
 

 

  

Abstract—Ten right-handed male subjects turned a crank 
(radius 10 cm) in two directions at three constant instructed 
speeds (fast, medium, very slow) with visual speed feedback. They 
completed 23 trials at each speed. While the hand was 
constrained to move in a circle, forces against the constraint were 
non-zero. To disentangle the influences of biomechanics and 
neural control we estimated a neurally-determined motion 
underlying the observed movements and forces. Assuming a 
plausible mathematical model of interactive dynamics the 
peripheral neuromechanics could be ‘subtracted’, revealing an 
underlying motion that reflects neural influences. We called this 
data-driven construct the zero-force trajectory. The observed 
zero-force trajectory was approximately elliptical, with 
systematic changes of speed with curvature, and its orientation 
changed with turning direction.  Its major axis, estimated by the 
principal eigenvector of its covariance matrix, differed 
significantly for different directions, but not with speed. As 
peripheral neuromuscular compliance (i.e. low mechanical 
impedance) mitigates the consequences of imperfect execution, 
the required precision of motion commands is reduced. To 
produce circular hand motions, this control strategy requires an 
oscillatory zero-force trajectory that leads hand motion. Due to 
non-isotropic dynamics, that lead differs between degrees of 
freedom resulting in an elliptical zero-force trajectory. The 
ellipses’ orientations differ with direction of rotation, as observed 
in the experimental data. As elliptical motion is generated by two 
orthogonal sinusoids with non-zero phase difference, these results 
support our hypothesis that humans simplify this constrained-
motion task by exploiting primitive dynamic actions, oscillations 
and impedance. 

I. INTRODUCTION 

Using tools is a hallmark of human behavior, comparable 
to language and laughter. While some animals are capable of 
making and using tools, this ability is vastly more developed 
in humans [1]–[4]. Nonetheless, neuroscience research has 
primarily focused on the examination of elementary behaviors 
under strict experimental control (unconstrained motion). 
While these paradigms render manageable data for analysis 
and modeling, it is difficult to generalize the insights gained to 
understand the actions that make humans special—tool use. 
Physical interaction with a kinematic constraint provides an 
intermediate stage between unconstrained motion and physical 
interaction with complex dynamic objects. Moreover, 
kinematic constraints are ubiquitous in everyday object 
manipulation. Activities such as turning a steering wheel, or 
opening a door, are aspects of everyday life which humans 
perform effortlessly. This paper presents a study of unimpaired 
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subjects physically interacting with a circular constraint—
turning a crank. 

While human dexterity vastly exceeds that of most modern 
robots, the human neuro-mechanical system is remarkably 
slower than its robotic counterparts [5]. We have proposed 
that, to achieve highly dynamic performance despite these 
limitations, human behavior is composed of dynamic 
primitives [6]–[9]. We conceive these to be dynamic attractors 
that emerge from nonlinear interactions between neural and 
mechanical parts of the system and require minimal 
intervention from higher levels of the central nervous system.  
In this work, we discuss two types of dynamic primitives: 
oscillations and mechanical impedance. 

In a task that involves significant physical interaction, the 
mechanical impedance (interactive dynamics) of the limb 
relates the descending neural commands, the motion of the 
hand, and the force on the hand. Thus, looking at a single one 
of these quantities without the others would only partially 
explain the action.    

In a previous paper, we presented the method applied in 
this work [10]. The approach assumes a plausible 
mathematical model of interactive dynamics and used it to 
‘subtract off’ or ‘peel back’ peripheral biomechanics to 
uncover a summary of the underlying neural influences.  We 
defined this quantity as the zero-force trajectory, a summary 
of one consequence of the underlying neural commands. 
Furthermore, that work showed that patterns believed to be the 
result of neural control re-emerge in the zero-force trajectory.  

Slow neural transmission and muscle response implies that 
humans rely heavily on feed-forward (i.e. predictive) control; 
prior work shows that humans adjust their behavior to 
prioritize predictability [11]–[15]. The most predictable action 
is periodic; in theory, strictly periodic actions are infinitely 
predictable. Negotiating a circular constraint at constant 
tangential speed (equivalently: constant angular speed) 
requires periodic hand motion in each degree of freedom. For 
these reasons, we anticipate that crank-turning might 
preferentially be executed as an oscillatory action. Here we 
studied circularly constrained hand motion at constant 
tangential speed. 

