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Abstract17

A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past18

several years, due to its close connection to circuit complexity and to the Minimum Circuit Size19

Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the20

problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK21

(Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete.22

Recently, some hardness results for MKTP were proved that are not (yet) known to hold for23

MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤NC0
m reductions.24

In this paper, we improve this, to show that MKTP is hard for the (apparently larger) class NISZKL25

under not only ≤NC0
m reductions but even under projections. Also MKTP is hard for NISZK under26

≤P/poly
m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs,27

and NISZKL is the non-interactive version of the class SZKL that was studied by Dvir et al.28

As an application, we provide several improved worst-case to average-case reductions to problems29

in NP.30
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23:2 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

1 Introduction41

The study of time-bounded Kolmogorov complexity is tightly connected to the study of42

circuit complexity. Indeed, the measure that we study most closely in this paper, denoted43

KT, was initially defined in order to capitalize on the framework of Kolmogorov complexity in44

investigations of the Minimum Circuit Size Problem (MCSP) [4]. If f is a bit string of length45

2k representing the truth-table of a k-ary Boolean function, then KT(f) is polynomially46

related to the size of the smallest circuit computing f . Thus the problem of computing KT47

complexity (denoted MKTP) was initially viewed as a more-or-less equivalent encoding of48

MCSP, and it is still the case that all theorems that have been proved about the complexity49

of MCSP hold also for MKTP (such as those in [5, 8, 9, 14,18–21,26,27,29,31]).50

In recent years, however, a few hardness results were proved for MKTP that are not yet51

known to hold for MCSP [6, 7]. We believe that these results can be taken as an indication52

of what is likely to be true also for MCSP. The present work gives significantly improved53

hardness results for MKTP.54

Reducibility and completeness are the most effective tools in the arsenal of complexity55

theory for giving evidence of intractability. However, it is not clear whether MCSP or MKTP56

is NP-complete; neither can be shown to be NP-complete – or even hard for ZPP – under57

the usual ≤P
m reductions without first showing that EXP 6= ZPP, a long-standing open58

problem [14,27].59

The strongest hardness results that have been proved thus far for MCSP and MKTP are60

that both are hard for SZK under BPP-Turing reductions [5]. SZK is the class of problems61

that have Statistical Zero Knowledge Interactive Proofs, and contains many problems of62

interest to cryptographers. Indeed, if MCSP (or MKTP) is in P/poly, then there are no63

cryptographically-secure one-way functions [23].64

SZK is not known to be contained in NP; until such a containment can be established,65

there is no hope of improving the BPP-Turing reduction of [5] to a ≤P
m reduction. But66

we come close in this paper. NISZK is the “non-interactive” subclass of SZK; it contains67

intractable problems if and only if SZK does [15]. We show that MKTP is hard for NISZK68

under ≤P/poly
m reductions. (Thus, instead of asking many queries, as in [5], a single query69

suffices.) Our proof also shows that MKTP is hard for NISZK under BPP reductions that70

ask only one query. Combined with [15], this shows that MKTP is hard for SZK under71

non-adaptive BPP reductions, yielding a modest improvement over [5]; this has implications72

regarding the study of worst-case to average-case reductions. (See Section 1.1.)73

But ≤P/poly
m reductions are still quite powerful. There is great interest currently in74

proving lower bounds for MCSP, MKTP, and related problems such as MKtP (the problem75

of computing a different kind of time-bounded Kolmogorov complexity, due to Levin [25]) on76

very limited classes of circuits and formulae, as part of the “hardness magnification” program.77

For instance, if modest lower bounds can be shown on the size required to compute MKtP78

on de Morgan formulae augmented with PARITY gates at the leaves, then EXP is not79

contained in non-uniform NC1 [28]. Also, there is great interest in finding lower bounds80

against a variety of other models, such as depth-three threshold gates, or circuits consisting81

of polynomial threshold gates [24]. If a lower bound is known against one of these limited82

classes of circuits for some problem A that is reducible to, say, MKTP or MKtP under ≤P/poly
m83

reductions, it implies nothing about the complexity of MKTP or MKtP, since the circuitry84

involved in computing the reduction is much more powerful than the circuitry in the class of85

circuits for which the lower bound is known.86

Thus there is a great deal of interest in considering reductions that are much less powerful87
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than ≤P/poly
m reductions. For extremely weak (uniform) notions of reducibility (such as88

log-time reductions), it is known that MCSP and MKTP are not hard for any complexity89

class that contains the PARITY function [27]. However, this non-hardness result relies90

on uniformity; it was later shown that MKTP is hard for the complexity class DET under91

nonuniform ≤NC0

m reductions [7].92

However, even ≤NC0

m reductions are too powerful a tool, when one is interested in lower93

bounds against the classes of circuits discussed above, since they do not seem to be closed94

under ≤NC0

m reductions. This motivates consideration of the most restrictive type of reduction95

that we will be considering: projections.96

A projection is a reduction that is computed by a circuit consisting only of wires and97

NOT gates. Each output bit is either a constant, or is connected by a wire to a (possibly98

negated) input bit. All of the classes of circuits mentioned above (and – indeed – most99

conceivable classes of circuits) are closed under projections.100

Prior to our work, the result of [7] showing that MKTP is hard for DET under ≤NC0

m101

reductions was improved, to show that MKTP is hard for DET even under projections [3].102

Since DET is a subclass of P, this provides little ammunition when one is seeking to prove103

that MKTP is intractable. One of our main contributions is to show that MKTP is hard for104

NISZKL under projections.105

The reader will not be familiar with NISZKL; this complexity class makes its first ap-106

pearance in the literature here. It is the “non-interactive” counterpart to the complexity107

class SZKL that was studied previously by Dvir et al. [13], and was shown there to contain108

several important natural problems of interest to cryptographers (such as Discrete Log and109

Decisional Diffie-Hellman). NISZKL contains intractable problems if and only if SZKL does110

(see Section 2). Thus, for the first time, we show that MKTP is hard under projections for111

a complexity class that is widely believed to contain intractable problems. Our hardness112

results carry over immediately to MKtP and to similar problems defined in terms of general113

Kolmogorov complexity; no hardness results under projections had been known previously114

for those problems. We present some complete problems for NISZKL and establish some115

other basic facts about this class in Section 4.116

1.1 Average-Case Complexity117

Building on the techniques introduced in [17], we are able to establish new insights regarding118

the relationship between worst-case and average-case complexity. In Theorem 47, capitalizing119

on the fact that essentially every circuit complexity class C is closed under projections, we120

show that if NISZKL does not lie in OR ◦ C, then there are problems A in NP that cannot be121

solved in the average case by errorless heuristics in C. For instance, if one were able to show122

that some of the candidate one-way functions in NISZKL cannot be solved by depth-four123

ACC0 circuits, it would follow that there are problems in NP that are hard-on-average for124

depth-three ACC0 circuits. Such conclusions would not follow if our reductions to MKTP had125

merely been computable in AC0 or NC0.126

We are also able to shed more light on worst-case to average-case reductions, in the form127

that they were studied by Bogdanov and Trevisan [12]. Bogdanov and Trevisan showed that128

there were severe limits on the complexity of problems whose worst-case complexity could129

be reduced to the average-case complexity of problems in NP via non-adaptive reductions;130

all such problems lie in NP/poly ∩ coNP/poly. But it was not known how large this class of131

problems could be. Hirahara showed that every problem in SZK has an adaptive worst-case132

to average-case reduction to a problem in NP, but the upper bound of NP/poly ∩ coNP/poly133

proved by Bogdanov and Trevisan does not apply for adaptive reductions. As a consequence134

CVIT 2016



23:4 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

of our Corollary 19, showing that MKTP is hard for SZK under nonadaptive BPP reductions,135

we are able to show (in Corollary 50) that the class identified by Bogdanov and Trevisan lies136

in the narrow range between SZK and NP/poly ∩ coNP/poly.137

Remark: This is an illustration of the utility of studying MKTP, as an example of a138

theorem that does not explicitly mention MKTP or MCSP, but which was proved via the139

study of MKTP. No such argument based on MCSP is known. We believe that MKTP can in140

fact be viewed as a particularly convenient formulation of MCSP, since (a) KT complexity is141

closely related to circuit size, (b) essentially all theorems known to hold for MCSP also hold142

for MKTP, (c) some arguments that one might intend to formulate in terms of MCSP elude143

current approaches, but can instead be successfully carried through by use of MKTP instead.144

Furthermore, theorems proved for MKTP may serve as an indication of what is likely to be145

true for MCSP as well.146

The rest of the paper is organized as follows: Our ≤P/poly
m -hardness theorem for MKTP is147

proved in Section 3. Then, after establishing some basic facts about NISZKL in Section 4, in148

