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Abstract

Tactile and embedded sensing is a new concept that has re-
cently appeared in the context of rovers and planetary ex-
ploration missions. Various sensors such as those measuring
pressure and integrated directly on wheels have the poten-
tial to add a “sense of touch” to exploratory vehicles. We in-
vestigate the utility of deep learning (DL), from conventional
Convolutional Neural Networks (CNN) to emerging geomet-
ric and topological DL, to terrain classification for planetary
exploration based on a novel dataset from an experimental
tactile wheel concept. The dataset includes 2D conductiv-
ity images from a pressure sensor array, which is wrapped
around a rover wheel and is able to read pressure signatures of
the ground beneath the wheel. Neither newer nor traditional
DL tools have been previously applied to tactile sensing data.
We discuss insights into advantages and limitations of these
methods for the analysis of non-traditional pressure images
and their potential use in planetary surface science.

Introduction

Planetary rovers, like the Mars Exploration Rovers (MER)
and the Mars Science Laboratory (MSL) rover, have enabled
exploration and collection of invaluable science data across
the surface of Mars. Possible future manned and unmanned
Lunar rover missions, e.g. Volatiles Investigating Polar Ex-
ploration Rover (VIPER), are planned for quick investiga-
tion and mapping of the Moon surface, while the Fetch
Rover on Mars sample-return mission (MSR) will deliver
a sample back to Earth. These planetary rovers are typically
equipped with a variety of science instruments, manipula-
tion equipment and traditional imagers. In their operations,
they rely heavily on visual images and telemetry, such as
motor current or wheel rim thrust. These data are used to as-
sess the health and safety of the vehicle and determine its ac-
tivities in advance by operations teams, e.g. route planning,
hazard avoidance and targeting of onboard science instru-
ments. Currently, such systems lack embedded instruments
that have the ability to assess the interaction between the ter-
rain and the rover mobility system in real time.

A tactile wheel is an novel experimental concept for plan-
etary and other exploration rovers that combines a payload
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of in-situ sensors directly on the wheel, which enables direct
measurements of several key contact area parameters and
surface properties of potential scientific interest. This new
sensing modality has promise to become a primary plan-
etary mission driver, especially for supporting exploration
and mapping efforts at cruising rather than crawling speeds
for the future rover missions to Mars and Moon and ter-
restrial mobility applications for ground vehicle support in
remote harsh environments. Knowing the current slip and
sink rates of each wheel could be used to halt a drive, while
knowing about rock composition and size below the wheel
could result in a better power distribution to the wheels for
avoiding damage and wear. This information can be highly
beneficial for scientific endeavors as well. Monitoring ter-
rain change can trigger remote sensing from onboard science
instruments, when criteria of interest have been observed.
In-situ wheel instruments enable higher science yield, while
enabling safer vehicle operations. Combined with the visual
odometry, such tactile sensing will add “touch” to the “eyes”
of a rover.

A new concept developed in Marchetti et al. (2020) not
only incorporates in-situ sensors on a robotic wheel, but
also uses machine learning to extract meaningful metrics
from the interaction between the wheel and the terrain us-
ing the sensors. These include continuous slip estimation,
balance, and sharpness for engineering purposes and esti-
mates of hydration, texture, and terrain patterns for science
applications. This tactile wheel carries an electrochemical
impedance spectrometer (EIS), for hydration detection, and
is wrapped in a 2D grid of pressure sensors, which give con-
tinual context for the pressure signature of the ground un-
derneath the wheel (see Fig. 1). The pressure sensor sup-
plies a conductivity “image” of the surface/wheel interface.
Marchetti et al. (2020) conduct numerous experiments and
collect data from the pressure and the EIS sensors, and con-
sequently train classical machine learning models, such as
tree-based Stochastic Gradient Boosting (SGB) and random
forest (RF), with the derived features to infer engineering
conditions and predict various terrain properties.

