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Abstract

Large-scale panel data is ubiquitous in many modern data science applications. Conven-
tional panel data analysis methods fail to address the new challenges, like individual impacts
of covariates, endogeneity, embedded low-dimensional structure, and heavy-tailed errors,
arising from the innovation of data collection platforms on which applications operate. In
response to these challenges, this paper studies large-scale panel data with an interactive
effects model. This model takes into account the individual impacts of covariates on each
spatial node and removes the exogenous condition by allowing latent factors to affect both
covariates and errors. Besides, we waive the sub-Gaussian assumption and allow the errors
to be heavy-tailed. Further, we propose a data-driven procedure to learn a parsimonious
yet flexible homogeneity structure embedded in high-dimensional individual impacts of co-
variates. The homogeneity structure assumes that there exists a partition of regression
coefficients where the coefficients are the same within each group but different between the
groups. The homogeneity structure is flexible as it contains many widely assumed low-
dimensional structures (sparsity, global impact, etc.) as its special cases. Non-asymptotic
properties are established to justify the proposed learning procedure. Extensive numerical
experiments demonstrate the advantage of the proposed learning procedure over conven-
tional methods especially when the data are generated from heavy-tailed distributions.

Keywords: interactive effects, robust estimation, factor model, Huber’s loss, change-
points detection

1. Introduction

Panel data analysis has been one of the most exciting subjects in statistics and economet-
rics. The possibility of modeling multi-dimensional data with cross-sectional dependence
and serial dynamics has led to a remarkable proliferation of applications in diversified fields,
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including biology, economics, epidemiology, finance, and social science. We refer to Ander-
son and Hsiao (1982), Chamberlain and Rothschild (1983), Hsiao (1986), Arellano (2003),
Hsiao (2007), Kneip et al. (2012), and many more representative literature therein. Let yit
be a univariate response variable and Xit be a p-dimensional centered covariate, a fixed-
effects model for panel data analysis would be

yit = αi + XT
itβ + eit, i = 1, . . . , N, t = 1, . . . , T, (1)

where αi ∈ R and β ∈ Rp are unknown parameters to be estimated, and

E(eit|Xit) = 0, i = 1, . . . , N, t = 1, . . . , T. (2)

This fixed effects model has been extensively studied in methodological and empirical liter-
ature (e.g., Nickell, 1981; Bhargava et al., 1982; Judson and Owen, 1999; Lee and Yu, 2010;
Bell and Jones, 2015).

In the era of big data, we benefit from the escalation of data availability. Meanwhile,
many cutting-edge challenges in panel data analysis arise from the innovation of data col-
lection platforms on which applications operate. For instance, sensor network has become
an increasingly important data collection method for various applications like air pollution
monitoring, climate study, energy consumption, earthquake detection and so on. A sensor
network system can automatically collect, process, and transfer multiple time-series data
from a huge number of spatially distributed nodes. To model such a panel data, the con-
dition (2) is no longer suitable as there may exist some latent factors, which influence the
covariate Xit as well as the error eit. Besides, assuming β to be the same across i = 1, . . . , N
ignores the individual attribute at each node and hence may lead to a model misspecifi-
caiton. To account for the interactive effects caused by the latent factors and the individual
attribute of the impact, we consider the following panel data model with interactive effects{

yit = αi + XT
itβi + fT

t λi + εit,
Xit = Bift + uit,

i = 1, . . . , N, t = 1, . . . , T, (3)

where βi = (βi1, . . . , βip) ∈ Rp are the unknown parameters of individual attributes; αi ∈
R, λi ∈ Rq and Bi ∈ Rp×q are treated as nuisance unknown parameters; ft ∈ Rq are
latent factor; εit ∈ R and uit ∈ Rp are random errors. In this paper, we assume {ft}Tt=1,
{εit}Tt=1 and {uit}Tt=1 are independent sequences, and allow p to diverge with condition
p+ q+ 1 < T . To keep the presentation concise, we present the theoretical results for serial
independent/weakly dependent scenarios in the main document of this paper. We defer the
theoretical results for strongly serial dependent scenarios to the supplemental material.

Although (3) takes into account the individual attributes {βi}ni=1, it involves too many
unknown parameters, which may miss the inherent low-dimensional structure among βij ’s.
In some modern data science applications, learning the low-dimensional structure embedded
in large scale panel data has become the primary objective over the coefficient estimation
and inference. For example, social media users of websites such as Twitter and Face-
book generate unprecedented amounts of data on a wide range of topics (politics, sports,
entertainment, etc.) on daily basis (e.g., Lerman and Ghosh, 2010; Abel et al., 2011). Fur-
thermore, it is common for social media data to contain geographical location information,
so the data is inherently a large scale panel data. A hot topic in business analytic is to
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cluster the social media users across the topics and geological locations into sub-groups,
such that further precise business actions can be applied to each group. To this end, we
impose a parsimonious yet flexible homogeneity structure among βij ’s,

βij =


β0,1 when (i, j) ∈ A1,
β0,2 when (i, j) ∈ A2,

...
...

β0,K+1 when (i, j) ∈ AK+1,

(4)

where K is unknown and {Ak : 1 ≤ k ≤ K+1} is an unknown partition of I := {(i, j) : 1 ≤
i ≤ N ; 1 ≤ j ≤ p}. Notice that the global attribute assumption (i.e., β1 = · · · = βN = β)
and the sparsity assumption (i.e., βij = 0 when (i, j) ∈ S for some S ⊂ I) can be considered
as two special cases of the homogeneity structure (4). Due to its flexibility, the homogeneity
structure and some alternatives have been studied by Ke et al. (2015), Su et al. (2016), and
Su and Ju (2018), among others. These studies mainly follow the penalized regression
approach which put a penalty on sequential differences between the initial estimator of
coefficients. Hence, the penalized regression approach is sensitive to the correctness of the
order of the initial estimators and may not perform well in practice when the data exhibits
one or more of the following features: (a) the partition is heavily imbalanced; (b) the error
is heavy-tailed; (c) the signal jump between two partitions slowly converges to zero when
the sample size diverges. Besides penalized approaches, there are literature that study the
latent group structure in panel data model with other procedures, see Ke et al. (2016), Xu
et al. (2020), Ke et al. (2020), and references therein.

Large-scale panel data also challenges existing methodologies by driving researchers
out of the comfort zone. Some commonly assumed conditions, like Gaussianity (or sub-
Gaussianity), may no longer be realistic in the big data regime. Indeed, heavy-tailed panel
data are widely encountered in many areas including genetics, economics, and finance.
Even if the Gaussian assumption holds on the population level, one may observe spurious
outliers due to the large cross-sectional size of N . Over the past two decades, the flourishing
of large-scale macroeconomic panel data has motivated new developments in econometric
panel data analysis (e.g, Stock and Watson, 2002; Ludvigson and Ng, 2009). Consider a
macroeconomic panel data set consisting of 131 time-series which are widely used to describe
the macroeconomic activities in United States1. We calculate the sample excess kurtosis of
each time-series in the panel data to assess their tail behaviors. Figure 1 shows that most
time-series have positive excess kurtoses which means their tails are heavier than Gaussian
distribution. Besides, there are 43 time-series whose excess kurtoses are greater than 6.
This indicates that their tails are heavier than t-distribution with degrees of freedom 5
which is a heavy-tailed distribution. In this paper, we propose to relax the sub-Gaussian
assumption in panel data analysis. In particular, we allow εit and uit in (3) to follow a
wide range of distributions including heavy-tailed ones with only finite moment conditions.
Recently, robust covariance matrix estimation and robust factor analysis have drawn huge
attentions. We refer to Pison et al. (2003), Avella-Medina et al. (2018), Fan et al. (2019a),
and Ke et al. (2019), among many others.

1. A detailed description of this panel data can be found in Appendix A of Ludvigson and Ng (2009).
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Figure 1: Histogram of excess kurtosis of 131 macroeconomic variables.

In response to the challenges discussed above, this paper studies the large-scale panel
data with the interactive effects model (3) and allows the errors εit and uit to be heavy-
tailed. Learning the homogeneity structure (4) consists of three objectives: (i) estimate
the number of homogeneity groups K; (ii) estimate the partition {Ak : 1 ≤ k ≤ K + 1};
and (iii) estimate the homogeneity coefficients {β0,k : 1 ≤ k ≤ K + 1}. We gradually
unveil the learning procedure in four steps. In the first step, we show key insights into
the robust estimation of (3) through an oracle scenario that assumes the latent factors are
known. In the second step, we consider a robust estimator for the covariance matrix of
covariates. Then, we propose to recover the latent factors by applying eigen-decomposition
to the robustly estimated covariance matrix. By plugging the estimators of latent factors
back into the first step, we obtain a robust initial estimator of coefficients in (3). In the third
step, we pursue the first two objectives in the homogeneity structure learning by detecting
the change-points among the initial estimator of coefficients. The change-points detection
process is carried out by wild binary segmentation (Fryzlewicz, 2014). In the final step, we
estimate the homogeneity coefficients based upon the recovered partitions.

1.1 Our Contributions

This paper studies large-scale panel data and addresses some challenges that arise in mod-
ern applications. We model large-scale panel data with an interactive effects model where
both covariates and errors are influenced by some latent factors. Besides, the response vari-
able and covariates are allowed to be heavy-tailed. Instead of assuming a global attribute
that may lead to model misspecification or individual attributes that create too many free
parameters, we propose to learn a parsimonious yet flexible homogeneity structure in coeffi-
cients. The homogeneity structure assumes that there exists an unobservable partition such
that coefficients are the same within each group but diverse between groups. With the lim-
ited restriction on the number and size of groups, homogeneity structure is a generalization
of many widely assumed low-dimensional structures such as sparsity, grouping, and tree.
We propose a data-driven procedure to robustly estimate the interactive effects model and
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learn the homogeneity structure. The robustness is achieved by replacing the L2 loss with
the Huber’s loss as the latter down weights outliers. The homogeneity structure is learned
by detecting multiple change-points among initially estimated coefficients. Theoretically,
we have shown the proposed procedure achieves the non-asymptotic robustness in the sense
that the resulting estimators admit exponential-type concentration bounds with low-order
finite moment conditions. Moreover, the resulting estimators are asymptotically unbiased
estimates for the parameters of interest. Numerically, the proposed robust homogeneity
structure learning procedure is proved to be able to improve the interpretability as well as
prediction accuracy in various empirical scenarios.

1.2 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we introduce the estimation
procedure of the panel data model with interactive effects and heavy-tailed errors. In Section
3, we study the homogeneity structure learning procedure. In Section 4, we summarize
the proposed learning procedure by a computation algorithm and introduce a fast robust
covariance matrix estimation method. In Section 5, we assess the finite sample performance
of the proposed learning procedure with simulated experiments. In Section 6, we analyze an
air quality panel data collected by a large out-door monitor network in the United States.
The proofs of theoretical results are presented in Appendices.

1.3 Notations

We adopt the following notations throughout the paper. Let A = (Ak`)1≤k,`≤p be a p × p
matrix. We write ‖A‖max = max1≤k,`≤p |Ak`|, ‖A‖∞ = max1≤k≤p

∑p
`=1 |Ak`| and ‖A‖F =(∑p

k=1

∑p
`=1 |Ak`|

2
)1/2

. When A is symmetric, we have ‖A‖2 = max1≤k≤p |λk(A)|, where
λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) are the eigenvalues of A. Further, we use λmax(A) and
λmin(A) to denote the maximum and minimum eigenvalues of A, respectively.

2. Robust Panel Data Analysis

In this section, we gradually unveil a robust estimation procedure for the panel data model
with interactive effects and heavy-tailed errors.

