
Proceedings of Machine Learning Research vol 75:1–10, 2018 31st Annual Conference on Learning Theory

Privacy-preserving Prediction

Cynthia Dwork
Harvard University

Vitaly Feldman
Google Brain

Editors: Sebastien Bubeck, Vianney Perchet and Philippe Rigollet

Abstract
Ensuring differential privacy of models learned from sensitive user data is an important goal that has
been studied extensively in recent years. It is now known that for some basic learning problems,
especially those involving high-dimensional data, producing an accurate private model requires
much more data than learning without privacy. At the same time, in many applications it is not
necessary to expose the model itself. Instead users may be allowed to query the prediction model
on their inputs only through an appropriate interface. Here we formulate the problem of ensuring
privacy of individual predictions and investigate the overheads required to achieve it in several
standard models of classification and regression.

We first describe a simple baseline approach based on training several models on disjoint sub-
sets of data and using standard private aggregation techniques to predict. We show that this appro-
ach has nearly optimal sample complexity for (realizable) PAC learning of any class of Boolean
functions. At the same time, without strong assumptions on the data distribution, the aggregation
step introduces a substantial overhead. We demonstrate that this overhead can be avoided for the
well-studied class of thresholds on a line and for a number of standard settings of convex regres-
sion. The analysis of our algorithm for learning thresholds relies crucially on strong generalization
guarantees that we establish for all differentially private prediction algorithms.

1. Introduction and problem formulation

In machine learning tasks, the training data often consists of information collected from individuals.
This data can be highly sensitive, for example in the case of medical or financial information, and
therefore privacy-preserving data analysis is becoming an increasingly important area of study in
machine learning, data mining and statistics (Dwork and Smith, 2009; Sarwate and Chaudhuri,
2013; Dwork and Roth, 2014). We rely on the well-studied differential privacy model of privacy
that has become a de facto standard for formal understanding of privacy (Dwork et al., 2006).

The standard setting of privacy-preserving learning aims to ensure that the model learned from
the data is produced in a differently private way. Thus this approach preserves privacy even when a
potential adversary has complete access to the description of the predictive model. The downside of
this strong guarantee is that for some learning problems, achieving the guarantee is known to have
substantial additional costs. More examples are needed to achieve the same level of accuracy (or
lower accuracy is achievable for a given number of examples). In addition, private learning may
require new and computationally less efficient algorithms.
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PRIVACY-PRESERVING PREDICTION

In this work we consider learning in a setting where the description of the learned model is not
accessible to the (potentially adversarial) user(s). Instead the users have access to the model through
an interface (often referred to as an API). For an input point the interface provides the value of the
predictive model on that point. This view is appropriate for many existing applications where user
privacy is a concern. For example, companies that collect data about their users usually expose only
a cloud-based interface to the models they train on user data. Credit rating bureaus only allow access
to their models through an electronic interface. In addition, it may enable new applications where
privacy considerations are currently preventing the use of predictive models trained on sensitive user
data. For example, in medical diagnostics a prediction interface would suffice for most applications.

Allowing such restricted access may appear to pose no risk to individual privacy. However,
as recently demonstrated by Shokri et al. (2017), blackbox access to Amazon ML and Google
prediction APIs suffice for successful membership inference attacks. Membership inference is the
task in which given a user’s record the goal is to infer whether the record was used for training the
model. This information is known to be sensitive in several contexts. Membership inference can also
be used to complete partial records revealing the values of sensitive attributes. Even more recently,
Long et al. (2018) demonstrated several additional successful membership inference attacks based
on blackbox access. Further, Carlini et al. (2018) proposed a more formal way to measure the
degree to which sensitive information is memorized by generative sequence models and explored
several techniques to extract sensitive information using black box access to such models. The use
of differentially private learning algorithms to protect against such attacks has been proposed in
(Shokri et al., 2017) and briefly explored in (Carlini et al., 2018).

We now describe the setting more formally. For a prediction problem over a domain X and
label space Y , a prediction interface is an algorithm that has access to a dataset S ∈ (X × Y )n and
given a query point x ∈ X outputs a value y ∈ Y . The algorithm can be queried multiple times
and is stateful (namely, responses can depend on previous queries). We define the privacy of such
an interface in the same way as usually done for interactive algorithms. Namely, for a prediction
interface M and a stateful query generating algorithm Q we denote by (Q � M(S)) the sequence
of queries and responses generated in the interaction of Q and M on dataset S.