New and One of a Kind Data for Future Planetary Ter-
rain Exploration. The resulting dataset of raw conductivity
images from the pressure sensor mounted on a rolling wheel
is a first and unique collection of a new data type that has a



Figure 1: Tactile wheel mounted on a rover (left) and with a
data-taking test cart (right). The pressure sensor array wraps
around the wheel and is covered with a yellow protective
layer of Kevlar.

likeness to natural images. However, unlike with traditional
imaging cameras, each element, called a faxel, produces a
measurement of pressure rather than light. These images are
not in RGB or any other color space, but in Digital Number
(DN) units that can be converted to pascals. Moreover, the
conductivity images need to be calibrated and further pro-
cessed so that meaningful information is obtained for suc-
cessful use with machine learning models.

While utility of DL has been proven in a broad range of
application domains, from biomedical imaging to robotics,
DL tools have not yet been applied and tested for use with
onboard autonomy and in-situ sensors, especially in the con-
text of planetary exploration missions. We take a first step to
bringing the power of DL in this context and apply several
of these DL tools to infer local terrain characteristics, specif-
ically, for the identification of rock, using a novel dataset
of pressure sensor images from the tactile wheel prototype.
Terrain typically exhibits a distinct geometric structure, not
only on a scale as seen from an airborne instrument but also
from under a wheel. Rock will have a distinguishable im-
print compared to a sandy dune, for example. In mathemat-
ical terms, terrain can intrinsically be represented as a man-
ifold, and thus, it appears natural to also explore utility of
DL tools that specifically address analysis of objects that are
characterized by geometric structure, including those with
non-Euclidean geometry. Hence, the methods of geometric
deep learning (GDL) (Bronstein et al. 2017; Monti 2020)
such as graph convolutional networks (GCN) (Wu et al.
2020) appear to be especially suited for terrain and surface
property analysis. Finally, a number of recent studies (see,
e.g. Hofer, Kwitt, and Niethammer 2019; Potts et al. 2019;
Gabrielsson et al. 2020) indicate that integration of topolog-
ical descriptors, i.e. systematic shape analysis, into DL can
lead to noticeable gains both in classification and stability
performance. This phenomenon can be explained by the im-
portant complementary information to many state-of-the-art
conventional non-topological descriptors and deeper insight
into the intrinsic data shape that topological data summaries
are shown to deliver (Pun, Xia, and Lee 2019). Motivated
by these results, we also develop and validate a new topo-
logical approach to GDL, topological GCN (TOPO-GCN)),
based on integration of persistent images into the GCN ar-
chitecture, which could allow us to better account for local
and global terrain structure.

While applying the DL machinery to the tactile wheel

data, we gained several important insights that will make
an impact on utility of any such classification methods if
they are implemented with embedded systems like the tac-
tile wheel. Lessons learned are:

e DL tools, in general, and geometric and topological DL,
in particular, offer a more powerful alternative to the cur-
rently employed ML methods, such as SGB, in applica-
tion to terrain learning and prediction. However, classi-
fication gains (if any) delivered by the DL models vary
substantially among models and across surface types.

e Topology and geometry of the the tactile wheel data tend
to play an important role in terrain classification. GDL
models such as TOPO-GCN appear to be the most com-
petitive approaches for more sophisticated terrain types.

e Not all DL methods integrating topological information
of terrain are found to be a feasible choice due to image
size limitations.

e Not all terrain types benefit from DL, simpler terrains
such as flat surfaces can be successfully classified by sim-
pler ML tools.

e Considerable computational costs, and, as a result, high
energy consumption, are a hurdle and might make appli-
cation of DL challenging for onboard near real-time tasks.