2.1 An Oracle Estimator with Observable Factors

To begin with, we introduce the robust estimation procedure of the interactive effects model
(3), through an oracle scenario such that the latent factors are assumed to be observable.
When ft’s are observable, model (3) can be re-formulated as a linear regression problem

yit = αi + XT
itβi + fT

t λi + εit := WT
itθi + εit, i = 1, . . . , N, t = 1, . . . , T, (5)

where d = 1 + p+ q, Wit = (1,XT
it, f

T
t )T ∈ Rd, and θi = (αi, β

T
i , λ

T
i )T ∈ Rd. The ordinary

least squares (OLS) estimator of θi immediately follows

θ̂OLSi = (

T∑
t=1

WitW
T
it)
−1

T∑
t=1

Wityit.
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Figure 2: Huber’s loss function for various choices of the tuning parameter τ . The least-squares
(`τ with τ =∞)-loss is also shown for comparison.

However, the OLS estimator is not robust against outliers and/or heavy-tailed er-
rors. This effect is amplified by high dimensionality. Even if we assume the errors follow
moderate-tailed distributions, we may observe large outliers by chance which makes the
OLS estimator naturally a non-robust estimator for large-scale panel data. Some recent
studies (e.g., Catoni, 2012; Fan et al., 2017; Avella-Medina et al., 2018; Minsker, 2018; Sun
et al., 2019) have tackled this issue by revisiting Huber’s wisdom (Huber, 1984).

We introduce the Huber’s loss in Definition 1 below. The parameter τ controls the shape
as well as the robustness of the Huber’s loss. When τ → ∞, the Huber’s loss approaches
the L2 loss that leads to the least-squares estimator. On the other hand, when τ → 0, the
Huber’s loss approaches the L1 loss (after proper normalization), which corresponds to the
least absolute deviation (LAD) estimator. The LAD estimator is robust against outliers
but can be biased when the distribution is asymmetric. Figure 2 portrays the shape of the
Huber’s loss with different values of τ .

Definition 1 The Huber’s loss `τ (x) is defined as

`τ (x) =

{
1
2x

2, if |x| ≤ τ,
τ |x| − 1

2τ
2, if |x| > τ,

where τ is a robustification parameter that trades bias for robustness.

We define the robust estimator of θi through the following convex optimizaiton problem:

θ̂i(τ, f) = argmin
θ∈Rd

T∑
t=1

`τ (yit −WT
itθ), for i = 1, . . . , N, (6)
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where (τ, f) emphasizes the estimator depends on the choice of τ and the observation of f .

Condition 1 For i = 1, . . . , N ,

(a) E(εit|Wit) = 0 and vδ = maxi E(|εit|1+δ) is finite for some δ > 1.

(b) The empirical Gram matrix Si = T−1
∑T

t=1 WitW
T
it satisfies mini λmin(Si) > cl, for

some positive constant cl.

The Condition 1 (a) waives the sub-Gaussian condition in conventional panel data anal-
ysis literature. Instead, we allow the errors to be heavy-tailed with finite (1 + δ)th moment
for some δ > 1. This condition is slightly stronger than a finite variance condition. The
Condition 1 (b) requires the smallest eigenvalue of Si to be uniformly lower bounded away
from zero.

Theorem 1 Assume the Condition 1 holds. Then, for any s > 0 and choosing τ ≥
vδ(T/s)

1/2, with probability at least 1−N(2d+ 1)e−s, the estimator θ̂i(τ, f) satisfies

max
1≤i≤N

‖θ̂i(τ, f)− θi‖2 ≤
4τds

clT
, (7)

as long as T ≥ 32d2s,

Theorem 1 provides a uniform non-asymptotic upper bound for the estimation accuracy
of the oracle estimator θ̂i(τ, f). If we choose τ = cτT

1/2/s for some constant cτ > 0. When
T/d2 → ∞ as T → ∞, the upper bound (7) implies that θ̂i(τ, f) converges to θi at a
rate approximately equals to T−1/2. In the next subsection, we introduce the estimation
procedure for the latent factor ft. Once the estimator f̂t is available, we can plug it in (5)
to obtain the estimator θ̂i(τ, f̂).

Remark 1 The robust estimation for multiple linear regressions has been a key component
in many studies. He et al. (2004) considered a robust estimator of linear regression for
longitudinal data by maximizing the marginal likelihood of scaled t-type error distribution.
She and Owen (2011) studied the multiple outliers detection problems from the penalized
regressions point of view. More recently, Zhou et al. (2018) and Fan et al. (2019a) pro-
posed factor-adjusted robust multiple testing procedures for large-scale multiple testing with
correlated and heavy-tailed data. Similar theoretical discussions can also be found in high-
dimensional sparse linear regression and large covariance matrix estimation with heavy-
tailed data. The results in Theorem 2.1 are comparable to the multiple mean regression
results in Fan et al. (2019a).

2.2 Estimate Latent Factors

Denote Zt = N−1
∑N

i=1 Xit = (Zt1, . . . , Ztp)
T, B = N−1

∑N
i=1 Bi and ūt = N−1

∑N
i=1 uit.

We propose to estimate the latent factors through an averaged latent factor model

Zt = Bft + ūt, t = 1, . . . , T. (8)
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To make the model (8) identifiable, we impose the following identification conditions

cov(ft) = Iq and BTB is diagonal.

We assume that the following condition to hold for the factor model (8).

Condition 2 In the factor model (8), we assume the latent factor {ft}Tt=1 and the idiosyn-
cratic noise {ūt}Tt=1 are two i.i.d. sequences and independent with each other. Denote the
covariance matrix of Zt and ūt as ΣZ and Σu, respectively. Let λ1 ≥ · · · ≥ λp be the eigen-
values of ΣZ in the descending order and v1, . . . , vp be the corresponding eigenvectors.
Moreover,

(a) (Finite kurtosis) max
1≤t≤T, 1≤`≤p

κt` ≤ c1, where c1 is a positive constant and κt` is the

kurtosis of Zt`, for t = 1, . . . , T and ` = 1, . . . , p;

(b) (Pervasiveness) There exist positive constants c2, c3 and c4, such that c2p ≤ λ` −
λ`+1 ≤ c3p for ` = 1, . . . , q, and ‖Σu‖2 ≤ λq+1 ≤ c4.

Condition 2 (a) requires Zt, and hence ūt, to have finite fourth moments. This condition
is much weaker than requiring finite fourth moments of uit’s. It allows uit’s to be strongly
dependent w.r.t. i and can be checked by calculating the empirical kurtosis of Zt. Condition
2 (b) assumes that the first q eigenvalues of ΣZ are much larger than the rest p − q ones
when the dimensionality p is large. This pervasiveness assumption is widely used in high-
dimensional factor model literature (e.g., Johnstone and Lu, 2009; Fan et al., 2013; Shen
et al., 2016; Wang and Fan, 2017) to identify the low-rank part from the idiosyncratic errors.
Recently, literature (e.g., Fan et al., 2018b; Abbe et al., 2020) studied weaker versions of the
pervasiveness assumption that allows the eigen-gap between λ` and λ`+1, for ` = 1, . . . , q,
to diverge slower than order O(p). Our theoretical results can be extended to adapt the
weaker version of pervasiveness assumption.

Next, we illustrate the estimation procedure of latent factors by three steps.

Step 1: Estimate ΣZ

Denote ΣZ = (σk`)1≤k,`≤p and sign(x) the sign function of x. Define ψτ (·) the first order
derivative of Huber’s loss `τ (·), which admits the following form

ψτ (x) =

{
x, if |x| ≤ τ,
τ sign(x), if |x| > τ.

Then, we define the element-wise estimator of σk` as

σ̂k` =
2

T (T − 1)

∑
1≤i<j≤T

ψτk`

(
(Zik − Zjk)(Zi` − Zj`)

2

)
, 1 ≤ k, ` ≤ p, (9)

where τk`’s are robustification parameters satisfying τk` = τ`k. By definition, it is easy to
see that σ̂`k = σ̂k`.

Collecting these element-wise estimators, we obtain the robust covariance estimator

Σ̂Z = Σ̂Z(Γ) = (σ̂k`)1≤k,`≤p, (10)
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where Γ = (τk`)1≤k,`≤p is a symmetric matrix of robustification parameters.
To avoid trivial discussion, we assume T ≥ 2, p ≥ 1 and define T0 = bT/2c, the largest

integer no greater than T/2. Let V = (vk`)1≤k,`≤p be a symmetric p× p matrix with

v2
k` = E((Z1k − Z2k)(Z1` − Z2`))

2/4.

Theorem 2 Under Condition 2 (a) and for any 0 < δ < 1, the covariance estimator
Σ̂Z = Σ̂Z(Γ) given in (10) with

Γ =
√
T0/(2 log p+ log δ−1) V, (11)

satisfies

‖Σ̂Z −ΣZ‖max ≤ 2‖V‖max

√
2 log p+ log δ−1

T0
, (12)

with probability at least 1− 2δ.

Theorem 2 shows that each element of Σ̂Z concentrates around the truth as the max-
imum error scales as

√
2 log(p)/T0 ≈

√
4 log(p)/T . Therefore, we can accurately estimate

ΣZ at a high confidence level under the condition that log(p)/T is small.

Remark 2 Recently, estimating large scale covariance matrices from heavy-tailed data or
data contaminated by outliers has become a hot topic, see Catoni (2016); Minsker (2018);
Minsker and Wei (2020); Avella-Medina et al. (2018); Mendelson and Zhivotovskiy (2020);
Ke et al. (2019) and references therein. Catoni (2016) proposed a robust estimator of
the Gram and covariance matrices of a random vector from a spectrum-wise perspective
and proved error bounds under the operator norm. Mendelson and Zhivotovskiy (2020)
studied a different robust covariance estimator that admits tight deviation bounds under the
finite kurtosis condition. However, both estimators involve a brute-force search and hence
are computationally intractable in high-dimensional set-up. Avella-Medina et al. (2018)
combined robust estimates of the first and second moments to obtain variance estimators
from an element-wise perspective. The estimator proposed in Avella-Medina et al. (2018)
uses cross-validation to calibrate a total number of dimension squared tuning parameters
which is computationally expensive in practice. Motivated by the ideas of Minsker (2018)
and Avella-Medina et al. (2018), we propose an efficient tail-robust covariance estimator
that enjoys desirable finite-sample deviation bounds under weak moment conditions. The
constructed estimator is computationally efficient for large-scale problems since it is based
on a simple truncation technique and a novel data-driven tuning scheme. These two points
distinguish our work from the aforementioned robust covariance estimators in the literature.

Step 2: Estimate the number of latent factors

Estimating q, the number of latent factors, in (8) is an intrinsic un-supervised learning
problem since factors, loading and idiosyncratic noises are all unobsevable. To avoid the
ambiguity towards the definition of q, the Condition 2 (b) assumes that there exists a non-
negative integer q such that the first q eigenvalues of ΣZ are diverging with p, while the
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rest p − q eigenvalues are bounded. This definition is similar to the ones used in existing
high-dimensional factor analysis literature, we refer to Chamberlain and Rothschild (1983),
Stock and Watson (2002), Bai and Ng (2002), and more recent references.

Let λ̂1 ≥ · · · ≥ λ̂p and v̂1, . . . , v̂p be the eigenvalues and corresponding eigenvectors of

Σ̂Z respectively. We follow the modified ratio method, e.g., equation (10) in Chang et al.
(2015), to estimate the number of latent factors. Let qmax be a prescribed upper bound and
CT be a constant that depends on p and T . The number of factors can be estimated by

q̂ = argmin
k≤qmax

λ̂k+1 + CT

λ̂k + CT
. (13)

For the special case that Zt itself is weakly correlated, one can estimate q as 0. In our
numerical studies, we choose qmax = p/2 and CT = lnT/10T as recommended in Xia et al.
(2015).