Definition 1.1 (Private prediction interface) A prediction interface M , is (ε, δ)-differentially pri-
vate if for every interactive query generating algorithm Q, the output (Q � M(S)) is (ε, δ)-
differentially private with respect to dataset S.

While the problem setting has many facets that merit investigation, we focus on perhaps the
most basic question: what is the cost of ensuring privacy of a single prediction. In other words, we
focus on the problem of answering a single prediction query. Composition properties of differential
privacy imply that such an algorithm can be used to answer multiple queries with privacy parameters
that degrade gracefully with the number of queries (Dwork and Roth, 2014). Therefore such an
algorithm is a natural building block for constructing an algorithm that can answer multiple queries.
Naturally, better ways of dealing with sequences of queries might exist and the general topic of
answering interactive sequences of queries has been studied extensively in the differential privacy
literature (see (Dwork and Roth, 2014) for an overview).

An algorithm M that answers a single query x defines a randomized prediction at x and hence
such an algorithm implicitly defines a learning algorithm that outputs a randomized predictor h(x) =
M(S, x).
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Definition 1.2 Let M be an algorithm that given a dataset S ∈ (X × Y )n and a point x produces
a value in Y . We say that M is (ε, δ)-differentially private prediction algorithm if for every x ∈ X ,
the output M(S, x) is (ε, δ)-differentially private with respect to S. We use M(S) to refer to the
(randomized) function M(S, ·).

This definition allows us to treat this building block in the same way as regular learning algo-
rithms and discuss it in the context of standard statistical learning models.

Two standard and closely related models for classification we will look at are PAC (or realizable)
learning (Valiant, 1984) and agnostic (Haussler, 1992; Kearns et al., 1994) learning. In the PAC
learning model the algorithm is given random examples in which each point is sampled i.i.d. from
some unknown distribution over the domain and is labeled by an unknown function from a set of
functions C. In the agnostic learning model the algorithm is given examples sampled i.i.d. from an
arbitrary (and unknown) distribution over labeled points. The goal of the learning algorithm in both
models is to output a hypothesis whose prediction error on the distribution from which examples
are sampled is within additive α of the prediction error of the best function in C (which is 0 in the
PAC model).

We will also consider a more general regression setting in which we are given a loss function
` : R× Y → R and the goal is to design a private prediction algorithm M that minimizes

EP [`(M(S)] = E
M,(x,y)∼P

[`(M(S, x), y)],

where P is an unknown probability distribution over X × Y .

2. Overview of the results

We first consider a natural “baseline” approach to this problem based on private aggregation of
non-private learning algorithms.

2.1. Private aggregation of non-private models

To produce a prediction differentially privately we partition the dataset S into several subsamples
S1, . . . , Sr and run a non-private learning algorithm on each of those subsamples too obtain pre-
dictors f1, . . . , fr. Now given a point x we use a differentially private aggregation technique on
values f1(x), . . . , fr(x) and output the result. Several such subsample-and-aggregate techniques
are known (Nissim et al., 2007; Dwork and Lei, 2009; Smith and Thakurta, 2013; Dwork and Roth,
2014) that carefully exploit properties of the distribution over results on subsamples. A significant
advantage of this approach is that it does not require a new learning algorithm and hence is easy to
implement (there is an additional computational cost that is easy to parallelize).

Obviously, using r subsamples requires more data than non-private learning and therefore it is
natural to ask whether this approach is optimal and how it compares to differentially private learning
in the standard setting. We discuss these questions in the context of specific problems below.

PAC Learning: For PAC learning (or realizable case) accurate models f1, . . . , fr have to be close
to the true labeling function f (that is, they disagree with probability at most α). In particular, the
fraction of points on which more than 1/4 of the predictors output the wrong label cannot be more
than 4α. Outputting the correct label with privacy is easy in this setting and we do this using a soft
majority vote (or, equivalently, the exponential mechanism (McSherry and Talwar, 2007) on the
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label counts). A number of other approaches would give comparable guarantees. A simple analysis
shows that using r = O(ln(1/α)/ε) this reduction ensures ε-differentially private prediction for a
formal statement).

As an immediate corollary of this reduction and standard bounds on the sample complexity of
PAC learning we obtain the following upper bound.

Corollary 2.1 Let C be a class of Boolean functions of VC dimension d. Then for all α, β, ε > 0,
there exists an ε-differentially private prediction algorithm M that PAC learns C with error α and
confidence 1− β given n = Õ

(
d+log(1/β)

εα

)
examples.