Section 5 we show that MKTP is hard for NISZKL under projections. We present applications149

of our reductions and implications for average-case complexity in Section 6.150

2 Preliminaries151

2.1 Complexity Classes and Reducibilities152

We assume familiarity with the complexity classes P, NP, L, BPP, and P/poly. We also make153

use of the circuit complexity classes AC0 and NC0. For the purposes of this paper, AC0 can154

be understood as the set of problems for which there is a family of circuits {Cn : n ∈ N}155

with unbounded-fan-in AND and OR gates (and NOT gates of fan-in 1) of polynomial size156

and constant depth. NC0 is defined similarly, but with AND and OR gates of bounded fan-in157

(and thus each output bit depends on only a constant number of bits of the input). We deal158

primarily with the “nonuniform” versions of these complexity classes (which means that the159

mapping n 7→ Cn need not be computable).160

Branching programs are a circuit-like model of computation that can be used to charac-161

terize logspace computation. A branching program is a directed acyclic graph with a single162

source and two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled163

with a variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one164

labeled 0. A branching program computes a Boolean function f on input x = x1 . . . xn by165

first placing a pebble on the source node. At any time when the pebble is on a node v labeled166

xi, the pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1167

(or by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then168

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,169

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =170

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of171

these complexity classes, circuits, and branching programs, see the text by Vollmer [32].172

A promise problem Π is a pair of disjoint sets (ΠY ES ,ΠNO). A solution to a promise173

problem is any set A such that ΠY ES ⊆ A and ΠNO ⊆ A. A don’t-care instance of Π is any174

string that is not in ΠY ES ∪ΠNO. A language A can be viewed as a promise problem that175

has no don’t-care instances.176

Given any class C of functions, there is an associated notion of m-reducibility or many-one177

reducibility: For two languages A and B, we say that A≤CmB if there is a function f in178

C such that x ∈ A iff f(x) ∈ B. This notion of reducibility extends naturally to promise179

problems, mapping yes-instances to yes-instances, and no-instances to no-instances. The180
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most familiar notion of m-reducibility is Karp reducibility: ≤P
m; NP-completeness is most181

commonly defined in terms of Karp reducibility. However, in this paper, we will frequently182

be reducing problems that are not known to reside in NP to MKTP, which does lie in NP.183

Thus it is clear that a more powerful notion of reducibility is required. Some of our results184

are most conveniently stated in terms of ≤P/poly
m reductions (i.e., reductions computed by185

nonuniform polynomial-size circuits). We also consider restrictions of ≤P/poly
m reductions,186

computed by nonuniform AC0 and NC0 circuits: ≤AC0

m and ≤NC0

m . Finally we also consider187

projections (≤proj
m ), which are functions computed by NC0 circuits that have only NOT gates.188

That is, in a projection, each output bit is either a constant 0 or 1, or is connected by a wire189

to an input bit or its negation.190

We will also make reference to various types of Turing reducibility, which are defined in191

terms of oracle Turing machines, or in terms of circuit families that are augmented with192

“oracle gates”. For instance, we say that A≤BPP
T B if there is a probabilistic polynomial time193

oracle Turing machine M with oracle B that accepts every x ∈ A with probability 2
3 and194

rejects every x ∈ A with probability 2
3 . Note that the computation tree of such a BPP-Turing195

reduction can contain an exponential number of queries to different elements of B. Just as196

BPP ⊆ P/poly, it also holds that A≤BPP
T B implies A≤P/poly

T B. Thus, on any input x, the197

circuit computing the P/poly-Turing reduction queries only a polynomial number of elements198

of B. It was shown in [5] that every problem in SZK (that is, every problem with a statistical199

zero knowledge proof system) is ≤BPP
T -reducible (and hence ≤P/poly

T -reducible) to MCSP and200

to MKTP. The question of interest to us here is: Is it necessary to ask so many queries?201

What can we do if we ask only one query? What can be reduced to MKTP via a ≤P/poly
m202

reduction?203

The complexity class with which we are primarily concerned in this paper is the class of204

problems that have non-interactive statistical zero knowledge proof systems: NISZK. NISZK205

was originally defined and studied by Blum et al. [11]. The definition below (in terms of206

promise problems) is due to Goldreich et al. [15].207

I Definition 1. A non-interactive statistical zero-knowledge proof system for a promise208

problem Π is defined by a triple of probabilistic machines P , V , and S, where V and S are209

polynomial-time and P is computationally unbounded, and a polynomial r(n) (which will210

give the size of the random reference string σ), such that:211

1. (Completeness:) For all x ∈ ΠY ES, the probability that V (x, σ, P (x, σ)) accepts is at least212

1− 2−|x|.213

2. (Soundness:) For all x ∈ ΠNO, the probability that V (x, σ, P (x, σ)) accepts is at most214

2−|x|.215

3. (Zero Knowledge:) For all x ∈ ΠY ES, the statistical distance between the following two216

distributions bounded by 1/β(|x|)217

(A) Choose σ uniformly from {0, 1}r(|x|), sample p from P (x, σ), and output (p, σ).218

(B) S(x) (where the coins for S are chosen uniformly at random.)219

where β(n) is superpolynomial, and the probabilities in Conditions 1 and 2 are taken over220

the random coins of V and P , and the choice of σ uniformly from {0, 1}r(n).221

NISZK is the class of promise problems for which there is a non-interactive statistical222

zero knowledge proof system.223

NISZK is not known to be closed under complementation; co-NISZK is defined as the224

class of promise problems Π = (ΠY ES ,ΠNO) such that (ΠNO,ΠY ES) is in NISZK. It is225

known that SZK = NISZK iff NISZK = co-NISZK, and that every promise problem in SZK226
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23:6 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

efficiently (and non-adaptively) Turing-reduces to a problem in NISZK [15]. Thus NISZK227

contains intractable problems if and only if SZK does.228

A subclass of SZK, which we will denote by SZKL, in which the verifier V and simulator229

S are restricted to being logspace machines, was defined and studied by Dvir et al. [13].230

Among other things, they showed that many of the important natural problems in SZK lie231

in SZKL, including Graph Isomorphism, Quadratic Residuosity, Discrete Log, and Decisional232

Diffie-Helman. The non-interactive version of SZKL, which we denote by NISZKL, has not233

been studied previously, but it figures prominently in our results.234

I Definition 2. The formal definition of NISZKL is obtained by replacing each occurrence of235

“polynomial-time” in Definition 1 with “logspace”. (It is important to note that, in this model,236

the logspace-bounded verifier V and simulator S are allowed two-way access to the reference237

string σ and to their polynomially-long sequences of probabilistic coin flips.)238

The reduction presented in [15] carries over directly to the logspace setting, showing that239

NISZKL contains intractable problems if and only if SZKL does. In particular, we have:240

I Proposition 3. Every promise problem in SZKL is non-adaptively AC0-Turing-reducible a241

problem in NISZKL.242

Figure 1 Diagram showing the classes NISZK, co-NISZK, and SZK. The shaded oval represents
NP. Every problem in co-NISZK is ≤P/poly

m -reducible to MKTP.

2.2 KT Complexity243

The measure KT was defined in [4]. We provide a reproduction of that definition below.244

I Definition 4 (KT). Let U be a universal Turing machine. For each string x, define KTU (x)245

to be246

min{|d|+ T : (∀σ ∈ {0, 1, ∗}) (∀i ≤ |x|+ 1) Ud(i, σ) accepts in T steps iff xi = σ}247
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We define xi = ∗ if i > |x|; thus, for i = |x|+ 1 the machine accepts iff σ = ∗. The notation248

Ud indicates that the machine U has random access to the description d.249

To understand the motivation for this definition, see [4]. The minimum KT problem,250

henceforth MKTP, is defined below.251

I Definition 5 (MKTP). Suppose y ∈ {0, 1}n and θ ∈ N \ {0}, then

MKTP = {(y, θ) | KT(y) ≤ θ}.