Lemma 1 Under Condition 2, we have

max
1≤`≤q

|λ̂` − λ`| ≤ p‖Σ̂Z −ΣZ‖max, (14)

and max
1≤`≤q

‖v̂` − v`‖∞ ≤ C1(p−1/2‖Σ̂Z −ΣZ‖max + p−1‖Σu‖2), (15)

where C1 > 0 is a constant independent of (T, p).

Lemma 1 gives uniform upper bounds for estimated eigenvalues and eigenvectors. The
following lemma shows that Lemma 1 together with Theorem 2 can yield a consistency
argument of q̂ similar as Theorem 2.4 in Chang et al. (2015). Hence we omit its proof.

Lemma 2 (Theorem 2.4 in Chang et al. (2015)) Under Condition 2, we have

P (q̂ 6= q)→ 0, as T →∞.

Besides the modified ratio method, Bai and Ng (2002) studied the estimation of the
number of factors for high-dimensional factor models. They proposed to estimate q by
minimizing a family of information criteria. We refer to (9) in Bai and Ng (2002) for viable
examples.

Step 3: Estimate loading and latent factors

Then, we estimate the loading B and latent factors ft as follows. Define

B̂ = (λ̂
1/2
1 v̂1, . . . , λ̂

1/2
q v̂q̂) ∈ Rp×q̂

as an estimator of B. Let {b̂1, . . . , b̂p} ∈ Rq̂ be the p rows of B̂, and define

f̂t = argmin
f∈Rq̂

p∑
j=1

`γ(Zjt − b̂T
j f), t = 1, . . . , T, (16)

where γ is a robustification parameter. The following theorem gives uniform upper bounds
for the estimated loading and latent factors.
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Theorem 3 Assume that Condition 2 holds and C2 − C6 are positive constants independent
of (T,N, p). Choose min1≤k,l≤p τk` ≥ C2

√
T/(log p) and γ ≥ C3

√
p. Then, we have

max
1≤j≤p

‖b̂j − bj‖ ≤ C4{(log p)1/2T−1/2 + p−1/2}, (17)

and max
1≤t≤T

|‖f̂t − ft‖ ≤ C5(log p/p)1/2, (18)

with probability at least 1− C6p
−1.

Remark 3 In the past few years, robust factor model estimation has been studied by vari-
ous literature in statistics, econometrics, and finance. We refer to Fan et al. (2016, 2018a,
2019b,a, 2020a,b), among others. Most existing robust factor model estimation methods
adopt a two-stage scheme: first obtain a “good enough” robust covariance estimator, and
then approximate the factor model by principal component analysis. Therefore, innova-
tion mainly resides in the first stage. For example, Fan et al. (2018a) proposed a general
principal orthogonal complement thresholding to estimate elliptical factor models. Fan et al.
(2016) exploited rank-based and quantile-based covariance estimators for robust factor model
estimations. Fan et al. (2019b,a, 2020a) used adaptive Huber type robust covariance ma-
trix estimators in the first stage. In this paper, we also followed this two-stage scheme.
In the first stage, we proposed an efficient truncation based robust covariance estimator
which is comparable to the adaptive Huber estimator used in Fan et al. (2019b,a, 2020a)
but computationally less expensive.

Then, we plug the estimated factors back to (6) and estimate θi by solving the following
convex optimizaiton problem:

θ̃i(τ, f̂) = argmin
θ∈Rd

T∑
t=1

`τ (yit − ŴT
itθ), for i = 1, · · · , N, (19)

where Ŵit = (1,XT
it, f̂

T
t )T. Denote M = Np. Let β̃ij := β̃ij(τ, f̂) the estimator of βij ,

1 ≤ i ≤ N and 1 ≤ j ≤ p, which is a sub-vector of θ̃i(τ, f̂) in (19). The corollary below
gives a uniform upper bound of β̃ij ’s.

Corollary 1 Assume that Conditions 1 − 2 hold, and C7 and C8 are positive constants
independent of (T,N, p). For 1 ≤ i ≤ N and 1 ≤ j ≤ p,

max
i,j
|β̃ij − βij | ≤ C7 {logM/T}1/2 ,

with probability at least 1− C8p
−1.

In comparison with Theorem 1, the uniform upper bound of β̃i,j(τ, f̂) is close to the

uniform upper bound for the oracle estimator with known factors, i.e., β̃i,j(τ, f). The nu-

merical studies in Section 5 show that β̃i,j(τ, f̂) performs very similar as the oracle estimator

β̃i,j(τ, f) in various finite sample scenarios.
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3. Homogeneity Structure Learning

In this section, we describe a generic homogeneity structure learning procedure.

3.1 Detect the Homogeneity Structure

In this subsection, we detect the homogeneity structure embedded in the robust estimator
β̃ij ’s, i = 1, . . . , N and j = 1, . . . , p. Denote {β̃(m)}Mm=1 the sorted sequence of β̃ij ’s in an
ascending order. Without loss of generality, we assume β0,1 < . . . < β0,K+1 and the change
points located at η(0) < η(1) < . . . < η(K) < η(K+1), where η(0) = 1 and η(K+1) = M . As we
can see, the partition {Ak : 1 ≤ k ≤ K + 1} in (4) is uniquely defined by the number and
locations of change-points among {β̃(m)}Mm=1, i.e., K and {η(k)}Kk=1.

Binary segmentation techniques have been extensively studied for multiple change-points
detection applications, see Vostrikova (1981), Bai (1997), Chen et al. (2011), Killick et al.
(2012), Fryzlewicz and Subba Rao (2014), and Cho and Fryzlewicz (2015), to name but
a few. As a relatively new member of the house, the wild binary segmentation (WBS)
method (Fryzlewicz, 2014) detects the change-points in some randomly drawn sub-intervals
instead of the whole interval. This “localizing” setup allows WBS to achieve near-optimal
theoretical results with much weaker conditions on the spacing between change-points and
minimal jump magnitudes. Besides, extensive numerical studies have shown that WBS is
faster and more stable than the standard binary segmentation in various scenarios. Based
on the success of WBS, we propose to detect the homogeneity structure with a procedure
summarized in Algorithm 1 below.

Remark 4 Algorithm 1 involves two pre-specified parameters R and ξ. R controls the
number of random intervals and should be “as large as possible” subject to computational
constraints as suggested in Fryzlewicz (2014). The stopping criterion ξ works as a threshold
that decides if a change point should be recovered in a region or not. For a given region, if the
cumulative sum statistic defined in (20) falls below ξ, Algorithm 1 does not detect any change
point in this region and stops further splitting this region. As recommended in Fryzlewicz
(2014), one should choose ξ = Cξ

√
2 lnT for some positive constant Cξ. Notice that, the

number of detected change points K̂ is a nonincreasing function of ξ. Therefore, one can
select Cξ through BIC or the Strengthened Schwarz information criterion (SSIC) proposed
in Fryzlewicz (2014). In our numerical studies, we choose R = 5000 and ξ =

√
2 lnT which

are the default values in the WBS package 2.

Condition 3 Denote η = min0≤k≤K
{
η(k+1) − η(k)

}
, the minimum separation between two

neighboring change-points. Denote β = min 1≤k≤K(β0,k+1 − β0,k), the minimum jump be-

tween two neighboring homogeneity groups. We require {β0,k}K+1
k=1 bounded and η1/2β ≥

c5 log1/2M for some positive constant c5.

Condition 3 assumes that the minimum spacing between two neighboring change-points
and the minimum signal jump between two neighboring homogeneity groups to diverge

2. The WBS package is available at https://cran.r-project.org/web/packages/wbs/index.html
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Algorithm 1 Change-points detection with wild binary segmentation

Input: Ascending sorted initial estimator {β̃(m)}Mm=1, number of random intervals R and
stopping criterion ξ.
Step 1

Randomly draw a set of R intervals [sr, er], r = 1, . . . , R. The start point sr and the
end point er are drawn uniformly from the set {1, . . . ,M}.
Step 2

2.1 For each given interval [sr, er], apply binary segmentation by finding the index η̃r
that maximizes a cumulative sum statistic defined as

Q̂ηsr,er =

√
er − η

Mr(η − sr + 1)

η∑
m=sr

β̃(m) −

√
η − sr + 1

Mr(er − η)

er∑
m=η+1

β̃(m), (20)

where Mr = er − sr + 1.
2.2 Pick the index η̂1 as the first detected change point that satisfy

η̂1 = argmax
r∈[1,R],b∈[sr,er)

|Q̂bsr,er | and |Q̂η̂1sr,er | > ξ,

where ξ is a pre-specified stopping criterion.
Step 3

Divide the original interval [1,M ] into two sub-intervals [1, η̂1] and [η̂1 + 1,M ]. Repeat
Step 1 and Step 2 on each sub-interval to detect new change points.
Step 4

Repeat Step 3 for any newly detected change points until no new change point is

detected. Denote K̂ and {η̂k}K̂k=1 the estimated number and locations of change points

respectively. Resort {η̂k}K̂k=1 in ascending order and denote the new sequence as {η̂(k)}K̂k=1

Output: K̂ and {η̂(k)}K̂k=1.

logarithmically slowly with M , which is a very mild condition. Hence, we allow the number
of change points K to slowly diverge with N and p. Theorem 4 below shows that Algorithm
1 can correctly detect the number and all locations of change-points with high probability.

Theorem 4 Assume that Conditions 1, 2 and 3 hold. Let C9 and C10 be two positive con-
stants independent of (T,N, p). Choose the threshold ξ and the number of random intervals
R to satisfy

c5 log1/2M ≤ ξ ≤ 2η1/2β and R ≥ 9T 2η−2 log(Mp/ log η)

respectively, then with probability at least 1− C9p
−1,

K̂ = K and max
1≤k≤K

|η̂(k) − η(k)| ≤ C10β
−2 logM.

Remark 5 In this paper, we mainly focused on detecting the homogeneity structure and
estimating homogeneity coefficients. Besides, the inference issues of the estimated coeffi-
cients are important in many economic and statistical applications. Here we briefly review
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the recent developments of inference for longitudinal data with high dimensional covari-
ates. The seminal papers Zhang and Zhang (2014) and Van de Geer et al. (2014) proposed
a general framework for constructing confidence intervals and statistical tests for single or
low-dimensional components of a large parameter vector in a high-dimensional model. Later,
Ning and Liu (2017) developed a novel decorrelated score function to assess the uncertainty
for low dimensional components in high dimensional models. Specifically, their methods can
be applied to study hypothesis tests and confidence regions for generic M -estimators. More
recently, Fang et al. (2020) studied the statistical inference for longitudinal data with ultra-
high dimensional covariates. They addressed the challenge of constructing a powerful test
statistic in the presence of high-dimensional nuisance parameters and sophisticated within-
subject correlation of longitudinal data. Follow the analysis in Fang et al. (2020), we may
show that the proposed homogeneity coefficient estimator is asymptotically normal, based on
which we can construct an optimal Wald test statistic. Due to the limited space, we do not
pursue this direction in the paper.

3.2 Estimate Homogeneity Coefficients

In this subsection, we introduce the estimation of homogeneity coefficients {β0,k : 1 ≤ k ≤
K + 1} with the homogeneity structure detected by Algorithm 1.

Denote η̂(0) = 0, η̂
(K̂+1)

=∞, and

Âk = {β(m) : η̂(k−1) < m ≤ η̂(k)}, k = 1, . . . , K̂ + 1,

the detected homogeneity structure. We re-parameterise βij in (3) by setting βij = β0,k if

βij ∈ Âk, for i = 1, . . . , N and j = 1, . . . , p. Through this re-parameterisation, the Np

unknown parameters βij ’s are reduced to K̂ + 1 unknown parameters β0,k’s.
Replacing each βij in (19) by its corresponding β0,k is equivalent to minimize the fol-

lowing empirical Huber’s loss over a reduced parameter space.