Related Work

Terrain classification for embedded systems. The classi-
fication of terrain type is traditionally performed using ac-
celerometers and vibrational analysis, identifying frequency
distributions for each of the types in question. Such 1D
datasets can infer certain terrain types in fast-moving vehi-
cles (e.g. self-driving cars), but for the cautious speeds typi-
cal of explorative robots the vibrational input is weak and
unreliable. Further, vibrational analysis cannot alone pro-
vide detailed science estimates of surface properties like the
presence/thickness of crusts, and rough surface morphology.
Past attempts (Arvidson et al. 2017; Senatore et al. 2014)
have been made to derive terrain mechanical properties
based on such rover telemetry and visual data and applied
some ML-based proof-of-principle systems (Rothrock et al.
2016). However, all of these efforts are characterized by in-
ferred interactions that are only available through post-hoc
ground analysis. A limited set of embedded pressure sen-
sors have been used to asses wheel contact and load distribu-
tion (Shirai and Ishigami 2015; Wu et al. 2016), and estimate
drawbar pull (Nagatani et al. 2009), however these do not
provide the full contact geometry. Most recently, Marchetti
etal. (2020) applied SGB to a set of computed features based
on the pressure images and other extractions from the tac-
tile wheel. However, DL has not been attempted with such
data. DL methods have previously been applied in planetary
terrain classification (Wagstaff et al. 2018; Rothrock et al.
2016; Kerner et al. 2019), but with natural images, taken by
rover and orbiter cameras, in the context of traditional im-
age classification tasks. This dataset and pressure “images”,
however, are unique and their application is for onboard de-
ployment and autonomous driving.
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Figure 2: Select examples of rock experiments. Distribution
of rocks and their sizes vary along with the type of material.
Composition in the middle plot is much coarser grain size
than that on the right and left, which are more sandy.

Data Description

Tactile wheel and data collection. The structure of the tac-
tile wheel is comprised of the base cylinder that has several
sensors mounted on the inside and that is wrapped circum-
ferentially with an inductive pressure sensor array as shown
previously in Fig. 1, that measures the contact pressure be-
tween the wheel and the media underneath. The pressure pad
consists of 1,920 distinct 16mm square pressure nodes or
taxels, arranged in an 20 x 96-array and measured in digital
number (DN) units. Steel grousers, i.e. flat bars intended to
increase the traction with the ground, are placed over every
other row of the pressure sensor array. These grousers can
alter the wheel-terrain interaction and can leave a unique in-
formative pressure signature on the images.

To collect the data, the tactile wheel is mounted on a test
cart that is used to power and control the wheel. The cart
is then operated in large metal troughs over seven types of
materials, with grains of varying sizes and on various con-
figurations of rocks and terrain patterns. Examples of experi-
ments with rocks are shown in Fig. 2. As the wheel is slowly
moved along, the measurements are taken by the pressure
sensor and other instruments embedded on the wheel and
the cart.

Pressure sensor images. Pressure sensor images carry in-
formation about the state of the sensor and what the wheel
is touching on the ground at each time point. One of the
mounted sensors inside the tactile wheel is inertial measure-
ment unit (IMU) that measures orientation of the wheel. At
any given point in time, IMU reads the “gravity down” posi-
tion of the wheel, which should fall within the contact area
as measured by the pressure sensor. We use the IMU sensor
to stack the columns of the pressure sensor image that cor-
respond to the gravity down column and columns adjacent
to it. The resulting “unwrap” image represents the pressure
sensor in the space and time dimension. The unwrap images
capture the pressure signature as the wheel moves forward
in time, with the middle row representing the position of the
IMU’s gravity column down, the row above it representing
the front of the wheel and the row below showing the back
of the wheel (see Fig. 3 for examples).

Rock detection. Marchetti et al. (2020) collected 163 ex-
periments across different materials and distributions, result-
ing in over 90,000 images, each labeled with a correspond-
ing binary class, indicating the presence of rock. We use bi-
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Figure 3: Pressure “unwrap” images for the full experimen-
tal runs. The x-axis represents time, and the y-axis repre-
sents a row on the pressure sensor, with 0 indicating the row
touching the ground according to IMU.

nary classification with these images as the tactile dataset
does not have rocks explicitly labeled in various categories.
Rock classification, however, can be extended to multiple
types, e.g. small or large, sharp or flat, surface or buried.
Several types of rock could also be present in the same pres-
sure image.

