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ABSTRACT

Smartphones have recently become a popular platform for deploy-

ing the computation-intensive virtual reality (VR) applications,

such as immersive video streaming (a.k.a., 360-degree video stream-

ing). One specific challenge involving the smartphone-based head

mounted display (HMD) is to reduce the potentially huge power

consumption caused by the immersive video. To address this chal-

lenge, we first conduct an empirical power measurement study on

a typical smartphone immersive streaming system, which identifies

the major power consumption sources. Then, we develop QuRate,

a quality-aware and user-centric frame rate adaptation mechanism

to tackle the power consumption issue in immersive video stream-

ing. QuRate optimizes the immersive video power consumption

by modeling the correlation between the perceivable video quality

and the user behavior. Specifically, QuRate builds on top of the

user’s reduced level of concentration on the video frames during

view switching and dynamically adjusts the frame rate without

impacting the perceivable video quality. We evaluate QuRate with

a comprehensive set of experiments involving 5 smartphones, 21

users, and 6 immersive videos using empirical user head movement

traces. Our experimental results demonstrate that QuRate is capa-

ble of extending the smartphone battery life by up to 1.24X while

maintaining the perceivable video quality during immersive video

streaming. Also, we conduct an Institutional Review Board (IRB)-

approved subjective user study to further validate the minimum

video quality impact caused by QuRate.
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1 INTRODUCTION

With the rapidly increasing computing capability and a huge con-

sumer market, modern commodity smartphones have become a

popular platform for the emerging computationally intensive vir-

tual reality (VR) applications [29, 43]. These applications can be

seamlessly integrated with the recently released VR head mounted

display (HMD)mounts, such as Google Cardboard [15], Google Day-

dream [16], Samsung Gear VR [38], DODOCase [37], and Archos

VR Glasses [2]. Moreover, smartphone-based HMDs have enabled

a brand new interface for presenting immersive video (a.k.a., 360-

degree video) content in the 360 degree of freedom controlled by

a user’s head movements. Such immersive video streaming pro-

vides users with an enriched viewing experience as if they were

an integral part of the video and enables significantly improved

quality of experiences (QoE) as compared to the traditional 3D or

high definition 2D videos [24].

However, the improved QoE provided by the immersive video

comes with significant costs, such as high bandwidth consump-

tion and performance overhead while streaming the 360-degree

video frames [4]. Since the emergence of immersive streaming

applications, there have been many research efforts focusing on

reducing the bandwidth consumption by employing view-based

optimizations [3, 18, 34, 35]. However, the community has not fully

investigated the power perspective of immersive video streaming.

Power consumption is a critical problem in immersive streaming for

two key reasons. First, the smartphone-based HMDs are driven by

power-constrained batteries. Second, intensive power consumption

can accumulate heat that would significantly impact the viewing

experience due to the wearable nature of the HMD device. This, in

essence, makes power consumption an integral part of the QoE.

Although power optimization techniques have been proposed for

traditional 2D videos on smartphones [8, 19, 25, 52, 53] and wear-

able devices [23], these techniques cannot effectively reduce the

energy consumption of immersive streaming on smartphone HMDs.
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This is mainly due to the unique workload and power profile of im-

mersive streaming, described as follows. First, the volume of video

data in immersive streaming is huge (i.e., 6X to 8X of the traditional

video [40]), as the entire 360-degree frames must be transmitted and

processed. This incurs significantly higher power consumption of

network and computation, thus leaving a large room for further op-

timization even after the traditional power optimization techniques

are applied. Second, different from traditional video streaming, im-

mersive streaming is a user-centric video application, as it grants

the viewers full control over the view angles via head movements

and generates the viewport from the 360-degree frame upon each

movement. Consequently, the user behavior may influence the sens-

ing, computation, and view generation of the video, which is not

considered by the traditional power optimization techniques. In

summary, a new and customized power management mechanism

is essential in achieving power efficiency in immersive streaming.

In this work, we investigate the problem of reducing the power

consumption in immersive streaming systems. To address the afore-

mentioned challenges, we first conduct a quantitative power mea-

surement study (discussed in Section 3) of immersive streaming

on commodity smartphones. Our measurements indicate that the

VR view generation operation consumes significant power and is

the topmost power consumption source. Based on this observa-

tion, we design a quality-aware frame rate adaptation mechanism

to reduce the power consumption. Our key idea is to reduce the

frequency at which the VR views are generated, i.e., reducing the

frame rate of immersive streaming dynamically. Meanwhile, we

consider the effect of frame rate reduction on the perceivable video

quality by leveraging an objective and quantitative video quality

metric called spatio-temporal video quality metric (STVQM) [33].