(β̂i, α̂i, λ̂i) = argmin
βi∈B,αi∈R,λi∈Rq

T∑
t=1

`τ (yit − αi −XT
itβi − f̂T

t λi), for i = 1, . . . , N, (21)

where B = {βij : βij = β0,k if βij ∈ Âk; i = 1, . . . , N, j = 1, . . . , p and k = 1, . . . , K̂+1.}
is a K̂ + 1 dimensional subspace of RN×p.

Corollary 2 Assume that Conditions 1, 2 and 3 hold. Let C11 and C12 be two positive
constants independent of (T,N, p). For 1 ≤ k ≤ K, denote β̂0,k = β̂ij , ∀βij ∈ Ak. Then we
have

max
k
|β̂0,k − β0,k| ≤ C11 {logK/T}1/2 , (22)

with probability at least 1− C12p
−1.

Corollary 2 gives a uniform upper bound for the homogeneity coefficient estimator with
the detected homogeneity structure. By comparing it with Corollary 1, the upper bound in
(22) replaces the diverging term log (Np) with a much smaller one logK, which justifies the
intuition that correctly learning the homogeneity structure can avoid overfitting in panel
data analysis.
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Algorithm 2 Robust homogeneity structure learning

Input: Observed data (Xit, yit) ∈ Rp+1, i = 1, . . . , N and t = 1, . . . , T . Upper bound
qmax, constant CT , number of random intervals R and stopping criterion ξ.
1. Estimate covariance matrix

1.1 Calculate Zt = N−1
∑N

i=1 Xit = (Zt1, . . . , Ztp)
T.

1.2 For 1 ≤ k ≤ ` ≤ p, select τk` = τ`k by solving (23).
1.3 Calculate σ̂`k = σ̂k` by (10) and Collect Σ̂Z = (σ̂k`)1≤k,`≤p.

2. Estimate latent factors
2.1 Apply eigen-decomposition to Σ̂Z . Let λ̂1 ≥ · · · ≥ λ̂qmax be the first qmax eigenvalues

of Σ̂Z in a descending order, and v̂1, . . . , v̂qmax be the corresponding eigenvectors.
2.2 Estimate the number of factors by (13)

2.3 Estimate the factor loading by B̂ = (b̂1, . . . , b̂p)
T = (λ̂

1/2
1 v̂1, . . . , λ̂

1/2
q v̂q̂).

2.4 Estimate latent factors {f̂t}Tt=1 by (16).

2.5 Estimate the coefficients {β̃i}Ni=1 by (19), where β̃i = (β̃i1, . . . , β̃ip)
T.

3. Detect homogeneity structure
3.1 Sort β̃ij ’s in an ascending order and denote the obtained sequence as {β̃(m)}Mm=1

with M = Np.

3.1 Detect the number and location of changes points K̂ and {η̂k}K̂k=1 by inputting

{β̂(m)}Mm=1, R and ξ to Algorithm 1.
4. Estimate homogeneity coefficients

Obtain the final estimator of {β̂i}Ni=1 by (21).

Output: K̂, {η̂k}K̂k=1 and {β̂0,k}K̂k=1

4. Implementation

In this section, we summarize the proposed robust homogeneity structure learning procedure
as a computational algorithm. We also present a fast robust covariance estimation method.

4.1 Computational Algorithm

To conclude Sections 2 and 3, we summarize the full robust homogeneity structure learning
procedure in Algorithm 2 below. The computational complexity of Algorithm 2 mainly
resides in the covariance matrix estimation step which is of the order O(p2T 2). To address
this issue, we introduce a fast robust covariance matrix estimation method in Section 4.2
below.

4.2 Fast Robust Covariance Estimation

The element-wise covariance estimator (9) entails p(p−1)/2 robustification parameters τk`,
1 ≤ k, ` ≤ p. When the dimensionality p is large, it is computationally expensive to se-
lect τk`’s through cross-validations. Recently, Ke et al. (2019) proposed a fast data-driven
approach to select the robustification parameters and estimate the covariance matrix simul-
taneously by solving a system of equations. Numerical studies therein suggest that the new
data-driven method is considerably faster than the cross-validation while performs equally
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as well. This fast data-driven covariance matrix estimation method can be implemented by
an R package named FarmTest3 (Bose et al., 2021).

For the completeness of the paper, we briefly illustrate this fast data-driven approach.
Denote T = T (T − 1)/2. For the ease of presentation, we fix 1 ≤ k ≤ ` ≤ p and define

{U1 . . . , UT } = {(Z1k − Z2k)(Z1` − Z2`)

2
,

(Z1k − Z3k)(Z1` − Z3`)

2
,

. . . ,
(Z(T−1)k − ZTk)(Z(T−1)` − ZT`)

2
}.

The dependence of U1, . . . , UT on k and l has been suppressed for the simplicity of notations.

One can see that U1, . . . , UT are weakly stationary with E(U1) = σk` and E(U2
1 ) = v2

k`.
Suggested by (11), an “ideal” choice of τk` is

τk` = vk`

√
T0

2 log p+ log δ−1
,

where δ is prespecified to control the confidence level in (12). In the presence of heavy-
taildness, we expect the empirical truncated second moment

T −1
T∑
i=1

ψ2
τk`

(Ui) = T −1
T∑
i=1

(U2
i ∧ τ2

k`)

to be a reasonable estimate of E(U2
1 ). Plugging this estimator in (9) yields the following

equation of τ

1

T

T∑
i=1

(U2
i ∧ τ2)

τ2
=

2 log p+ log δ−1

T0
, τ > 0. (23)

We propose to use the solution of (23), namely τ̂k`, as a data-driven choice of τk`. With
τ̂k`, the calculation of (9) is straightforward and there is no optimization involved.

As δ controls the confidence level in (12), we should let δ = δ(p) be sufficiently small so
that the estimator is concentrated around the true value with a high probability. On the
other hand, δ−1 also appears in the deviation bound that corresponds to the width of the
confidence interval, it should not grow too fast as a function of p. We refer to Wang et al.
(2020) for more discussions on the properties of (23). In practice, we recommend using
δ = p−1, a typical slowly varying function of p.

5. Simulations

In this section, we use simulated examples to assess the finite sample performance of the
proposed estimation procedure. Throughout this section, we set N = 100, T = 200, p = 30
and q = 2. For each scenario, we simulate 200 replications unless otherwise specified.

3. The FarmTest package is available at https://cran.r-project.org/web/packages/FarmTest/index.html.
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5.1 Data Generation

Consider a panel data model with interactive effects:{
yit = αi + XT

itβi + fT
t λi + εit,

Xit = bift + uit,
i = 1, . . . , N, t = 1, . . . , T,

where αi ∈ R, βi ∈ Rp, λi ∈ Rq , bi ∈ Rp×q, ft ∈ Rq, εit ∈ R, and uit ∈ Rp.
The intercepts αi’s are independently drawn from a uniform distribution U(−1, 1). The

latent factors ft are independently drawn from N(0, Iq). The factor loading bi = {bi,kj}, k =
1, . . . , p, j = 1, 2 are generated as

bi,kj =

{
sin(2πk/p) if j = 1,

cos(2πk/p) if j = 2.

Besides, the coefficients λi = (λi,1, λi,2)T are generated as

λi,j =

{
sin(2πi/N) if j = 1,

cos(2πi/N) if j = 2.

Each element of {uit} and {εit} are sampled independently from one of the following
three distributions:

(a) Normal distribution with mean 0 and variance 3;

(b) t-distribution with mean 0 and degree of freedom 2.1;

(c) Pareto distribution with location and dispersion parameters being 1 and 2, respec-
tively. This distribution is then re-scaled to have zero mean.

The distribution (b) is heavy-tailed. The distribution (c) is both heavy-tailed and asym-
metric.

Next, we generate the regression coefficients of interest βij ’s, i = 1, . . . , N and j =
1, . . . , p. Each βij is independently generated from one of the following two homogeneity
structures:

(i) 5-groups: discrete uniform distribution with atoms {−2r,−r, 0, r, 2r};

(ii) 9-groups: discrete uniform distribution with atoms {−4r,−3r,−2r,−r, 0, r, 2r, 3r, 4r}.

The structures (i) and (ii) have 5 and 9 groups, respectively. For both structures, the signal
strength r is set to be 1 (week), 2 (medium), or 4 (strong).

To sum up, we run simulations over three error distributions, two homogeneity struc-
tures, and three levels of signal strength. That is 18 scenarios in total.
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5.2 Covariance and Latent Factors Estimation

In this subsection, we assess the performance of the covariance and latent factors estimation
procedure as proposed in Section 2.2.

First, we compare the covariance estimation performance of our robust covariance esti-
mator (Our), the adaptive Huber estimator (Ah), the median of means estimator (Mom)
and the sample covariance estimator (Sample). Our is implemented as the Step 1 in
Section 2.2. The matrix of robustification parameters Γ = (τk`)1≤k,`≤p are selected by the
tuning-free method introduced in Section 4.2. The implementations of Ah and Mom fol-
low Avella-Medina et al. (2018). The tuning parameters of Ah and Mom are selected by
five-fold cross-validations.

Recall that Zt = N−1
∑N

i=1 Xit and ΣZ is the covariance matrix of {Zt}Tt=1. For each
replication, we calculate the following two matrix norms,

∆max(Ẑ(l)) = ‖Σ̂(l)
Z −ΣZ‖max and ∆F(Ẑ(l)) = ‖Σ̂(l)

Z −ΣZ‖F, l = 1, . . . , 200, (24)

where Σ̂
(l)
Z is an estimator of ΣZ in the lth replication. The estimation accuracy of ΣZ

is measured by the sample mean and the sample standard deviation of the norms in (24)
over 200 replications. The results of the four competing methods with different error dis-
tributions are summarized in Table 1. When the data are generated with Normal errors,
the performance of Our, Sample and Ah are comparable while Mom has slightly larger
sample means. When the data are generated with heavy-tailed errors (e.g., t and Pareto
distributions), all three robust estimators outperform Sample by big margins in terms of
smaller sample means and sample standard deviations. To better compare the performance
of three robust estimators under heavy-tailed scenarios, we report the boxplots of their error
norms in Figure 3. According to Figure 3, Our and Ah perform comparably in all four
scenarios, and Mom performs the worst among the three. Further, we make a wall-time
computational cost comparisons among Our, Ah and Mom over 200 replications 4. The
average wall-time running costs of Our, Ah and Mom are 0.8, 11 and 7 seconds per repli-
cation, respectively. To sum up, Our pays a little price in light-tailed scenarios but gains
a big advantage in the presence of heavy-tailed errors. Besides, Our performs the best
among three competing robust covariance estimators in terms of both estimation accuracy
and computational efficiency.

