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Abstract— Physical interaction of robots with their environ-
ment is a challenging problem because of the exchanged forces.
Hybrid position/force control schemes often exhibit problems
during the contact phase, whereas impedance control appears
to be more simple and reliable, especially when impedance is
shaped to be energetically passive. Even if recent technologies
enable shaping the impedance of a robot, how best to plan
impedance parameters for task execution remains an open ques-
tion. In this paper we present an optimization-based approach
to plan not only the robot motion but also its desired end-
effector mechanical impedance. We show how our methodology
is able to take into account the transition from free motion
to a contact condition, typical of physical interaction tasks.
Results are presented for planar and three-dimensional open-
chain manipulator arms. The compositionality of mechanical
impedance is exploited to deal with kinematic redundancy and
multi-arm manipulation.

I. INTRODUCTION

Recent frontiers of robotics research have encountered a
major obstacle in physical human-robot interaction. Contact
with the environment requires fine control not only of robot
position but also of the wrench exerted. The importance of
this concern is even more pressing for applications in which
robots are intended to interact physically with humans for
working activities, for example with cobots, or for assistive
applications, as is the case with exoskeletons, rehabilitative
and perhaps companion robots (see [1], [2] for review).

Classical approaches, such as position control, typically fail
to modulate force effectively, while force control is effective
only during contact. For this reason, several studies focused
on methodologies able to control in both domains. Proposed
solutions to this problem can be categorized loosely into
two broad classes: i) Active interaction control; ii) Passive
interaction control. The first group is essentially a ‘hybrid’
combination of position and force control [3]. The reader
may refer for example to [4], [5]. These approaches typically
require end-effector force sensors for their implementation,
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even if some techniques are available for estimating force [6].
Moreover, force control may result in unstable behavior during
contact with external objects [7]. The second group, instead,
implement energetically passive control of force which is not
affected by typical force-control problems. Among the second
group, one of the simplest effective strategies is impedance
control [8]. The idea behind the impedance control, originally
presented as a general control framework for manipulators
in free or constrained motion, with and without dynamic
interaction with the environment, is conceptually simple. The
goal of the controller is to produce and maintain a desired
impedance, i.e. force as a dynamic function of the deviation of
position from its zero-force value. This concept appears to be
effective since it manages contact with external objects in the
environment without explicitly programming the transition
between free motion and contact, yet preserves adequate
tracking of a zero-force trajectory during free movements.
Several applications have benefited from impedance control;
the interested reader may refer for example to [9], [10], [11].

One characteristic of impedance control implementation is
an increase in the number of parameters to be specified in the
controller. That is, in addition to the zero-force trajectory, the
designer is required to tune the robot stiffness, damping and
(potentially) parameters related to higher-order derivatives
(e.g. inertia). How best to modulate impedance parameters
is still an open question. Typical implementations pre-tune
these parameters depending on the specific task. It has been
observed that high impedance values are desirable for fine
movements, while lower values should be used for large/rapid
movements [12], [13]. In [14], the authors propose a strategy
to adapt robot impedance depending on the human’s behavior
during a physical human-robot interaction task. Adaptive
impedance control has been used to account for differences
between model and manipulator parameters [15], [16]. In
addition, the ability to adapt controller parameters may be
used to improve system performance and has been proposed
to optimize task efficiency [17], [18], [19].

In this paper, we build upon the state-of-the art and tackle
the problem of planning the whole robot behavior in terms
of both motion and impedance profiles. More specifically,
we propose an optimization-based approach to modulate the
Cartesian impedance of a generic manipulator, in terms of the
desired stiffness and damping, together with the zero-force
trajectory commanded to the controller. This would shape the
manipulator overall behavior in a coherent and coordinated
way. The results presented in this paper demonstrate that
our implementation is able to cope with different kinematic
structures and effectively exploit the properties of impedance
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Fig. 1. Sample task for a single arm. The robot starts from an initial
configuration xS and moves to push against the spring to reach the goal
position xG. This task includes a transition from a free movement condition
to an environment-interaction condition.

compositionality to manage robot redundancy. To demonstrate
our approach, we present a series of simulation experiments,
first with a simple planar structure, then generalizing to a
multi-arm redundant three-dimensional robot. To test the
effectiveness of our methodology, all tasks include a transition
from free motion to contact with a compliant environment.
Although an experimental validation remains to be conducted,
the method described in this work develops an approach to
plan the motion and impedance of a manipulator as a whole,
and potentially provides a means to ensure safe and effective
use of assistive and rehabilitative devices in daily life.