Despite the predictability of the actions required to turn a 
crank, imperfect execution may be anticipated due to sensor 
noise, motor noise, and/or inadequate prediction of inertial 
dynamics and neuro-muscular response. However, the 
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consequences of these imperfections should be independent of 
turning direction (clockwise vs. counter-clockwise). They 
should also decline (precipitously) with decreasing speed: all 
inertial forces decline as the square of speed; velocity-
dependent muscle dynamics decline in proportion to speed; 
motor noise declines in proportion to speed; and slower speed 
allows ample time for feedback corrections. For this reason, 
we included extremely slow motions performed in both 
directions (CW and CCW) in our experiments.  

A different source of imperfection may arise from the 

organization of the neural control system. In this constrained-

motion task we hypothesize that humans use dynamic 

primitives, oscillations and impedance. This leads to a 

testable prediction: The underlying neural commands will 

exhibit differences between directions. Constant-speed 

circular hand motion requires sinusoidal motion in orthogonal 

directions with a phase offset of ±90° (depending on direction 

CW vs. CCW).  However, the motion of the hand would lag 

the neurally-defined oscillations to an extent determined by 

the slow response of the bio-mechanical periphery. This lag 

is likely to differ in orthogonal directions, resulting in 

different performance between the CW and CCW directions.   

The observed zero-force trajectory was approximately 

elliptical. The principal eigenvector of its covariance matrix 

served to estimate the orientation of the ellipse major axis. As 

predicted, turning direction had a significant effect on the 

ellipse orientation, consistent with the hypothesis of dynamic 

primitives.  

I. METHODS 

A. Participants 

Ten healthy male college-age students were recruited for 
the study. All participants were right-handed, and none 
reported any biomechanical injury to their arm nor any 
neurological problems. Prior to participating in the study, they 
were informed about the experimental procedure and signed 
the informed consent document approved by MIT’s 
Institutional Review Board. 

B. Experimental Apparatus and Procedure 

The crank used in this experiment is shown in Figure 1. The 
crank arm was mounted on a high precision incremental 
optical encoder/interpolator set (Gurley Precision Instruments 
encoder #8335-11250-CBQA, interpolator #HR2-80 QA-
BRD) with a resolution of 0.0004 degrees per count. A six-
axis force transducer (ATI Model 15/50) was attached to the 
end of the crank, with a handle mounted on it. A spool 
managed the force transducer cable.  

During the experiment, the subject’s arm was occluded 
from view by a wooden structure, which did not limit the range 
of motion. The upper arm was suspended by a canvas sling 
connected to the ceiling using a steel cable; upper and lower 
arm were in the plane of the crank. The subject sat in a chair 
with a rigid back, while the shoulder was constrained by a 
harness attached to the back of the chair. The subject was 
positioned such that the crank, with radius 10.29 cm, was well 
within the workspace of the arm.  

Data acquisition was controlled by a computer running the 
QNX real-time operating system on an Intel Pentium 100 
processor. The encoder, sampling at 200 Hz, was connected to 
a set of counters and to the computer via digital I/O. The ATI 
force transducer’s signal, sampled at 100 Hz, was processed 
by its embedded controller and input to the computer through 
the digital I/O. The visual display, also generated by the 
computer, was on a 17-inch monitor (311 x 238 mm, resolution 
1280 x 1024, 76 Hz) which was mounted approximately 75 cm 
from subjects’ eyes. The experiment was divided into two 
unequal sections: 2 blocks of trials at subjects’ preferred or 
‘comfortable’ speed and 6 blocks of trials at a visually-
instructed speed.  

 

Figure 1: Experimental setup. The crank displayed in the inset 
was used to provide a circular constraint. Vision of the arm and crank 
was occluded but the subject was provided with visual speed 
feedback. The wrist was braced, the elbow was supported by a sling, 
and the shoulders were strapped to a chair. 

At the start of the experiment, subjects performed 20 trials 
at their preferred speed, 10 trials in clockwise direction (CW) 
and 10 in counterclockwise direction (CCW); both conditions 
were blocked, in random sequence for each subject; each trial 
lasted 8 seconds. Subjects were not provided any visual 
feedback during these trials. Thereafter, subjects performed 6 
blocks of 30 trials, each with visual specification of 1 of 3 
target speeds (slow: 0.075, medium: 0.5, and fast: 2.0 
revolutions per second), in either CW or CCW directions. The 
order of the speed and direction blocks was pseudo-
randomized across subjects. The three speeds were selected to 
cover a significant range: 0.075 rev/s was extremely slow 
(required over 13 s per revolution), 0.5 rev/s was close to 
subjects’ preferred speed, and 2.0 rev/s was close to the fastest 
speed that subjects could turn the crank. Visual feedback on 
the monitor displayed the target speed, as well as subjects’ 
real-time hand speed; the horizontal axis was time, and the 
vertical axis was speed. Subjects’ speed was estimated using 
an online backward finite difference algorithm. Target speed 
was displayed as a continuous horizontal line in the middle of 
the screen. The relation between crank speed and screen 
display was re-scaled for every block; the width of the screen 
corresponded to the time of the trial, which was a function of 
the desired crank speed. 