Next, we compare the factor estimation performance between our robust factor estimator
(Our) and the estimator proposed in Pesaran (2006) (Pesaran). Our is implemented as
the procedure introduced in Section 2.2. Pesaran uses the cross-sectional mean of both
Xit and yit to proxy the unobserved factor ft. Denote F̂(l) an estimator of the latent factors
F = (f1, . . . , fT )T in the lth replication. The estimation accuracy of F is measured by the
canonical correlation analysis (CCA) between the estimator and the truth (the larger the
better) as

CCA(F̂(l)) ≡ CCA(F̂(l),F), l = 1, . . . , 200, (25)

where the CCA(·, ·) stands for the sample canonical correlation between two matrices. The
boxplots of canonical correlations over 200 replications are reported in Figure 4. Our

4. For each method, we simulate 200 replications on the same computer cluster node with Intel(R) Xeon(R)
CPU E5-2690 v3 @ 2.60GHz and 256Gb RAM.
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Estimation error Method Normal t2.1 Pareto

Our 0.022 (0.005) 0.073 (0.086) 0.297 (1.751)

∆max(Ẑ(l)) Sample 0.022 (0.005) 0.672 (2.388) 6.662 (50.702)
Ah 0.022 (0.005) 0.073 (0.086) 0.298 (1.751)
Mom 0.027 (0.005) 0.082 (0.085) 0.306 (1.751)

Our 0.227 (0.053) 0.437 (0.438) 1.598 (9.576)

∆F(Ẑ(l)) Sample 0.227 (0.052) 0.917(2.397) 7.017(51.546)
Ah 0.227 (0.053) 0.438 (0.438) 1.598 (9.576)
Mom 0.269 (0.046) 0.497 (0.436) 1.657 (9.574)

Table 1: Sample means and sample standard deviations (numbers in parentheses) of covariance
matrix estimation errors defined in (24) over 200 replications. Normal, t2.1 and Pareto
stand for the three error distributions listed in Section 5.1.
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Figure 3: Covariance matrix estimation: boxplots of estimation errors for Our, Ah, and Mom.
The left column reports the estimation error in max norm, while the right column reports
the estimation error in Frobenius norm. The top and bottom rows represent simulation
results for t2.1 and Pareto cases, respectively.

performs as well as Pesaran in the Normal case. However, when the errors are drawn
from heavy-tailed distributions, Our outperforms Pesaran as expected.

5.3 Regression Coefficients Estimation

In this subsection, we assess the homogeneity learning and robust coefficient estimation
procedure introduced in Section 3.1. We propose to compare 5 estimators listed as follows.
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Figure 4: Factor estimation: boxplots of sample canonical correlations between the estimated fac-
tors and the truth over 200 replications (the larger the better). The left, middle and
right columns present simulation results for Normal, t2.1 and Pareto cases, respectively.

(i) Our estimator: We estimate βi’s, i = 1, . . . , N , with the procedure introduced in
Algorithm 2. In other words, we consider both robust estimation and homogeneity
detection in the estimation procedure.

(ii) Oracle estimator: Similar to Our except that we treat the latent factors as observ-
able and the true homogeneity structure as known. The Oracle estimator is used
as a performance upper bound benchmark in the comparison.

(iii) Homogeneity estimator: Similar to Our except that we do not pursue robust esti-
mations throughout the estimation procedure. Specifically, we replace (9), (19) and
(21) by their OLS counterparts.

(iv) Robust estimator: Similar to Our except that we do not pursue the homogeneity
detection procedure. To be specific, we use the estimator obtained from (19) as the
final estimator.

(v) OLS estimator: Similar to Robust except that we do not pursue the robust esti-
mations throughout the procedure. Namely, we replace (9) and (19) by their OLS
counterparts.

In Table 2, we summarize the similarities and differences of the above 5 estimators according
to three aspects: robust estimation; homogeneity detection; and latent factors.

Denote β̂
(l)
i an estimator of βi in the lth experiment. We measure the estimation accu-

racy of β̂
(l)
i by calculating the root-mean-squared-error (RMSE).

RMSE(β̂
(l)
i ) =

{
(Np)−1

N∑
i=1

‖β̂(l)
i − βi‖

2
}1/2

, l = 1, . . . , 200.

In Figures 5—7, we report the boxplots of RMSE of 5 estimators with errors generated
from the Normal, t and Pareto distributions, respectively. For each error distribution, we

20



Homogeneity in Large-scale Panel Data with Heavy-tailed Errors

Robust Estimation Homogeneity Detection Latent factors

Our Yes Yes Un-observable
Oracle Yes Known Observable

Homogeneity No Yes Un-observable
Robust Yes No Un-observable
OLS No No Un-observable

Table 2: “Specificaiton” table for the 5 estimators in Section 5.3
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Figure 5: Comparison of 5 methods in estimation accuracy of β̂i when noises are generated from
Normal distribution over 200 replications. The top and bottom rows represent two homo-
geneity structures: 5-groups and 9-groups respectively. The three columns represent
the signal strengths r = 1, r = 2, and r = 4 respectively.

consider two homogeneity structures: 5-groups and 9-groups. For each homogeneity
structure, we set the signal strength r to be 1 (week), 2 (medium), or 4 (strong). We refer
to Section 5.1 for more details.

According to Figure 5, with Normally distributed errors, the estimators that use known
or detected homogeneity structure (Our, Oracle and Homogeneity) outperform the
estimators that ignore the homogeneity structure (Robust and OLS). When the errors
follow heavy-tailed distributions, like the results in Figures 6 and 7, robust estimators (Our,
Oracle and Robust) outperform the other two non-robust competitors. Under various
group structures and signal strengths, the performance of Our and Oracle are fairly
close to each other which indicates that Our can effectively detect the hidden homogeneity
structure and robustly estimate the coefficients in the presense of heavy-tailed errors.

Next, we assess the accuracy of the detected homogeneity structure by calculating the
sample mean of the adjusted Rand index (Hubert and Arabie, 1985) between Our estimator
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Figure 6: Comparison of 5 methods in estimation accuracy of β̂i when noises are generated from t2.1
distribution over 200 replications. The top and bottom rows represent two homogeneity
structures: 5-groups and 9-groups, respectively. The three columns represent the
signal strengths r = 1, r = 2, and r = 4, respectively.

Structure Signal strength Normal t-distribution Pareto

r = 1 0.9993 0.9990 0.9967
5-groups r = 2 1 0.9999 0.9990

r = 4 1 0.9999 0.9997

r = 1 0.9995 0.9989 0.9940
9-groups r = 2 1 0.9998 0.9989

r = 4 1 0.9999 0.9998

Table 3: Adjusted Rand index of Our (the higher the better).

and the truth over 200 replications. The results, presented in Table 3, are close to one in all
scenarios, which indicates that the proposed homogeneity detection procedure can perfectly
identify the number of groups as well as group memberships in most replications.

Further, we compare Our with two popular homogeneity detection methods: the method
proposed in Pesaran (2006) (denoted as Pesaran); and the method proposed in Su and Ju
(2018) (denoted as Su). To make a fair comparison, we follow the data generating process
1 (static panel model) in Section 5.1 of Su and Ju (2018) with one latent factor. The error
terms in Xit and Yit follow either N(0, 3) or t3 distribution. In other words, the errors are
generated from two distributions with the same variance but different tail behaviors. The
box-plots of RMSE over 100 replications are presented in Figure 8. For the Normal error
case, Our performs similarly as Su which indicates that our method does not lose any
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Figure 7: Comparison of 5 methods in estimation accuracy of β̂i when noises are generated from
Pareto distribution over 200 replications. The top and bottom rows represent two homo-
geneity structures: 5-groups and 9-groups, respectively. The three columns represent
the signal strengths r = 1, r = 2, and r = 4, respectively.
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Figure 8: Comparison of Our, Su, and Pesaran in estimation accuracy of β̂i over 100 replications.
The left and right columns represent the error terms in Xit and Yit follow N(0, 3) and t3
distributions, respectively.

efficiency in the light-tailed case. In the t3 distribution case, Our outperforms Su as Our
is robust against heavy-tailed errors. In both cases, Pesaran performs the worst.

5.4 Serial Dependent Case

The simulation settings are similar as in Section 5.1 except that we generate data with
serial dependent and heavy-tailed errors. Specifically, we generate {uit}’s and {εit}’s from
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Figure 9: Comparison of 5 methods in estimation accuracy of β̂i when noises are generated from
serial dependent t distributions. The top and bottom rows represent two homogeneity
structures: 5-groups and 9-groups, respectively. The three columns represent the
signal strengths r = 1, r = 2, and r = 4, respectively.

Structure Signal strength t-distribution Pareto

r = 1 0.9950 0.9865
5-groups r = 2 0.9996 0.9978

r = 4 0.9999 0.9995

r = 1 0.9956 0.9860
9-groups r = 2 0.9996 0.9977

r = 4 0.9999 0.9995

Table 4: Adjusted Rand index of Our for serial dependent data.

a stationary VAR(1) model and a stationary AR(1) model as follows.

ui,t = Πui,t−1 + vi,t, εi,t = ρεi,t−1 + ηi,t, i = 1, . . . , N, and t = 1, . . . , T,

with ui,0 = 0, εi,0 = 0 and ρ = 0.5. The (i, j)th entry of Π is set to be 0.5 when i = j and
0.1|i−j| when i 6= j. In addition, each element of {vi,t} and {ηi,t} is sampled independently
from one of the two heavy-tailed distributions (t2.1 and Pareto) listed in Section 5.1.

In Figures 9 and 10, we report the boxplots of RMSE of 5 estimators with errors gen-
erated from the serial dependent t and Pareto distributions, respectively. In Table 4, we
report the sample mean of the adjusted Rand index between Our and the truth over 200
simulations.
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Figure 10: Comparison of 5 methods in estimation accuracy of β̂i when noises are generated from
serial dependent Pareto distributions. The top and bottom rows represent two homo-
geneity structures: 5-groups and 9-groups, respectively. The three columns represent
the signal strengths r = 1, r = 2, and r = 4, respectively.

5.5 Sensitivity of Robustificaiton Parameter Selection

For the proposed robust covariance matrix estimator, the robustificaiton parameters
(τkl)1≤k,l≤p can be selected by the fast and data-driven method proposed in Section 4.2.
The robust linear regressions in (16), (19) and (21) also involve selecting robustification
parameters. Similarly, these robustification parameters can be selected in a data-driven
manner. This problem has been independently studied in Wang et al. (2020). Since the
computations of these robust linear regressions are relatively fast, we propose to use the
5-fold cross-validation to select their robustification parameters in our numerical studies.

In this subsection, we assess the sensitivity of the robustificaiton parameter selection.
To be specific, we follow the data generating process in Section 5.1 with the error terms of
Xit and yit being sampled independently from the Pareto distribution. First, we calculate
the proposed robust covariance matrix estimator over a sequence of robustification param-
eters. For ease of presentation, we set τkl = τ∗ for 1 ≤ k, l ≤ p. We set τ∗ to be a sequence
of equally spaced grid points between 1 and 10. The estimation accuracy is measured by
the Frobenius norm defined in (24). The results, presented in the left panel of Figure 11,
show a flat elbow-shaped curve which indicates the proposed robust covariance estimator
is not sensitive to the choice of robustificaiton parameters. Similarly, we show the rela-
tionship between the choice of the robustificaiton parameter τ and the estimation accuracy
of the robust linear regression estimator proposed in (19). We set τ to be a sequence of
equally spaced grid points between 0 and 3. The estimation accuracy of the robust linear
regression estimator was measured by RMSE which was defined in Section 5.3. The results
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Figure 11: Sensitivity of robustificaiton parameter: (Left) Performance of robust covariance esti-
mation with respect to τ∗. (Right) Performance of robust linear regression with respect
to τ .

are presented in the right panel of Figure 11. Again, the elbow-shaped curve indicates the
cross-validation approach can effectively select a τ that minimizes the empirical validation
error.

6. Real Application

Particulate matter (PM) is a complex mixture of solid particles, chemicals (e.g., sulfates,
nitrates) and liquid droplets in the air, which include inhalable particles that are small
enough to penetrate the thoracic region of the respiratory system. The hazardous effects
of inhalable PM on human health have been well-documented (e.g., Polichetti et al., 2009;
Xing et al., 2016; Pun et al., 2017). Short term (days) exposure to inhalable PM can cause
an increase in hospital admissions related to respiratory and cardiovascular morbidity, such
as aggravation of asthma, respiratory symptoms, and cardiovascular disorders. Long term
(years) exposure to inhalable PM may lead to an increase in mortality from cardiovascular
and respiratory diseases, like lung cancer. Franck et al. (2011) studied the composition
of PM and showed that particles of size up to 2.5µm (PM2.5) exerts the most significant
negative impact on human health. Recently, many literature (e.g., Zheng et al., 2005; Liang
et al., 2015) focused on figuring out the sources that cause PM2.5 to accumulate in the air.