II. BACKGROUND

The theory of impedance control is well established in the
literature. This section reviews the main concepts necessary
for the rest of this paper. As mentioned in the introduction,
the general idea is to control the dynamic relation between
the generalized configuration of a manipulator and the energy-
dual generalized forces. Given a general operational space
with p dimensions, we can define the robot generalized
configuration x ∈ Rp, its derivatives ẋ, ẍ, · · · ∈ Rp, and the
output force/torque F ∈ Rp. A common implementation of
mechanical impedance is

F = Z(x,x0, ẋ, ẋ0, ẍ, ẍ0, . . .), (1)

where Z is an arbitrary non-linear operator and
x0, ẋ0, ẍ0, · · · ∈ Rp define the motions of the robot that yield
zero force/torque, F = 0. One typical implementation is to
assume a linear operator and truncate the derivatives at the
first order, in such a way that the external perceived behavior
is the effect of a spring and a damper. This results in the
following linear controller [8]

FI =−k(x− x0)−b(ẋ− ẋ0). (2)

It is important to recognize that all forces/torques—whatever
their origin—superimpose their effects on the inertial dynam-
ics of a robot. As a result, multiple controllers defined in

the form of Eq. 2 may be combined linearly to increase the
complexity of the behavior. That is, mechanical impedance
has the property of compositionality.

So far we defined x as a generalized configuration variable
but Eq. 2 can be defined in different spaces. For physical
interaction, one may want to shape the impedance perceived
at the robot end-effector. In that case, without any loss of
generality, consider a manipulator with n revolute joints q =
[q1, . . . ,qn]

T and an end-effector moving in an m-dimensional
Cartesian space which has fk(q) forward kinematics and a
Jacobian matirx J(q) ∈ Rm,n so that Eq. 2 may be rewritten
as

τI = JT [−KEE(fk(q)− x0)−BEE(Jq̇− ẋ0)], (3)

where KEE ∈ Rm,m and BEE ∈ Rm,m are the endpoint
stiffness and damping matrices respectively, q ∈ Rn is the
vector of the joint angular values and x0, ẋ0 ∈ Rm are the
end-effector zero-force position and velocity.

This formulation enables control of the robot trajectory
directly in Cartesian space, with a desired impedance also
specified in Cartesian space. If endpoint stiffness is calculated
at zero endpoint force, the map from endpoint impedance
matrices to joint impedance matrices is straightforward:

Kq = JT KEEJ (4)

Bq = JT BEEJ (5)

Importantly, note that no kinematic inversion is required. For
additional details on this topic, the interested reader is referred
to [8], [3].

It is worth mentioning that the major goal of impedance
control is to shape the interaction between the robot and
the external environment rather than accurately control its
motion. For this reason, in case of external forces, the actual
motion of the robot will be different from the zero-force
motion x0, ẋ0. Hereafter we will use the subscript 0 to refer
to the zero-force motion, and use the subscript goal to refer
to the desired motion. As previously stated, in the presence
of external forces x0 6= xgoal . The difference between desired
and zero-force motion will be used as an additional degree
of freedom for the impedance optimization presented in the
remainder of this paper.