In this paper when we view MKTP as a promise problem, yes-instances will be considered252

those that are in the language, and no-instances those that are not in the language.253

2.3 Discrete Probability and Entropy254

I Definition 6. Discrete Random Variables and Distributions255

A random variable R : S → T is a function where S is a finite set with a probability256

distribution on its elements. We will refer to S as the sample space. R with a uniform257

distribution on S will induce a distribution p on T .258

The support of a distribution is the set of elements in the distribution with positive259

probability. Alternatively, the support of a random variable R can be understood as the260

set Im(R).261

In an abuse of notation, often given a distribution X, we will refer to X as both the262

random variable that induces the distribution, and the distribution itself.263

Given a distribution X, we will use the notation Xk to denote the k−fold direct product264

of X. Alternatively, this can be understood as the concatenation of k independent copies265

of X.266

Given a function f : {0, 1}m → {0, 1}n we write Um to denote the uniform distribution267

on m bits, and f(Um) for the output distribution of f when evaluated on a uniformly268

chosen element of {0, 1}m. Throughout this paper, our random variables, and in turn the269

distributions they induce, will be of the form C(Um), where C is a multi-output Boolean270

circuit C : {0, 1}m → {0, 1}n.271

The entropy of a distribution can be understood informally as measuring how much272

“randomness” is present in the distribution.273

I Definition 7. Suppose X is a distribution. The Shannon entropy of X (denoted H(X)) is274

the expected value of 1/ log(Pr[X = x]).275

3 MKTP is Hard For NISZK276

In this section, we prove our first hardness result for MKTP; MKTP is hard for co-NISZK277

under ≤P/poly
m reductions. In order to prove hardness, it suffices to provide a reduction from278

the entropy approximation problem: EA, which is known to be complete for NISZK under279

≤P
m reductions [15].280

I Definition 8 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

EAY ES = {(C, k) | H(X) > k + 1}
EANO = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.281
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23:8 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

We will make use of some machinery that was developed in [6], in order to relate the282

entropy of a distribution to the KT complexity of samples taken from the distribution.283

However, these tools are only useful when applied to distributions that are sufficiently “flat”.284

The next subsection provides the necessary tools to “flatten” a distribution.285

3.1 Flat Distributions286

A distribution is considered flat if it is uniform on its support. Goldreich et al. [15] formalized287

a relaxed notion of flatness, termed ∆-flatness, which relies on the concept of ∆-typical288

elements. The definitions of both concepts follow:289

I Definition 9 (∆-typical elements). Suppose X is a distribution with element x in its support.290

We say that x is ∆-typical if,291

2−∆ · 2−H(X) < Pr[X = x] < 2∆ · 2−H(X).292

I Definition 10 (∆-flatness). Suppose X is a distribution. We say that X is ∆-flat if for293

every t > 0 the probability that an element of the support, x, is t · ∆-typical is at least294

1− 2−t2+1.295

I Lemma 11 (Flattening Lemma). [15] Suppose X is a distribution such that for all x in296

its support Pr[X = x] ≥ 2−m. Then Xk is (
√
k ·m)-flat.297

Observe that if X is a distribution represented by a circuit C : {0, 1}m → {0, 1}n, then the298

hypothesis of the Flattening Lemma holds for m. Note also that, for any distribution X,299

H(Xk) = k ·H(X). Thus the entropy of the distribution Xk grows linearly with respect to300

k, while the deviation from flatness diminishes much more rapidly with respect to k.301

3.2 Encoding and Blocking302

The Encoding Lemma is the primary tool that was developed in [6] to give short descriptions303

of samples from a given distribution. Below, we give a precise statement of the version304

of the Encoding Lemma that is stated informally as Remark 4.3 of [6]. (Although the305

statement there is informal, the proof of the Encoding Lemma that is given there does yield306

our Lemma 13.) First, we need to define Λ-encodings.307

IDefinition 12 (Λ-encodings). Let R : S → T be a random variable that induces a distribution308

X. The Λ-heavy elements of T are those elements λ such that Pr[X = λ] > 1/2Λ. A Λ-309

encoding of R is given by a mapping D : [N ] → S such that for every Λ-heavy element310

λ, there exists i ∈ [N ] such that R(D(i)) = λ. We refer to dlog(N)e as the length of the311

encoding. The function D is also called the decoder for the encoding.312

I Lemma 13 (Encoding Lemma). [6, Lemma 4.1] Consider an ensemble {Rx} of random313

variables that sample distributions on strings of some length poly1(|x|), where there are314

circuits Cx of size poly2(|x|) representing each Rx. Then there is a polynomial poly3 such315

that, for every integer Λ, each Rx has a Λ-encoding of length Λ + log(Λ) + O(1) that is316

decodable by circuits of size poly3(|x|).317

By itself, the Encoding Lemma says nothing about KT complexity. The other important318

ingredient in the toolbox developed in [6] is the Blocking Lemma, which refers to the process319

of chopping a string into blocks. Let y be a string of length tn, which we think of as being the320

concatenation of t samples yi of a distribution X on strings of length n. Thus y = y1 . . . yt.321



E. Allender, J. Gouwar, S. Hirahara, and C. Robelle 23:9

Let r = dt/be. Equivalently, we consider y to be equal to z1 . . . zr where each zi is a string of322

length bn sampled according to Xb. (In the case when |y| is not a multiple of b, zr is shorter;323

this does not affect the analysis. We call the strings zi the blocks of y.)324

I Lemma 14 (Blocking Lemma). [6, Lemma 3.3] Let {Tx} be an ensemble of sets of strings325

such that all strings in Tx have the same length poly(|x|). Suppose that for each x ∈ {0, 1}∗326

and for each b ∈ N there is an integer Λb and a random variable Rx,b whose image contains327

(Tx)b, and such that Rx,b is computable by a circuit of size poly(|x|, b) and has a Λb-encoding328

of length s′(x, b) decodable by a circuit of size poly(|x|, b). Then there are constants c1 and329

c2 so that, for every constant α > 0, every t ∈ N, every sufficiently large x, and every330

dtαe-suitable y ∈ (Tx)t,331

KT(y) ≤ t1−α · s′(x, dtαe) + tα·c1 · |x|c2 .332

Here, we say that y ∈ (Tx)t is b-suitable if each block of y (of length bn) is Λb-heavy.333

With the Encoding and Blocking Lemmas in hand, we can now show how to give upper334

and lower bounds on the KT complexity of concatenated samples from a distribution. The335

following lemma gives the upper bound.336

I Lemma 15. Suppose X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n of337

size polynomial in |x|. For every polynomial w = w(|x|) with |x| ≤ w, there exist constants338

c0, c2, and α0 such that for every sufficiently large polynomial t and for all large x, if y is339

the concatenation of t samples from X, then340

KT(y) ≤ tH(X) + wm(t1−α0/2) + t1−α0 |x|c0+c2341

Proof. Pick c0 so that |x|c0 > m + wm + |x|, and observe that for all large x we have342

|x|c0 > H(X) + wm+O(log(|x|)). Let t = t(|x|) be any polynomial. Let b ∈ N with b < t,343

and let Λb = bH(X) +wm
√
b. Then, by the Encoding Lemma Xb = ⊗bX has a Λb-encoding344

of length Λb + log(Λb) +O(1) that is decodable by circuits of size poly(b|x|). Let r = dt/be.345

Recall that y = y1 . . . yt where each yi is a string of length n sampled according to the346

distribution X. Equivalently, we can consider y to be equal to z1 . . . zr where each zi is347

a string of length bn sampled according to Xb; the strings zi are the blocks of y. By the348

Flattening Lemma, the probability that any given zb is not Λb-heavy is at most 2−w2+1.349

Thus, by the union bound, the probability that y is not b-suitable (i.e., the probability that350

there is at least one block that is not Λb-heavy) is at most r · 2−w2+1 < t · 2−w2 . Since351

w ≥ |x| and t is polynomial in |x|, it follows that for all large x, with probability at least352

(1− 1/22|x|), each of the r blocks is Λb-heavy and hence, by the Encoding Lemma, each block353

has an encoding of length s′(n, b) = Λb + log(Λb) +O(1). Thus, by the Blocking Lemma, for354

certain constants c1 and c2 (which do not depend on t), for any constant α > 0 (for all large355

enough y),356

KT(y) ≤ t1−α · s′(x, dtαe) + tα·c1 · |x|c2357

= t1−α · (Λdtαe + log(Λdtαe) +O(1)) + tα·c1 · |x|c2358

= t1−α · (dtαeH(X) + wm
√
dtαe+ log(Λdtαe) +O(1)) + tα·c1 · |x|c2359

≤ t1−α · (tαH(X) + |x|c0 + wm
√
tα) + tα·c1 · |x|c2360

361
362
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Recall that the inequality above holds for all α > 0. If we now pick α0 ≤ 1/(1 + c1), we
obtain the claimed inequality

KT(y) ≤ tH(x) + wmt1−α0/2 + t1−α0(|x|c0+c2).