We focus on rock identification as it greatly impacts
both mobility and safety of a vehicle as well as its sci-
ence yield. The monitoring of rock can reduce damage risk
to the wheels and make energy consumption of the vehicle
more efficient, resulting in longer traverses and more science
data collected. The identification of below-the-surface rock
is even more crucial since it cannot be performed from vi-
sual odometry. Hidden rocks not only present potential haz-
ard, but can also indicate that a vehicle is on firm ground
rather than on loose sand. Importantly, below-surface rock
has not yet been exposed to the atmosphere or radiation and
can be sampled for science analysis.

Fig. 3 shows images of flat, rock and dune patterns under
the pressure sensor. Flat terrain in Fig. 3a has mostly con-
stant pressure signature, with slight fluctuations due to the
sandy nature of the material, centered on the gravity vec-
tor in the middle of the image. In contrast, rock signature
in Fig. 3b has a characteristic pattern that creates diagonal
lines across the image. The hidden rock in Fig. 3c leaves
a similar pattern, however, it is much more subtle with in-
creasing depth. Finally, Fig. 3d displays a pressure imprint
that is representative of a dune instead of a rock. These im-
ages show that distinct pressure signatures are characterized
by topological features for different terrain types.

Topological Layer for Geometric Deep Learning

Graph-based semi-supervised learning on images. As
a part of GDL, graph-based semi-supervised learning (G-
SSL) is one of the most popular approaches for supervised
learning on images, allowing to capture important local,
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Figure 4: PH for a grayscale digital image. (a) a grayscale
image; (b) pixel values of the grayscale image; (c) a filtration
of cubical complexes induced by the grayscale image.

stationary, and compositional task-specific features (Sub-
ramanya and Talukdar 2014; Monti et al. 2017; Ma et al.
2019; Jiang et al. 2019). The G-SSL optimization objec-
tive is a convex classification function Z = (1 — w)({ —
wD WD 1)71Y, where W;; is a similarity matrix of
image pixels (in our case obtained using radial basis func-
tions on 2D pixel coordinates), D;; = Z;V:1 W;; is a diag-
onal matrix, and w is a regularization parameter. Let K be a
number of classes, then define a /N x K -label matrix Y such
that Y;; = 1 if vectorized image X; € RN**1 is labeled
as class j, and O otherwise. We then incorporate G-SSL
into GCN as follows. First, we consider Generalized Sigma-
based (GS) filter fgs(w,0) = (1 — w)(I —wLy) ™!, where
L, =D °WD°!,0 <w,o < 1. Second, we use Taylor
approximation of f;¢(w, o) with the order of [4w], yielding
the best performance on the training dataset. We now obtain

the general classification function X' = fgg(w,0)X = (1—
w)(X)i, where (X'); = X + wLy (X )izt (X))o = X,
1 € Z;>o. Finally, we provide an implementation function
of GS filter as a convolutional layer

gD P (fGS(W7 o’)H(t)@(t)) ,

where H(**t1) is the hidden layer output, H(®) = X, ¢(.)
is the adopted activation function, and O©® is the trainable
weight in the ¢-th layer. This G-SSL GCN architecture al-
lows to take any image data as an input. To better account
for highly sophisticated terrain patterns of planetary surfaces
in a robust to uncertainties manner, we also propose to inte-
grate G-SSL GCN with a topological layer.