A. Redundant robots

In the case of robots with a more degrees of freedom
than the dimension of Cartesian space, the impedance control
implemented in Eq. 3 has a nullspace cardinality higher
than zero. In other words, a desired Cartesian impedance
can be achieved via a manifold of robot configurations.
This may be an undesired effect, since a small perturbation
may produce an arbitrarily large movement in the nullspace.
To address this problem, one solution is to include a
second impedance control which defines a configuration-
space impedance with respect to a desired rest position. In
this paper we implemented this concept at the joint level as:

τJ =−KJ(q−qrest)−BJ q̇, (6)
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Fig. 2. Schematic model of the 4R planar manipulator used as first example.

where τJ are the joint torques required to control the robot
configuration toward the rest position qrest with stiffness and
damping matrices KJ ∈ Rn,n and BJ ∈ Rn,n respectively.

Note that, since the rest configuration defined by the two
controllers is different in general, their superimposition may
produce a steady-state error at the end-effector with respect to
the rest position of the Cartesian impedance control. This can
be arbitrarily reduced by design if KJ << KEE . Alternatively,
zero error may be achieved via null-space projection [20],
[21]. Yet another possibility is that the optimization (presented
below) could adjust x0 to achieve zero steady-state error
(that is x = xgoal). Although we are aware that null-space
projections could solve the issue in this case, other causes
may also result in tracking errors (e.g. imperfect gravity
compensation). In this work, we decided to follow the latter
approach to show the potential of optimization to compensate
for disturbances that may result in tracking error.

III. IMPEDANCE OPTIMIZATION

In Sec. II we discussed the stiffness and damping matrices
as coefficients of the controller. Typical implementations
use fixed parameters selected through heuristic strategies.
However, as mentioned in the introduction, having the
possibility to modulate the controller parameters during task
execution may be a major advantage for robot physical
interaction, yet how to shape time-dependent impedance
profiles is still an open question. In the following we propose
a solution to this problem by presenting a novel approach to
jointly optimize the impedance parameters and reference
profiles for a given (arbitrary) robot interacting with its
environment.

A. Interaction modeling

Modeling physical contact with an external object is a
complex topic. However, in many applications it is sufficient
to schematize it as a force experience at the contact point.
A typical approach to simulating contact with a compliant

object is to calculate such a force/torque as the reaction of a
spring pushed by the robot against a fixed reference. We will
refer to this model in the following through the parameter kE ,
which relates the strain in the contact with the corresponding
exchanged force. The model can be formalized as Wext = kEε ,
where the strain ε is calculate as the difference ε = x− xrest
between the endpoint position and the rest configuration of
the spring (all defined in the same reference frame). Note
that the particular model of the external environment that we
assumed is neither mandatory nor a limitation of this work,
since it is only used to simulate a sample task and any other
model would require similar computational cost. The general
experiment considered in this work is depicted in Fig. 1.

B. Robot definition

To show the theory behind our implementation clearly,
we build this paper starting from a simple basic building
block, a planar 4R manipulator (see Fig. 2). This keeps the
initial complexity low, yet preserves the general goal and
the essential challenges as well as the consequences of robot
redundancy. Later in this paper, the complexity of the model
will be increased, moving toward bi-manual 4R structures and
fully humanoid structures. The motion of the manipulator is
simulated by integrating a dynamic model of the serial links
through the Robotics Toolbox [22], which can be formalized
as in the following:

M(q)q̈+ c(q, q̇) = τI + τJ

where the term related to the gravity is assumed to be
compensated by a gravity compensation controller, M(q) is
the inertia matrix of the manipulator and c(q, q̇) takes into
account Coriolis and centripetal forces.