In the slow-speed conditions, each trial lasted 45 s; in the 
medium-speed conditions, each trial lasted 16 s; in the fast-
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speed conditions, each trial lasted 4 s. This yielded 8 turns of 
the crank for the fast and medium conditions, but only about 
3.4 turns of the crank for the slow condition. The duration of 
the slow-speed trials was limited to avoid subject fatigue.  

C. Model 

The arm was modeled as a two-link planar manipulator, 
with no gravitational effects. Inertia parameters were 
estimated based on the results of the cadaver studies of 
Dempster [16], [17]. The shoulder joint location was modeled 
as a fixed point, as the thorax was assumed to be stationary. 
The two-link manipulator dynamics coupled to the crank is 
detailed in Appendix. This approach is the same as used by 
Ohta et al. [18].  

Though muscle force production is a complex function of 
many factors, its dominant behavior can be well described by 
a function of muscle length and its rate of change [19], [20]. 
One way to describe the dynamics of interaction uses a 
mechanical impedance operator 𝑍{∙} [21]. The force 𝐹(𝑡) 
time-function can be computed from the displacement time-
function Δ𝑥(𝑡), 𝐹(𝑡) = 𝑍{Δ𝑥(𝑡)}. Displacement is defined as 
Δ𝑥(𝑡) = 𝑥0(𝑡) −  𝑥(𝑡) where 𝑥(𝑡) is the actual hand position 
and 𝑥0(𝑡) is a zero-force trajectory.  Accordingly, a simplified 
model of muscle mechanical impedance was used—a linear 
spring and viscous damping element with common motion 
[22]. To implement this model on a two-joint arm, joint 

stiffness was assumed to be a 22 symmetric matrix, 

independent of configuration. Joint damping, also a 22 
symmetric matrix, was proportional to joint stiffness. This is 
similar to the muscle model previously used by Flash [23] but 
in this case we used a damping term which was defined relative 
to the zero-force trajectory. 

The joint torque was defined by,  

 𝝉 = 𝑲(𝒒0 − 𝒒) + 𝑩(𝒒̇0 − 𝒒̇) (1) 

The stiffness in units of N-m/rad was defined as 

 𝑲 = 𝐺 [
𝐾11 𝐾12

𝐾21 𝐾22
] = 𝐺 [

29.5 14.3
14.3 39.3

] (2) 

The viscous damping in units of N-m-s/rad was defined as 

 𝑩 =  [
𝐵11 𝐵12

𝐵21 𝐵22
]. (3) 

The 𝐾11 and 𝐵11 terms are the net shoulder joint stiffness 
and damping, the 𝐾12, 𝐵12, 𝐾21, and 𝐵21 are the two-joint 
parameters, and the 𝐾22 and 𝐵22 terms describe the elbow 
parameters. The term 𝐺 is a dimensionless scalar. The values 
for joint stiffness and damping were consistent with those of 
Flash [23], such that 𝑩 = 𝛽𝑲. The 𝛽 term has units of time, 
consistent with a first-order model of muscle impedance. A 
gain of 𝐺 = 2.0 was used in the slow and medium cases, and 
a gain of 𝐺 = 3.0 was used in the fast case. Damping was 
derived from stiffness by multiplication by a constant factor, 
𝛽, which was 0.05 s for the slow and medium cases, and 0.1 s 
for the fast cases.  

Substituting Equation 1, into Equation 9, 10, and 11 (see 
Appendix), the equation can be manipulated to solve for 𝒒̇0. 