Topological Layer to GDL. Pressure sensor images from
the tactile wheel prototype demonstrate a complex local ter-
rain structure. To better explore such local distinct properties
manifested both from an airborne instrument and from un-
der a wheel, we also complement the GCN model with a
new topological layer. The topological layer allows us to in-
tegrate information on the terrain shape structure, that is, ter-
rain features which are invariant under continuous transfor-
mations such as bending, stretching, and compressing. We
collect information on the terrain shape using tools of per-
sistent homology, i.e., by counting certain patterns such as
loops, holes, and cavities, within terrain, evaluated through
multiple user-defined similarity scales. To systematic define

what patterns to include and how to count them efficiently,
we equip the pressure sensor images with a combinatorial
object, namely a cubical complex, and use grayscale thresh-
olds as varying similarity thresholds. Formally, a cubical
complex K in R™ is a union of elementary cubes, where
each elementary cube is a finite product of elementary in-
tervals Z; x Zy x Z,, € R™ and an elementary interval is a
subset Z € R such that either Z = [I,] + 1] or Z = [I,1],
l € Zso. Now let f be a real-valued function (here the
grayscale value) that maps every simplex to the maximum
function value of its vertices. Let K. = f~!(—o0,r],r € R
be a cubical complex formed by pixels of grayscale value of
not higher than r. Varying thresholds r results in a nested se-
quence of cubical complexes K, C K, C ...K,, , called
a lower-star filtration of cubical complex (Edelsbrunner and
Morozov 2012). We then track patterns (i.e., loops, cavities
etc) appearing and disappearing in this lower-star filtration.
To input the extracted topological terrain information into
GCN, we use its finite-dimensional vector representation as
persistence image (PI) which is derived by the weighted ker-
nel density estimation (Adams et al. 2017). PI is a finite-
dimensional vector representation of a persistence diagram
(PD) and can be computed through the following steps:

e Step 1: we map the PD to an integrable function p : R? —
R?, which is called a persistence surface. The persistence
surface p is given by sums of weighted Gaussian functions
that are centered at each point in PD.

e Step 2: we take a discretization and linearisation of a sub-
domain of persistence surface in a grid.

e Step 3: the PI, i.e., a matrix of pixel values, can be ob-
tained by subsequent integration over each grid box.

Formally, the value of each pixel z within a PI is defined as

PI(2) =//[ S g (bied)

P bi,ei]EI

1 1 — b — e
erp—- ((x b) + € Jzel))dyd%

2
2mo,0y 2 oz Y

where g(b;, ;) is a weighting function, which depends on
the distance from the diagonal, o, and o, are the stan-
dard deviations of the Gaussians in x and y direction. For
the G-SSL GCN, given persistence images Plx, the cor-
responding initial topological layer is given by H(1) =
¢ (fos(w,o)PIxO)). We emphasize that the G-SSL GCN
architecture can be integrated with any image type, i.e., with
raw images, PIs or both. When applied to both image types
simultaneously, i.e., raw pressure sensor images and their
PI counterparts, we call the approach TOPO-GCN. Figure 5
depicts the flowchart for the proposed TOPO-GCN archi-
tecture: the TOPO-GCN input contains original rock images
and corresponding PIs generated by the lower-star filtration
of cubical complex; the upper part shows that we pass the
PIs to the G-SSL GCN architecture which has multiple con-
volutional layers with the GS filter; the lower part shows
the deep neural network (DNN) architecture which takes the
original rock images as an input; we then aggregate outputs
of G-SSL GCN and DNN. To classify terrain, the aggregated
features are then processed via a CNN framework.

X
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Figure 5: TOPO-GCN architecture for the rock image classification model. The upper part is the model architecture using
proposed G-SSL GCN for PIs and the lower part is the model architecture using DNN for rock images.

Results using Pressure Grid “Unwrap’’ Images

We now discuss the results for (i) rock binary classification,
and (ii) rock depth analysis with various DL methods. The
dataset is comprised of 163 rock experiments across differ-
ent materials, amounting to 92,177 data points, i.e. pressure
thumbnails obtained from unwrap images by stacking. For
each data point, a binary label is assigned, i.e., y; € {0, 1},
and the corresponding rock depth is measured. To estimate
the test error, we use group K -fold cross-validation and set
the number of folds to 10. As performance metric for rock
binary classification, we use misclassification error, based
on evaluating the differences between true (ground truth)
and predicted label vectors, i.e., ME = 1/T )", I (ys # U),
where 7' is the number of data points in the test set.