J363

We now turn to a lower bound on KT(y).364

I Lemma 16. Let poly(|x|) denote some fixed polynomial in |x|, and let α0 be such that 0 <365

α0 < 1/2. For all large x, if X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n366

of polynomial size, then it holds that for every w and every t > w4, if y is sampled from Xt,367

then with probability at least 1− 2−w2 ,368

KT(y) ≥ tH(X)− wm
√
t− t1−α0poly(|x|)369

Proof. Consider the distribution Xt = ⊗tX and sample y from it. Recall that H(Xt) =370

tH(x). By the Flattening Lemma, Xt is
√
t ·m-flat. Therefore, the probability that y is371

wm
√
t-typical is at least 1− 2−w2+1. We would like to bound the probability that KT(y) <372

tH(X)− wm
√
t− t1−α0 · poly(|x|). To bound this probability, note that Pr[KT(y) < k] is373

equal to374

Pr[KT(y) < k ∧ y is typical] + Pr[KT(y) < k ∧ y is atypical]375

≤ Pr[KT(y) < k ∧ y is typical] + Pr[y is atypical]376
377

where we are interested in k = tH(x)− wm
√
t− t1−α0 · poly(|x|) and “y is typical” means378

“y is wm
√
t-typical.” We have already observed above that the second term is bounded by379

2−w2+1. For the first term, we have380

Pr[KT(y) < k ∧ y is typical] =
∑

{y:KT(y)<k∧y is typical}

Pr(y)381

≤
∑

{y:KT(y)<k∧y is typical}

2wm
√
t · 2−H(Xt)

382

≤ 2k · 2wm
√
t · 2−H(Xt)

383

= 2tH(x)−wm
√
t−t1−α0 ·poly(|x|) · 2wm

√
t · 2−tH(X)

384

= 2−t
1−α0 ·poly(|x|)

385

386
387

where the first inequality follows from the definition of typicality, and the second inequality388

follows since there are only
∑k−1
i=0 2i < 2k descriptions of strings with complexity less than k.389

Summarizing, we conclude that the probability that KT(y) < tH(x)− wm
√
t− t1−α0 ·390

poly(|x|) is at most391

2−t
1−α0 ·poly(|x|) + 2−w

2+1.392

To show that the above probability is less than 1/2w2 is equivalent to showing that393

2−t
1−α0 ·poly(|x|) < 2−w

2+1.394
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Thus we must show that w2 − 1 < t1−α0 · poly(|x|). This holds, since395

w2 − 1 < w2
396

< (t1/4)2
397

=
√
t398

≤ t1−α0399

≤ t1−α0 · poly(|x|).400
401

J402

3.3 Reducing co-NISZK to MKTP403

I Theorem 17. MKTP is hard for co-NISZK under P/poly many-one reductions.404

Proof. We prove the claim by reduction from the NISZK-complete problem EA. Let405

x = (Cx, k) be an arbitrary instance of Promise-EA, where Cx : {0, 1}m → {0, 1}n is a circuit406

that represents distribution X. Let w = 2|x|, and let α0, c0, and c2 be the constants from407

Lemma 15. Let λ = wmt1−α0/2. Pick the polynomial t so that t(|x|) > 2(λ+ t1−α0 |x|c0+c2)408

and w4 < t (and note that all large polynomials have this property). Construct y as t samples409

from X. Let θ = tk + λ+ t1−α0 |x|c0+c2 . We claim that, with probability at least 1− 1
22|x| , if410

(X, k) ∈ EAY ES , then (y, θ) ∈ MKTPNO and if (X, k) ∈ EANO, then (y, θ) ∈ MKTPY ES .411

412

If (X, k) ∈ EANO, then H(X) < k. Then by Lemma 15, we have that, with high413

probability,414

KT(y) ≤ tH(X) + λ+ t1−α0 |x|c0+c2415

< tk + λ+ t1−α0 |x|c0+c2416

= θ417
418

thus KT(y) ≤ θ, and thus (y, θ) ∈ MKTPY ES .419

If (X, k) ∈ EAY ES , then H(X) > k + 1. Then by Lemma 16, with probability at least420

1− 2−w2
> 1− 22|x|, we have that421

KT(y) ≥ tH(X)− wm
√
t− t1−α0 |x|c0+c2 ,422

> tH(X)− λ− t1−α0 |x|c0+c2 (since α0 < 1/2)423

> t(k + 1)− λ− t1−α0 |x|c0+c2424

> tk + λ+ t1−α0 |x|c0+c2 (since t > 2(λ+ t1−α0 |x|c0+c2))425

= θ426
427

thus KT(y) > θ, and thus (y, θ) ∈ MKTPNO.428

We have shown that there is a polynomial-time-computable function f , such that, if429

x ∈ EAY ES , then with high probability (for random r) f(x, r) = (y, θ) is in MKTPNO, and430

if x ∈ EANO, then with high probability f(x, r) = (y, θ) is in MKTPY ES . By a standard431

counting argument (similar to the proof that BPP ⊆ P/poly), since the probability of success432

for either bound is greater than (1−1/22n), we can fix a sequence of random bits to hardwire433

in to this reduction and obtain a family of circuits computing a ≤P/poly
m reduction from any434

problem in NISZK to MKTP. J435

I Corollary 18. MKTP is hard for NISZK under BPP reductions that make at most one436

query along any path.437
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Proof. This follows from the proof of Theorem 17. Namely, on input x = (Cx, k), construct438

the string y consisting of t random samples from Cx and query the oracle on (y, θ). On439

Yes-instances, y will have KT complexity greater than θ (with high probability), and on440

No-instances, y will have KT complexity less than θ (with high probability). J441

I Corollary 19. MKTP is hard for SZK under non-adaptive BPP-Turing reductions.442

Proof. Recall from [15] that SZK reduces to Promise-EA via non-adaptive (deterministic)443

reductions. The result is now immediate, from Corollary 18. J444

4 A Complete Problem for NISZKL445

Having established a hardness result for MKTP under ≤P/poly
m reductions, we now establish446

an analogous hardness result under the much more restrictive ≤proj
m reductions. For this, we447

first need to present a complete problem for NISZKL.448

Recall that the NISZK-complete problem EA deals with the question of approximating449

the entropy of a distribution represented by a circuit. In order to talk about NISZKL, we450

shall need to consider probability distributions that are represented using restricted class of451

circuits. In particular, we shall focus on a problem that we denote EANC0 .452

I Definition 20 (Promise-EANC0). Promise-EANC0 is the promise problem obtained from453

Promise-EA, by considering only instances (C, k) such that C is a circuit of fan-in two gates,454

where no output gate depends on more than four input gates.455

It is not surprising that EANC0 is complete for NISZKL. The completeness proof that we456

present owes much to the proof presented by Dvir et al. [13] (showing that an NC0-variant of457

the SZK-complete problem EntropyDifference is complete for SZKL) and to the proof458

presented by Goldreich et al. [15] showing that EA is complete for NISZK. We will need to459

make use of various detailed aspects of the constructions presented in this prior work, and460

thus we will present the full details here.461

First, we show membership in NISZKL.462

4.1 Membership in NISZKL463

I Theorem 21. Promise-EANC0 ∈ NISZKL464

Proof. In order to show membership, we must show the existence of a non-interactive proof465

system where the verifier and simulator are both in logspace. To do this, we adapt the466

protocol that is used in [15] to show that EA is in NISZK. Their protocol works by first467

transforming an instance (C, k) of EA, of length s, (where C represents a distribution X)468

into a representation of a distribution Z on ` bits. The transformation consists of four steps:469

1. Take poly(s) samples from X and concatenate them. Call this distribution X ′ and let470

CX′ be the circuit representing X ′.471

2. Hash the output of X ′ with a hash function h chosen at random from a 2-universal family472

of hash functions. (The parameters of the hash function depend on the value k of the EA473

instance.) Let this distribution be Y , represented by CY .474

3. Take poly(s) copies of Y and concatenate their output. Call this distribution Y ′, repre-475

sented by CY ′ .476

4. Hash a sample of Y ′ with a hash function h′ chosen at random from a 2-universal family477

of hash functions. Let this distribution be Z, represented by CZ .478
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Section 2 and Appendix C of [15] give a careful proof of the fact that, with Z defined as479

above from the EA instance (C, k), a NISZK protocol for EA is given by:480

1. With reference string σ, the prover selects a string r uniformly at random from the set481

{r′ : Z(r′) = σ}.482

2. The verifier accepts if CZ(r) = σ and rejects otherwise.483

They also show that the following simulator satisfies the required zero-knowledge proper-484

ties:485

1. Select an input r to Z uniformly at random and let σ = CZ(r).486

2. return (σ, r).487

It suffices for us to show that, if (C, k) is an instance of EANC0 , then the tasks of the488

verifier and the simulator in the protocol above can be implemented in logspace.489

First, we observe that, given (C, k), a branching program PZ realizing the distribution490

