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Evidence for Dynamic Primitives in a Constrained Motion Task

James Hermus, Dagmar Sternad, and Neville Hogan

Abstract—Ten right-handed male subjects turned a crank
(radius 10 cm) in two directions at three constant instructed
speeds (fast, medium, very slow) with visual speed feedback. They
completed 23 trials at each speed. While the hand was
constrained to move in a circle, forces against the constraint were
non-zero. To disentangle the influences of biomechanics and
neural control we estimated a neurally-determined motion
underlying the observed movements and forces. Assuming a
plausible mathematical model of interactive dynamics the
peripheral neuromechanics could be ‘subtracted’, revealing an
underlying motion that reflects neural influences. We called this
data-driven construct the zero-force trajectory. The observed
zero-force trajectory was approximately elliptical, with
systematic changes of speed with curvature, and its orientation
changed with turning direction. Its major axis, estimated by the
principal eigenvector of its covariance matrix, differed
significantly for different directions, but not with speed. As
peripheral neuromuscular compliance (i.e. low mechanical
impedance) mitigates the consequences of imperfect execution,
the required precision of motion commands is reduced. To
produce circular hand motions, this control strategy requires an
oscillatory zero-force trajectory that leads hand motion. Due to
non-isotropic dynamics, that lead differs between degrees of
freedom resulting in an elliptical zero-force trajectory. The
ellipses’ orientations differ with direction of rotation, as observed
in the experimental data. As elliptical motion is generated by two
orthogonal sinusoids with non-zero phase difference, these results
support our hypothesis that humans simplify this constrained-
motion task by exploiting primitive dynamic actions, oscillations
and impedance.

I. INTRODUCTION

Using tools is a hallmark of human behavior, comparable
to language and laughter. While some animals are capable of
making and using tools, this ability is vastly more developed
in humans [1]-[4]. Nonetheless, neuroscience research has
primarily focused on the examination of elementary behaviors
under strict experimental control (unconstrained motion).
While these paradigms render manageable data for analysis
and modeling, it is difficult to generalize the insights gained to
understand the actions that make humans special—tool use.
Physical interaction with a kinematic constraint provides an
intermediate stage between unconstrained motion and physical
interaction with complex dynamic objects. Moreover,
kinematic constraints are ubiquitous in everyday object
manipulation. Activities such as turning a steering wheel, or
opening a door, are aspects of everyday life which humans
perform effortlessly. This paper presents a study of unimpaired
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subjects physically interacting with a circular constraint—
turning a crank.

While human dexterity vastly exceeds that of most modern
robots, the human neuro-mechanical system is remarkably
slower than its robotic counterparts [5]. We have proposed
that, to achieve highly dynamic performance despite these
limitations, human behavior is composed of dynamic
primitives [6]-[9]. We conceive these to be dynamic attractors
that emerge from nonlinear interactions between neural and
mechanical parts of the system and require minimal
intervention from higher levels of the central nervous system.
In this work, we discuss two types of dynamic primitives:
oscillations and mechanical impedance.

In a task that involves significant physical interaction, the
mechanical impedance (interactive dynamics) of the limb
relates the descending neural commands, the motion of the
hand, and the force on the hand. Thus, looking at a single one
of these quantities without the others would only partially
explain the action.

In a previous paper, we presented the method applied in
this work [10]. The approach assumes a plausible
mathematical model of interactive dynamics and used it to
‘subtract off” or ‘peel back’ peripheral biomechanics to
uncover a summary of the underlying neural influences. We
defined this quantity as the zero-force trajectory, a summary
of one consequence of the underlying neural commands.
Furthermore, that work showed that patterns believed to be the
result of neural control re-emerge in the zero-force trajectory.

Slow neural transmission and muscle response implies that
humans rely heavily on feed-forward (i.e. predictive) control;
prior work shows that humans adjust their behavior to
prioritize predictability [11]-[15]. The most predictable action
is periodic; in theory, strictly periodic actions are infinitely
predictable. Negotiating a circular constraint at constant
tangential speed (equivalently: constant angular speed)
requires periodic hand motion in each degree of freedom. For
these reasons, we anticipate that crank-turning might
preferentially be executed as an oscillatory action. Here we
studied circularly constrained hand motion at constant
tangential speed.