We compare TOPO-GCN to several DL benchmarks, in-
cluding GCN with convolutional ARMA filters (ARMA-
GCN) of (Bianchi et al. 2019), VGGNet (VGG-16) of (Si-
monyan and Zisserman 2015), and DeepNet with topolog-
ical signatures (PD-CNN) of (Hofer, Kwitt, and Nietham-
mer 2019), as well as with the currently employed SGB
model (see discussion in Marchetti et al. 2020) with 300
hand-engineered features. For all considered models, we re-
port misclassification errors (see Table 1) and relative gains
in respect to SGB.

Performance comparison of rock binary classification.
As Table 1 and Fig. 6 indicate, TOPO-GCN delivers most
competitive overall accuracy over all considered models and
is followed by another GDL method, i.e. ARMA-GCN. Fur-
thermore, the correct classification of rock is a more impor-
tant task as well as substantially more challenging than clas-
sification of flat surfaces. Hence, we also investigate perfor-
mance of all models under the following three scenarios, i.e.,
(i) flat surface, (ii) above-the-surface rock, and (iii) below-
the-surface rock. The below-the-surface rock scenario (i.e.,
the corresponding to rock depth higher than 0) is the most
challenging classification task.

Method Overall Flat surface Above rock Below rock
TOPO-GCN 97.1 (0.07) 97.7 (0.09) 91.8 (0.04) 31.0 (0.01)
ARMA-GCN 96.0 (1.07) 98.4(1.20) 88.4(0.02) 29.0(0.03)

VGG-16 94.0 (0.10) 96.8 (0.15) 84.4 (0.05) 28.5(0.02)
PD-CNN 80.0 (0.09) 98.0(0.10) 28.9(0.01) 12.0(0.07)
SGB 95.3(0.01) 99.3(0.01) 84.7 (0.03) 6.7(0.04)

Table 1: Average accuracy (in %) of image classification ap-
proaches for rock images; () is standard deviations.

Overall, GDL models such as TOPO-GCN tend to be
the most competitive approaches. For example, for above-
the-surface classification (see Fig. 6¢), TOPO-GCN yields
relative improvement of 7.4% and relative gain of TOPO-
GCN for the below-the-surface classification is 77.4% (see
Fig. 6d). In turn, conventional CNN (i.e., VGG-16) yields
no improvement in classification of the above-the-surface
objects and delivers a similar performance as ARMA-GCN
for the below-the-ground classification. Finally, topological
CNN (PD-CNN) of Hofer, Kwitt, and Niethammer (2019)
tends to be outperformed by all other models, including
SGB, in all but the below-the-surface classification where
PD-CNN results in 41.7% of relative gain. All classification
models perform similarly for flat surface classification.

The more competitive performance of GDL (i.e., TOPO-
GCN and ARMA-GCN) could be attributed to the fact that
both GDL better accounts for both local and global struc-
ture of the terrain data, while TOPO-GCN has an edge due
to coupling the graph-convolutional approach with topolog-
ical and geometric layers. That is, TOPO-GCN integrates
the complementary information on terrain persistent shapes
(i.e., analysis of persistent homology on images).

Rock depth analysis. We further separate the misclassi-
fied instances from each model into 3 groups of various rock
depth, S; (rock depth € [0, 1)), S (rock depth € [1,2)), and
S5 (rock depth € [2,6)), as shown in Fig. 7. We find that



TOPO-GCN tends to outperform other classifiers when the
rock depth is within the range of [0, 2), which makes sense
since the pressure sensor cannot detect the rock well when
it is positioned deeper below the ground. In turn, the fewer
misclassified cases in the [2, 6) category could indicate that
a model picks up spurious signals or overfitting.