In this section, we study the relationship between the concentrations of PM2.5 and the
other four air pollutants: ozone, sulfur dioxide (SO2), carbon monoxide (CO), and nitrogen
dioxide (NO2). The data set5 was collected from N = 37 outdoor monitors across United
States which consists of T = 729 daily observations between January 2017 to April 2019.
Each time-series in the data set has been taken first-order difference and standardized to
have zero mean and unit variance. We model the data set with an interactive effects model
as follows {

yit = XT
itβi + fT

t λi + εit,
Xit = bift + uit,

i = 1, . . . , N, t = 1, . . . , T, (26)

5. The data set is available at https://www.epa.gov/outdoor-air-quality-data.
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Figure 12: (Left) Histogram of excess kurtosis of 148 time series of covariates. (Right) Histogram
of excess kurtosis of 37 time series of the PM2.5.

where yit is the pre-processed PM2.5 data at the ith monitor and the tth day. Similarly;
Xit ∈ R4 are the pre-processed O3, SO2, CO and NO2 data at the ith monitor and the tth
day. βi ∈ R4 are individual attributes of covariates at each monitor. ft are latent factors
that affects both covariates and the response variable. bi and λi are factor loadings. εit
and uit are random errors.

First, we calculate the sample excess kurtosis of each time-series. The left panel of
Figure 12 shows that 72 out of 148 time-series in covariates have tails heavier than Gaussian
distribution, and 38 time-series have tails heavier than t5 distribution. In the right panel
of Figure 12, PM2.5 time series monitored at 35 out of 37 locations have tails heavier
than Gaussian distribution, and 25 of them have tails heavier than t5 distribution. These
observations indicate that both yit and Xit are severely heavy-tailed.

Next, we learn the homogeneity structure in individual attributes with the proposed
learning procedure. With qmax = 4 and CT = 0.01, the modified ratio method (13) esti-
mates the number of factors to be 1. Indeed, the first eigenvector of the robust covariance
estimator Σ̂Z explains 80% of its total variation. Algorithm 2 detects 6 homogeneity groups
in {βi}Ni=1. The learning results, visualized in Figure 13, unveils a parsimonious and inter-
pretable relationship between PM2.5 and the other four air pollutants. The attributes of
each pollutant are clustered into three geological areas in the United States: west coast,
central and east coast. Among the four pollutants, CO has the largest positive contribution
to the concentration of PM2.5. As we know, CO is usually produced in the incomplete
combustion of carbon-containing fuels, such as gasoline, natural gas, coal, and wood. Two
major anthropogenic sources of CO in the United States are vehicle emissions and heating.
According to Figure 13, areas in California and around New York City have high CO coeffi-
cients which are caused by the dense vehicle population. Also, we notice that the monitors
with higher latitudes have higher CO coefficients which may reflect the impact of heating.

Also, we compare the prediction performance of the proposed homogeneity learning
procedure (denoted as Our) with the one that ignores the homogeneity structure and
heavy-tailedness (denoted as OLS). To this end, we conduct a rolling-window out-of-sample
prediction procedure. Start from the first day in the data set, we use a window size of 250
days as the training set to predict the next 50 days. Each time, the window moves 20 days
forward. Within each window, we first estimate f̂ t in the test set. Then, we calculate the
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Figure 13: Homogeneity learning results for the coefficients estimate of four air pollutants.
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Figure 14: Rolling-window out-of-sample MSE for Our method and the OLS method.

mean squared errors (MSE) over the test set, which is defined as

MSEm = (Nh)−1
N∑
i=1

tm+h∑
t=tm

(ŷit − yit)2, m = 1, . . . , M,

where ŷit is the concentration of PM2.5 at the ith location and the tth day predicted by
either Our or Ols. Besides, N = 37 is the number of monitors, h = 50 is the size of the
test set, M = 22 is the number of rolling windows, and tm is the start time of the test set
in the mth window. Figure 14 presents the boxplots of {MSEm}Mm=1 for Our and Ols,
respectively. One can observe, in this application, learning the homogeneity structure with
our robust estimation method can consistently improve prediction accuracy over Ols .
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Appendix A. Proof of Section 2

In this appendix, we provide proofs for the theoretical results in Section 2.

A.1 Proof of Theorem 1

By the union bound, for any ξ > 0, it holds

P( max
1≤i≤N

‖θ̂i − θi‖2 ≥ c−1
l ξ)

≤
∑

1≤i≤N
P(|‖θ̂i − θi‖2 ≥ c−1

l ξ) ≤ N max
1≤k≤`≤p

P(|‖θ̂i − θi‖2 ≥ c−1
l ξ). (27)

In the rest of the proof, we fix i ∈ {1, . . . , N} and suppress the subscription i in (5) for
the ease of notation. In addition, we write Si = S and τi = τ . Define the loss function
Lτ (θ) = T−1

∑T
j=1 `τ (Yj −WT

j θ) for θ ∈ Rd. Denote θ∗ the true parameters and θ̂ =
argminθ∈Rd Lτ (θ). Without loss of generality, we assume ‖W‖max = 1 for simplicity.

We can construct an intermediate estimator, denoted by θ̂η = θ∗ + η(θ̂ − θ∗), such that

‖S1/2(θ̂η − θ∗)‖2 ≤ r for some r > 0 to be specified. We take η = 1, if ‖S1/2(θ̂ − θ∗)‖2 ≤ r;
otherwise, we choose η ∈ (0, 1) so that ‖S1/2(θ̂η − θ∗)‖2 = r. The Lemma A.1 in Sun et al.
(2019) gives

〈∇Lτ (θ̂η)−∇Lτ (θ∗), θ̂η − θ∗〉 ≤ η〈∇Lτ (θ̂)−∇Lτ (θ∗), θ̂ − θ∗〉,

where ∇Lτ (ŵ) = 0 according to the Karush-Kuhn-Tucker condition.
According to Lemma A.2 in Sun et al. (2019) there exists some constant amin > 0 such

that

min
θ∈Rd:‖θ−θ∗‖2≤r

λmin(∇2Lτ (θ)) ≥ amin. (28)

Then, by and the mean value theorem for vector-valued functions

∇Lτ (θ̂η)−∇Lτ (θ∗) =

∫ 1

0
∇2Lτ

(
(1− t)θ∗ + tθ̂η

)
dt (θ̂η − θ∗).

It follows that amin‖θ̂η − θ∗‖22 ≤ −η〈∇Lτ (w∗), θ̂ − θ∗〉 ≤ ‖∇Lτ (θ∗)‖2‖θ̂η − θ∗‖2, or equiva-
lently,

amin‖θ̂η − θ∗‖2 ≤ ‖∇Lτ (θ∗)‖2, (29)

where ∇Lτ (θ∗) = −T−1
∑T

j=1 `
′
τ (εj)Wj and Wj = (wj1, . . . , wj`)

T.

Next we bound ‖∇Lτ (θ∗)‖2. Let ψτ (·) be the first order derivative of the Huber’s loss
`τ (·). For every 1 ≤ ` ≤ d, we write Ψ` = T−1

∑T
j=1 ψj` := T−1

∑T
j=1 τ

−1ψτ (εj)wj`, such

that ‖∇Lτ (θ∗)‖2 ≤
√
d ‖∇Lτ (θ∗)‖∞ = τ

√
d max1≤`≤d |Ψ`|. Observe that, for any u ∈ R,

− log(1− u+ u2) ≤ τ−1ψτ (τu) ≤ log(1 + u+ u2).
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After some simple algebra, we obtain that

eψj` ≤ {1 + τ−1εj + τ−2ε2j}wj`I(wj`≥0)

+ {1− τ−1εj + τ−2ε2j}−wj`I(wj`<0)

≤ 1 + τ−1εjwj` + τ−2ε2j .

Taking expectation on both sides gives

E(eψj`) ≤ 1 + τ−2σ2
ε .

Moreover, by the independence and the inequality 1 + t ≤ et, t ∈ R, we get

E(epΨ`) =

T∏
j=1

E(eψj`) ≤ exp

(
1

τ2

T∑
j=1

σ2
ε

)

≤ exp

(
σ2
ε T

τ2

)
.

For any s > 0, it follows from the Markov’s inequality that

P(TΨ` ≥ 2s) ≤ e−2sE(eTΨ`) ≤ exp

(
σ2
ε T

τ2
− 2s

)
≤ exp(−s)

as long as

τ ≥ σε

√
T

s
. (30)

Under the constraint (30), it can be similarly shown that P(−TΨ` ≥ 2s) ≤ e−s. Putting
the above calculations together, we have

P
{
‖∇Lτ (θ∗)‖2 ≥

√
d

2τs

T

}
≤ P

{
‖∇Lτ (θ∗)‖∞ ≥

2τs

T

}
≤

d∑
`=1

P(|TΨ`| ≥ 2s) ≤ 2d exp(−s). (31)

With the above preparations, now we are ready to prove the final conclusion. It follows
from Lemma A.2 in Sun et al. (2019) that with probability greater than 1 − e−s, (28)
holds with amin = cl/2, provided that τ ≥ 4r

√
d and T ≥ 32d2s. Hence, combining (29)

and (31) with r = 4.1c−1
l

√
d T−1τs yields that, with probability at least 1 − (2d + 1)e−s,

‖θ̂η − θ∗‖2 ≤ 4c−1
l

√
d T−1τs < r as long as T ≥ 32d2s. By the definition of θ̂η, we must

have η = 1 and thus θ̂ = θ̂η.

Finally, taking ξ = 4
√
d T−1τs in (27) finishes the proof. �
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A.2 Proof of Theorem 2

For each 1 ≤ k ≤ ` ≤ p, note that σ̂k` is a U -statistic with a bounded kernel of order two,

say σ̂k` =
(
T
2

)−1∑
1≤i<j≤T hk`(Zi,Zj). According to Huber (1984), σ̂k` can be represented

as an average of (dependent) averages of independent random variables. Specifically, define

Wk`(Z1, . . . ,ZT ) =
hk`(Z1,Z2) + hk`(Z3,Z4) + · · ·+ hk`(Z2T0−1,Z2T0)

T0

for Z1, . . . , ZT ∈ Rp.
Denote

∑
P as the summation over all T ! permutations (i1, . . . , iT ) of [T ] := {1, . . . , T}

and
∑
C denote the summation over all

(
T
2

)
pairs (i1, i2) (i1 < i2) from [T ]. Then we have∑

PWk`(Z1, . . . , ZT ) = 2!(T − 2)!
∑
C hk`(Zi1 ,Zi2) and hence

σ̂k` =
1

T !

∑
P
Wk`(Zi1 , . . . , ZiT ). (32)

Write τ = τk` and v = vk` for simplicity. For any η > 0, by the Markov’s inequality,
(32), convexity and independence, we derive that

P(σ̂k` − σk` ≥ η) ≤ e−τ−1T0(η+σk`)Eeτ
−1T0σ̂k`

≤ e−τ−1T0(η+σk`)
1

T !

∑
P

Eeτ
−1

∑T0
j=1 hk`(Zi2j−1

,Zi2j
)

= e−τ
−1T0(η+σk`)

1

T !

∑
P

T0∏
j=1

Eeτ
−1hk`(Zi2j−1

,Zi2j
).