Z can be constructed in logspace. Indeed, it is trivial to construct a branching program491

PX that realizes X (since each output bit of the NC0 circuit Z has an easy-to-compute492

branching program of constant size). Then a branching program PX′ realizing X ′ consists493

of several copies of PX concatenated together (where each copy uses independent random494

input bits). The hash functions h considered in [15] are represented by Boolean matrices495

Mh, where computing h(w) is simply multiplying Mh by the vector w. Since Boolean matrix496

multiplication is easy to compute in NC1 ⊆ L, and since the composition of two logspace-497

computable functions is also logspace-computable, it is easy to build a branching program PY498

representing the distribution Y (That is, given a branching program for computing Mh · w,499

for any node v that queries a bit of w, replace the pair of edges leaving v by a branching500

program that computes that bit of w (as a sample from X ′).) In the same way, branching501

programs for Y ′ and Z are easy to construct, given PY .502

Hence a logspace verifier, with access to r, σ, and an EANC0 instance (C, k), can construct503

the branching program PZ and compute PZ(r) and check if the output is equal to σ. It504

is equally easy to see that the simulator can be implemented in logspace. This establishes505

membership in NISZKL. J506

The following corollary is a direct analog to [15, Proposition 1].507

I Corollary 22. If Π is any promise problem that is ≤L
m reducible to EANC0 , then Π ∈ NISZKL.508

We close this section by presenting an example of a well-studied natural problem in509

NISZKL. (A graph is said to be rigid if it has no nontrivial automorphism.)510

I Corollary 23. The Non-Isomorphism Problem for Rigid Graphs lies in NISZKL511

Proof. First note that the proof of Theorem 21 carries over to show that a problem that512

we may call EABP (defined just as EANC0 but where the distribution is represented as a513

branching program instead of as an NC0 circuit) also lies in NISZKL. Now observe that514

the reduction given in Section 3.1 of [6] shows how to take as input two rigid graphs on n515

vertices (G0, G1) and build a branching program that takes as input a bitstring w of length t516

and t permutations π1, . . . , πt and output the sequence of t permuted graphs πi(Gwi). It is517

observed in [6] that this distribution has entropy t(1+logn!) if the graphs are non-isomorphic,518

and has entropy at most t logn! otherwise. J519
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4.2 Hardness for NISZKL520

In order to re-use the tools developed in [15], we will follow the structure of the proof521

given there, showing that EA is hard for NISZK. Namely, we introduce the problem SDU522

(Statistical Distance from Uniform) and its NC0 variant, and prove hardness for523

SDUNC0 .524

I Definition 24 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
representing distributions X. The promise problem

SDU = (SDUY ES ,SDUNO)

is given by525

SDUY ES
def= {CX : ∆(X,Un) < 1/n}526

SDUNO
def= {CX : ∆(X,Un) > 1− 1/n}527

where ∆(X,Y ) = Σα|Pr[X = α]− Pr[Y = α]|/2.528

SDUNC0 is the analogous problem, where the distributions X are represented by NC0
529

circuits where no output bit depends on more than four input bits.530

It is shown in [15, Lemma 4.1] that CX is in SDU if and only if (CX , n− 3) is in EA. This531

yields the following corollary:532

I Corollary 25. SDUNC0 ≤proj
m EANC0 .533

Proof. This is trivial if we assume an encoding of SDUNC0 instances, such that the NC0
534

circuits CX : {0, 1}m 7→ {0, 1}n are encoded by strings of length given by the standard535

pairing function m2+3m+2mn+n+n2

2 , so that the length of an instance of SDUNC0 completely536

determines n. (An NC0 circuit with m inputs and n outputs has a description of size537

O(n logm), and thus it is easy to devise a padded encoding of this much larger length.)538

Thus, in the projection circuit computing the reduction CX 7→ (CX , n− 3), the output bits539

encoding n−3 are hardwired to constants, and the input bits encoding CX are copied directly540

to the output. J541

I Theorem 26. Promise-EANC0 and Promise-SDUNC0 are hard for NISZKL under ≤proj
m542

reductions.543

Proof. By Corollary 25, it suffices to show hardness for SDUNC0 . In order to establish544

hardness, we need to develop the machinery of perfect randomized encodings, which were545

developed by Applebaum et al. [10] and then were applied in the setting of NISZK by Dvir546

et al. [13].547

4.2.1 Perfect Randomized Encodings548

I Definition 27. Let f : {0, 1}n → {0, 1}` be a function. We say that f̂ : {0, 1}n×{0, 1}m →549

{0, 1}s is a perfect randomized encoding of f with blowup b if it is:550

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random551

variables f̂(x, Um) and f̂(x′, Um) are identically distributed.552

Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) 6= f(x′), Supp(f̂(x, Um))∩553

Supp(f̂(x′, Um)) = Ø.554

Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over Supp(f̂(x, Um)).555
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Balanced: for every x, x′ ∈ {0, 1}n |Supp(f̂(x, Um))| = |Supp(f̂(x′, Um))| = b556

The following property of perfect randomized encodings is established in [13].557

I Lemma 28 (entropy). Let f : {0, 1}n → {0, 1}` be a function and let f̂ : {0, 1}n ×558

{0, 1}m → {0, 1}s be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) =559

H(f(Un)) + log b560

The following two properties are given in Applebaum et al. [10].561

I Lemma 29 (concatenation). For i = 1, . . . , ` let fi : {0, 1}n → {0, 1} be the Boolean function562

computing the i−th bit of f : {0, 1}n → {0, 1}`. If f̂i : {0, 1}n×{0, 1}mi → {0, 1}si is a perfect563

randomized encoding of fi, then the function f̂ : {0, 1}n × {0, 1}m1+...,m` → {0, 1}s1+...+s`564

defined by f̂(x, (r1, . . . , r`))
def= (f̂1(x, r1), . . . , f̂`(x, r`)) is a perfect randomized encoding of565

f .566

I Lemma 30 (composition). Let g(x, rg) be a perfect randomized encoding of f(x) and567

let h((x, rg), rh) be a perfect randomized encoding of g(x, rg) (viewed as a single argument568

function). Then, the function f̂((x, rg), rh) def= h((x, rg), rh) is a perfect randomized encoding569

of f .570

The following claim is not formally stated in [10] but can be found in their discussion of571

perfect randomized encodings in section 4.1 of that paper.572

B Claim 31. Let f : {0, 1}n → {0, 1}` be a function. If f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a573

perfect randomized encoding of f , then f̂ has blowup 2m.574

The following is apparent from Lemma 29, Lemma 30, and Claim 31.575

B Claim 32. The blowup of a perfect randomized encoding f̂ created by composing or576

concatenating perfect randomized encodings f̂1, . . . , f̂` is
∏`
i=1 bi.577

4.2.2 Constructing an NC0 perfect randomized encoding578

The first step in showing completeness of EANC0 is to use the following construction of perfect579

randomized encodings of functions computed by branching programs, from [10].580

I Definition 33. Let Q be a branching program of size ` computing a Boolean function581

f : {0, 1}n → {0, 1}. Fix some topological ordering of the vertices of Q where the source582

vertex is labelled 1 and the terminal vertex is labelled `. Let A(x) be the ` × ` adjacency583

matrix of Gx where entry (i, j) is a degree-1 polynomial qi,j ∈ {xk, (1− xk), 1, 0}, such that584

the transition from node i to node j queries variable xk and proceeds if qi,j(xk) = 1. Define585

L(x) as the submatrix of A(x)− I obtained by deleting the first column and last row.586 
∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗
0 −1 ∗ ∗ ∗
0 0 −1 ∗ ∗
0 0 0 −1 ∗

587

Let r(1), and r(2) be vectors over GF(2) of length
(
`−1

2
)
and `− 2 respectively. Let R1(r(1))588

be an `× ` matrix with 1’s on the main diagonal, 0’s below it and the elements of r(1) in the589

remaining
(
`−1

2
)
entries above the main diagonal. Let R2(r(2)) be an `× ` matrix with 1’s on590

the main diagonal, 0’s below it, and the elements of r(2) in the last column.591
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1 r

(1)
1 r

(1)
2 · r

(1)
`−1

0 1 · · ·
0 0 1 · ·
0 0 0 1 r

(1)
(`−1

2 )
0 0 0 0 1




1 0 0 0 r

(2)
1

0 1 0 0 ·
0 0 1 0 ·
0 0 0 1 r

(2)
`−2

0 0 0 0 1

592

The following lemma appears as [10, Lemma 4.15].593

I Lemma 34. Let Q be a branching program of size ` computing a Boolean function f :
{0, 1}n → {0, 1}. Let the function f̂(x, (r(1), r(2))) produce as output the

(
`
2
)
entries on or

above the main diagonal of the matrix

R1(r(1))L(x)R2(r(2)).