The hyperparameter optimization for the TOPO-GCN
model is performed by grid search. We use the Adam op-
timizer with a learning rate of 1 x 103 and the fully con-
nected layer is followed by a dropout layer with a dropout
rate of 0.2 and a batch-normalization layer. Parameter set-
ting of the TOPO-GCN model will be described as follows:

G-SSL GCN. Regularization weight Ly = 5x10~*. Reg-
ularization parameters in GS convolutional layer w = 0.1
and ¢ = 0.1. Two GS convolutional layers, where the num-
ber of hidden units are 128 and 5 in the first and second GS
convolutional layers respectively.

DNN. The number of hidden units in three convolutional
layers are 64, 128, 256. The convolution kernel size is same
for all layers and is set to 3 with stride set to 1. We set the
pool size to 2 and stride to 2 in Max-Pooling layers.

Finally, we record and report results for the average train-
ing time per epoch for all models used in the experiment.
The quantitative comparison in terms of computational cost
on GPU p3.8xlarge (64 GB GPU memory) is following:
(i) TOPO-GCN - 21.0s, (ii)) ARMA - 12.0s, (iii) VGG-16
- 27.0s, and (iv) PD-CNN - 14.0s.

Lessons Learned

The tactile wheel is a new experimental concept that has
been tested in only a controlled environment and is not hard-
ened for space or for rigorous use in harsh conditions. How-
ever, it has a great potential to be deployed on rovers in the
near and far future, especially as more exploration missions
are introduced, such as those to Europa and other icy ocean
worlds. Our data-taking experiments and the development
of a new TOPO-GCN model, has presented us with several
lessons that will be considered for our future work as well
as for other onboard tactile sensing frameworks:
Topological and geometric properties of the tactile
data. Geometric DL models (e.g., TOPO-GCN), which are
designed to account for non-Euclidean objects such as man-
ifolds and graphs, tend to deliver the highest accuracy, espe-
cially for more sophisticated terrains such as the above-the-
ground and below-the-ground rock scenarios. In general, the
more complicated the terrain structure, the more classifica-
tion performance benefits from integrating topological and
geometric layers within the DL model, such as TOPO-GCN.
There appears to be no gain in using any DL. model for sim-
pler flat surface terrain, and more conventional ML tools are
preferred. Hence, the choice of classification tools for ter-
rain learning and prediction might incorporate prior knowl-
edge on the expected terrain type, the desired accuracy, ac-
ceptable uncertainty levels, and the ability of the model to
capture either local or global terrain properties.
Complexity of the DL model and image sizes. As is
well known in statistical sciences and ML, model perfor-
mance, model complexity and the amount of available data

are closely interrelated. Our results indicate that not all
DL methods integrating potentially valuable topological in-
formation on images may be an appropriate classification
choice for a given size of observed images. For instance,
topological CNN (PD-CNN) of Hofer, Kwitt, and Nietham-
mer (2019) tends to yield suboptimal performance, which
can be attributed to the fact that 9 x 20 pressure images
do not allow us to estimate homology above order one as
in the examples presented in Hofer, Kwitt, and Niethammer
(2019).

Multiple object identification. The pressure sensor im-
age dataset included a small number of rock experiments
with dense rock distribution, i.e. rocks were laid out sequen-
tially close to each other, so that the wheel might be touching
more than one rock at a time, however, the rocks were not
positioned side to side. Such experimental set up is due to
the fact that the classical ML model developed for the tactile
wheel would not be able to handle multiple objects explic-
itly, and more features would need to be developed and ex-
tracted to account for that. As a result, this dataset does not
capture such scenarios that could further benefit from GDL.
This GDL research thrust, however, opens the possibility of
more complex terrain experiments with the tactile wheel that
would be handled automatically by GCN models (Chen et al.
2019). In real-life exploration scenarios, the terrain will not
be homogeneous. Rocks of different sizes and shapes, com-
bined with other landforms, will be present.