Note that

hk`(Zi1 ,Zi2) = ψτ{(Zi1,k − Zi2,k)(Zi1,` − Zi2,`)/2} = τψ1{(Zi1,k − Zi2,k)(Zi1,` − Zi2,`)/(2τ)}.
(33)

Using the inequality that − log(1−x+x2) ≤ ψ1(x) ≤ log(1 +x+x2) for all x ∈ R, we have

Eeτ
−1hk`(Zi1

,Zi2
)

≤ E
{

1 + (Zi1,k − Zi2,k)(Zi1,` − Zi2,`)/(2τ) + (Zi1,k − Zi2,k)2(Zi1,` − Zi2,`)2/(2τ)2
}

= 1 + τ−1σk` + τ−2E {(Zi1,k − Zi2,k)(Zi1,` − Zi2,`)/2}
2 ≤ eτ−1σk`+τ

−2v2 .

Combining the above calculations, we arrive

P(σ̂k` − σk` ≥ η) ≤ e−τ−1T0η+τ−2T0v2 = e−T0η
2/(4v2),

where the equality holds by taking τ = 2v2/η. Similarly, it can be shown that P(σ̂k`−σk` ≤
−η) ≤ e−T0η2/(4v2).

Consequently, for δ ∈ (0, 1), taking η = 2v
√

(2 log p+ log δ−1)/T0, or equivalently,
τ = v

√
T0/(2 log p+ log δ−1), we arrive at

P

(
|σ̂k` − σk`| ≥ 2v

√
log δ−1

T0

)
≤ 2δ

p2
.
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From the union bound it follows that

P

(
‖Σ̂Z −ΣZ‖max > 2 max

1≤k,`≤p
vk`

√
2 log p+ log δ−1

T0

)
≤ (1 + p−1)δ,

which proves (2). �

A.3 Proof of Lemma 1

By Weyl’s inequality, we have |λ̂` − λ`| ≤ ‖Σ̂Z −ΣZ‖2 for each 1 ≤ ` ≤ q. Moreover, note
that for any matrix E ∈ Rd1×d2 ,

‖E‖2 ≤
√
d1d2‖E‖max.

Putting the above calculations together proves (14).

Next, we have the following decomposition

Σ̂Z = Σ̂Z −ΣZ + BBT + Σu =

q∑
`=1

λ`v`v
T
` + Σ̂Z −ΣZ + Σu.

Under Condition 2, it follows from Theorem 3 and Proposition 3 in Fan et al. (2018b) that

max
1≤`≤q

‖v̂` − v`‖∞ ≤
C1

p3/2
(‖Σ̂Z −ΣZ‖∞ + ‖Σu‖∞) ≤ C1(p−1/2‖Σ̂Z −ΣZ‖max + p−1‖Σu‖2),

where we use the inequalities ‖Σ̂Z −ΣZ‖∞ ≤ p‖Σ̂Z −ΣZ‖max and ‖Σu‖∞ ≤ p1/2‖Σu‖ in
the last step and C1 > 0 is a constant independent of (n, p). This proves (15) . �

A.4 Proof of Theorem 3

Recall that B̂ = (b̂1, . . . , b̂p)
T = (λ̂

1/2
1 v̂1, . . . , λ̂

1/2
q v̂q) with v̂` = (v̂`1, . . . , v̂`p)

T for

` = 1, . . . , q and b̂k = (λ̂
1/2
1 v̂1k, . . . , λ̂

1/2
q v̂qk)

T for k = 1, . . . , p.

Moreover, define b̃k = (λ
1/2
1 v̂1k, . . . , λ

1/2
q v̂qk)

T. By the triangular inequality,

‖b̂k − bk‖2 ≤ ‖b̂k − b̃k‖2 + ‖b̃k − bk‖2

=

{ q∑
`=1

(λ̂
1/2
` − λ1/2

` )2 v̂2
`k

}1/2

+

{ q∑
`=1

λ`(v̂`k − v`k)2

}1/2

≤ q1/2

(
max
1≤`≤q

|λ̂1/2
` − λ1/2

` |‖v̂`‖∞ + max
1≤`≤q

λ
1/2
` ‖v̂` − v`‖∞

)
. (34)

According to Theorem 2, ‖Σ̂Z−ΣZ‖max ≤ 4‖V‖max

√
log p/T0 with probability at least

1− 2p−1. Note that, under Condition 2,

‖v`‖∞ = ‖λ1/2
` v`‖∞/λ` ≤ ‖B‖max/λ` . p

−1/2 for all ` = 1, . . . , q.
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Then, under Condition 2 and using the results in Lemma 1, we have

max
1≤`≤q

|λ̂1/2
` − λ1/2

` | = max
1≤`≤q

|λ̂` − λ`|/(λ̂
1/2
` + λ

1/2
` )

. p−1/2{p‖Σ̂Z −ΣZ‖max} .
√
p log p

T
, (35)

‖v̂` − v`‖∞ . (p−1/2‖Σ̂Z −ΣZ‖max + p−1‖Σu‖2) .

√
log p

pT
+

1

p
, (36)

and

‖v̂`‖∞ ≤ ‖v`‖∞ + ‖v̂` − v`‖∞ .
1
√
p

as log p� T. (37)

By plugging the results in (35)—(37) back to (34), we proves (17) by showing

max
1≤k≤p

‖b̂k − bk‖2 .
√

log p

T
+

1
√
p
.

Denote B̂ = (b̂1, . . . , b̂p)
T , we can rewrite (8) as Zt = Bft + ūt = B̂gt + vt for

t = 1, . . . , T . By the triangular inequality,

‖f̂t − ft‖2 ≤ ‖f̂t − gt‖2 + ‖gt − ft‖2,

where the first term is the estimation error of robust estimator in (16) and the second term
is the error-in-variable bias term induced by replacing B with B̂.

Follow the similar arguments in the proof of Theorem 1 and choose s = log p shows that,
with probability 1− c1p

−1

max
1≤t≤T

‖f̂t − gt‖2 ≤ c2(log p/p)1/2, (38)

where c1 and c2 are positive constants independent of (T, p).
To finish the proof, we show the bias term ‖gt − ft‖ can be ignored as long as B̂ is

a consistent estimator of B. Denote f̃t = (BTB)−1BTZt the OLS estimator of ft. The
consistency of f̃t leads to

ft = lim
p→∞

f̃t = lim
p→∞

{
(BTB)−1BTZt

}
= lim
p→∞

{
(BTB)−1BT (B̂gt + vt)

}
=gt + lim

p→∞

{
(BTB)−1BT [(B̂−B)gt + vt]

}
. (39)

Further, denote ũt = Zt −Bf̃t. We can show that

lim
p→∞

(BTB)−1BTvt = lim
p→∞

(BTB)−1BT (Bf̃t − B̂gt + ũt)

= lim
p→∞

(f̃t − gt) + lim
p→∞

(BTB)−1BT (B− B̂)gt

+ lim
p→∞

(BTB)−1BT ũt

≡I1 + I2 + I3 = 0.
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Since we choose s ≥ C3
√
p, the difference between f̂t and f̃t vanishes as p→∞. This together

with lim
p→∞

max
1≤t≤T

‖f̂t − ft‖2 = 0 proves I1 = 0. Then, we have I2 = 0 since lim
p→∞

max
1≤k≤p

‖b̂k −

bk‖2 = 0. Further, I3 = 0 since ũt is the OLS fitting residual.
Hence, we can rewrite (39) as.

ft = gt + lim
p→∞

{
(BTB)−1BT (B̂−B)]gt

}
.

In addition, we have

‖(BTB)−1BT
[
(B̂−B)]gt‖2

≤‖(BTB)−1‖2‖BT ‖‖(B̂−B)]‖2‖gt‖2

≤
√
λ1

λq

√
p max

1≤k≤p
‖b̂k − bk‖2‖gt‖2

. max
1≤k≤p

‖b̂k − bk‖2. (40)

Therefore ‖ft − gt‖2 = 0 as long as lim
p→∞

max1≤k≤p ‖b̂k − bk‖2 = 0. �

A.5 Proof of Corollary 1

Denote f̂t the estimate of ft, 1 ≤ t ≤ T , which satisfies ‖f̂t − ft‖2 ≤ c1(log p/p)1/2 for some
positive constant c1. By replacing ft with its estimate, we can rewrite (5) as

yit = WT
itθi + εit = ŴT

itθ
∗
i + ε∗it, (41)

where Ŵit = (1,XT
it, f̂t

T
)T, θ∗i and ε∗it are the coefficients and errors corresponds to Ŵit.

By the triangular inequality,

‖θ̂i(τ)− θi‖2 ≤ ‖θ̂i(τ)− θ∗i ‖2 + ‖θ∗i − θi‖2,

where the first term is the estimation error of robust estimator in (6) and the second term
is the bias induced by replacing ft with f̂t.

According to Theorem 1 and choose t = logNp yields, with probability 1 − c2p
−1,

max
1≤i<N

‖θ̂i(τ)− θ∗i ‖2 ≤ c3(
logNp

T
)1/2, (42)

where c2 and c3 are two positive constants.
Next, with similar arguments as in the Proof of Theorem 3, the bias term ‖θ∗i − θi‖2 is

zero over the event that lim
p→∞

max1≤t≤T ‖f̂t − ft‖2 = 0. Under the conditions of Theorem 3,

this event holds with probability at least 1 − c4p
−1 for some positive constant c4.

To sum up, under Conditions 1 and 2

max
1≤i<N

‖θ̂i(τ)− θi‖2 ≤ c3(
logNp

T
)1/2, (43)

with probability at least 1 − (c2 + c4)p−1 which completes the proof. �
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Appendix B. Proof of Section 3

In this appendix, we provide proofs for the theoretical results in Section 3.

B.1 Proof of Theorem 4

The proof of Theorem 4 follows the framework of proving Theorem 3.2 in Fryzlewicz (2014).
Denote e(m) := β̂(m)− β(m) for 1 ≤ m ≤M , and E1 the event that {max1≤m≤M |e(m)| ≤

c1(logM/T )1/2} for some positive constant c1. Under the conditions of Corollary 2, P(E1) ≥
1− c2p

−1 for some positive constant c2.
Further, we partition the interval between two neighboring change points [η(k), η(k+1)]

into three equal sized sub-intervals. Denote I(k) the middle sub-interval, i.e.,

I(k) =

[
η(k) +

1

3
{η(k+1) − η(k)}, η(k) +

2

3
{η(k+1) − η(k)}

]
, 0 ≤ k ≤ K.

Then, we define an event E2 in which the R randomly drawn intervals can cover all change
points,

E2 = {∀ k = 0, . . . ,K, ∃ r = 1, . . . , R, s.t. sr ∈ I(k) and er ∈ I(k+1)}.
Notice that

P
{
sr ∈ I(k) and er ∈ I(k+1)

}
=
{η(k+1) − η(k)}

3M
·
{η(k+2) − η(k+1)}

3M
≥

η2

9M2
,

where η = min0≤k≤K
{
η(k+1) − η(k)

}
.

Then, we have

P(E2) ≥ 1−
K∑
k=0

R∏
r=1

(
1− P

{
sr ∈ I(k) and er ∈ I(k+1)

})
≥ 1−Mη−1(1− η2M−2/9)R.

