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Abstract— Modern computer algorithms easily beat world
champions in chess or Go, but state-of-the-art robots are still
outperformed by two-year-olds in manipulating the pieces. This
work aimed to develop a control model that could replicate
human behavior when moving an underactuated object. The
studied object was a cup with a ball rolling inside creating
internal dynamics like sloshing coffee in a cup. Human move-
ment data were collected for transporting this cup-and-ball
system, both with and without external perturbations. The
existing models that include maximizing smoothness, optimal
feedback control with minimizing effort, and dynamic prim-
itives including impedance were revisited for this movement.
While these control models could replicate human trajectories
when transporting a rigid object, they faced challenges when a
complex object with internal dynamics was involved. Extending
from the framework of dynamic primitives, a zero-force trajec-
tory for the impedance operator was generated via an optimal
controller that maximized its smoothness when interacting with
perturbations from the object or the environment. Given the
challenges that robot control still faces when interacting with
complex objects, these findings may inform the development of
control algorithms for bio-inspired robotic manipulation.

I. INTRODUCTION

Despite significant advances in robot design and control,
human-like agility and dexterity has yet to be achieved in
robots, and much remains to be learned from human move-
ment control. Human and biological behavior has inspired the
development of many novel ideas and concepts in robotics;
for example, adaptive impedance-based control of manipu-
lators for physical interactions [1], central pattern generators
[2] and exploitation of passive dynamics in locomotion [3],
[4], and the design and control of soft robots [5], [6].

While state-of-the-art robotic manipulators are adept at
picking and placing rigid objects [7], they still struggle in
manipulating more complex objects such as flexible mate-
rials, containers with liquids, and articulated objects. Most
of the approaches to the interaction with complex objects
rely on developing more accurate models and simulations
[8], however modeling every possible object a robot might
encounter is not practical. More recently, some progress has
been made towards achieving robotic manipulation of de-
formable objects without relying on high-fidelity models [9].
However, this approach assumes that the robot is quasi-static
and hence this control model does not apply to situations
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where dynamic motion is involved. To gain further insight
and potentially inform and advance control algorithms, this
study examines how humans control objects with complex
internal dynamics.

However, to date studies on human motor control have
predominantly focused on point-to-point reaching and point-
ing tasks, devoid of any contact or interaction with dynamic
objects. Only very few studies have gone beyond rigid
objects and investigated the control of a mass-spring system
[10]-[12], a cart-and-pendulum system [13] and a whip [14],
[15]. These studies revealed that the principles that are found
in simple human movements do not generalize to more
complex physical interactions. Instead, objectives such as
predictability [16], stability of the underactuated object [17],
[18], or minimization of transient duration [19] have come
to the fore. For challenging tasks of bringing a dynamic
object to rest humans exploit the internal dynamics of the
object [11], [12], [20]. These novel computational analyses
have shed light on the richness of the human capabilities.
However, a generative model that can synthesize the human
behavior in such complex tasks is yet to be developed.

In computational neuroscience, several control models
have been proposed and validated for the task of goal-
directed reaching in the horizontal plane. One of the earliest
motor control models has been inspired by the straightness
of hand trajectories in kinematic space [21], and showed
when the the third derivative (jerk) of the hand trajectory is
minimized (or smoothness is optimized), features of human
hand trajectories are replicated [22], [23]. When exposing
the human trajectories to external force fields the models
had to include internal models that could exhibit adaptation
to novel environmental conditions [24]. A conceptually dis-
tinct model that has successfully replicated key features of
human behavior in these reaching tasks is stochastic optimal
feedback control (OFC), which trades off minimizing effort
for kinematic accuracy [25], [26]. This OFC could account
for human responses to state-dependent force fields [27],
perturbations [28], and distortions in visuo-motor mappings
[29]. The minimum variance model could replicate the speed-
accuracy trade-off observed in numerous human behaviors
[30].