C. Cost function

Since mechanical impedance is a relation between force
and motion, it is important to include in the objective function
to be minimized at least one term related to force and one
related to robot motion at the same point. The reason to do this
is also practical. A penalty on end-effector position is needed
to follow a desired path, while minimizing end-effector force
is useful for several practical purposes, including increased
safety while interacting with humans or the environment,
lower power consumption, etc. [23]. The general form of the
scalar objective function can be written as:

ζ = α1||x− xgoal ||+α2||xt f in − x
t f in
goal ||+α3||Wext ||, (7)

where x is the time-varying configuration of the end-
effector, xgoal is a desired reference (virtual) trajectory, xt f in

and x
t f in
goal are the end-effector position and target at the end

of the action, Wext is the external wrench exerted on the end-
effector. α1, α2 and α3 ∈ R+ are task-dependent constants
with proper units, and || • || is the norm operator. Note that
the first and third terms quantify the tracking error and
external wrench along the whole trajectory. The particular
selection of α1, α2 and α3 will affect the shape of the
optimization problem and, hence, the final solution to which
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Fig. 3. Snapshots of the optimal robot behavior detailed in Fig. 4. Visualization was performed using the Robotic Toolbox [22]

the algorithm will converge. Using higher values for α1 and
α2 will provide more precise path following, at the expense
of higher interaction-forces; vice-versa, a larger value of α3
will result in a reduction of Wext up to the point of preventing
a satisfactory path following of robot endpoint. It is hence
clear that the particular selection of relative weights of cost
function terms is a critical point that deserves particular care,
also considering task specific conditions.

Given the cost function in Eq. 7, the optimization problem
can be formalized as:

min
KEE ,BEE ,xre f

ζ

s. t.

ζ = α1||x− xgoal ||+α2||xt f in − x
t f in
goal ||+α3||Wext ||

lki, j ≤ ki, j ≤ uki, j∀i, j = 1, . . . ,m,

lbi, j ≤ bi, j ≤ ubi, j∀i, j = 1, . . . ,m

lxre f ,i ≤ xre f ,i ≤ uxre f ,i∀i = 1, . . . ,m

M(q)q̈+ c(q, q̇) =

JTWext + τJ + JT [−KEE(x− x0)−BEE(Jq̇− ẋ0)]

(8)

where K∗EE , B∗EE and x∗re f are the optimal parameters for the
impedance control of Eq. 3, ki, j,bi, j are the i, j entries of KEE ,
BEE , and lki, j ,uki, j , lbi, j ,ubi, j , lxgoal,i ,uxgoal,i are the lower- and
upper- bounds for stiffness, damping and controller reference
configuration in task space respectively. The optimal values
K∗EE , B∗EE are shaped to be diagonal, while lower bounds
are set to zero to guarantee that matrices are always positive
definite.

The problem of Eq. 8 is in general non-convex. However,
a good approximation can be achieved with a reasonable
selection of an initial guess. In our case we heuristically
selected constant values for KEE and BEE , while the initial
guess for x0 was a minimum-jerk trajectory between the
initial and final desired positions. This choice of trajectory
was inspired by human movements (see e.g. [24], [25]), and
is typically used to generate continuous, smooth movements
in robotics [17], [26]. Let x1 and xN be the initial and final
goal positions of the robot end-effector; the minimum jerk
trajectory between x1 and xN is calculated as

x(t) = x1 +(xN − x1)∗ (10(t/tN)3−15(t/tN)4 +6∗ (t/tN)6)
(9)

D. Problem complexity and generalization to parallel robots

The optimization problem formulated in Eq. 8 is written
in a general form and is valid both for planar and for 3D
structures. The main difference between these two conditions
is the dimensionality of K∗EE , B∗EE and x∗0. For the planar
case the end-effector is defined in m = 3 dimensions, while
for the general case m = 6. This results in an increased
computational time, but the formulation of the problem is
still valid. For this reason, we will present results on a
planar robot first, and on a 3D humanoid robot later. To
optimize the whole robot motion, each optimization variable
is defined for a series of time frames, i.e. KEE ∈ Rm×m×T ,
BEE ∈ Rm×m×T and x0 ∈ Rm×T , where T is the number of
time knot-points (or via-points) considered. Note that the
greatest contribution to computational complexity does not
arise from the dimensionality of the robot’s configuration
space or its end-effector workspace but rather from the number
of time knot-points considered in the optimization.