Despite the predictability of the actions required to turn a
crank, imperfect execution may be anticipated due to sensor
noise, motor noise, and/or inadequate prediction of inertial
dynamics and neuro-muscular response. However, the
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consequences of these imperfections should be independent of
turning direction (clockwise vs. counter-clockwise). They
should also decline (precipitously) with decreasing speed: all
inertial forces decline as the square of speed; velocity-
dependent muscle dynamics decline in proportion to speed;
motor noise declines in proportion to speed; and slower speed
allows ample time for feedback corrections. For this reason,
we included extremely slow motions performed in both
directions (CW and CCW) in our experiments.

A different source of imperfection may arise from the
organization of the neural control system. In this constrained-
motion task we hypothesize that humans use dynamic
primitives, oscillations and impedance. This leads to a
testable prediction: The underlying neural commands will
exhibit differences between directions. Constant-speed
circular hand motion requires sinusoidal motion in orthogonal
directions with a phase offset of £90° (depending on direction
CW vs. CCW). However, the motion of the hand would lag
the neurally-defined oscillations to an extent determined by
the slow response of the bio-mechanical periphery. This lag
is likely to differ in orthogonal directions, resulting in
different performance between the CW and CCW directions.

The observed zero-force trajectory was approximately
elliptical. The principal eigenvector of its covariance matrix
served to estimate the orientation of the ellipse major axis. As
predicted, turning direction had a significant effect on the
ellipse orientation, consistent with the hypothesis of dynamic
primitives.

I. METHODS

A. Participants

Ten healthy male college-age students were recruited for
the study. All participants were right-handed, and none
reported any biomechanical injury to their arm nor any
neurological problems. Prior to participating in the study, they
were informed about the experimental procedure and signed
the informed consent document approved by MIT’s
Institutional Review Board.

B. Experimental Apparatus and Procedure

The crank used in this experiment is shown in Figure 1. The
crank arm was mounted on a high precision incremental
optical encoder/interpolator set (Gurley Precision Instruments
encoder #8335-11250-CBQA, interpolator #HR2-80 QA-
BRD) with a resolution of 0.0004 degrees per count. A six-
axis force transducer (ATI Model 15/50) was attached to the
end of the crank, with a handle mounted on it. A spool
managed the force transducer cable.

During the experiment, the subject’s arm was occluded
from view by a wooden structure, which did not limit the range
of motion. The upper arm was suspended by a canvas sling
connected to the ceiling using a steel cable; upper and lower
arm were in the plane of the crank. The subject sat in a chair
with a rigid back, while the shoulder was constrained by a
harness attached to the back of the chair. The subject was
positioned such that the crank, with radius 10.29 cm, was well
within the workspace of the arm.

Data acquisition was controlled by a computer running the
QNX real-time operating system on an Intel Pentium 100
processor. The encoder, sampling at 200 Hz, was connected to
a set of counters and to the computer via digital I/O. The ATI
force transducer’s signal, sampled at 100 Hz, was processed
by its embedded controller and input to the computer through
the digital I/O. The visual display, also generated by the
computer, was on a 17-inch monitor (311 x 238 mm, resolution
1280 x 1024, 76 Hz) which was mounted approximately 75 cm
from subjects’ eyes. The experiment was divided into two
unequal sections: 2 blocks of trials at subjects’ preferred or
‘comfortable’ speed and 6 blocks of trials at a visually-
instructed speed.

Figure 1: Experimental setup. The crank displayed in the inset
was used to provide a circular constraint. Vision of the arm and crank
was occluded but the subject was provided with visual speed
feedback. The wrist was braced, the elbow was supported by a sling,
and the shoulders were strapped to a chair.

At the start of the experiment, subjects performed 20 trials
at their preferred speed, 10 trials in clockwise direction (CW)
and 10 in counterclockwise direction (CCW); both conditions
were blocked, in random sequence for each subject; each trial
lasted 8 seconds. Subjects were not provided any visual
feedback during these trials. Thereafter, subjects performed 6
blocks of 30 trials, each with visual specification of 1 of 3
target speeds (slow: 0.075, medium: 0.5, and fast: 2.0
revolutions per second), in either CW or CCW directions. The
order of the speed and direction blocks was pseudo-
randomized across subjects. The three speeds were selected to
cover a significant range: 0.075 rev/s was extremely slow
(required over 13 s per revolution), 0.5 rev/s was close to
subjects’ preferred speed, and 2.0 rev/s was close to the fastest
speed that subjects could turn the crank. Visual feedback on
the monitor displayed the target speed, as well as subjects’
real-time hand speed; the horizontal axis was time, and the
vertical axis was speed. Subjects’ speed was estimated using
an online backward finite difference algorithm. Target speed
was displayed as a continuous horizontal line in the middle of
the screen. The relation between crank speed and screen
display was re-scaled for every block; the width of the screen
corresponded to the time of the trial, which was a function of
the desired crank speed.