Then f̂ is a perfect randomized encoding of f .594

I Lemma 35. There is a function computable in AC0 (in fact, it can be a projection) that595

takes as input a branching program Q of size ` computing a function f : {0, 1}n → {0, 1},596

and produces as output a list (q1, . . . , q(`2)) of degree-three polynomials over GF(2), where597

qi(x, (r(1), r(2))) produces the i-th output bit of f̂(x, (r(1), r(2))). The blowup of the encoding598

f̂ is 2(`2)−1.599

Proof. Claim 31 establishes the claim regarding blowup. Constructing the three matrices600

L(x), R1 and R2 can clearly be done in AC0. Their product cannot be computed in AC0
601

(since this involves computing PARITY), but it is easy to compute an encoding of the602

expression for entry (i,m) of the product, which is given by the degree-three polynomial603 ∑
j,k R1 (i,k)L(k,j)R2 (j,m). To see that this can be a projection, note that the entries of the604

matrices R1 and R2 are entirely determined by the size ` (and thus they depend only on the605

length of the encoding of the branching program). The entries of L(x) are essentially the606

entries of the adjacency matrix encoding the branching program Q, and thus they can be607

copied directly via a projection. Then, given the encodings of the matrices, the encodings of608

the terms of each polynomial qi are simply copied from the encodings of the matrices, and609

thus this can be done via a projection also. J610

Note that each polynomial qi in the statement of the preceding lemma is most conveniently611

expressed as a sum of terms. We now show how to replace each qi with NC0 circuitry, using612

the following lemma from [10, Lemma 4.17].613

I Lemma 36. Let f(x) = T1(x) + . . .+ Tk(x) where f, T1, . . . , Tk : GF(2)n → GF(2), and614

summation is over GF(2), and each term Ti has degree at most 3. Let the local encoding f̂ :615

GF(2)n+(2k−1) → GF(2)2k be such that f̂(x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1)) is equal to616

(T1(x)− r1, T2(x)− r2, . . . , Tk(x)− rk,
r1 − r′1, r′1 + r2 − r′2, . . . , r′k−2 + rk−1 − r′k−1, r

′
k−1 + rk)617

Then f̂ is a perfect randomized encoding of f where each bit of the output depends on at most618

4 bits of (x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1)).619

I Lemma 37. There is a function computable in AC0 (in fact, it can be a projection) that620

takes as input a branching program Q of size ` computing a function f : {0, 1}n → {0, 1},621

and produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function622

f̂ that is a perfect randomized encoding of f that has blowup 2((`2)−1)(2(`−1)2−1). Each pi623
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depends on at most four input bits from (x, r) (where r is the sequence of random bits in the624

randomized encoding).625

Proof. This follows immediately by applying the construction of Lemma 36 to the degree-626

three polynomials for each entry in the product matrix given by AC0-computable function627

given by Lemma 35. Each of those polynomials has (`− 1)2 terms, and it is apparent from628

Lemma 36 that each such entry gives rise to 2(`− 1)2− 1 new random bits in the randomized629

encoding. The assertion regarding blowup now follows from Claim 31. The assertions630

regarding the bits upon which each pi depends follows from inspection. The construction of631

Lemma 36 can clearly be accomplished via a projection, and composing that projection with632

the projection from Lemma 35 again yields a projection. J633

4.2.3 SDUNC0 is Complete for NISZKL634

We now have all of the tools required to complete the proof of Theorem 26.635

Let
∏

be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator636

S and let x be an instance of
∏
. Let Mx(s) denote a routine that simulates S(x) with637

randomness s to obtain a transcript (σ, p); if V (x, σ, p) accepts, then Mx(s) outputs σ,638

otherwise it outputs 0|σ|. (We can assume without loss of generality that |σ| = |x|k.) It is639

shown in [15, Lemma 4.2] that the map x 7→Mx is a reduction of Π to SDU:640

B Claim 38. If x ∈
∏
Y ES , then ∆(Mx, U|x|k)) < 1/|x|k, and x ∈

∏
NO implies ∆(Mx, U|x|k)) >641

1− 1/|x|k.642

The proof of the preceding claim in [15, Lemma 4.2] actually shows a stronger result. It643

shows that, if the statistical difference between the output distribution of the simulator and644

the distribution of true transcripts is at most 1/e(n), then the statistical difference of Mx645

and the uniform distribution is at most 1/e(n) + 2−n on inputs of length n. Thus, using646

Definition 1 (which is equivalent to the definition of NISZK given in [15]), the simulator647

produces a distribution that differs from the uniform distribution by only 1/nω(1). Thus we648

have the following claim:649

B Claim 39. Let c ∈ N. Then for all large x, If x ∈
∏
Y ES , then ∆(Mx, U|x|k)) < 1/|x|kc,650

and x ∈
∏
NO implies ∆(Mx, U|x|k)) > 1− 1/|x|kc.651

Furthermore, it is also shown in [15, Lemma 3.1] that EA has a NISZK protocol in which652

the completeness error, soundness error, and simulator deviation are all at most 2−m on653

inputs of length m. Furthermore, that proof carries over to show that EABP ∈ NISZKL with654

these same parameters. Thus we obtain the following fact, which we will use later in Section 6.655

656

B Claim 40. Let c ∈ N. Then for all large x, If x is a Yes-instance of EABP, then657

∆(Mx, U|x|k)) < 1/2|x|−1, and if x is a No-instance of EABP, then ∆(Mx, U|x|k)) > 1−1/2|x|−1.658

Since S runs in logspace, each bit of Mx(s) can be simulated with a branching program659

Qx. Furthermore, it is straightforward to see that there is an AC0-computable function that660

takes x as input and produces an encoding of Qx as output, and it can even be seen that661

this function can be a projection. (To see this, note that in the standard construction of a662

Turing machine from a logspace-bounded Turing machine S (with input (x, s)) each node663

of the branching program has a name that encodes a configuration of the machine, a time664

step, and the position of the input head. This branching program can be constructed in AC0,665

given only the length of x. In order to construct Qx, it suffices merely to hardwire in the666
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transitions from any node that is “scanning” some bit position xi. That is, if the transition667

out of node v goes to node v0 if xi = 0 and to node v1 if xi = 1, then in the adjacency matrix668

for Qx, entry (v, v1) = xi and entry (v, v0) is ¬xi. This is clearly a projection.)669

Now apply the projection of Lemma 37 to (each output bit of) the branching program670

Qx of size `, to obtain an NC0 circuit Cx computing a perfect randomized encoding with671

blowup b = 2|x|
k((`2)−1)(2(`−1)2−1). (Cx has log b+ |x|k output bits.)672

Now consider |H(Cx)−H(Ulog b+|x|k)|. By Lemma 28 this is equal to |H(Qx) + log b−673

H(Ulog b+|x|k)|. Since H(Qx) = H(Mx) and H(Ulog b+|x|k) = log b+H(U|x|k), we have that674

|H(Cx)−H(Ulog b+|x|k)| = |H(Mx)−H(U|xk)|. The proof of Theorem 26 is now complete,675

by appeal to Claim 39. J676

5 Hardness of MKTP under Projections677

I Theorem 41. MKTP is hard for co-NISZKL under nonuniform ≤AC0

m reductions.678

Proof. We build on the proof of Theorem 17, and present a reduction from the NISZKL-679

complete problem EANC0 . Let x = (Cx, k) be an arbitrary instance of Promise-EANC0 , where680

Cx : {0, 1}m → {0, 1}n is an NC0 circuit that represents distribution X. Let |x| < w < 4
√
t,681

and let α0, c0, and c2 be the constants from Lemma 15. Let λ = wmt1−α0/2 and construct y682

as t samples from X. Let θ = tk + λ+ t1−α0 |x|c0+c2 .683

As in the proof of Theorem 17, we have that, with probability at least 1− 1
22|x| , if (X, k)684

is a Yes-instance of EANC0 , then (y, θ) ∈ MKTPNO and if (X, k) is a No-instance of EANC0 ,685

then (y, θ) ∈ MKTPY ES .686

Thus we have shown that there is a uniform AC0-computable function f , such that, if687

x ∈ EAY ES , then with high probability (for random r) f(x, r) = (y, θ) is in MKTPNO, and688

if x ∈ EANO, then with high probability f(x, r) = (y, θ) is in MKTPY ES . (Namely, the AC0
689

function takes x = (Cx, k) and r as input, computes θ from k and |x|, and computes y by690

feeding t segments of r into the NC0 circuit Cx.)691

As in the proof of Theorem 17, we can fix a sequence of random bits to hardwire in to692

this reduction and obtain a (nonuniform) ≤AC0

m reduction from EANC0 to MKTP.693

J694

An immediate corollary (making use of the “Gap Theorem” of [1]) is that MKTP is hard695

for co-NISZKL under ≤NC0

m reductions. Below, we improve this, showing hardness under696

projections.697

I Corollary 42. MKTP is hard for co-NISZKL under nonuniform ≤NC0

m reductions.698

Proof. Corollary 22, combined with the NISZKL-completeness of EANC0 , implies that co-NISZKL699

is closed under ≤L
m reductions. It is shown in the “Gap Theorem” of [1] that, for any class C700

closed under ≤L
m reductions, any set that is hard for C under ≤AC0

m reductions is also hard701

under ≤NC0

m reductions. Thus from Theorem 41, we have that MKTP is hard for co-NISZKL702

under ≤NC0

m reductions. J703

I Corollary 43. MKTP is hard for co-NISZKL under nonuniform ≤proj
m reductions.704