The framework of dynamic primitives is another candidate
model which has been developed in both human studies and
robotics [31]-[34]. Instead of relying on pre-planned trajec-
tories, human or robot movement trajectories are generated
via building blocks that have stability, i.e. dynamic attractors.
Two basic primitives are discrete and rhythmic attractors that
are parameterized and combined to create more complex be-
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Fig. 1: The cup-and-ball experimental paradigm. A. The liquid
inside the cup is approximated by a ball rolling inside a circular cup.
B. The cup-and-ball model is equivalent to a cart-and-pendulum
system. C. The cup-and-ball system simulated in the virtual envi-
ronment; participants interact with it by moving a haptic robot. D.
The task is to move the cup from the start to the target box without
losing the ball.

haviors. In robotics, dynamic movement primitives (DMPs)
have been used to teach robots how to perform a variety of
behaviors from human demonstrations, such as tennis swings
[35], grasping [36], and playing drums [37]. However, DMPs
are constrained to learn from a unique demonstration. In
human neuroscience Sternad and colleagues proposed dy-
namic models for these two basic attractors and demonstrated
how their combination can reproduce a variety of unimanual
and bimanual behaviors [31], [38], [39]. More recently,
Hogan and Sternad extended the set of fundamental dynamic
primitives by including mechanical impedance specifically to
be able to address physically interacting with objects [40].
Thus, in the context of interacting with an object or the
environment, the primitives are used to determine the ‘zero-
force trajectory’ of the impedance operator. However, it is yet
to be determined how this zero-force trajectory is generated
for the interaction with a complex object.

While these models have all been successful in capturing
important features of human movements in tightly con-
strained experimental tasks, their ability generalize to more
complex behaviors, such as manipulation of underactuated
systems, has not received attention. Hence, the first aim of
this work was to evaluate extant control models in their
ability to replicate human behavior for the control of a
complex underactuated object. The second aim was to build
on these insights and develop a unifying motor control
framework that can mimic human behavior in simple as
well as complex interactions. This work may inform the
development of control algorithms for dexterous robotic
manipulation.

II. METHODS
A. Complex Object: A Ball in a Cup

In order to gain further insight into human motor con-
trol, a rich test bed with interesting control challenges is
needed. Our work has taken inspiration from the daily
activity of carrying a cup of coffee; the internal dynamics
creates nonlinear interaction forces acting on the hand [16],

[18]. Such nonlinear and potentially chaotic interactions can
engage various control mechanisms that are not used in
unconstrained reaching, even when exposed to the linear
state-dependent force fields commonly studied in the human
adaptation paradigms. To make the complex task scientif-
ically repeatable and computations tractable, the dynamic
effects of the sloshing liquid inside the cup were simplified
to a sliding ball inside a 2-D cup (Fig. 1A). This cup-and-
ball system is equivalent to a 2-D cart-and-pendulum system
(Fig. 1B) with the equations of motion:

(M + m)y =ml (¢2 Sin(¢) - (ééCOS(d))) + Finte?“ + Fpe'rtv
(1
lp = —gsin(¢) — Gij cos ¢, 2)

where y and ¢ are the cup position and ball angle, respec-
tively. Fjpter 1s the force of the hand interacting with the cup,
and Fj.,; is a perturbation force. System parameters M = 3
kg and m = 0.3 kg are the cup and ball masses, respectively.
The pendulum length [ = 0.5 was also the radius of the
cup, ¢ = 9.81 m/s? is the gravitational acceleration, and
G = 5 is the coupling term between the cup and the ball
dynamics. To make the control synthesis easier the cup-
and-ball system was linearized around zero-states. The same
linearized equations are simulated in the virtual environment:

(M + m)y = 7771[(15 + Finter + Fpert, (3)
16 = —g6 — Gij. )

B. Experimental Procedure

Four participants (3 men, 21-33 yrs) took part in this study.
They gave written informed consent as approved by the Insti-
tutional Review Board at Northeastern University. The cup-
and-ball system was simulated in a virtual environment, and
participants interacted with the simulated system via a haptic
robotic interface that provided force feedback according to
the dynamics of the cup and ball (Fig. 1C). Participants were
instructed to move the cup at their self selected speed via
moving the robot’s handle along a horizontal line to arrive
at a target box 40 cm to the right of their start point (Fig.
1D). Participants were instructed that the ball should not
‘escape’ from the cup, i.e., its angle should not exceed the
cup’s rim (¢, = £45°). Each participant performed 3
sessions of 100 trials each with the following 3 conditions. In
condition 1, the ball was rigidly attached to the cup, forming
a single rigid object; in condition 2, the ball could freely roll
inside the cup making the system underactuated; in condition
3, an impulse-like perturbation was applied to the system
in opposite direction of the cup movement at 60% of the
travel distance. The order of conditions was identical for all
participants.