To reduce complexity we defined a set of six evenly
spaced knot-points and optimized the controller parameters at
these points. The impedance and reference profiles were then
interpolated using a piece-wise cubic polynomial. Specifically,
between two adjacent knots the function was approximated
by a cubic Hermite polynomial with a constraint on the
derivatives at the knots. The resulting profile is guaranteed
to be continuous with a continuous first derivative, while
the interpolation error at the knots is zero. Interpolation via
piece-wise cubic Hermite polynomials is shape preserving.
This results in interpolated stiffness and reference profiles that
preserve the shape of the optimized data, respect monotonicity
and maintain local minima/maxima. Note that, even if
the approximation of motion and impedance profiles by
piece-wise cubic Hermite polynomials produces continuous
variation, this does not imply continuous dynamics; interaction
with the external environment may introduce discontinuities
in the robot’s actual motion. For additional details on the
implementation we refer to [27], [28].
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Fig. 4. Optimization of impedance control parameters. All the quantities
reported in this Figure are expressed in global coordinates (see Fig.3). Sub-
figure A. On the first row: in blue the reference trajectory, from the yellow
to the red dashed line (along the color gradient) the commanded trajectory
given to the impedance control, while increasing number of iterations. Red
plots are the final optimal values. On the second row: in blue the reference
trajectory, from the yellow to the red filled line (along the color gradient)
the actual robot movement. Red plots are the final optimal values. Vertical
black dotted lines identify the time at which contact occurs for the optimal
case. Sub-figure B. On the first row: From the yellow to the red filled line
(along the color gradient), stiffness profile along X and Y axis and around Z
axis (rotation), while increasing number of iterations. Red plots are the final
optimal values. On the second row: From the yellow to the red filled line
(along the color gradient), damping profile along X and Y axis and around
Z axis (rotation), while increasing number of iterations. Red plots are the
final optimal values. Vertical black dotted lines identify the time at which
contact occurs for the optimal case.

IV. RESULTS

The impedance optimization algorithm discussed in Sec-
tion III was implemented and tested on several kinematic
structures. To show the effectiveness of our approach we
present a set of simulations performed on a 4R planar robot
(see Fig. 2). In this implementation, the objective function
introduced in Eq. 8 was minimized via an Interior Point
Algorithm. For each iteration, the algorithm simulated the
robot motion using an updated set of parameters. The end-
effector goal trajectory of Eq. 7 was a minimum jerk trajectory
between an initial configuration in free space and a final
configuration that was within the simulated object, thus in a
configuration where Wext > 0 (See Fig. 1). The initial guess
for the optimization parameters were constant stiffness and
damping and a minimum-jerk trajectory between initial and
final configuration (the same as the goal trajectory). Weighting
coefficients for the cost function were selected as α1 = 100,
α2 = 1 and α3 = 5. Results are depicted in Fig. 4.

The algorithm was able to identify a solution that locally
minimized ζ in a small number of iterations (fewer than
40 for the 4R case). For each iteration, the time-varying
profiles for the impedance control parameters were updated,
until the minimum was approximated with suitable precision
(step size less than 10−15). It is interesting that, without
any constraint on the shapes of the impedance profiles and
reference trajectory, the calculated optimal solution found
impedance variations that would increase the stiffness in
proximity of the impact, while maintaining good tracking of
the reference trajectory and avoiding overshoot. In addition,
since the task space has three dimensions while the robot has
four revolute joints, we can expect undesired movements of
the manipulator in the nullspace of the controller. As discussed
in Sec. II-A, we solve this problem using a secondary joint-
space impedance controller. The parameters of this second
controller were not optimized and its reference position was
a constant rest configuration. Note that, even though the two
controllers have different target behaviors and hence compete,
the overall behavior was not affected because the optimization
was able to learn the effect of the second controller on the
end-effector behavior and compensate for it by commanding
a modified zero-force motion to the Cartesian impedance
controller, while still preserving its contribution at the joint
level. This effect can be observed in Fig. 4-A. Indeed, before
contact (black vertical line), one would expect a commanded
trajectory (yellow-to-red lines) close to the goal trajectory
(blue line), as for typical impedance control. Here, instead, the
optimal solution results with a modulation of the commanded
trajectory also in case of no external forces, as a compensation
for the undesired Cartesian effects of τJ and, potentially, of
other sources of steady-state errors (as, for example, inexact
gravity compensation).