Non-image sensor data. In case of tactile and in-situ
sensing, the data from instruments other than a 2D pres-
sure sensor array will be essential for such systems to be
effective. For example, the EIS sensor on the tactile wheel
takes highly valuable measurements of soil hydration, which
consist of amplitudes and phases across various frequencies.
The ability to tackle non-image data, such as spectra, will
benefit any model framework if to be used for in-situ sens-
ing. Performance of GCN models for image classification
recently has been proven to be enhanced by introducing ad-
ditional data sources as in natural language processing (Gar-
cia and Bruna 2018; Yan, Xiong, and Lin 2018). The TOPO-
GCN, ARMA-GCN and other GDL approaches are poten-
tially more suited for combining data sources.

Path to Deployment

While we show that DL, and especially TOPO-GCN, can
achieve substantial gains in rock classification accuracy,
these methods retain the challenge for future onboard sys-
tems. Currently, machine learning applications for space
robotics are limited due to the strict hardware, computa-
tion and energy resource constraints. There are, however,
successful applications and deployments that are based on
machine learning principles (Chien et al. 2003; Estlin et al.
2014; Thompson et al. 2014; Doran, Thompson, and Estlin
2016). The state of the art are simple models or algorithms
developed on the ground, rigorously validated and tested,
and integrated into flight software with strict requirements.
Model re-training is not currently feasible onboard of in-
struments or spacecraft and is limited to feature extraction
and prediction. Pre-trained models is a possible intermedi-
ate solution to this problem which requires further analysis
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Figure 6: Relative gains (%) compared with SGB as baseline on TOPO-GCN, ARMA-GCN, VGG-16, and PD-CNN. Other-

wise, the baseline result is reported in Table 1.
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Figure 7: Distribution of misclassified instances as a function of rock depth. Lower values are preferred.

on transferability. In turn, topological methods in GDL have
a potential for such interpretability and transferability prop-
erties (Gabrielsson et al. 2020).

High Performance Space Computing (HPSC) proces-
sor (Doyle et al. 2013; Powell 2018; Schwaller, Holtzman,
and George 2019) is a new promising technology in devel-
opment that could potentially overcome the limitations of
the current flight processors. RAD750 (Lentaris et al. 2018)
is the most advanced space computer, designed to operate
in high-radiation environments and is currently installed on
the Curiosity and Perseverance Rovers and the Juno mission.
It operates at 132 MHz with 128 megabytes of DRAM lo-
cal memory. HPSC, however, would be a high-performance,
multi-core processor, a future “laptop in space”, and would
potentially increase computing power by two orders of mag-
nitude. It could allow prediction based on advanced and
deep machine learning models, which would greatly bene-
fit space and spacecraft autonomy applications (McGovern
and Wagstaff 2011), including terrain recognition for rover
missions. As the need for more advanced methodologies
in space exploration and instrument autonomy grows due
more far-away and complex missions (Castano et al. 2007;
Wagstaff et al. 2014, 2019), HPSC framework would poten-
tially make it possible to take TOPO-GCN into space for
future planetary image processing and classification needs.

Conclusions

We have explored utility and limitations of various DL tools
for the analysis of terrain properties in a novel tactile sens-

ing dataset. Our findings have indicated that classification of
more sophisticated terrain types tend to benefit more from
the DL methodology which systematically integrates both
topological and geometric properties of the underlying data.
In the future, we plan to explore slip pressure images and
more complex surface patterns, e.g. dunes, gullies and other
landforms along with their combinations. We will also seek
to integrate non-image sensor data, such as spectra, into
GDL methods for terrain as well as soil property learning.
We believe that these methodologies have the potential to
enable smart, autonomous sensors on future planetary ex-
ploration vehicles.
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