In the virtual environment, the system was initialized with
yo = —0.4, o = 0,¢9 = 0,y = 0, and the target box was
located at yyy = 0. In the rigid object trials, the ball dynamics
were removed and only an inertia (M + m) was simulated
in the virtual environment. In the perturbation trials, Fj,c,; =



—20 N and lasted for 20 ms when the cup first reached %60
of the travel distance, and was zero otherwise.

C. Existing Motor Control Models

Although models in the human control literature are less
granular than those in robotics, many of their core ideas
are comparable to those in robotics: (1) Planning of ac-
tions in kinematic space as maximally smooth trajectories
(minimum-jerk model, Fig. 2A), (2) Execution of actions via
optimally tuned feedback gains (optimal feedback control
model, Fig. 2B), and (3) Formation of actions as an evo-
lution of a dynamical system following attractor dynamics
(dynamic primitives model, Fig. 2C). Each of these concepts
will be tested against experimental data, and their merits will
be assessed in the context of the cup-and-ball task. Then the
strengths of these models can be combined and tailored into
a new framework.

1) Maximum Smoothness in Kinematic Space: Uncon-
strained point-to-point reaching movements tend to have
straight linear paths in kinematic space with bell-shaped
velocity profiles that exhibit high smoothness [22]. This
robust observation supported that humans favor smoothness
in kinematic space in goal-oriented tasks. The maximally
smooth hand (cup) trajectory is mathematically defined as the
one that minimizes jerk, i.e, time-derivative of acceleration,
during the movement:

y*(t) = arg min {/Otf (d:;igt))z dt} , ®)

given the boundary conditions:

y(0) = o, y(ty) =ys, (6)
9(0) = §(0) = y(ty) = ii(ts) =0, (7

which results in a fifth-order polynomial trajectory:
y () = (8)

we o= (10(8) =13 () <6 (1)),

This control principle implies that humans bring their
hand from a given start position to stop at the target in a
given time via a pre-determined trajectory. This feed-forward
hand trajectory can be used to drive the cup and ball (Fig.
2D). It must be noted that this model accounts for hand
motion in free space, but does not specify hand movement
in an interactive context nor how the behavior may change
in response to perturbations. Therefore, this model alone is
insufficient to explain complex interactions.

2) Optimal Feedback Control: A different model applied
to human movement control postulates that humans control
movements to optimize certain objectives such as minimal
effort [25]. Behavioral observations such as smoothness and
compliance in physical interactions result from optimally
adjusted feedback gains [41] obviating the need for a pre-
planned trajectory (Fig. 2B). In this optimal feedback control
(OFC) framework, human control is approximated by a linear
quadratic Gaussian (LQG) controller that includes the noise

characteristics of the neuromuscular system. The optimal
controller minimizes the quadratic cost function [26]:
N-1

(x{ Qux¢ + v Rewy) +x3Quxw,  (9)
t=0

J=

subject to the constraint:

Xep1 = Aexy + By (T4 €¢) ug + &, (10)

where x € R"™ is the state vector, and £ and eu represent
additive and control-dependent noise terms, respectively. It
is further assumed that the states can only be estimated from
the d-step-delayed sensory information that is affected by
additive (w) and state-dependent (ex) noise:

ve=H; (I+€)x_q+ w;. (11)

The linear state-space model for the cup-and-ball system
is:

. T
Xi = |Yt, Oty Ui, Gt Iy

(12)

0 0 10 0

0 0 01 0
A=1]0 mg 00 1/a (13)

0 Fa+¢<m) 0 0 =

0 0 00 —1/r
B=10, 0,0, 0, 1/7]" (14)

which needs to be time-discretized (Euler integration with
time-step 0t =10 ms). The fifth state in this state space
represents an equivalent muscle force with dynamics approx-
imated by a first-order filter of the scalar neural input u with
time constant 7 = 30 ms [42]. The shorthand variable is
defined as & = m + M — mG for the isolated cup-and-ball
system. However, to be consistent with prior models in the
human literature, an equivalent arm mass was added to the
cup (Fig. 2E), so that the input represents neuromuscular
effort, i.e., « = m+ (M + M,) —mG with M, = 4 kg [27]
as the equivalent arm mass.