A. Extension to parallel robots

Since the procedure presented in this work is focused on
the end-effector behavior, it is, from a theoretical point of
view, straightforward to extend it to more complex structures.
In this section, we generalize to multi-arm manipulation.
Let us consider two identical robots, the first placed in
a configuration resembling a right arm and the second in
a left-arm configuration. The choice to use two identical
manipulators was only made for convenience and is not a
limitation of this work, as the only required condition is that
both arms are able move along the optimized trajectory. The
task in this case is depicted in Fig. 6.

The problem formalized in Sec. III can be easily extended
here with the same computational complexity. Indeed, since
the optimization is designed to shape the end-effector be-
havior, the control of each of the two manipulators can be
straightforwardly mapped as a rigid transform of the optimum
behavior in the coordinates of the paired manipulators. The
final robot behavior is depicted in Fig. 5. In this case, the
algorithm was able to find a solution that satisfied all the
task requirements.
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Fig. 5. Snapshots of the optimal bi-manual robot behavior. Visualization was performed using the Robotic Toolbox [22]

Fig. 6. Sample task for the dual-arm robot. The robot started from the initial
configuration xS and pushed against the spring to reach the goal position xS.
The dual-arm robot end-effector was defined as the mean between the single
arms end-effectors. This task included a transition from a free movement
condition to an environment-interaction condition.

B. Generalization to 3D robots

In the previous sections, we discussed the application of
impedance optimization to planar robots. The extension to
non-planar manipulators comes with no additional theoretical
complexity, and all of the framework developed in Sec. II
and III is still valid. Nevertheless, from a computational
point of view, the extension to 3D robots introduces non-
negligible challenges, and may require excessive computation
time. However, leveraging the compositionality of impedance,
our implementation was still able to provide a solution in a
reasonable time. We report here a set of experiments carried
out on a model of a 14 degree-of-freedom Baxter Robot. In
this case, the task was the same as Fig. 6 with two 7 degree-
of-freedom arms moving in a 6 degree-of-freedom Cartesian
space. The initial guess for the optimization parameters
was constant stiffness and damping and a minimum-jerk
trajectory between initial and final configuration (the same
as the goal trajectory). Weighting coefficients for the cost
function were selected as α1 = 100, α2 = 10 and α3 = 3.5.
The optimal robot behavior (iteration 71) is reported in
Fig. 8, while the resulting impedance profile and reference
trajectory are presented in Fig. 7. As in the previous case, the
optimization was able to provide a desired behavior at the end-
effector while the kinematic redundancy was handled through

additional joint-space impedance controllers. As may be seen
in Fig. 7, the goal trajectory (blue line) was implemented
by the manipulator endpoint with high fidelity, resulting in a
maximum average linear deviation from the goal trajectory
equal to 6mm (worst case along the X direction, up to a total
motion of the manipulator along X equal to 52cm). As in the
previous cases, the optimization has i) learned the effect of
the joint impedance controller at the endpoint and ii) planned
a counter-action to maintain a good trajectory tracking while
preserving the effect of τJ at the joint level.

V. DISCUSSION AND CONCLUSIONS

This paper presented an optimization-based algorithm that
is able to identify an optimal end-effector impedance profile
for a generic task of interaction with an external compliant
body. This implementation provides a coordinated, coherent
and independent planning of robot dynamic behavior in
Cartesian space, in terms of apparent stiffness and damping,
together with the end-effector desired trajectory. Although it
is common to impose a relationship between stiffness and
damping, for instance to get critically damped systems (see
[19] among others), in this work we decided to optimise
the three parameters independently. In this way, the optimal
solution was free to implement under-damped or over-damped
conditions in specific portions of the motion, for example to
increase velocity.

