A Large-scale Study on API Misuses in the Wild

Xia Li
Department of Software Engineering and
Game Design, Kennesaw State University
xli37 @kennesaw.edu

Yingfei Xiong
Key Laboratory of High Confidence Software
Technologies (MoE); DCST, Peking University
xiongyf@pku.edu.cn

Abstract—API misuses are prevalent and extremely harmful.
Despite various techniques have been proposed for API-misuse
detection, it is not even clear how different types of API misuses
distribute and whether existing techniques have covered all major
types of API misuses. Therefore, in this paper, we conduct the
first large-scale empirical study on API misuses based on 528,546
historical bug-fixing commits from GitHub (from 2011 to 2018).
By leveraging a state-of-the-art fine-grained AST differencing
tool, GumTree, we extract more than one million bug-fixing
edit operations, 51.7% of which are API misuses. We further
systematically classify API misuses into nine different categories
according to the edit operations and context. We also extract
various frequent API-misuse patterns based on the categories
and corresponding operations, which can be complementary to
existing API-misuse detection tools. Our study reveals various
practical guidelines regarding the importance of different types
of API misuses. Furthermore, based on our dataset, we perform
a user study to manually analyze the usage constraints of 10
patterns to explore whether the mined patterns can guide the
design of future API-misuse detection tools. Specifically, we find
that 7,541 potential misuses still exist in latest Apache projects
and 149 of them have been reported to developers. To date, 57
have already been confirmed and fixed (with 15 rejected misuses
correspondingly). The results indicate the importance of studying
historical API misuses and the promising future of employing our
mined patterns for detecting unknown API misuses.

Index Terms—Pattern generation, Program adaptation, Code
abstraction

I. INTRODUCTION

Over the past decades, software systems have been widely
used in almost all aspects of human lives, and are making our
lives more and more convenient. However, software systems
also inevitably suffer from bugs or faults, which can incur
significant loss of properties and even lives. During modern
software development, developers always reuse Application
Programming Interfaces (APIs) provided by third-party li-
braries and frameworks rather than implementing from scratch
to improve work efficiency and code quality. As a result, API
related bugs spread widely due to API misuses, reducing soft-
ware performance or causing software crashes [1], [2]. In Java,
for example, the correct way to create a new thread is to call

¥ Corresponding author.

Jiajun Jiang®
College of Intelligence and
Computing, Tianjin University
jiangjiajun@tju.edu.cn

Samuel Benton
Department of Computer Science,
The University of Texas at Dallas

Samuel.Benton1 @utdallas.edu

Lingming Zhang
Department of Computer Science,
University of Illinois at Urbana-Champaign
lingming @illinois.edu

API Thread.start (), while Thread.run() is often misused,
which does not create new threads. Therefore, analyzing the
behaviors of API misuses is essential and can provide practical
guidance for software development, especially the detection
of API misuses. Such misuse behaviors can be potentially
obtained from historical bug fixes.

A large number of historical bug fixes are publicly avail-
able on open-source platforms (e.g., GitHub [3] and Source-
Forge [4]) and issue tracking systems (e.g., JIRA [5]). Many
researchers have conducted various studies to analyze bug
fixes and have many findings. For example, Martinez and
Monperrus [6] found that most bug fixes are related to more
than one source file, and statement-level code changes (e.g.,
inserting or deleting a statement) are most prevalent by analyz-
ing 89,993 historical bug fixes. Even though these researchers
have studied historical bug fixes, they only examined a small
dataset, and the findings could be limited. In this paper, we
conduct a study on API misuses by analyzing much more
comprehensive bug-fixing dataset than any prior work.

Many techniques define API misuses as violations of certain
frequent API usage patterns which are mined from source
code [7]-[11]. These techniques were evaluated to be effective
on some kinds of misuses. However, a recent study on state-
of-the-art API-misuse detectors [1] shows that API misuses
are prevalent and existing API-misuse detectors suffer from
extremely low precision and recall on the widely used API-
misuse dataset MUBENCH [12]. MUBENCH includes only
89 API misuses from 33 real-world projects, which not only
makes it hard to analyze the distribution of various API
misuses but also incurs dataset overfitting issues for evaluating
existing API-misuse detection techniques.