It turns out that this simple approach is essentially optimal in the worst case. Specifically, we
prove that the sample complexity of this problem is Ω(d/(εα)) even when δ is as large as ε/3.

Theorem 2.2 Let C be a class of Boolean functions of VC dimension d. Then for all α, ε > 0,
any (ε, ε/3)-differentially private prediction algorithm M that PAC learns C with error α and
confidence 1/12 requires n = Ω(d/(εα)) examples.

For comparison, Kasiviswanathan et al. (2011) showed that the sample complexity of differen-
tially privately PAC learning a class C over domain X is O(log(|C|)/(εα)). By Sauer’s lemma,
log(|C|) = O(d · log(|X|)) and therefore the multiplicative gap between these two measures can
be as large as log(|X|). The sample complexity of ε-differentially private PAC learning was subse-
quently shown to be Θ̃(R/(εα)), where R is the so-called representation dimension of C (Beimel
et al., 2013). However, as shown in (Feldman and Xiao, 2015), for many classes the gap between
R and the VC dimension is still roughly log(|X|). For example, the representation dimension of
linear threshold functions over [N ]p is p2 · logN whereas the VC dimension is just p.

We remark that the technique we use to prove the lower bound in Thm. 2.2 is different from
those used for proving lower bounds in the standard setting of learning with privacy.

Agnostic learning: In agnostic learning, the labels f1(x), . . . , fr(x) no do not necessarily agree
on most points x and taking the majority vote may even reduce the accuracy. In this setting we
predict by first averaging the non-private predictions to obtain v(x) = 1

r (f1(x) + · · ·+ fr(x)) and
then outputting 1 with probability v(x) + ζ (truncated to range [0, 1]), where ζ is a Laplace noise
variable. It is not hard to show that for r = O(1/(εα)), this approach ensures that the prediction
will be ε-differentially private and the addition of noise increases the prediction error by at most an
extra α term. As a corollary of this reduction, we obtain the following upper-bound on the sample
complexity in this setting.

Corollary 2.3 Let C be a class of Boolean functions of VC dimension d. Then for all α, β, ε > 0
there exists an ε-differentially private prediction algorithmM that agnostically learnsC with excess
error α and confidence 1− β given n = Õ

(
d+log(1/β)

εα3

)
examples.

In this case the upper bound is much worse than the lower bound of Ω(d/α2 + d/(εα)) implied by
Thm. 2.2. For comparison, ε-differentially private agnostic learning can be done using Õ(d/α2 +
R/(εα)) examples, where R is the representation dimension of C mentioned above (Beimel et al.,
2013; Feldman and Xiao, 2015). As a result, for classes such that R = O(d) a differentially private
learning algorithm matches the lower bound for private prediction. This leads to a natural question
of whether it is possible to match the lower bound for all classes C. While we do not answer this
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question for arbitrary classes C, we give an example of an algorithm that goes beyond these two
approaches. Specifically, it agnostically learns C with ε-private prediction using Õ(d/α2 +d/(εα))
examples whereas learning C with privacy in the standard model requires an infinite number of
examples.

Convex regression: Our analysis of agnostic learning can be seen as a special case of a more
general analysis of prediction problems with convex loss functions. Specifically, the aggregation by
averaging can be seen as a way to increase the uniform prediction stability of a learning algorithm.
A learning algorithm is uniformly prediction stable with rate γ if for predictors fS and fS′ produced
on any pair of datasets S, S′ that differ on a single element and any point x, |fS(x)− fS′(x)| ≤ γ.
As follows immediately from this definition, a uniformly prediction stable learning algorithm can
be converted to a differentially private prediction algorithm simply by adding Laplace (or Gaussian)
noise to the prediction. Hence it reduces our problem to the problem of finding a uniformly pre-
diction stable learning algorithm with sufficiently low rate of stability. Aggregation by averaging
the predictors obtained by running a learning algorithm on r disjoint datasets can be seen as impro-
ving its uniform prediction stability by a factor of r. Convexity of the loss function, in turn, ensures
that such averaging preserves the guarantees on the expected loss of the algorithm.