This metric correlates the perceivable video quality with the frame

rate and has been proved to be consistent with the subjective qual-

ity metric (i.e., the mean opinion score (MOS) [45]). We further

leverage one of the unique characteristics in immersive streaming,

namely user-initiated view switching, in the power optimization

mechanism by following two key design principles. (1) No frame

rate reduction during fixed view. The mechanism maintains the

original frame rate when viewers are not switching views and only

reduces the frame rate during view switching. The rationale behind

this principle is that, during a view switching process, the viewer’s

attention is typically not at the view being switched but rather

the view being switched to and, therefore, the reduced frame rate

during switching has limited impact on the perceivable video qual-

ity. (2) Quality-aware frame rate selection during view switch.

The mechanism selects the optimal frame rate to minimize power

consumption under the video quality constraint.

We consider the above two principles and implement a new

frame rate adaptation mechanism called QuRate for smartphone-

based immersive video streaming, which optimizes the power con-

sumption in a quality-aware and user-centric manner. QuRate mon-

itors the user movement pattern at runtime and determines the

most power efficient frame rate while maintaining the perceivable

video quality. Furthermore, to reduce the runtime performance

and power overhead introduced by QuRate itself, we develop an

offline/online hybrid execution model. In the offline phase, we build

a frame rate library (FRL), which quantifies the correlations among

quality, frame rate, and head motion, through power/quality pro-

filing based on historical user data. In the online phase, the FRL is

used to determine the instant frame rate based on the dynamic head

movement and the quality constraint. We evaluate the effectiveness

of QuRate by using real user head movement data and measure the

power consumption of immersive video streaming using five com-

modity smartphones. Our evaluation results show that QuRate can

extend the smartphone battery life by up to 1.24X while achieving

satisfactory video quality based on a real user study.

To the best of our knowledge, QuRate is the first power optimiza-

tion framework for smartphone-based immersive video streaming

that considers both user behavior and video content. To summarize,

we have made the following contributions.

• We identify the unique problem of power inefficiency in immer-

sive video streaming based on an empirical power measurement

study. The observed inefficiency can be attributed to the unique

characteristics of immersive streaming, which are not considered

by the traditional video power optimization techniques.

• We develop an effective power optimization mechanism called

QuRate to address the aforementioned power inefficiency prob-

lem for immersive streaming. QuRate takes into consideration

both the unique user behavior and video content features to

achieve power-efficient frame rate adaptation with minimum

video quality impact.

• We evaluate and justify the significant power savings and mini-

mum video quality impact achieved by QuRate. Our comprehen-

sive set of evaluations include empirical evaluations based on

user head movement traces from a publicly available dataset, as

well as an IRB-approved user study.

2 BACKGROUND AND RELATEDWORK

2.1 Immersive Video Streaming

Virtual reality technology can generate three-dimensional virtual

environments emulating the physical world, which provides the

users with an immersive experience [7]. It is widely used inmany ar-

eas, such as gaming [36], healthcare [6], and entertainment videos [17,

35]. In a typical VR setup, the user wears a HMD device that dis-

plays the specific view based on head movements, similar to what

one would see in the physical world.

Among all the VR applications, immersive video streaming has

naturally become a hot spot because of the popularity of video

streaming in the consumer entertainment market [17, 35]. For ex-

ample, there are currently millions of immersive videos available on

YouTube [51]. In particular, immersive video is attractive in scenar-

ios like live broadcasts of sports games, in which the viewers can

switch their views based on their own preferences, as if they were

watching the game in person in the stadium [30]. Figure 1 shows

a typical end-to-end workflow of an immersive video streaming

system, following the ISO standard for Internet video streaming,

namely Dynamic Adaptive Streaming over HTTP (DASH) [42].

The end-to-end system follows a client/server architecture. On the

server side, the video packager partitions the source 360-degree

video into DASH compliant segments [42], which are deployed

on a web server for HTTP streaming. On the client side, the web

browser on the smartphone HMD runs a DASH compliant video

player [13] integrated with a VR library for video processing and
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4.2.2 Practical Frame Rate Adaptation. For a premium viewing

experience, the frame rate of immersive video is typically 60 FPS.

Since a large amount of computation must be conducted at the

rendering of each video frame (e.g., read the viewer’s orientation,

locate the field of view within the 360-degree frame, and generate

the left and right views for the viewer’s eyes), it leaves large room

for power savings by reducing the frame rate (i.e., the frequency

that the VR view is generated). However, since a reduced frame

rate may significantly impact the video quality, we only conduct

such reduction while the user is switching views. Our intuitions are

two-fold. First, the video scene during fast view switching will be

low quality to begin with based on the discussions in Section 4.2.1;

Second, the video quality during view switching is non-critical to

the user experience, as it is an indication that user is interested in

the new view. Taking a 360-degree soccer video as an example, the

user would focus on a fixed view, such as two players grabbing the

soccer ball from each other. Then, when the ball is passed through

a wide range, the user’s attention will switch and track the ball

until it reaches another fixed view. During the switching, i.e., while

both the user’s orientation and the ball are in motion, the quality of

the video and thus the frame rate is much less critical to the user’s

experience, which can be reduced without compromising the QoE.