Proof. We now need to claim that the AC0-computable reduction of Theorem 41 can be705

replaced by a projection. Note that, since SDUNC0 is complete for NISZKL under projections,706

and since the reduction from SDUNC0 to EANC0 given in Corollary 25 always uses the same707

entropy bound n− 3, we have that it suffices to consider EANC0 instances x = (Cx, k) where708
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the bound k depends only on the length of x. Thus the bound θ produced by our AC0
709

reduction also depends only on the length of x, and hence can be hardwired in.710

We now need only consider the string y. The ≤AC0

m reduction presented in the proof of711

Theorem 41 takes as input Cx and r and produces the bits of y by feeding bits of r into Cx.712

Let us recall where the NC0 circuitry producing the i-th bit of y comes from.713

Lemma 35 shows how to take an arbitrary branching program and encode the problem714

of whether the program accepts as a question about the entropy of a distribution repre-715

sented as a matrix of degree-three polynomials. Each term in this matrix is of the form716 ∑
j,k R1 (i,k)L(k,j)R2 (j,m), where the matrices R1 and R2 are the same for all inputs of of the717

same length. Thus we need only concern ourselves with the matrix L.718

In Section 4.2.3, it is observed that, given an instance x of a promise problem in NISZKL,719

the branching program Qx that is used, in order to build the matrix L, can be constructed720

from x by means of a projection. The “input” to this branching program Qx is a sequence721

of random bits (part of the random sequence r that is hardwired in, in order to create the722

nonuniform AC0 reduction in the proof of Theorem 41). Thus, the only entries of the matrix723

L that depend on x are entries of the form (u, v) where u and v are configurations of a724

logspace machine, where the machine is scanning xi in configuration u, and it is possible725

to move to configuration v. Lemma 37 then shows how to construct NC0 circuitry for each726

term in the degree-three polynomial constructed from Qx in the proof of Lemma 35. The727

important thing to notice here is that each output bit in the NC0 circuit depends on at most728

one term of one of the degree-three polynomials, and hence it depends on at most one entry729

of the matrix L – which means that it depends on at most one bit of the string x.730

Thus, consider any bit yi of the string y produced by the nonuniform AC0 reduction from731

Theorem 41. Either yi does not depend on any bit of x, or it depends on exactly one bit xj of732

x. In the latter case, either yi = xj or yi = ¬xj . This defines the projection, as required. J733

6 An Application: Average-Case Complexity734

The efficient reductions that we have presented have some immediate applications regarding735

worst-case to average-case reductions. First, we recall the definition of errorless heuristics:736

I Definition 44. Let A be any language. An errorless heuristic for A is an algorithm (or737

oracle) H such that, for every x, H(x) ∈ {Yes, No, ?}, and738

Cn(x) = Yes implies x ∈ A.739

Cn(x) = No implies x 6∈ A.740

I Definition 45. A language A has no average-case errorless heuristics in C if, for every741

polynomial p, and every errorless heuristic H ∈ C for A, there exist infinitely many n such742

where Prx∈Un [H(x) =?] > 1− 1/p(n).743

In order to state our first theorem relating to average-case complexity, we need the744

following circuit-based definition:745

I Definition 46. Let C be any complexity class. (Usually, we will think of C being a class746

defined in terms of circuits, and the definition is thus phrased in terms of circuits, although it747

can be adapted for other complexity classes as well.) The class OR ◦ C is the class of problems748

that can be solved by a family of circuits whose output gate is an unbounded fan-in OR gate,749

connected to the outputs of circuits in the class C.750

If problems in NISZKL are hard in the worst case, then there are problems in NP that are751

hard on average:752
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I Theorem 47. Let C be any complexity class that is closed under ≤proj
m reductions. If753

NISZKL 6⊆ OR ◦ C, then there is a set A in NP that has no average-case errorless heuristics754

in C.755

Proof. Consider the reduction from EANC0 to MKTP given in the proof of Corollary 43. This756

reduction takes as input a pair (C, n− 3) where C is an NC0 circuit that produces output757

of length n. The reduction produces as output a string of length tn where t = t(n) is a758

polynomial in n. The proof of Corollary 43 shows that, if (C, n − 3) is a No-instance (a759

low-entropy instance) of EANC0 , then concatenating t samples from C(r) (for independent760

uniformly random samples r) produces output that, with probability exponentially-close to761

1, has KT-complexity less than θ < (n− 2)t(n) for all large n. Let f be a function computed762

as follows: On input d of length m′, compute the smallest n such that m′ < (n − 2)t(n),763

and then simulate the universal Turing machine U on d for t(n)2 steps, and produce as764

output the first nt(n) bits of output that U(d) produces in this amount of time. Let765

A = {y : ∃d f(d) = y} be the range of f . Note that A contains all strings y of length nt(n)766

such that KT(y) ≤ (n− 2)t(n). Clearly, A ∈ NP. We will show that if A has an average-case767

errorless heuristic in C, then NISZKL ∈ OR ◦ C.1768

If A has an average-case errorless heuristic in C, then there is a family {Cm : m ∈ N} of769

C circuits (or other algorithms, if C is not a circuit family) with the property that, for all770

large n, for all strings x of length n, Cn(x) ∈ {Yes,No,?}, where771

Cn(x) = Yes implies x ∈ A.772

Cn(x) = No implies x 6∈ A.773

Prx[Cn(x) =?] < 1− 1
p1(n)774

for some polynomial p1.775

Since there are three possible outputs, there must be two output bits, which we can call a776

and b. The encoding of Yes, No and ? below is chosen in order to simplify the statement of777

our results. If a different encoding is chosen, then the form of the circuits for NISZKL might778

be slightly different.779

a b
1 0 Yes
0 1 No
0 0 ?
1 1 Illegal

780

Now consider the family {C ′m : m ∈ N}, where C ′m is just like Cm but has only output781

bit b.782

1 In fact, A can be taken to be any set in NP that contains all strings of KT complexity below a certain
threshold, while still containing only a small fraction of the strings of any length n.
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For any m = nt(n),783

Pr
x

[C ′m(x) = 1] = 1− Pr[Cm(x) = Yes]− Pr[Cm(x) =?]784

≥ 1− |A ∩ {0, 1}
m|

2m − (1− 1
p1(m) )785

≥ 1− 2(n−2)t(n)

2nt(n) − (1− 1
p1(m) )786

= 1
p1(nt(n)) −

1
22t(n))787

>
1

p2(n)788

789
790

for some polynomial p2.791

We now present efficient circuits for promise problems in NISZKL.792

Since the NISZKL-complete problem EANC0 is a special case of EABP, we know that EABP793

is also complete for NISZKL (say, under ≤L
m reductions). Thus it follows from Claim 40794

that, for any problem
∏
∈ NISZKL, and for any instance x ∈

∏
Y ES , the distribution Mx795

introduced in Section 4.2.3 can actually be assumed to have statistical difference at most796

1/2|x|ε) from the uniform distribution, for some ε > 0. This in turn implies that the NC0
797

circuit Cx (which is constructed in the paragraphs right after Claim 40) also has statistical798

difference at most 1/2|x|ε) from the uniform distribution (again, if x ∈
∏
Y ES). We highlight799

this fact, so that we can refer to it more easily later:800

B Claim 48. If x ∈
∏
Y ES , then the NC0 circuit Cx has statistical difference at most 1/2|x|ε801

from the uniform distribution.802

Now consider the circuit family {Dn0 : n0 ∈ N} that has the following form: The input is803

a string x of length n0. Recall that the NC0 circuit Cx from Section 4.2.3 takes “random”804

inputs r of length polynomial in |x| and produces output of length n which is also polynomial805

in |x|. Let {En : n ∈ N} be a circuit family that takes (x, r) as input and computes Cx(r).806

