detection in Suppl. Note[S.3]

We use a Bayesian changepoint detection algorithm shown in Algorithm 1 of [31]. Here we derive the posterior
predictive distribution used in Step 3 of their algorithm. We use a Gamma(c, 3) prior for ®. Let x := {z;}}¥ . It
can be shown that ®|x ~ Gamma(a + N, 8 + Zf\il x;). The predictive posterior density is given by:

fiCN+1\X(y|X) :/0 f$N+1\‘1>(y|cI))fq’\x((I)|x)d(p (S13)
= R M a+N—-1_—(8+>, :)®
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Na+N
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which is a Lomax density with shape parameter o + N and scale parameter 3 + ) . x;. For our data we used a
Lomax(1,100) in Step 3 and H(-) = 40 in Steps 4 and 5 of Algorithm 1 in [31]].

For online detection we use code modified from [33] (Commit: 7d21606859feb63eba6d9d19942938873915f8dc).
Fig. [T] shows the results of using the online changepoint detection algorithm. Observe that some of the edge details
are better preserved with the offline changepoint algorithm.

We run the same experiment as in Fig. |4, where an orange is rotated at different brightness levels. We show the
resulting SNR for online vs offline detection in supplementary Fig.[2]
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Supplementary Figure 1: Comparing online vs. offline changepoint detection. We processed the two experimental
datasets using our online and offline changepoint detection algorithms. There is a slight loss of edge details when the
online algorithm is used.
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Supplementary Figure 2: Online vs. Offline Rotating Orange SNR We run the same experiment as in Fig. 4] with
the rotating orange at many light levels. Note that the resulting SNRs of the two methods are quite similar.



S.2 SNR Analysis

We test our deblurring algorithm for different motion speeds for the case of rotational motion using the “orange”
dataset in the main text. We measure the SNR by computing the discrepancy between the ground truth flux image and
the deblurred result. We do this by temporally downsampling the original photon frames, so the number of photons
decrease as the motion speeds up. Suppl. Fig.[3|shows how changing the regularization parameter A in the offline flux
changepoint detection algorithm effects the SNR. We find that as long as A is high enough a good reconstruction SNR
stays high. In Suppl. Fig. 4 we show that our algorithm converges to the performances of a long exposure capture
(with motion blur) if the number of photons per degree of rotation falls below 3.
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Supplementary Figure 3: Effect of offline changepoint algorithm regularization parameter ). If A is large enough
we get good performance. When ) is too small, many flux changepoints are found, which will cause the CPV to be
too noisy to properly align frames.

We run the same experiment as in Fig. [i] where an orange is rotated at different brightness levels. We test our
offline QIS changepoint detection method by removing the timing information and only considering a binary output.
Our adaptive changepoint method helps at low light levels, see Fig. [5]
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Supplementary Figure 4: Effect of number of photons captured per degree of rotation. Our algorithm is unable to find
flux changepoints at speeds of 3 photon frames per degree. When no flux changepoints are found we just get a long
exposure image. We also see that the SNR for a blurry image (long exposure) or a noisy image (short exposure) is
worse than the proposed deblurring method until our method converges to the long exposure image.
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Supplementary Figure 5:  QIS, SNR vs. Brightness. We run the same experiment as in Fig. [4 with the rotating
orange at many light levels. We remove timing information from the raw data to create QIS binary data frames and
run the same deblurring experiment. Again our adaptive changepoint method is helpful in low light scenarios. Note
that the sharp drop on the right is due to saturation of a QIS sensor.



S.3 Additional Simulation Results

This section contains some additional simulated results. A second scene with two toy cars is displayed, we use the
same parameters as the toy car scene in the main text for frame generation, changepoint detection and deblurring.
For this scene the dark car moves 90 pixels and has a contrast 3.3. The bright car has a contrast of 1.2 and moves
30 pixels. Our results are shown in supplementary Fig.[6]and the clustered changepoints are shown in supplementary
Fig.[7l Again, our method is able to deblur both moving cars.