In the slow-speed conditions, each trial lasted 45 s; in the
medium-speed conditions, each trial lasted 16 s; in the fast-
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speed conditions, each trial lasted 4 s. This yielded 8 turns of
the crank for the fast and medium conditions, but only about
3.4 turns of the crank for the slow condition. The duration of
the slow-speed trials was limited to avoid subject fatigue.

C. Model

The arm was modeled as a two-link planar manipulator,
with no gravitational effects. Inertia parameters were
estimated based on the results of the cadaver studies of
Dempster [16], [17]. The shoulder joint location was modeled
as a fixed point, as the thorax was assumed to be stationary.
The two-link manipulator dynamics coupled to the crank is
detailed in Appendix. This approach is the same as used by
Ohta et al. [18].

Though muscle force production is a complex function of
many factors, its dominant behavior can be well described by
a function of muscle length and its rate of change [19], [20].
One way to describe the dynamics of interaction uses a
mechanical impedance operator Z{-} [21]. The force F(t)
time-function can be computed from the displacement time-
function Ax(t), F(t) = Z{Ax(t)}. Displacement is defined as
Ax(t) = xy(t) — x(t) where x(t) is the actual hand position
and x,(t) is a zero-force trajectory. Accordingly, a simplified
model of muscle mechanical impedance was used—a linear
spring and viscous damping element with common motion
[22]. To implement this model on a two-joint arm, joint
stiffness was assumed to be a 2x2 symmetric matrix,
independent of configuration. Joint damping, also a 2x2
symmetric matrix, was proportional to joint stiffness. This is
similar to the muscle model previously used by Flash [23] but
in this case we used a damping term which was defined relative
to the zero-force trajectory.

The joint torque was defined by,
t=K(qo—q) +B(qo—q) (D
The stiffness in units of N-m/rad was defined as

Kiq K12] 29.5 14.3
K=¢G =G 2
[K21 K, [14.3 39.3 @
The viscous damping in units of N-m-s/rad was defined as
Bll 812]
B = . 3
B B @

The K;, and By, terms are the net shoulder joint stiffness
and damping, the K;,, By,, K,;, and B,; are the two-joint
parameters, and the K,, and B,, terms describe the elbow
parameters. The term G is a dimensionless scalar. The values
for joint stiffness and damping were consistent with those of
Flash [23], such that B = SK. The f term has units of time,
consistent with a first-order model of muscle impedance. A
gain of G = 2.0 was used in the slow and medium cases, and
a gain of G = 3.0 was used in the fast case. Damping was
derived from stiffness by multiplication by a constant factor,
B, which was 0.05 s for the slow and medium cases, and 0.1 s
for the fast cases.

Substituting Equation 1, into Equation 9, 10, and 11 (see
Appendix), the equation can be manipulated to solve for q.

q

=OB‘1[M]‘1[{IM‘1]T +r’'ee"}F
—Jq—r6(6n + b1 %e)] + h — K(q, @
-9]+4q

Numerically integrating this first order differential
equation, (Equation 4) computes the zero-force trajectory
corresponding to a prescribed position, velocity, acceleration,
and force.

The velocity and force signals were filtered with a second-
order Butterworth filter using a cutoff frequency of 10 Hz,
except in the slow tangential force condition. The tangential
force in the slow condition was small in magnitude. At slow
speeds, a large number of samples with a magnitude close to
the resolution of the sensor were observed. This resulted in
artifactual step changes in the force measurements. To
eliminate this artifact, the tangential force in the slow
condition was filtered with a cutoff frequency of 0.5 Hz, far
faster than the turning frequency of the slow task (0.075
rev/sec).

D. Covariance Ellipse Orientation

To test whether the zero-force trajectory consistently
changed orientation as a function of speed and direction, the
zero-force trajectory covariance was computed,

cov(xg, ¥o)

N
1 5
= NZ(xo,i = lx0) Yo,i — liy,o) ®)
i=1

where X, and y, are the Cartesian zero-force trajectory points,
Ky, and w, —are the mean Cartesian zero-force trajectory
points, and N is the number of samples. The eigenvectors of
this covariance matrix were computed to determine the major
and minor axes of the covariance ellipse. The covariance
ellipse angle was defined relative to the 3 o’clock position on
the crank, consistent with the definition of crank angle. The
first trial for each condition was excluded. In all subsequent
trials, the first 1.5 s were discarded to remove any transient
effects induced by the initial condition specified for numerical
integration. Only complete revolutions were included. The
dependent measure submitted to statistical analysis was the
zero-force trajectory covariance ellipse angle. To statistically
evaluate the influence of speed and direction, a linear mixed
model was employed; it was then tested using analysis of
variance (ANOVA). The linear model which represents the
observed dependent measure Y; ; , was expressed as