 

𝒒̇0

= 𝑩−1[𝑴𝑱−1[{𝑱𝑴−1𝑱𝑇 + 𝑟2𝐼−1𝒆𝒆𝑇}𝑭

− 𝑱̇𝒒̇ − 𝑟𝜃̇(𝜃̇𝒏 + 𝑏𝑐𝐼−1𝒆)] + 𝒉 − 𝑲(𝒒0

− 𝒒)] + 𝒒̇ 

(4) 

Numerically integrating this first order differential 
equation, (Equation 4) computes the zero-force trajectory 
corresponding to a prescribed position, velocity, acceleration, 
and force. 

The velocity and force signals were filtered with a second-
order Butterworth filter using a cutoff frequency of 10 Hz, 
except in the slow tangential force condition. The tangential 
force in the slow condition was small in magnitude. At slow 
speeds, a large number of samples with a magnitude close to 
the resolution of the sensor were observed. This resulted in 
artifactual step changes in the force measurements. To 
eliminate this artifact, the tangential force in the slow 
condition was filtered with a cutoff frequency of 0.5 Hz, far 
faster than the turning frequency of the slow task (0.075 
rev/sec). 

D. Covariance Ellipse Orientation 

To test whether the zero-force trajectory consistently 
changed orientation as a function of speed and direction, the 
zero-force trajectory covariance was computed, 

 

𝑐𝑜𝑣(𝑥0, 𝑦0)

=  
1

𝑁
∑(𝑥0,𝑖 − 𝜇𝑥,0)(𝑦0,𝑖 − 𝜇𝑦,0)

𝑁

𝑖=1

 
(5) 

where 𝑥0 and 𝑦0 are the Cartesian zero-force trajectory points, 
𝜇𝑥0

 and 𝜇𝑦0
 are the mean Cartesian zero-force trajectory 

points, and 𝑁 is the number of samples. The eigenvectors of 
this covariance matrix were computed to determine the major 
and minor axes of the covariance ellipse. The covariance 
ellipse angle was defined relative to the 3 o’clock position on 
the crank, consistent with the definition of crank angle. The 
first trial for each condition was excluded. In all subsequent 
trials, the first 1.5 s were discarded to remove any transient 
effects induced by the initial condition specified for numerical 
integration. Only complete revolutions were included. The 
dependent measure submitted to statistical analysis was the 
zero-force trajectory covariance ellipse angle. To statistically 
evaluate the influence of speed and direction, a linear mixed 
model was employed; it was then tested using analysis of 
variance (ANOVA). The linear model which represents the 
observed dependent measure 𝑌𝑖,𝑗,𝑘 was expressed as 

 

𝑌𝑖,𝑗,𝑘

= 𝜇𝑇 + 𝛼𝑗 + 𝛽𝑘 + 𝛾𝑙 + (𝛼𝛽)𝑗,𝑘 + (𝛼𝛾)𝑗,𝑙

+ (𝛽𝛾)𝑘,𝑙 + (𝛼𝛽𝛾)𝑗,𝑘,𝑙 + 𝐸𝑖,(𝑗,𝑘,𝑙) 

(6) 

where the grand mean is 𝜇𝑇, the fixed effect of speed is 𝛼𝑗, 

where 𝑗 is an index from 1 to 3. The fixed effect of direction is 
𝛽𝑘, where k is an index from 1 to 2. The random effect of 
subject is 𝛾𝑙, where 𝑙 is an index from 1 to 10. The stochastic 
sampling effect is 𝐸𝑖,𝑗,𝑘, where 𝑖 is an index from 1 to 22, 

representing the multiple trials.  
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II. RESULTS 

In this experiment subjects turned the planar crank at 
different speeds either in the CW or in the CCW direction. We 
hypothesized that this task was executed via dynamic 
primitives, leading to a testable prediction. We predicted that 
the underlying neural commands would be oscillatory, and 
exhibit differences between directions due to the phase lag 
introduced by peripheral neuro-mechanical dynamics. The 
zero-force trajectory is one consequence of the underlying 
neural commands; thus, it too should exhibit differences as a 
function of turning direction. 

 

 

Figure 2: Average zero-force trajectories for all 10 subjects for 
each speed condition (left) clockwise and (right) counter-
clockwise direction trials. The path defined by the constraint is 
shown by the black dashed circle. The zero-force trajectories are 
shown with colored lines indicating speed along the zero-force 
path normalized by its range. Note that the zero-force trajectory 
is roughly elliptical and that orientation differs with respect to 
direction. 