When modeling human motor actions, OFC often mini-
mizes the control effort (approximating neuromuscular ac-
tivity) and the kinematic error from the target [26]. Thus,
the positive semi-definite matrices in the objective functions
(9) are defined as follows for the cup-and-ball system:

Q. = Diag ([0, 10* (rad™'), 0, 0, 0]), V¢t # N (16)
Qn = Diag ([10° (m™"), 0, 10° (sm™"), 0, 0]) (17)
R, =1 (N1, vt (18)

One limitation of this OFC formulation is that state
constraints to mimic the task instruction of ‘not losing the
ball’ cannot be added explicitly. As a proxy, a small penalty
term for the ball angle (second state) was included in (16)
to discourage large ball angles during the motion. The result
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Fig. 2: Core models in human motor control (A-C), their implementations for the cup-and-ball system (D-F), and two models combining
dynamic primitives with optimal feedback control to generate zero-force trajectories (G,H). A. Movements minimize jerk, or maximize
smoothness in kinematic space. B. Movements are generated via optimally tuned feedback loops. C. Movements evolve as stable trajectories
according to attractor dynamics. D. The cup is driven with a feed-forward minimum-jerk trajectory. E. An optimal feedback controller
that minimizes effort. F. Cup movements are generated by a feed-forward minimum-jerk trajectory with an impedance primitive. G. The
zero-force trajectory control model that minimizes jerk. H. The zero-force trajectory controller that minimizes effort.

of this OFC model is an optimal control law in the form
of feedback gain uf = L;X;, which drives the cup-and-ball
system to the target. It only uses the full-state feedback that
is estimated from the delayed sensory information (Fig. 2E).
Although the OFC model has successfully captured several
characteristics of human reaching [41], it cannot integrate
task features inherent to transporting a ‘cup-of-coffee’ (see
Results), necessitating further modifications.

3) Dynamic Primitives for Physical Interactions: Dy-
namic motion primitives (DMPs) have been used success-
fully in robotics for trajectory planning and imitation learning
[33], [34], [43], [44]. For human motor control, Sternad and
colleagues showed that discrete and rhythmic movements and
their combinations are well accounted for by discrete fixed-
point and limit-cycle attractor dynamics [38], [39]. However,
for physical interactions mechanical impedance is needed
to augment the attractor dynamics, [45] and was added as
a third primitive [40] (Fig. 2C). Importantly, the submove-
ments and oscillators (for discrete and rhythmic movements,
respectively) are stable attractors that drive the unrestricted
movements. In the case of physical interaction, mechanical
impedance is included and submovements and oscillators
drive the zero-force trajectories [46]. In robotics applica-
tions, stable trajectory attractors are often constructed using
canonical forcing terms [34] independent of the interaction
dynamics. In human motor control, proxies for generating the
zero-force trajectory have been used, specifically minimum-
jerk submovements for discrete movements and sinusoids for
rhythmic movements [47].

When adding a linear spring-and-damper system with
parameters k, = 40 N/m and k3 = 50 Ns/m and its
zero-force trajectory, y. ¢, (Fig. 2F), the resulting system
dynamics equations are:

(M+m)j= _ml$+kp(y2ft —Y)+ka(@zpt —9) + Fpert, (19)

16 = —g¢ — Gi. (20)

The dynamic primitives framework has so far remained
unspecific about how the zero-force trajectories are generated
for complex interactive tasks. The zero-force trajectory may
be represented by the pre-planned minimum-jerk trajectory
of (8), or be calculated through other processes. In the present
work (Fig. 2F), the feed-forward minimum-jerk trajectory (8)
was used as y, ¢, in (19) to drive the system to target in the
specified time.

D. Proposed Model: Zero-Force-Trajectory Control

To address the shortcomings of the existing models, a
novel model is proposed to capture the features of human
behavior in dynamically complex interactions. The zero-
force trajectory in the dynamic primitives framework needs
to be formed in accordance with the dynamics of the object
and the requirements of the task—a missing feature in
the existing formulation. Optimal feedback control can fill
this void by generating a dynamic attractor landscape from
optimally tuned feedback gains that produces the zero-force
trajectory. Note that in the absence of external interactions,
the zero-force trajectory and the actual hand path coincide,
and the model reduces to the original OFC that produces
smooth velocity profiles.

In tailoring the OFC model to generate zero-force trajecto-
ries, we build on the model in (19) that includes mechanical
impedance. Instead of assuming a pre-planned zero-force
trajectory, y.p; is now produced online by the optimal
feedback controller. Two features of this approach need to
be highlighted: first, the dynamics of the object are taken
into account in the formation of the zero-force trajectory;
second, the trajectory is generated by a dynamic attractor
(via feedback gains) and the trajectory itself changes in re-
sponse to the evolving system dynamics, including potential
perturbation. In this modification there are two choices for
the objective function: (1) maximize the smoothness of the
zero-force trajectory (Fig. 2G), or (2) minimize the effort
generating the zero-force trajectory (Fig. 2H).