We demonstrate how this general approach can be applied to convex regression problems. Spe-
cifically, we consider problems in which we have a family of predictors {f(w, ·)}w∈K parameterized
by a vector w ∈ K, whereK ⊂ Rd is some convex body, ` is a convex loss function and `(f(·, x), y)
is a convex function of w over K for all (x, y) ∈ X × Y . The goal is to find ŵ such that

E
(x,y)∼P

[`(f(ŵ, x), y)] ≤ min
w∈K

E
(x,y)∼P

[`(f(w, x), y)] + α,

where P is an unknown distribution over examples. This setting captures many important lear-
ning problems and has also been extensively investigated in the privacy literature (see (Chaud-
huri et al., 2011; Kifer et al., 2012; Bassily et al., 2014; Talwar et al., 2015; Wang et al., 2017)
and references therein). For the purpose of comparison with sample complexity bounds known
in this literature we restrict our attention to a basic setting in which K is a subset of the unit Eu-
clidean ball and `(f(w, x), y) is 1-Lipschitz in w for all (x, y) in support of P . For this setting
it is known that Õ(d/(εα2)) samples suffice to solve the problem with ε-differential privacy and
Õ(
√
d log4(1/δ)/(εα2)) samples suffice for (ε, δ)-differential privacy (Bassily et al., 2014). Furt-

her, such dependence on the dimension is optimal in both settings (Bassily et al., 2014).
The dependence on the dimension is not necessary for non-private learning in this setting. In

addition, we can exploit known stability analyses to reduce (or even eliminate) the need to use
the aggregation step. By plugging the known stability results based on strong convexity and/or
Bousquet and Elisseeff (2002); Shalev-Shwartz et al. (2010); Hardt et al. (2016), we demonstrate
that convex regression problems of this type can be solved with ε-differentially private prediction
using O(1/(εα2)) examples. We also demonstrate that smoothness of the loss function ` can be
used to improve the dependence on ε. We note that stability of the optimal solution of a strongly
convex problem has been used to achieve differential privacy in multiple prior works starting with
the pioneering work of Chaudhuri et al. (2011). Stability of gradient descent on convex smooth
functions has also been recently used to obtain privacy guarantees (Wu et al., 2017).
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2.2. Beyond aggregation: learning thresholds

The class of linear thresholds Thr is defined over a subset of reals and consists of indicator functions
of “x ≥ a” for all a ∈ R. Without loss of generality, we consider such functions over the set
[N ] = {1, . . . , N}. While the class is very simple, learning it with privacy has proved to be rather
challenging and some basic questions are still not fully resolved (Beimel et al., 2010; Chaudhuri
and Hsu, 2011; Beimel et al., 2013; Feldman and Xiao, 2015; Bun et al., 2015). It is known that ε-
differentially private PAC learning of Thr requires Ω(log(N)/(εα)) examples (Feldman and Xiao,
2015) and proper (ε, δ) differentially private PAC learning requires Ω(log∗(N)/(εα)) examples
(Bun et al., 2015) (no lower bounds for non-proper learning and δ > 0 case are known). Note that
the VC dimension of this class is just 1.

We give an ε-differentially private prediction algorithm for agnostic learning of this class with
the following guarantee:

Theorem 2.4 For any α, ε > (0, 1] and N ∈ N, there exists an ε-differentially private prediction
algorithm M that given n ≥ 12 ln(2/α)

αε examples from an arbitrary distribution P over [N ]×{0, 1}
guarantees:

E
S∼Pn

[ErrP(M(S))] ≤ eε · (OptP(Thr) + α).

Note that this statement implies an upper bound of n = O(ln(1/α)/(αε)) in the realizable case
when OptP(Thr) = 0 and also an upper bound of n = O(ln(1/α)/(αε) + ln(1/α)/α2) in the
agnostic setting. The Õ(1/α2) term arises from having to set ε < α to ensure that the expected
error is at most OptP(Thr) + O(α). Our algorithm can also handle unions of k intervals (at the
expense of an additional factor k in the sample complexity).

At a high level our algorithm works as follows. First, the examples are sorted. To determine the
probability with which to output 1 on point x the algorithm traverses the examples on points smaller
than x in increasing order. Starting from bias 1/2 the algorithm increases or decreases the current
bias by a factor of (roughly) eε for each example it traverses. The bias is increased if the label of
the example is 1 and decreased otherwise. Importantly, the bias is projected back to the interval
[α, 1 − α] after each update. The algorithm outputs 1 with probability obtained at the end of this
process. While the prediction privacy of our algorithm is relatively easy to establish, the analysis
of its error is more delicate and we are not aware of similar algorithms having been proposed for
this problem. Furthermore, our analysis only bounds the empirical error of this algorithm. The
hypothesis produced by the algorithm is sufficiently complicated that it would not be possible to
ensure generalization using VC dimension or similar techniques. Remarkably, the fact that our
algorithm is prediction private allows us to prove that it generalizes.