A. Covariance Ellipse Orientation 

Figure 2 displays the average zero-force trajectories from 
the 10 subjects in each direction and speed condition. The 
shapes are approximately elliptical and show consistent speed 
fluctuations along the ellipse. Previous work showed that 
speed minima coincide with curvature maxima [10]. In 
addition, the elliptic shapes clearly show a difference in  
orientation between the two directions. To quantitatively test 
whether the orientation differed with respect to speed or 
direction the major axis angle of the covariance ellipse was 
computed (Figure 3). The mean major axis angle in the 

clockwise conditions were (slow) 31.78 ± 24.22o, (medium) 
30.29 ± 16.70o, and (fast) 27.88 ± 10.26o. The mean major 
axis angle in the counter clockwise conditions were (slow) 
135.43 ± 16.58o, (medium) 131.65 ± 20.19o, and (fast) 148.94 
± 7.55o. A significant main effect of direction was detected 
(𝐹1.0,9.0 = 329.021, p << 0.001). Thus, the zero-force trajectory 

was significantly different between the CW and CCW turning 
direction. 

 

 

Figure 3: To quantify the zero-force trajectory orientation the 
covariance ellipse was computed.  The plot displays the mean angle 
of the covariance ellipse major axis as a function of turning speed. 
Error bars indicate the SD between subjects.  

III. DISCUSSION 

This study examined kinematically constrained motion as 
an intermediate step to bridge the gap between (widely-
studied) unconstrained motions and (sparsely-studied) 
physical interaction with objects with complex dynamics. We 
investigated the detailed patterns of motion and force that 
human subjects exhibited when performing a simple 
constrained-motion task, turning a circular crank. Performing 
this task using oscillatory dynamic primitives would require 
two out-of-phase sinusoids. To move in a circle, the 
oscillations must be ±90° out of phase. Rather than attempt to 
execute a perfect circle, low mechanical impedance, another 
dynamic primitive, would obviate the need for precise motion 
control. However, the resulting peripheral neuro-mechanical 
dynamics would contribute a different phase lag in orthogonal 
directions. We therefore expected differences when subjects 
turned in opposite directions, and that was observed. 

We assumed a simplified model of neuro-muscular 
mechanical impedance and used it to ‘peel back’ peripheral 
neuro-mechanics, and ‘reveal’ a consequence of underlying 
neural commands, expressed in terms of motion—the zero-
force trajectory. The zero-force trajectory is mathematically 
similar to the ‘virtual trajectory’ of the equilibrium point 
hypothesis [24]–[26]. However, unlike the virtual trajectory, 
we are agnostic about whether the CNS encodes this quantity; 
many alternatives might yield similar results. Instead, the zero-
force trajectory is a construct based on the measured force and 
motion, in combination with a reasonable, albeit simplified, 
model of peripheral neuro-mechanics. 

The zero-force trajectory was roughly elliptical. We 
determined the orientation of its major axis via the principal 
eigenvector of the covariance matrix. The ellipse orientation 
was statistically independent of speed indicating that at least 
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some aspects of neural control of this task were the same at all 
speeds. Remarkably, we found that direction (CW vs. CCW) 
had a substantial and significant effect. This direction 
dependence was consistent with a neurally-defined motion 
command (the zero-force trajectory) composed of two 
sinusoids with a 90 deg phase difference.  

A model that accounts for the anisotropy of skeletal inertia 
and neuro-muscular impedance was sufficient to explain these 
results. Consider the simple system where the zero-force 
trajectory in two orthogonal directions, 𝑥0 and 𝑦0, is 
constructed from out two sinusoids with the same frequency, 
Ω, same magnitude, and a phase difference, 𝜙.  

{
𝑥0 = sin (Ω𝑡)

𝑦0 = sin (Ω𝑡 + 𝜙)
 (7) 

Given such a system, a perfect circle can be drawn in the 
CW or CCW direction with a phase difference of ±90°. 
However, we know that peripheral neuro-mechanical 
dynamics contribute a different phase lag in different 
directions. The work-space apparent mass of a two-link 
manipulator is not uniform; the mass matrix eigenvalues are 
not equal. This direction-dependent variation of apparent mass 
is one cause of the different phase lags in different directions. 
The additional phase lag contributed by peripheral neuro-
mechanical dynamics results in zero-force trajectories with an 
elliptical shape that is oriented differently for CW and CCW 
motion. In fact, this directional effect is consistent with the 
change in orientation of the zero-force trajectory that we 
observed in our experiments. 