Ground Truth Sample Frame

Short Exposure Long Exposure Deblurred Image [Proposed]

B

Supplementary Figure 6: Simulated Multiple Objects. We simulate SPAD data from a 240 fps phone video of two
rolling toy cars, a fast moving dark car and slow moving bright car. From left to right, the ground truth image shows
the result of generating the same number of photon frames from the first frame of the video sequence. The short and
long exposure images show the results of using only the first 75 and 250 photon frames, respectively. Notice that the
short exposure preserves the dark car while the bright car is quite noisy, on the other hand, the long average blurs the
dark car but preserves details of the bright one better. Finally, our deblurring algorithm is able to reconstruct both the
dark and bright car.



Clustered Flux Changepoints

Supplementary Figure 7: Clustered Flux Changepoints Displayed are the 2 flux changepoint clusters found for
the scene in Supplementary Fig. We only display half of the flux changepoints in each cluster for visualization

purposes.

We simulate a simple pixel art scene to demonstrate the advantage of deblurring on a changepoint video rather than
burst frames. Notice in supplementary Fig. [§] that the changepoint video frame is able to capture a wide range of
motion speeds and contrasts that a single fixed frame cannot capture.
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Ground Truth (t=100)
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Supplementary Figure 8: Pixel Art Multiple Objects. We simulate a scene where a bright car moves quickly to the
right and a dim car moves slowly to the left. Notice that in the short averaging window, the dim car is lost in the noise
while in the long averaging window the bright car is blurred. The sum of all photon frames maintains the background
quite well. The changepoint video frame adapts to motion in each pixel and captures both the bright car, the dim car,
and the background. Notice that the changepoint video frame loses some of the structure of the dim car due to noisy
changepoints. We combine the adaptive changepoint video with a deblurring algorithm to deblur both cars.



S.3.1 Global Motion Results

Original Long Exposure Short Exposure Global Deblur
(No Motion) (Conventional) (Conventional) (Proposed)

Translation

Rotation

Random Shake

Supplementary Figure 9: Simulated motion deblurring results for different types of global motion. From left the
right the columns show, a ground truth image that shows the result if the same number of photons are sampled from
the original image but with no motion. A long exposure where all photon frames are summed, the result is a blurred
image. A short exposure image shows the combination of the first 20 photons of the timestamp data, notice the edges
are sharp but noise dominates. The result of the global motion deblur algorithm is shown in the last column. (Original
images from FreeImages.com)

We start with a ground truth high resolution image, successively apply rigid transformations (using known rotations
and translations), and generate photon frames using exponentially distributed arrival times. We reassign these high
spatial resolution timestamps a lower resolution 2D array to simulate a low resolution SPAD pixel array.

We model a photon frame readout from a SPAD array with 8000 bins and bin width of 256 ps. Images are scaled
so that the true photon flux values ranges between 10* and 10® photons per second. We then iteratively transform
the flux image according to known motion parameters, and downsample spatially to a resolution of 425x425 before
generating photon timestamps.

For the horizontal translation blur, we moved the image 1 pixel to the right blur, we rotate the image 0.1 degree for
every 10 generated photons for a total of 1000 photons. To emulate random camera shake, we create random motion
trajectories by drawing two i.i.d. discrete uniform random variables between —3 and 3 and use that as the number of
pixels to translate along the horizontal and vertical directions. We generate 20 photons per translation for a total of
2000 photons. We use the BOTTOMUP algorithm with A = 5 for the changepoint detection step. In practice we



found that the results were not very sensitive to the choice of A and values between 2 and 12 produced similar results.
We generate photon events from an exponential distribution. We transform the flux image, then down-sample to
simulate objects with more detail than pixel resolution. We then generate 10-20 photons from the down-sampled flux
image. Continuing this we get a 3-d tensor of photons representing global motion of the original image.
Supplementary Fig.[9]shows simulated deblurring results for three different motion trajectories. The top row shows
a case of horizontal translation: conventional long/short exposures must trade off motion blur and shot noise. Our
deblurring method reproduces sharp details, such as vertical lines of the tree stems. The second row shows a case of
rotation: note that different pixels of the scene now undergo different amount of motion per unit time. Our method
reconstructs fine details of the texture of the orange peel. The bottom row shows random camera shake with unstruc-
tured motion. Our technique is able to correct for this global motion by approximating the overall motion trajectory as
a sequence of small translations and rotations. Supplementary Fig.[T0]shows the comparison between the true motion

trajectory and the trajectory estimated as part of our deblurring algorithm.