To bound the exception probability of E2 on the same order of E1, we require

Mη−1(1− η2M−2/9)R ≤ p−1,

which is equivalent to choose

R ≥ 9T 2η−2 log(Mp/ log η). (44)

In the calculation of (44), we used the fact that log(1 − x) ≈ −x when x is close to 0.
Denote the event of interest in Theorem 4 as

E3 =

{
K̂ = K and max

1≤k≤K
|η̂k − ηk| ≤ c3β

−2 logM

}
,

where β = min 1≤m≤M−1(β0,m+1 − β0,m) and c3 is some positive constant.
Then, similar as the proof of Theorem 3.2 in Fryzlewicz (2014), the arguments in The-

orem 4 are valid on the event E1 ∩ E2 ∩ E3. For some positive constants c4 and c5, we
have

P(E1 ∩ E2 ∩ E3) ≤ 1− c4p
−1,

if we choose the threshold ξ and the number of random intervals R to satisfy c5 log1/2M ≤
ξ ≤ η1/2β and (44) respectively. �
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B.2 Proof of Corollary 2

Consider three events

E1 =

{
max

1≤t≤T
|‖f̂t − ft‖ ≤ c2(log p/p)1/2

}
,

E2 =

{
K̂ = K and max

1≤k≤K
|η̂k − ηk| ≤ c2β

−2 logM

}
,

and

E3 =

{
max
k
|β̂0,k − β0,k| ≤ c3 {logK/T}1/2

}
,

where c1, c2 and c3 are three positive constants independent of (T,N, p).
Under Conditions 1, 2 and 3, and follow Theorems 3 and 4, we have P(E1∩E2) ≥ 1−c4p

−1

for some positive constant c4.
Then, follow the proof of Corollary 1, we can show that P (E3|E1 ∩ E2) ≥ 1 − c5p

−1 for
some positive constant c5. Therefore, we finish the proof as

P(E1 ∩ E2 ∩ E3) ≥ P(E3|E1 ∩ E2) ≥ 1− c5p
−1.

�

References

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector
analysis of random matrices with low expected rank. Annals of Statistics, 48(3):1452–
1474, 2020.

Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Analyzing user modeling on twitter
for personalized news recommendations. In International Conference on User Modeling,
Adaptation, and Personalization, pages 1–12. Springer, 2011.

Theodore Wilbur Anderson and Cheng Hsiao. Formulation and estimation of dynamic
models using panel data. Journal of Econometrics, 18(1):47–82, 1982.

Manuel Arellano. Panel Data Econometrics. Oxford university press, 2003.

Marco Avella-Medina, Heather S Battey, Jianqing Fan, and Quefeng Li. Robust estimation
of high-dimensional covariance and precision matrices. Biometrika, 105(2):271–284, 2018.

Jushan Bai. Estimating multiple breaks one at a time. Econometric Theory, 13(3):315–352,
1997.

Jushan Bai and Serena Ng. Determining the number of factors in approximate factor models.
Econometrica, 70(1):191–221, 2002.

Andrew Bell and Kelvyn Jones. Explaining fixed effects: Random effects modeling of
time-series cross-sectional and panel data. Political Science Research and Methods, 3(1):
133–153, 2015.

37



Xiao, Ke and Li

Alok Bhargava, Luisa Franzini, and Wiji Narendranathan. Serial correlation and the fixed
effects model. The Review of Economic Studies, 49(4):533–549, 1982.

Koushiki Bose, Jianqing Fan, Yuan Ke, Xiaoou Pan, and Wen-xin Zhou. Farmtest: An r
package for factor-adjusted robust multiple testing. The R Journal, to appear, 2021.

Olivier Catoni. Challenging the empirical mean and empirical variance: a deviation study.
Annales de l’IHP Probabilités et Statistiques, 48:1148–1185, 2012.

Olivier Catoni. Pac-bayesian bounds for the gram matrix and least squares regression with
a random design. arXiv preprint arXiv:1603.05229, 2016.

Gary Chamberlain and Michael Rothschild. Arbitrage, factor structure, and mean-variance
analysis on large asset markets. Econometrica, 51(5):1305–1324, 1983.

Jinyuan Chang, Bin Guo, and Qiwei Yao. High dimensional stochastic regression with latent
factors, endogeneity and nonlinearity. Journal of Econometrics, 189(2):297–312, 2015.

Kuo-mei Chen, Arthur Cohen, and Harold Sackrowitz. Consistent multiple testing for
change points. Journal of Multivariate Analysis, 102(10):1339–1343, 2011.

Haeran Cho and Piotr Fryzlewicz. Multiple-change-point detection for high dimensional
time series via sparsified binary segmentation. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 77(2):475–507, 2015.

Jianqing Fan, Yuan Liao, and Martina Mincheva. Large covariance estimation by thresh-
olding principal orthogonal complements. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 75(4):603–680, 2013.

Jianqing Fan, Fang Han, Han Liu, and Byron Vickers. Robust inference of risks of large
portfolios. Journal of Econometrics, 194(2):298–308, 2016.

Jianqing Fan, Quefeng Li, and Yuyan Wang. Estimation of high dimensional mean regression
in the absence of symmetry and light tail assumptions. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 79(1):247–265, 2017.

Jianqing Fan, Han Liu, and Weichen Wang. Large covariance estimation through elliptical
factor models. Annals of Statistics, 46(4):1383, 2018a.

Jianqing Fan, Weichen Wang, and Yiqiao Zhong. An l∞ eigenvector perturbation bound and
its application to robust covariance estimation. Journal of Machine Learning Research,
18(207):1–42, 2018b.

Jianqing Fan, Yuan Ke, Qiang Sun, and Wen-Xin Zhou. FarmTest: Factor-adjusted ro-
bust multiple testing with approximate false discovery control. Journal of the American
Statistical Association, 114(528):1880–1893, 2019a.

Jianqing Fan, Weichen Wang, and Yiqiao Zhong. Robust covariance estimation for approx-
imate factor models. Journal of Econometrics, 208(1):5–22, 2019b.

38



Homogeneity in Large-scale Panel Data with Heavy-tailed Errors

Jianqing Fan, Yuan Ke, and Yuan Liao. Augmented factor models with applications to
validating market risk factors and forecasting bond risk premia. Journal of Econometrics,
to appear, 2020a.

Jianqing Fan, Kaizheng Wang, Yiqiao Zhong, and Ziwei Zhu. Robust high dimensional
factor models with applications to statistical machine learning. Statistical Science, to
appear, 2020b.

Ethan X Fang, Yang Ning, and Runze Li. Test of significance for high-dimensional longi-
tudinal data. The Annals of Statistics, 48(5):2622–2645, 2020.

Ulrich Franck, Siad Odeh, Alfred Wiedensohler, Birgit Wehner, and Olf Herbarth. The
effect of particle size on cardiovascular disorders—the smaller the worse. Science of the
Total Environment, 409(20):4217–4221, 2011.

Piotr Fryzlewicz. Wild binary segmentation for multiple change-point detection. The Annals
of Statistics, 42(6):2243–2281, 2014.

Piotr Fryzlewicz and Suhasini Subba Rao. Multiple-change-point detection for auto-
regressive conditional heteroscedastic processes. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 76(5):903–924, 2014.

Xuming He, Hengjian Cui, and Douglas G Simpson. Longitudinal data analysis using t-type
regression. Journal of Statistical Planning and Inference, 122(1-2):253–269, 2004.

Cheng Hsiao. Analysis of Panel Data. Cambridge university press, 1986.

Cheng Hsiao. Panel data analysis—advantages and challenges. Test, 16(1):1–22, 2007.

Peter J Huber. Finite sample breakdown of m-and p-estimators. The Annals of Statistics,
12(1):119–126, 1984.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2
(1):193–218, 1985.

Iain M Johnstone and Arthur Yu Lu. On consistency and sparsity for principal components
analysis in high dimensions. Journal of the American Statistical Association, 104(486):
682–693, 2009.

Ruth A Judson and Ann L Owen. Estimating dynamic panel data models: a guide for
macroeconomists. Economics Letters, 65(1):9–15, 1999.

Yuan Ke, Jialiang Li, and Wenyang Zhang. Structure identification in panel data analysis.
The Annals of Statistics, 44(3):1193–1233, 2016.

Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, and Wen-Xin Zhou. User-friendly
covariance estimation for heavy-tailed distributions. Statistical Science, 34(3):454–471,
2019.

Yuan Ke, Heng Lian, and Wenyang Zhang. High-dimensional dynamic covariance matrices
with homogeneous structure. Journal of Business & Economic Statistics, to appear, 2020.

39



Xiao, Ke and Li

Zheng Tracy Ke, Jianqing Fan, and Yichao Wu. Homogeneity pursuit. Journal of the
American Statistical Association, 110(509):175–194, 2015.

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints
with a linear computational cost. Journal of the American Statistical Association, 107
(500):1590–1598, 2012.

Alois Kneip, Robin C Sickles, and Wonho Song. A new panel data treatment for hetero-
geneity in time trends. Econometric Theory, 28(3):590–628, 2012.

Lung-fei Lee and Jihai Yu. Estimation of spatial autoregressive panel data models with
fixed effects. Journal of Econometrics, 154(2):165–185, 2010.

Kristina Lerman and Rumi Ghosh. Information contagion: An empirical study of the spread
of news on digg and twitter social networks. In Fourth International AAAI Conference
on Weblogs and Social Media, 2010.

Xuan Liang, Tao Zou, Bin Guo, Shuo Li, Haozhe Zhang, Shuyi Zhang, Hui Huang, and
Song Xi Chen. Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC
and winter heating. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 471(2182):20150257, 2015.

Sydney C Ludvigson and Serena Ng. A factor analysis of bond risk premia. Technical
report, National Bureau of Economic Research, 2009.

Shahar Mendelson and Nikita Zhivotovskiy. Robust covariance estimation under `4—`2
norm equivalence. Annals of Statistics, 48(3):1648–1664, 2020.

Stanislav Minsker. Sub-gaussian estimators of the mean of a random matrix with heavy-
tailed entries. The Annals of Statistics, 46(6A):2871–2903, 2018.

Stanislav Minsker and Xiaohan Wei. Robust modifications of u-statistics and applications
to covariance estimation problems. Bernoulli, 26(1):694–727, 2020.

Stephen Nickell. Biases in dynamic models with fixed effects. Econometrica, 6(1981):1417–
1426, 1981.

Yang Ning and Han Liu. A general theory of hypothesis tests and confidence regions for
sparse high dimensional models. The Annals of Statistics, 45(1):158–195, 2017.

M Hashem Pesaran. Estimation and inference in large heterogeneous panels with a multi-
factor error structure. Econometrica, 74(4):967–1012, 2006.

Greet Pison, Peter J Rousseeuw, Peter Filzmoser, and Christophe Croux. Robust factor
analysis. Journal of Multivariate Analysis, 84(1):145–172, 2003.

Giuliano Polichetti, Stefania Cocco, Alessandra Spinali, Valentina Trimarco, and Alfredo
Nunziata. Effects of particulate matter (PM10, PM2.5 and PM1) on the cardiovascular
system. Toxicology, 261(1-2):1–8, 2009.

40



Homogeneity in Large-scale Panel Data with Heavy-tailed Errors

Vivian C Pun, Fatemeh Kazemiparkouhi, Justin Manjourides, and Helen H Suh. Long-term
PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults.
American Journal of Epidemiology, 186(8):961–969, 2017.

Yiyuan She and Art B Owen. Outlier detection using nonconvex penalized regression.
Journal of the American Statistical Association, 106(494):626–639, 2011.

Dan Shen, Haipeng Shen, Hongtu Zhu, and JS Marron. The statistics and mathematics of
high dimension low sample size asymptotics. Statistica Sinica, 26(4):1747, 2016.

James H Stock and Mark W Watson. Forecasting using principal components from a large
number of predictors. Journal of the American Statistical Association, 97(460):1167–1179,
2002.

Liangjun Su and Gaosheng Ju. Identifying latent grouped patterns in panel data models
with interactive fixed effects. Journal of Econometrics, 206(2):554–573, 2018.

Liangjun Su, Zhentao Shi, and Peter CB Phillips. Identifying latent structures in panel
data. Econometrica, 84(6):2215–2264, 2016.

Qiang Sun, Wen-Xin Zhou, and Jianqing Fan. Adaptive Huber regression. Journal of the
American Statistical Association, pages 1–24, 2019.
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