1) Zero-Force Trajectory Control with Optimal Effort:
The most direct modification is to implement an effort-
minimizing optimal feedback controller in the novel frame-
work. OFC sets the optimal forces driving the impedance
operator (Fig. 2F). Note that a non-zero mass is needed
between the driving force and impedance operator, which is
assumed to be the same as M, for consistency with previous
models. In this effort-minimizing controller, the terms of the
cost function are kept the same as (16)-(18), and the state-
space equations become:

. T

Xt = |:yt7 ¢t7 ytv ¢ta Ft7 Yz ft, yzft:| (21)
A — (22)
[0 0 1 0 0 0 0 ]

0 0 0 1 0 0 0

—kp mg —ka 0 kp ka

kgG _ o m @ 7kO;G _a

la Tg(l + GT) % 0 0 la ?o(ziG

0 0 0 0 —1/7 0 0

0 0 0 0 0 0 1

k, k —k; —kq
L Mi 0 Vi 0 0 M;f Mihl _
B=1[0,0, 0,0, 1/7, 0, 0]" (23)
H=1I,., (24)

2) Zero-Force Trajectory Control with Optimal Smooth-
ness: Inspired by the smoothness in kinematic space during
unperturbed reaching movements, the OFC model is modi-
fied to maximize the smoothness of the zero-force trajectory
(minimizing jerk) instead of minimizing the effort. Note that
in the absence of physical interaction, this model reduces
to the original minimum-jerk model, but without specifying
the trajectory a priori as a function of time. The objective of
maximum smoothness is achieved by substituting the input
neural command with the input jerk profile (u = %(gjz 7t))
and considering /. s; as another state:

. T
Xt = [yu Oty Ut ¢t,yzft, yzfu ngt:| (25)
A= (26)
r 0 0 1 0 0 0 07
0 0 0 1 0 0 0
—kp m —k kp k
k:aG Tg Td 0 a’éwh al\zh 0
oA+ BE 0 T =Ee 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
L O 0 0 0 0 0 0 |
B=1[0, 0, 0, 0, 0, 0, 1]" 27)
H=1I,, (28)

The state penalty matrix in the objective function Qq
in (16) and (17) remains unchanged. However, the control
penalty is set to R; = 0.1 s®/m to have comparable orders
of magnitude of terms in the cost function.

III. RESULTS
A. Results for Unperturbed Movements

When moving a rigid object participants exhibited the
expected bell-shaped velocity profiles as no additional ball
forces acted on the hand (Fig. 3A). Not surprisingly, when
manipulating the cup-and-ball system, subjects’ trajectories
visibly deviated from these smooth profiles (Fig. 3B). After
a relatively rapid increase the velocity remained close to
constant, followed by a deceleration to stop at the target.

The smooth bell-shaped velocity profile and interaction
forces are equally well represented by all models (overlaid
in Fig. 3A), rendering them indistinguishable in such simple
tasks. Once the ball dynamics are included, the modeled
trajectories start to diverge. By design, the feed-forward
minimum-jerk model does not adapt to the ball dynam-
ics. Similarly, when this feed-forward model includes an
impedance operator, it is insufficient to capture the pattern of
human movements. Even when using biologically-plausible
values of stiffness and damping, the force from the rolling
ball is not large enough to change the cup velocity.

However, these small ball forces affect the behavior of the
OFC min-effort model, and leads to much larger speed mod-
ulations than those observed in human behavior. Specifically,
as the ball rolls forward and decelerates the cup, the OFC
model does not attenuate this deceleration as it minimizes
effort. These simulation results resemble those of the OFC
min-effort with impedance, in which the zero-force trajectory
is driven with minimal effort.

In contrast, the zero-force trajectory controller with opti-
mal smoothness penalizes variations in the cup trajectory
when encountered with ball forces; consequently, it most
closely resembles the experimental profile of cup velocity.
Furthermore, due to the underactuated ball dynamics, subtle
differences in cup velocity cause large changes in ball angle
and interaction forces. This zero-force trajectory controller
is also able to reproduce profile features in ball angle and
interaction forces.