Due to the limited amount of dataset in previous studies
of bug-fixing and API misuses, in this paper, we conduct a
more systematic and extensive empirical study by analyzing
a large-scale bug-fixing dataset. We start with mining the
historical repositories from GitHub Archive [13] that records
the public GitHub timeline dataset. Then, we extract all bug-
fixing commits of Java projects from 2011 to 2018 according
to specific search criteria, resulting in 528,546 bug-fixing com-
mits. Finally, we extract fine-grained edit operations on AST

(Abstract Syntax Tree) of buggy and fixed source code via
leveraging GumTree [14] to identify API misuses. Following
existing studies [1], we classify API misuses into different
categories and statistically analyze their distributions. From
the statistical results, we observe various practical guidelines
regarding the importance of different categories of API mis-
uses. For example, API calls (missing/redundant) are the most
frequent (34.05% of all API misuses) and synchronization is
the least frequent (0.06% of all API misuses). In addition,
we find that about 38.33% API misuses are replacing API
components (i.e., arguments, receiver, or name), which have
never been systematically explored by any prior studies.

Inspired by the statistical results, we extract a large set

of frequent API-misuse patterns for each category, and carry
out two studies on API-misuse detection. (1) API-misuse
detection in MUBENCH. Following previous studies [1], [15],
we analyze how many API-misuse patterns in MUBENCH can
also be found in the historical bug fixes and compare the
results with existing state-of-the-art techniques. The results
show that 12 out of 32 unique patterns in MUBENCH have
already occurred before, and 7 of them cannot be detected
by any existing techniques, demonstrating the possibility to
build more effective misuse detection tools via analyzing
large-scale historical bug fixes. (2) API-misuse detection in
the wild. Based on our dataset, we perform a user study to
manually analyze the usage constraints of 10 representative
API-misuse patterns to explore whether the mined patterns
can guide the design of future API-misuse detection tools. The
results of the experiments on 688 Apache projects show that
the misuses extracted from historical records still exist in the
latest projects (7,541 potential API misuses in total). We have
reported 149 misuses to developers. Up to now, 57 of them
have already been confirmed and fixed while 15 are rejected.
The promising initial results indicate that the misuse patterns
complement existing approaches and can potentially improve
the practicability of future API-misuse detection techniques.

In summary, this paper makes the following contributions:

« Dataset. A publicly available dataset including 528,546
historical bug-fixing commits from GitHub (from 2011
to 2018).

« Study. An extensive study to analyze API misuses in the
wild and a systematic classification of them via static
analysis.

o Patterns. A large set of API-misuse patterns, which
complement existing API-misuse detection tools and can
be used for detecting unknown API misuses in the wild.

o Guidelines. Various practical guidelines regarding the
importance of different types of API misuses, such as (1)
among the API misuses covered by prior techniques, API
call is the most frequent (34.05%) while synchronization
is the least frequent (0.06%), (2) Replaced API misuses,
not covered by any prior techniques, account for the
largest portion among all misuses (38.33%), (3) misuse
patterns related to class java.lang.String account for
the vast majority of all patterns, and (4) most frequent
Replaced API-misuse patterns are related to APIs in the

same class.

« Application. Finally, we explore whether the dataset
and patterns can be applied to API-misuse detection
by leveraging 10 patterns and manually-defined heuristic
rules after analyzing the corresponding repair histories in
our dataset. The experimental results show that misuses
extracted from historical records still exist in the latest
versions of Apache projects (149 of them are reported
to developers, 57 have already been confirmed and fixed,
and 15 are rejected).

II. BACKGROUND AND RELATED WORK

In this section, we first introduce previous studies on his-
torical bug fixes and then discuss existing techniques working
on API-misuse detection.