IV. CONCLUSION 

Despite its apparent simplicity, this constrained-motion 
task evoked a rich set of behaviors. We observed directional 
differences in the zero-force trajectory orientation, consistent 
with task execution generated by dynamic primitives. Our 
observations indicate that subjects took advantage of 
interactive dynamics (hand mechanical impedance) to manage 
the control of contact and avoid the need for precise force 
control. The underlying motion that generated force via 
mechanical impedance was competently described by two 
oscillatory dynamic primitives, phase-shifted sinusoids. These 
results provide further evidence that humans manage complex 
physical interaction tasks by taking advantage of dynamic 
primitives, in this case oscillations and impedance. 

V. APPENDIX 

The upper arm, forearm, hand, and forearm plus hand were 

denoted by 1, 𝑓, ℎ, and 2 respectively. Each of the body 

segments was described by the following parameters: length, 

𝑙, mass, 𝑚, inertia, 𝐼, radius of gyration, 𝑘𝑎, and center of 

mass, 𝑐. The length 𝑙𝑓 was the distance from the elbow to the 

center of the fist; the length 𝑐ℎ was the distance from the center 

of the wrist to the center of the hand. Link 2 was considered a 

combination of the forearm and hand. The hand was assumed 

to be a point mass at the end of the forearm.  

The model of the arm and crank system was constructed in 

the same manner as performed by Ohta et al. [18]. Figure 4 

displays the variables and notation used in the development of 

the model. The system has one degree of freedom; therefore, 

there is always a kinematic relationship which can be used to 

transform from Cartesian position, 𝒙 = [𝑥, 𝑦]𝑇, to joint 

position, 𝒒 = [𝑞1, 𝑞2]𝑇, and to crank position, 𝜃, where the 

center of the crank is defined as 𝒙𝒄 = [𝑥𝑐 , 𝑦𝑐]. 

 𝒙 =  [
l1C1  +  l2C12

 l1S1  +  l2S12 
]   = [

 r cos 𝜃
r sin 𝜃

] + 𝒙𝑐 (8) 

 

Figure 4: Model of crank rotation task which displays the sign 

convention and notation used in the computations. 

The notation 𝑆1, 𝐶1 denote sin(𝑞1), cos(𝑞1) and 𝑆12, 𝐶12 

denote sin(𝑞1 + 𝑞2), cos(𝑞1 + 𝑞2). The radius of the crank is 

𝑟, the damping of the crank is 𝑏𝑐, and the inertia is 𝐼. The upper 

arm denoted 1, and the forearm denoted 2 are described by 

length 𝑙1, 𝑙2, mass 𝑚1, 𝑚2, inertia about the z axis 𝐼1, 𝐼2, and 

center of mass distance from the joint axis 𝑐1, 𝑐2. The force on 

the handle is 𝑭 = [𝐹𝑥, 𝐹𝑦]
𝑇
, with the normal unit vector, 𝒏 and 

tangential unit vector, 𝒆. The joint torque is denoted 𝝉 =
 [𝜏1, 𝜏2]𝑇. 

From the sum of moments acting on the crank,  

 𝐼𝜃̈ + 𝑏𝑐𝜃̇ = 𝑟𝒆𝑇𝑭 (9) 

summation of moments about the shoulder, 

 𝑴𝒒̈ + 𝒉 = 𝝉 − 𝑱𝑇𝑭 (10) 

and the kinematic relationship that equates the acceleration at 

the handle to the acceleration at the hand, 

 𝒙̈ =  𝑱𝒒̈ + 𝑱̇𝒒̇ = 𝑟(𝜃̈𝒆 − 𝜃̇2𝒏)  (11) 

and the joint torque was defined by,  

 𝝉 = 𝑲(𝒒0 − 𝒒) + 𝑩(𝒒̇0 − 𝒒̇) (12) 

a model of the system can be constructed. Substituting 

Equation 1, into Equation 9, 10, and 11 the equation can be 

manipulated to solve for 𝒒̇0. 

 

𝒒̇0

= 𝑩−1[𝑴𝑱−1[{𝑱𝑴−1𝑱𝑇 + 𝑟2𝐼−1𝒆𝒆𝑇}𝑭 − 𝑱̇𝒒̇

− 𝑟𝜃̇(𝜃̇𝒏 + 𝑏𝑐𝐼−1𝒆)] + 𝒉 − 𝑲(𝒒0 − 𝒒)] + 𝒒̇ 

(13) 
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Parameters comprising these equations include the mass 

matrix, the centrifugal and Coriolis forces, and the Jacobian 

relating unconstrained differential arm motions to hand 

motions. 
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