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Human Control of Complex Objects: Optimization
or Submovements with Impedance?
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Abstract—Studies on the control of manipulation in humans
have primarily focused on rigid objects. However, humans are
also skilled at manipulating non-rigid objects possessing complex
dynamics, like carrying a cup of sloshing coffee. Inspired by
how humans dexterously carry a cup full of coffee without
spilling, this study aims to understand what strategies humans
use to control objects with internal dynamics. This task is
especially demanding when performed quickly, where object
dynamics dominate and sensory feedback is too slow for online
corrections. In the experiment, subjects manipulated a two-
dimensional cart-and-pendulum system in a virtual environment
via a haptic robotic interface, where the cart represented the
cup and the pendulum bob emulated the liquid inside the cup.
Velocity profiles of the human movements were compared to
those predicted by different control models. Two optimization-
based models predicted two symmetric velocity peaks separated
by a minimum that became negative as the cup movements
became faster. In contrast, the experimental profiles displayed
two peaks with significantly different peak values. The data also
did not show a correlation between movement duration and the
minimum velocity. Subsequent simulation studies showed that
these features could only be reproduced by a submovement-
based control strategy that included additional hand impedance.
These results suggest that the combination of submovements and
mechanical impedance, dynamic primitives, presents a competent
description of human manipulation of complex objects.

I. INTRODUCTION

Studies on how humans manipulate objects have focused
on tasks such as grasping [1], lifting [2], and transporting
[3] of rigid objects. Relatively few studies have examined
human control of objects that contain internal degrees of
freedom. Manipulation of such complex objects is considerably
more challenging than unconstrained reaching or rigid object
manipulation and is likely to require different control models.

The few existing studies on non-rigid object manipulation
aimed to identify the objective functions that humans opti-
mize [4], [5]. However, they all examined linear mass-spring
systems which do not have the considerably more complex
nonlinear dynamics of the broad range of objects that humans
interact with on a daily basis. Moreover, these models do not
provide insight about how they are generated by a controller,
hence remain descriptive. Further, online solutions of such
optimization problems combined with the inverse dynamics
computation to generate the planned/desired trajectories would
be a daunting task for human brains.

We hypothesized that humans simplify the control of phys-
ical interaction with dynamically complex objects by using
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dynamic primitives: submovements for discrete actions, oscil-
lations for rhythmic actions, and mechanical impedance for
physical interaction with objects [6]. To test this hypothesis, we
designed an experiment in which participants were instructed
to transport a simplified, yet nonlinear and underactuated
model of a cup of coffee in a virtual environment. Participants
were instructed to move the cup from a start to a target
position such that the ball comes to a full rest. ’Zeroing out’
terminal oscillations of the ball presents a major challenge
for the operator. To avoid trivial slow solutions, a metronome
specified a relatively fast movement duration, which also allow
comparison with the predictions from the different models. As
shown in the control literature, this ‘no-terminal-oscillation’
task afforded a simple solution, known as input shaping [7].
However, as the experimental results revealed, neither the
optimization models, nor the input shaping could replicate the
human data. Instead, a controller using submovements in the
feedforward command coupled with hand impedance better
approximated the human trajectories. This model is an example
how dynamic primitives may simplify control [6].

II. THE CUP-AND-BALL EXPERIMENT

For the virtual implementation, the cup of coffee was
reduced to a 2-dimensional semicircular arc with a heavy
ball rolling inside, representing the sloshing coffee. The ball’s
motion was modeled by a pendulum suspended from a cart;
the arc of the cup corresponded to the ball’s semicircular path
(Fig.1). The motion of this 2D cup was limited to the horizontal
axis only. The experimental trials were collected in two blocks
of 50 trials each. Subjects were instructed to both minimize
terminal oscillations and meet the timing constraints of 1.4 s
and 1.2 s, respectively. These timing constraints were fast as
the candidate models generated different predictions only for
such fast movements. At the end of every trial subjects received
feedback about their timing error in the form of a change in
ball color. In addition, the value of the maximum terminal ball
angle was shown on the screen.

Fig. 1. A. Real task. B. Mechanical model. C. Virtual environment.
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III. CANDIDATE MODELS

1) Optimization-based models: Two models proposed pre-
viously for complex object control postulate that humans seek
to optimize a smoothness criterion of the object and/or hand
kinematics: minimum crackle of the object (MCO) [4] and
dynamically constrained minimum jerk of the hand (DCMJH)
[5]. For the cup-and-ball task, these models predicted that cup
velocity profiles would contain two symmetric peaks and the
velocity minimum between the peaks would become more
negative for faster movements. These two predictions were
tested with human data.

2) Submovement-based models: This second category of
models assumes that humans use dynamic primitives, specif-
ically submovements in their forward control path and
impedance for the interaction. More specifically, for this task
the submovements are used in an input shaping strategy.
Input shaping is a command generation strategy for rapidly
moving flexible systems with low levels of vibration. Control
is achieved by convolution of a motion profile with impulses
of specific amplitude and timing [7]. Several variants of
this model were explored: with and without impedance, and
with and without a feedforward force input term, with and
without variability in the impulse timing as computed by input
shaping, to reflect imperfections in human execution. Lastly,
extending the model with impedance increased the system to
have two modes, potentially increasing rather than simplifying
the control challenge. Therefore, we also tested a model that
generated impulses only from a single mode by simplifying the
cup-and-ball to a lumped rigid mass. This represents the case
where humans use hand impedance but generate a trajectory
based on the object’s mass without knowledge of its dynamics.

IV. RESULTS

A. Data Analysis
Data analysis revealed two findings that opposed the pre-

dictions of the optimization-based models:
1) The velocity peaks were consistently asymmetric; the

first peak was significantly larger than the second
(Fig.2A).

2) The minimum velocity between the two peaks did not
decrease at faster movement durations (Fig.2B).

B. Model Fitting
As the experimental results did not support the two pre-

dictions, the optimization models were rejected as plausible
models for human control. In contrast, the submovement-based
models that included hand impedance could reproduce the
asymmetric peaks in the cup velocity. A nonlinear optimization
was used to find the parameters that minimized the root mean
squared error (RMSE) between experimental and simulated
hand trajectories for the different models. A meta-analysis
compared model variations that differed only in one parameter.
Simulations with feedforward force input (FFF) and impulse
timing variability (T-Variability) fit the subject data better
than those without feedforward force or timing variability
(Fig.3A). Models using single-mode input shaping performed
marginally better than those with inputs shaped using both
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Fig. 2. A. Optimization-based model predictions and experimental data. B.
No correlation between minimum velocity and movement duration.
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Fig. 3. A. Mean RMSE values across different models. B. Histograms of
best-fit hand impedance values for single- vs. multi-mode input shaping.

modes. The latter result suggests that humans do not need
exact knowledge of object dynamics beyond its total mass.
The optimal stiffness values for single-mode simulations were
closer to those typically observed for the upper limb than the
multi-mode values (Fig.3B). The best-fit model was one that
included a feedforward force, timing variability with single-
mode input shaping control.

In conclusion, these results suggest that humans do not
use optimization strategies but rather simplify their control of
complex objects by using dynamic primitives, specifically by
composing submovements and hand impedance.
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