This task-oriented approach comes with several advantages,
since it enables i) a clear interpretation of the results and ii)
generalization to different kinematic structures. The results,
derived from extensive simulations, with multiple kinematic
configurations and considering both single- and multi-robot
manipulation, show that this approach is effective and reliable.

We reduced computational complexity through the selection
of a limited number of via-points. Controller parameter values
at these points were optimized by the planner and then
used as knot-points of an interpolating spline. The number
of knot-points is one of the task-dependent parameters of
the optimization. For example, a larger number may be
required to approximate fast movements. For this reason, we
are also testing the use of other methods of dimensionality
reduction, for example exploiting an incremental enrollment
of functional Principal Components extracted from human
movements, which has already been profitably exploited in

978

Authorized licensed use limited to: MIT Libraries. Downloaded on October 23,2020 at 14:25:43 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7. Optimization of impedance control parameters for the 7 degree-of-freedom case. All the quantities reported in this Figure are expressed in
global coordinates (see Fig.8). Sub-figure A. In blue the reference (goal) trajectory, from the yellow to the red dashed line (along the color gradient) the
commanded trajectory given to the impedance control, while increasing number of iterations. Red plots are the final optimal values. Vertical black dotted
lines identify the time at which contact occurs for the optimal case. Sub-figure B. In blue the reference (goal) trajectory, from the yellow to the red filled
line (along the color gradient) the actual robot movement, while increasing number of iterations. Red plots are the final optimal values. Vertical black dotted
lines identify the time at which contact occurs for the optimal case. Sub-figure C. From the yellow to the red filled line (along the color gradient) stiffness
profile, while increasing number of iterations. Red plots are the final optimal values. Vertical black dotted lines identify the time at which contact occurs for
the optimal case. Sub-figure D. From the yellow to the red filled line (along the color gradient) damping profile, while increasing number of iterations. Red
plots are the final optimal values. Vertical black dotted lines identify the time at which contact occurs for the optimal case.

Fig. 8. Snapshot of the optimal behavior implemented on a Baxter bi-manual robot. Visualization was performed using the Robotic Toolbox [22].

human-like motion planning [29], [30]. The idea is to identify,
from a dataset of human examples, a basis set of functional
Principal Components, ordered by decreasing dataset variance
explained. A weighted combination of these components can
be used to accurately reconstruct an arbitrary time-domain
signal. Exploiting the hierarchy imposed by the explained
variance – in which some components are ‘more important’
than others – an algorithm can generate an approximation of
the desired time-series with a limited number of functional
Principal Components. In this case, the optimization is free
to modulate the weighting coefficients of these functions
rather their value at each time point. The hierarchy embedded

in the definition of functional Principal Components has the
additional benefit that a recursive algorithm can search for the
solution in a low dimensional space with the option to increase
the number of independent functional Principal Components
in the optimization (hence augmenting the cardinality of the
optimization state) when the problem is not solved with a
desired accuracy [31].

Future work will also implement this algorithm on real
platforms. Particular effort will be devoted to improvement
of the optimization routine in terms of computation time, to
enable on-line implementation. The use of Machine Learning
techniques is currently under evaluation to infer impedance
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and trajectory profiles for an unknown case, leveraging on a
set of previously solved examples [32], [33].

The implementation presented in this paper does not
guarantee convergence to the global minimum. However,
the particular selection of the optimization method is a
free parameter of the problem. Indeed, the same approach
can be implemented with global optimization algorithms,
such as Genetic Algorithms, Multi-Search approaches or,
leveraging on the particular bi-linear formulation of the cost
function, with specific optimization algorithms [34]. However,
we anticipate that those approaches may incur a significant
expansion of the time required to converge. For this reason,
whether it is worth searching for the global optimum, or
instead accepting a local solution that can be identified in
a reduced amount of time, remains an open question to be
addressed in future developments of this work.
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