(The family En can in fact be chosen to be very efficient, but we do not need that; it will807

turn out later that En can be replaced by a single wire connected to a possibly-negated bit808

of x, or by a constant.) The “bottom layer” of Dn0 consists of n2
0p

2
2(n)t(n) copies of En,809

using n2
0p

2
2(n)t(n) independent random strings r1, . . . , rn2

0p
2
2(n)t(n), and producing a string810

of length n2
0p

2
2(n)t(n)n, which is then fed into n2

0p
2
2(n) copies of C ′t(n)n. Finally, the output811

gate of each of the copies of C ′t(n)n is fed into an OR gate, which is the output gate of Dn0 .812

If x ∈
∏
NO then, as in the proof of Theorem 41, with probability (over the random813

inputs) exponentially close to 1, the string feeding into the inputs of each of the copies of C ′814

has low KT complexity, and consequently (by the definition of C ′) each C ′ outputs 0, and815

thus Dn0 outputs 0.816

If x ∈
∏
Y ES then, by Claim 48, the distribution represented by each copy of En (using817

random inputs r) has statistical difference from the uniform distribution bounded by 2−nε .818

The strings that are fed into each copy of C ′nt(n) are generated by t(n) independent copies of819

En. By [30, Lemma 3.4], we can conclude that the distribution that is fed into each copy of820

C ′nt(n) has statistical distance from the uniform distribution bounded by t(n)
2nε . We showed821

above that the probability that C ′nt(n) accepts a uniformly-random string of length nt(n) is822

greater than 1
p2(n) . It follows that the probability that C ′nt(n) accepts the string produced823
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by t(n) independent copies of En is no less than 1
p2(n) −

t(n)
2nε >

1
np2(n) . Thus the probability824

that none of the n2
0p

2
2(n) independent copies of C ′nt(n) accepts is at most 2−n2

0 .825

A simple counting argument now shows that there is a sequence of probabilistic bits r826

that can be hardwired in to Dn0 so that, for all x of length n0, Dn0(x, r) = 1 if x ∈
∏
Y ES827

and Dn0(x, r) = 0 if x ∈
∏
NO. It still remains to simplify Dn0 so that it lies in OR ◦ C.828

As in the proof of Corollary 43, each bit that feeds into any of the copies of C ′nt(n) depends829

on at most one bit of x; many of the bits may be set to constants after hardwiring in the830

choice of r. Thus we build the circuit family Fn0 that takes x as input, and projects the bits831

of x into the n2
0p

2
2(n) copies of C ′nt(n), to obtain a OR ◦ C circuit family for

∏
. J832

The following definition is implicit in the work of Bogdanov and Trevisan [12].833

I Definition 49. A worst-case to errorless average-case reduction from a promise problem834 ∏
to a language A is given by a polynomial p and BPP machine M , such that A is accepted835

by Mh for every oracle errorless heuristic H for A such that Prx∈Un [H(x) =?] < 1− 1/p(n).836

I Corollary 50. There is a problem A ∈ NP such there is a non-adaptive worst-case to837

errorless average-case reduction from every problem in SZK to A.838

Proof. We mimic the proof of Theorem 47, and use the same set A. Consider the BPP839

reduction from the NISZK complete problem EA to MKTP given in Corollary 18. This840

reduction takes as input a pair (C, k) (where C is a circuit that produces output of length841

n) and makes a single query along each path, where the query is a string y of length tn842

where t = t(n) is a polynomial in n. (Since SDU is complete for NISZK, we can assume843

that k = n − 3, as in the proof of Theorem 47.) Rather than using MKTP as an oracle,844

instead we will use an errorless heuristic H for A where the Prz[H(z) =?] < 1 − 1/p(|z|),845

interpreting any answer where H(y) = “No” as meaning “KT(y) > θ” and any answer where846

H(y) ∈ {?,Yes} as meaning “KT(y) < θ”. (We will actually replace each query to MKTP by847

a polynomial number of independent queries to the heuristic H, and if any of these queries848

returns H(y) = “No”, we will conclude that (C, k) ∈ EAY ES , and otherwise conclude that849

(C, k) ∈ EANO.)850

As in the proof Theorem 47, if the distribution represented by C has low entropy, then851

with probability exponentially close to 1, the query y will have low KT complexity, and852

thus H(y) will return a value in {?,Yes} (and this probability will remain small even if a853

polynomial number of independent trials are made). And if C has high entropy, then (as in854

the proof of Theorem 47) we can assume that the distribution given by C is exponentially855

close to the uniform distribution, and thus the distribution on the queries y will have small856

statistical difference from the uniform distribution, and hence, with exponentially high857

probability, at least one of the queries will return the value No. Thus every problem in858

NISZK has an errorless non-adaptive worst-case to average-case reduction to A.859

The proof is completed by recalling from [15] that SZK is non-adaptively (deterministically)860

polynomial-time reducible to NISZK. J861

Remark: It is implicitly shown by Hirahara [17] that Corollary 50 holds under adaptive862

reductions. The significance of the improvement from adaptive and non-adaptive reductions863

lies in the fact that Bogdanov and Trevisan showed that the problems in NP for which there864

is a non-adaptive worst-case to errorless average-case reduction to a problem in NP lie in865

NP/poly ∩ coNP/poly [12, Remark (iii) in Section 4]. Thus SZK may be close to the largest866

class of problems for which non-adaptive worst-case to errorless average-case reductions to867

problems in NP exist.868
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The worst-case to average-case reductions of Definition 49, must work for every errorless869

heuristic that has a sufficiently small probability of producing “?” as output. If we consider870

a less-restrictive notion (allowing a different reduction for different errorless heuristics) then871

in some cases we can lower the complexity of the reduction from BPP to AC0.872

IDefinition 51. Let D be a complexity class, and let R be a class of reducibilities. We say that873

errorless heuristics for language A are average-case hard for D under R reductions if, for every874

polynomial p and every errorless heuristic H for A where Prx∈U|x| [H(x) =?] < 1− 1/p(|x|),875

and for every language B ∈ D, there is a reduction r ∈ R reducing B to H.876

I Corollary 52. There is a language A ∈ NP, such that errorless heuristics for A are877

average-case hard for SZKL under non-adaptive AC0-Turing reductions.878

Proof. The proof of Theorem 47 introduces a language A ∈ NP that is defined in terms of879

the parameters of the reduction from the NISZKL-complete promise problem EANC0 . We show880

that errorless heuristics for this same A are average-case hard for SZKL under non-adaptive881

AC0-Turing reductions. By Proposition 3 and Theorem 26, every problem in SZKL is non-882

adaptively AC0-Turing-reducible to EANC0 ; let this AC0-Turing reduction be computed by the883

family {Dn : n ∈ N}. In the proof of Theorem 47, if we take the circuit family {Cm : m ∈ N}884

to consist of oracle gates for an errorless heuristic H for A, we obtain that every query that885

Dn makes to EANC0 can be replaced by an OR of queries consisting of oracle gates from886

{Cm : m ∈ N}. This yields the desired non-adaptive AC0-Turing reduction to the errorless887

heuristic for A. J888

I Corollary 53. Let C be any class that is closed under non-adaptive AC0-Turing reductions.889

If SZKL 6⊂ C, then there is a problem in NP that has no average-case errorless heuristic in C.890

Proof. If SZKL 6⊂ C, then by Proposition 3, NISZKL is also not contained in C. The result is891

now immediate from Theorem 47. J892

Remark: Building on earlier work of Goldwasser et al. [16], average-case hardness results893

for some subclasses of P based on reductions computable by constant-depth threshold circuits894

were presented in [2]. (Although certain aspects of the reductions presented in [2, 16] are895

computable in AC0, in order to obtain deterministic worst-case algorithms, MAJORITY gates896

are required in those constructions.) We are not aware of any prior work that provides average-897

case hardness results based on reductions computable in AC0, particularly for classes that898

are believed to contain problems whose complexity is suitable for cryptographic applications.899

7 Conclusion and Open Problems900

By focusing on non-uniform versions of ≤P
m reductions, we have shed additional light on how901

MKTP relates to subclasses of SZK. Some researchers are of the opinion that MCSP (and902

MKTP) are likely complete for NP under some type of reducibility, and some recent progress903

seems to support this [22]. For those who share this opinion, a plausible first step would904

be to show that MKTP is hard not only for co-NISZK, but also for NISZK, under ≤P/poly
m905

reductions. And of course, it will be very interesting to see if our hardness results for MKTP906

hold also for MCSP.907
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