Random Camera Shake: Recovered v/s True Motion
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Supplementary Figure 10: Comparison of estimated and true motion trajectories. This plot shows the true and
estimated motion trajectories for the random shake case in Fig.[9] The recovered motion tracks the ground truth motion

quite well.



S.4 Comparison of BottomUp and PELT

In this section we run some of the same simulation experiments from the main text but with the BottomUp algorithm
instead of the PELT algorithm. In Suppl. Fig. [I1] we compare the ability of both algorithms on the toy car scene,
BottomUp seems to produce slightly more noisy and blurry results. In Suppl. Fig.[I2] we re-run the contrast vs. speed
simulations and find that BottomUp does comparably well with slightly more false positives.

Ground Truth Frame PELT BottomUp

e Pepls 2T

Supplementary Figure 11: Toy Car Simulated Scene. Here are the results using the toy car simulated scene. The
parameters used are the same as in the main text. Note that the BottomUp algorithm is able to detect and deblur both
cars; however, it seems to produce a slightly noisier and blurrier result. For this scene 210 by 300 with 690 photon
frames per pixel, on our unoptimized system with 30 parallel cores, it takes the PELT algorithm two minutes to run
while the BottomUp takes approximately one minute.
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Supplementary Figure 12: BottomUp vs. PELT - Contrast vs. Speed. We repeat the contrast vs. speed simulation
as done in the main text but with the BottomUp algorithm. Note that the BottomUp algorithm does comparably well
for A = 6. For \ = 4, the BottumUp algorithm is able to detect more difficult objects at the expense of false positives
during easier scenarios.



S.5 Experiment Setup

For the experimental investigation we used a 32x32 InGaAs SPAD array from Princeton Lightwave (PL GM-APD
32 x 32 Geiger-Mode Flash 3-D LiDAR Camera) and an RGB camera (VIS/BW point gray Grashopper 3, GS3-U3-
23S6M-C) capturing the same field-of-view. The SPAD camera samples photon events with a depth of 103 bins and
250 ps/bin. Further, during the experiments we used a frame readout rate of 50 kHz. The InGaAs sensor is sensitive
in near infrared (NIR) to shortwave infrared (SWIR) wavelengths ranging from 900 nm to 1.6 pm.

During the measurements we investigated two different type of scene setups: a “fan” and a “checkerboard” scene,
as depicted in Suppl. Fig.[I3] In the first scene, the fan consists of three blades mounted on a central cone and is
enclosed by a circular frame with a diameter of 18 cm. One blade was marked with a black piece of paper. The fan
scene was used to investigate rotational motion. The second scene consists of an artificial head, a white plate and a
colored checkerboard. Colors appear at a different gray levels in the SWIR wavelength images. This second scene
was used to investigate random motion due to a horizontally shaking camera.
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(a) Camera Setup (b) Ambient Illumination Source
Supplementary Figure 13: Hardware setup (a) Our hardware setup consists of a Princeton Lightwave SPAD array
(PL GM-APD 32x32 Geiger-Mode Flash 3-D LiDAR Camera) and an RGB camera (VIS/BW point gray Grashopper

3, GS3-U3-23S6M-C) capturing the same field-of-view. (b) Ambient illumination is provided by a diffuse light source
(broadband arc lamp ThermoOriel Model 66881).

S.6 Description of Video Results

Please refer to included . txt and .mp4 files for supplementary video results.



(a) “Fan” scene (b) “Checkerboard” scene

Supplementary Figure 14: Experimental Scenes (a) The “fan” scene consists of a small fan with a black square patch
on one of the fan blades. (b) The “checkerboard” scene consists of a large color checkerboard and a mannequin head.
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