Based on this observation, in QuRate, we maintain the original

frame rate while the view is fixed (i.e., motion speed below a noise

threshold) and only reduce it when the user switches from the

current view to a new view. The frame rate reduction mechanism

is shown in Algorithm 1, which employs the Motion Detector to

determine whether the frame rate should be reduced.

ALGORITHM 1: Frame Rate reduction during view switching.

1: Let f laд be the indicator of view switching, i.e., 1 refers to view

switching and -1 refers to view fixed;

2: Let S be the switching speed threshold;

3: Let Switchinд_Speed be the current speed of view switching,

calculated by VRPose() API;

4: Function r ender ()

5: if Switchinд_Speed ≤ S then

6: f laд ← −1;

7: else

8: f laд ← 1;

9: end if

10: if f laд == 1 then

11: Reduce frame rate;

12: end if

13: V iewPoint ← NewV iewPoint ;

14: end

4.3 Quality-Aware Offline Training and Online

Frame Rate Selection

Despite its obvious effectiveness in power savings, it is well known

that frame rate reduction would degrade the quality of the video

if not well controlled. Therefore, we must quantitatively evaluate

the quality loss due to frame rate reduction and develop a system-

atic approach to minimize it. As the first step in achieving this

goal, we adopt an objective video quality metric, namely spatio-

temporal quality metric (STVQM) [33] to evaluate the quality of

the immersive video under frame rate control, which considers the

interactions between spatial and temporal quality perceptions:

STVQM = SVQM ·
1 + a ·T Ib

1 + a ·T Ib · (30/FR)
(1)

where a andb are constants determined by a least-square non-linear

fitting using the subjective data, which leads to a = 0.028,b =

0.764; FR refers to frame rate; and SVQM (spatial video quality); TI

(temporal information) and SI (spatial information) are calculated

as [46]:

SVQM =
100

1 + e−(PSNR+ωs ·SI+ωt ·T I−µ)/s
(2)

T I =maxt ime {stdspace [Mn (i, j)]} (3)

SI =maxt ime {stdspace [Sobel(Fn )]} (4)

In Equation (4), stdspace stands for the standard deviation of the

pixels in one video frame, Sobel(Fn ) refers to the pixels in the video

frame at time point n after being filtered with a sobel filter [41].

Mn (i, j) in Equation (3) refers to the pixel differences between the

frames in the user’s view of time points n and n − 1 at position (i, j).

In addition, PSNR in Equation (2) refers to peak signal to noise

ratio, which is a commonly used video quality metric [20]. All other

constants are chosen by a least-square non-linear fitting algorithm

as described in [33], where ωs = 0.0356, ωt = 0.236, µ = 36.9, and

s = 2.59.

The reasonwhywe choose this metric is that it takes into account

both the motion in the video and the frame rate being applied. The

former (i.e., motion) matches well with the motion feature of the

immersive video, which includes both the motion in the original

video and that caused by user-initiated view switches. The latter

(i.e., frame rate) matches well with the proposed approach based

on frame rate control. Furthermore, according to [33], the STVQM

metric has been clearly justified by the mean opinion scores from

well organized subjective experiments.

Based on the STVQM metric and representative user head move-

ment data (e.g., from [11]), we can calculate the quality-aware and

power-efficient frame rate by rewriting Equation (1) as follows:

FR =
30 · a ·T Ib · STVQM

SVQM · (1 + a ·T Ib ) − STVQM
(5)

Following Equation (5), we can calculate the frame rate at the sys-

tem runtime based on the quality requirement of the target video.

However, we note that such an online frame rate calculation is

infeasible due to the complexity of Equation (5), which requires the

computations of T I , SI , and SVQM every time the video or user

motion varies at runtime. According to [33] and [46], such com-

putations involve pixel-level processing of one or multiple video

frames, which by itself incurs non-trivial performance and power

overhead and may offset the power saving goal of QuRate.

To address the challenge of the direct online mechanism, we

develop an offline frame rate library, as presented in Figure 5, to

facilitate power-efficient frame rate reduction at runtime. This li-

brary can be built using a dataset of user head movements while

watching immersive videos. In particular, for each userUi watching

each videoVj , where 1 ≤ i ≤ I , 1 ≤ j ≤ J , and I and J represent the

number of users and videos in the dataset, respectively, we conduct

the following three steps to build the frame rate library:
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ALGORITHM 2: Quality-aware frame rate selection.