Yijk
=ur+ai+ Pty + @B+ (ay), (6)
+ BY)iy + @BY)jiy + Eijrn

where the grand mean is pr, the fixed effect of speed is a;,
where j is an index from 1 to 3. The fixed effect of direction is
B, where k is an index from 1 to 2. The random effect of
subject is y;, where [ is an index from 1 to 10. The stochastic
sampling effect is E j,, where i is an index from 1 to 22,
representing the multiple trials.
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II. RESULTS

In this experiment subjects turned the planar crank at
different speeds either in the CW or in the CCW direction. We
hypothesized that this task was executed via dynamic
primitives, leading to a testable prediction. We predicted that
the underlying neural commands would be oscillatory, and
exhibit differences between directions due to the phase lag
introduced by peripheral neuro-mechanical dynamics. The
zero-force trajectory is one consequence of the underlying
neural commands; thus, it too should exhibit differences as a
function of turning direction.
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Figure 2: Average zero-force trajectories for all 10 subjects for
each speed condition (left) clockwise and (right) counter-
clockwise direction trials. The path defined by the constraint is
shown by the black dashed circle. The zero-force trajectories are
shown with colored lines indicating speed along the zero-force
path normalized by its range. Note that the zero-force trajectory
is roughly elliptical and that orientation differs with respect to

direction.

A. Covariance Ellipse Orientation

Figure 2 displays the average zero-force trajectories from
the 10 subjects in each direction and speed condition. The
shapes are approximately elliptical and show consistent speed
fluctuations along the ellipse. Previous work showed that
speed minima coincide with curvature maxima [10]. In
addition, the elliptic shapes clearly show a difference in
orientation between the two directions. To quantitatively test
whether the orientation differed with respect to speed or
direction the major axis angle of the covariance ellipse was
computed (Figure 3). The mean major axis angle in the

clockwise conditions were (slow) 31.78 + 24.22°, (medium)
30.29 £+ 16.70° and (fast) 27.88 + 10.26°. The mean major
axis angle in the counter clockwise conditions were (slow)
135.43 + 16.58°, (medium) 131.65 £ 20.19°, and (fast) 148.94
+ 7.55°. A significant main effect of direction was detected
(F1.0,0.0 =329.021, p <<0.001). Thus, the zero-force trajectory
was significantly different between the CW and CCW turning
direction.
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Figure 3: To quantify the zero-force trajectory orientation the
covariance ellipse was computed. The plot displays the mean angle
of the covariance ellipse major axis as a function of turning speed.
Error bars indicate the SD between subjects.

III. DISCUSSION

This study examined kinematically constrained motion as
an intermediate step to bridge the gap between (widely-
studied) unconstrained motions and (sparsely-studied)
physical interaction with objects with complex dynamics. We
investigated the detailed patterns of motion and force that
human subjects exhibited when performing a simple
constrained-motion task, turning a circular crank. Performing
this task using oscillatory dynamic primitives would require
two out-of-phase sinusoids. To move in a circle, the
oscillations must be £90° out of phase. Rather than attempt to
execute a perfect circle, low mechanical impedance, another
dynamic primitive, would obviate the need for precise motion
control. However, the resulting peripheral neuro-mechanical
dynamics would contribute a different phase lag in orthogonal
directions. We therefore expected differences when subjects
turned in opposite directions, and that was observed.

We assumed a simplified model of neuro-muscular
mechanical impedance and used it to ‘peel back’ peripheral
neuro-mechanics, and ‘reveal’ a consequence of underlying
neural commands, expressed in terms of motion—the zero-
force trajectory. The zero-force trajectory is mathematically
similar to the ‘virtual trajectory’ of the equilibrium point
hypothesis [24]-[26]. However, unlike the virtual trajectory,
we are agnostic about whether the CNS encodes this quantity;
many alternatives might yield similar results. Instead, the zero-
force trajectory is a construct based on the measured force and
motion, in combination with a reasonable, albeit simplified,
model of peripheral neuro-mechanics.