B. Results for Perturbed Cup-and-Ball Movements

Sudden impulse-like perturbations were used to further
elicit distinctive characteristics in human behavior to identify
the controller. When experiencing a resistive perturbation the
participant’s data in Fig. 3C shows large cup decelerations
that are followed by a smooth recovery of speed within
approximately 200 ms. Evidently, the models without an
impedance do not capture this response to perturbations.
The OFC min-effort model responds with a very ‘stiff’
behavior to the perturbation, characterized by a small change
in velocity, reduced velocity recovery, and large transfer
of the perturbation force to the hand (highlighted in the
insets in Fig. 3C). The models that include impedance (the
two zero-force trajectory controllers and the feed-forward
min-jerk model with impedance) show compliant responses
that are closer to human behavior. This result suggests that
feedback gains alone cannot account for arm stiffness as
suggested before [48]. Similar to the unperturbed condition,
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Fig. 3: Human data and simulation results. Gray lines represent all participants’ data, and colored lines are model predictions. Cup velocity,
interaction force (between hand and cup), and ball angle are shown. A. Rigid object manipulation: All models predict bell-shaped velocity
profiles as observed in human data and recreate interaction forces equally well. B. Cup-and-ball manipulation: The effort-minimizing
OFC models (with or without hand impedance) predict cup deceleration when the ball rolls forward; this is absent in human behavior.
Feed-forward (FF) Minimum-jerk models (with and without hand impedance) predict bell-shaped cup velocity profiles. Only the zero-
force trajectory controller with optimal smoothness predicts the cup velocity, ball angle, and interaction force profiles that match human
behavior. C. Cup-and-ball manipulation with external perturbation: The zero-force trajectory controller with optimal smoothness fits the
human data best. The impedance operator is necessary to capture the sudden cup deceleration and its smooth return of velocity after
the perturbation. Models without hand impedance (traditional effort-minimizing OFC and FF minimum-jerk models) do not capture this

compliant behavior.

the dynamics-informed zero-force trajectory controller with
optimal smoothness drives the system most closely to the
human behavior.

IV. DISCUSSION

This study investigated human motor control of a complex
underactuated object to reveal control priorities that may
inform the development of more dexterous robots. Human
experiments on a task inspired by ‘transporting a cup of
coffee’ rendered kinematic data that were used as basis to
test a range of extant and novel control models. Previous
studies of the same cup-and-ball system showed that humans
prioritized alternative objectives, such as dynamic stability
[18], [49] and predictability and safety margins [13], [16],
[19], [50]. However, no generative models have yet been
developed. Our results showed that when moving a rigid
object the human trajectories displayed simple bell-shaped
velocity profiles that were accounted for by all models, in-
cluding feed-forward models. However, the interaction with
a dynamic object created interaction forces that acted on the
hand and needed to be compensated. These perturbed profiles
presented noticeably greater challenges for the models, not
only for the feed-forward models, but also for optimal
feedback control that minimizes effort. When exposed to
additional external perturbations, the candidate models began
to differentiate themselves. In addition to the failure of
the feed-forward models, the OFC min-effort model also
showed greater velocity modulation than the human behavior
displayed.

The model that best replicated human behavior was the
zero-force trajectory controller with optimal smoothness that
integrated three concepts. The first was the physical inter-
action via mechanical impedance, which has been shown
critical for the stability of human object manipulation [51],
[52]. The second concept was an optimal feedback controller
that was used to form stable zero-force trajectories, which
drove the system toward the target without requiring a pre-
planned trajectory. The third concept, minimizing jerk, was
the objective in the optimal controller.

The zero-force trajectory controller shares similarities with
previously presented models. The relevance of mechani-
cal impedance to the optimal control framework has been
demonstrated before in an open-loop context in musculo-
skeletal simulations [53], [54]. Furthermore, Dingwell and
colleagues proposed a dynamically-constrained minimum-
jerk model for the manipulation of a linear underactuated
object [10] which, unlike the zero-force trajectory controller,
was formulated as a feed-forward trajectory planning. Lastly,
the notion of creating a dynamic attractor for trajectory plan-
ning is widely explored in imitation learning [55]. However,
the proposed zero-force trajectory controller creates these
attractors autonomously via optimally tuned gains instead of
human demonstration. The proposed model is an important
first step towards identifying the architecture of the human
controller, and capturing human dexterity in a mathematical
form.
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