1: Input Motion Speed (v );

2: Output Frame Rate (FR);

3: Set the minimum acceptable STVQM from offline FRL as Q ;

4: Function calcF rameRate(v)

5: Pose ← VRDisplay .дetPose(); // WebVR API [28]

6: v ← Pose .l inearV elocity(); // WebVR API

7: FR ← FRL(v, Q ); // Equation (6)

8: end

• Step 1, assign user Ui ’s movement data to an automatic view

switching algorithm and play/record the VR video Vj with user

Ui ’s movement;

• Step 2, calculate the T I and SI values of the recorded video fol-

lowing Equations (3) and (4), as well as the SVQM value following

Equation (2); and

• Step 3, employ Equation (1) to calculate the STVQM value for

videoVj at userUi ’s view switching speed and all possible frame

rates FR (e.g., 10, 20, ..., 60).

We repeat the above three steps for all the user-video pairs and

obtain the following lookup table:

FR = FRL(v,Q) (6)

where FRL represents the frame rate library, which is not a closed

form equation but presented as a lookup table obtained from the

user/video dataset; v is the user motion speed available in FRL

that is closest to the instant motion speed of the target user; and

Q is the objective video quality that the user aims to maintain.

The generated FRL enables us to determine the power efficient

frame rate for a new user. In particular, the parameters Q and v

are corresponding to the quality-aware and user-centric design

principles in QuRate, respectively.

Based on the offline frame rate library in Equation (6), we de-

velop the online algorithm for frame rate adaptation, as shown in

Algorithm 2. The algorithm selects the best frame rate based on

the current user’s view switching speed, which is determined by

QuRate through the sensors on the smartphone HMD.

4.4 Estimating Power Consumption

During our experiments, we have noticed that manual power evalu-

ation is a tedious process for each user-video pair. For example, for a

one-minute video, we must spend at least one minute for the video

playback and roughly another minute for preparing the test and

collecting the results. In addition, the measurement noise is very

common due to the complexity of the smartphone [8]. Other than

that, the power measurement requires re-structuring the intercon-

nection of the battery component, which increases the uncertainty.

The experiment also needs to be paused frequently to cool down the

system and avoid the inaccuracy caused by the generated heat. To

overcome these challenges, we develop an analytical power model

for the immersive video streaming system. This power model is

based on the power measurement samples we have obtained and

can be used to analyze the power consumption with the QuRate

scheme.

Theoretically, when the frame rate is adjusted to a constant

value, the average power consumption during the playback can be

estimated using the following equation:

PEst . = (1 − α) · PDef . + α · PDef . ·
FR

FRDef .
(7)

where PEst . refers to the estimated power consumption with the

frame rate control, α refers to the percentage of power consumed

by view generation over the total power consumption, PDef . is the

actual power consumption with the default frame rate FRDef . , and

FR is the constant value that the frame rate is adjusted to.

We further expand Equation (7) to consider the case that the

frame rate is varying during the playback (i.e., after adopting the

QuRate scheme), as shown below:

PEst . = (1 − α) · PDef . + α · PDef . ·

n∑

i=1

(ηi ·
FRi

FRDef .
) (8)

where n is the number of different frame rates, and ηi is the fre-

quency of each frame rate FRi that appears during the video play-

back. In this way, we can estimate the power consumption in the

QuRate case after only measuring the power once in the default

case. This is helpful in tuning the power optimization framework

(e.g., adjusting the threshold values). In Section 5.4, we evaluate

the accuracy of our predictive power model for immersive video

streaming under varying frame rates.

5 EVALUATION

We evaluate QuRate with the goal of understanding its efficiency in

power savings and the potential impact, if any, on the perceivable

quality of the video. In particular, we first measure and compare

the power consumption in the cases with and without QuRate

using empirical head movement data. Then, we evaluate and justify

the power model by comparing the modeled power results with

the empirical measurements. Also, we conduct battery stress test

to further verify the power evaluation results in empirical user

settings. Last but not least, we carry out IRB-approved subjective

QoE evaluations to prove the minimum impact QuRate poses on

the perceivable video quality.

5.1 Experimental Setup

We adopt the same system setup (i.e., the power monitor and five

smartphones) as in Section 3 for our evaluation of QuRate. Also,

based on the test videos described in Table 3 obtained from the

publicly available head movement dataset [11], we select 21 out of

59 users who have watched the same set of 6 videos (referred to as

Videos 1 to 6 hereafter based on Table 3). We calculate the switching

speeds of the 21 users based on the timestamps and orientation

coordinates provided by the dataset, as shown in Equation (9),

where Si represents the switching speed of the orientation vector

Oi from time tt−1 to ti .

Si =
arccos(

®Oi · ®Oi−1

∥Oi ∥ ∥Oi−1 ∥
)

ti − ti−1
(9)

For each video, we rank the 21 users based on the average speed of

each user watching all the 6 videos. In order to study the impact of

the user’s view switching speed, we select 4 representative users
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