The zero-force trajectory was roughly elliptical. We
determined the orientation of its major axis via the principal
eigenvector of the covariance matrix. The ellipse orientation
was statistically independent of speed indicating that at least
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some aspects of neural control of this task were the same at all
speeds. Remarkably, we found that direction (CW vs. CCW)
had a substantial and significant effect. This direction
dependence was consistent with a neurally-defined motion
command (the zero-force trajectory) composed of two
sinusoids with a 90 deg phase difference.

A model that accounts for the anisotropy of skeletal inertia
and neuro-muscular impedance was sufficient to explain these
results. Consider the simple system where the zero-force
trajectory in two orthogonal directions, x, and y,, is
constructed from out two sinusoids with the same frequency,
), same magnitude, and a phase difference, ¢.

{ Xo = sin(Qt)
Vo = sin(Qt + ¢)

Given such a system, a perfect circle can be drawn in the
CW or CCW direction with a phase difference of +£90°.
However, we know that peripheral neuro-mechanical
dynamics contribute a different phase lag in different
directions. The work-space apparent mass of a two-link
manipulator is not uniform; the mass matrix eigenvalues are
not equal. This direction-dependent variation of apparent mass
is one cause of the different phase lags in different directions.
The additional phase lag contributed by peripheral neuro-
mechanical dynamics results in zero-force trajectories with an
elliptical shape that is oriented differently for CW and CCW
motion. In fact, this directional effect is consistent with the
change in orientation of the zero-force trajectory that we
observed in our experiments.

(7

IV. CoNCLUSION

Despite its apparent simplicity, this constrained-motion
task evoked a rich set of behaviors. We observed directional
differences in the zero-force trajectory orientation, consistent
with task execution generated by dynamic primitives. Our
observations indicate that subjects took advantage of
interactive dynamics (hand mechanical impedance) to manage
the control of contact and avoid the need for precise force
control. The underlying motion that generated force via
mechanical impedance was competently described by two
oscillatory dynamic primitives, phase-shifted sinusoids. These
results provide further evidence that humans manage complex
physical interaction tasks by taking advantage of dynamic
primitives, in this case oscillations and impedance.

V. APPENDIX

The upper arm, forearm, hand, and forearm plus hand were
denoted by 1, f, h, and 2 respectively. Each of the body
segments was described by the following parameters: length,
l, mass, m, inertia, I, radius of gyration, k,, and center of
mass, ¢. The length [ was the distance from the elbow to the
center of the fist; the length c;, was the distance from the center
of the wrist to the center of the hand. Link 2 was considered a
combination of the forearm and hand. The hand was assumed
to be a point mass at the end of the forearm.

The model of the arm and crank system was constructed in
the same manner as performed by Ohta et al. [18]. Figure 4
displays the variables and notation used in the development of

the model. The system has one degree of freedom; therefore,
there is always a kinematic relationship which can be used to
transform from Cartesian position, x = [x,y]”, to joint
position, ¢ = [q4,¢,]7, and to crank position, 8, where the
center of the crank is defined as x, = [x,, y,.].

— [llcl + lzclz] — [r Cose
llsl + l2512

rsin @ +x ®)

Figure 4: Model of crank rotation task which displays the sign
convention and notation used in the computations.

The notation S;, C; denote sin(q;), cos(q;) and S, C;,
denote sin(q; + q,), cos(q; + q;). The radius of the crank is
r, the damping of the crank is b, and the inertia is /. The upper
arm denoted 1, and the forearm denoted 2 are described by
length 14, l,, mass m;, m,, inertia about the z axis I;, I,, and
center of mass distance from the joint axis c;, ¢,. The force on
the handle is F = [Fx, Fy]T, with the normal unit vector, n and
tangential unit vector, e. The joint torque is denoted T =

[T1; TZ]T'

From the sum of moments acting on the crank,

16 + b6 = re"F 9)

summation of moments about the shoulder,

Mg+h=1t—]J'F (10)

and the kinematic relationship that equates the acceleration at
the handle to the acceleration at the hand,

X=Jg+ Jg=r(fe— 6°n) (11)
and the joint torque was defined by,
T=K(qo—q) +B(qo— q) (12)

a model of the system can be constructed. Substituting
Equation 1, into Equation 9, 10, and 11 the equation can be
manipulated to solve for q,.

9o

=B MJ M YT + r?I 'ee"}F — jq

—r0(6n+b.I'e)|+h—K(qo—q)] +q

(13)
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Parameters comprising these equations include the mass
matrix, the centrifugal and Coriolis forces, and the Jacobian
relating unconstrained differential arm motions to hand
motions.
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