2.3. Generalization

It has been known for a while that differential privacy is a notion of stability and hence implies
bounds on the expectation of generalization error. Recent work in the context of adaptive data
analysis has substantially strengthened this connection, proving that differential privacy ensures
generalization with high probability (Dwork et al., 2014; Bassily et al., 2016; Feldman and Steinke,
2017). Prediction privacy can also be seen as a notion of stability that is weaker than differential
privacy but stronger than uniform prediction stability. We show how to derive relatively strong
generalization guarantees from this notion of stability. These guarantees are stronger than those
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known for classical notions of stability (e.g. (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al.,
2010)) but not as strong as those proved for differential privacy. Specifically, our generalization
results imply that for every non-negative loss function `, a moment k ≥ 1, and an ε-differentially
private prediction algorithm M :

E
S,S′∼Pn,

[
(ES′ [`(M(S))])k

]
≤ ek2ε · E

S∼Pn

[
(ES [`(M(S))])k

]
,

where ES [`(M(S)] denotes the expected empirical loss of M(S) on S. Note that on the left hand
side we are bounding the average loss on an independently drawn set of examples S′ which is tightly
concentrated around the expected loss EP [`(M(S)]. For comparison, ε-differential privacy gives a
similar bound with ekε factor instead of ek

2ε (Dwork et al., 2014). The bound above is stated using
the k = 1 version of this result. However this generalization bound implies that loss is also well
concentrated. We give an example of how to derive high probability bounds on the generalization
error from this moment bound.

2.4. Related work

Pathak et al. (2010) consider secure and differentially private aggregation of non-private linear mo-
dels held by multiple mistrusting parties. They achieve it by computing the average model and
adding noise to it. They do not consider accuracy guarantees of their approach formally.

To the best of our knowledge, the privacy-preserving aggregation of non-private predictions to
produce privacy-preserving predictions was first investigated by Bilenko, Dwork, Muthukrishnan,
Rothblum, Thakurta and Wang in 20141. Bilenko et al. , obtained high levels of composition by
exploiting the frequently high degree of (near) consensus among the predictions of the non-private
models via a variant of the sparse-vector technique Dwork and Roth (2014). Our work shares the
same goal of generating differentially private predictions. At the same time we formalize the gene-
ral problem of learning with differentially private predictions and focus on the sample complexity
of making a single prediction. In addition, we demonstrate approaches that go beyond privacy-
preserving aggregation.

Aggregation of non-private models to produce labels while preserving privacy was also used in
recent works of Hamm et al. (2016) and, subsequently, Papernot et al. (2017, 2018) to give a new
semi-supervised approach to differentially private learning. Specifically, their approach is predica-
ted on availability of public unlabeled datasetZ. The datasetZ is labeled using differentially-private
aggregation of labels provided by models trained on the sensitive dataset S. The labeled data is used
to train a new model. Since differential privacy is closed under post-processing, this new model is
privacy-preserving for S (but not for Z). The works of Papernot et al. (Papernot et al., 2017, 2018)
deal primarily with techniques for accurately bounding the privacy parameters while ensuring accu-
rate prediction on benchmark datasets. Hamm et al. (2016) also formally examine additional error
that noisy aggregation introduces and explicitly rely on stability of strongly-convex regression pro-
blems to provide formal guarantees for their approach. Their framework and the guarantees are
incomparable to ours, and, in particular, they do not avoid dependence on the dimension.

In a recent and independent work, Bassily et al. (2018) consider the formal guarantees for ans-
wering a sequence of prediction queries using differentially private aggregation techniques. They

1. This was the core of a larger project on privacy-preserving click prediction that did not survive the closing of the
Silicon Valley lab.
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demonstrate that given a non-private learning algorithm has error of at most α (such as in the PAC
model), there exists an algorithm that answers m prediction queries for points chosen i.i.d. from the
same distribution with error O(α) and privacy parameter ε scaling as

√
mα · logm (for compari-

son, a direct application of composition theorems for differential privacy implies
√
m scaling for

an arbitrary sequence of queries). They then analyze the sample complexity of semi-supervised (or,
equivalently, label-private) learning algorithm that is obtained by labeling a public unlabeled dataset
using their algorithm for answering prediction queries.

We remark that all these works do not examine the problem of private prediction itself and
focus on the aggregation-based approaches. Recall that in private prediction, it is the privacy of the
training data for the predictor (model) that is being protected.
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