A. Analysis of Historical Bug Fixes

During modern software development, a large number of
historical bug fixes get accumulated on open-source platforms
(e.g., GitHub and SourceForge) and issue tracking systems
(e.g., JIRA). Understanding and analyzing the historical bug
fixes can potentially provide practical guidelines for manual
or automated bug detection [16]-[19], localization [20]-[25],
and repair [26]-[30]. Therefore, various studies have been
conducted on historical bug fixes. Zhong and Su [31] built
a bug-fixing extraction tool named BugStat and analyzed
more than 9,000 real bug fixes from six popular open-source
Java projects. They found that most bug fixes only update
existing source code files and do not add or delete source
files. Additionally, they found that most bug fixes are related
to if conditions, which is also confirmed by Soto et al. [32].
Pan et al. [33] also analyzed the distribution of different bug-
fixing patterns from seven open-source projects. They found
that updating method call parameters and if conditions are
the most common bug fixes. Recently, the benchmark De-
fects4J [34] which includes various real bugs has been widely
used in the field of software debugging. Sobreira et al. [35]
studied 395 bugs in Defects4] and found that the top-3 most
applied bug-fixing actions (77% of the total bugs) are addition
of method calls, conditionals, and assignments. Martinez et
al. and Madeiral et al. proposed different bug detection tools
(Coming [36] and PPD [37] respectively) and evaluated them
on Defects4] benchmark with promising performance.

Besides, there were also studies on domain-specific bug
patterns or bug pattern distribution across different projects.
Wan et al. [38] used the card-sorting approach to analyze
the characteristics of bugs in Blockchain systems. Meng et
al. [39] conducted an empirical study on StackOverflow posts
related to code security, which revealed the huge gap between
security theory and coding practices, and informed effective
secure coding assistance. Similarly, Hanam et al. [40] studied
the bug patterns in JavaScript projects and found that the
same bug-fixing patterns exist among different JavaScript
projects. Additionally, this finding was further confirmed on
Java projects by Yue et al. [41] and Nguyen et al. [42].
Ray et al. [43] found that although source code is highly

repetitive and predictable (like natural languages), the buggy
code tends to be unnatural. After comparing with different
statistical models, they found that “entropy” is a relatively
good model to measure the similarity between code fragments,
which can be used in search-based bug-fixing approaches.

Although various existing studies have already conducted
on general software bugs, the API misuses have not been
systematically explored yet. Therefore, we aim to perform
an extensive study on the categorization and distribution of
API misuses in the wild, which complements existing re-
search. Furthermore, to the best of our knowledge, our study
involves 528,546 historical bug-fixing commits from open-
source projects and represents the most extensive study on
historical bug fixes to date.

B. Studies on API-misuse Detection

API usage is often subject to certain constraints [1]. For
example, a resource must be released or closed after it is used.
Violations of such usage patterns are regarded as API misuses.
A large number of techniques have been proposed to detect
API misuses automatically over the past decades.

Most approaches utilize data mining techniques to detect
API misuses. Livshits et al. [44] introduced DynaMiner,
aiming to mine software revision histories to detect misuses
violating method pairs or certain mined state machines. Simi-
larly, Li and Zhou [45] proposed PR-Miner to extract implicit
programming rules of APIs by leveraging frequent itemset
mining approaches on source code. Acharya and Xie [9]
proposed to mine specifications from static program traces.
Although such techniques utilize different data sources, they
share the same assumption that the more frequent a pattern
is, the higher possibility a pattern is correct. Other similar
techniques also include DMMC [2], [46], GrouMiner [47],
COLIBRI/ML [7], etc. Additionally, Wasylkowski et al. [8]
and Nguyen et al. [48] proposed to employ graph theories for
mining programming artifacts.

Researchers have also proposed data-mining-based tech-
niques to detect other specific types of API misuses. Williams
et al. [19] and Hovemeyer et al. [18] targeted missing
NULL pointer checks, while Thummalapenta and Xie focused
on exception-handling related misuses [10] and neglected-
condition misuses [11]. More recently, Liang et al. [17] aimed
at detecting missing NULL pointer and resource-leaking mis-
uses (e.g., missing API invocations to close resource accesses)
via analyzing existing bug fixes of the same projects.

Besides data mining, researchers also employed pro-
gram analysis and machine learning for API-misuse detec-
tion. Ramanathan et al. proposed CHRONICLER [49] and
RGJO07 [50], utilizing path-sensitive control-flow or data-flow
analysis to infer function precedence protocols or predicates.
Wasylkowski and Zeller [51] proposed TIKANGA to combine
static analysis with model checking for mining Computation
Tree Logic (CTL) formulas. Nguyen et al. [52] leveraged
Hidden Markov Model to check anomalies of call sequences.
Most recently, Wen et al. [15] applied mutation analysis to
discover API misuse patterns to improve the state-of-the-art.

Although various techniques have been proposed for de-
tecting different types of API misuses, it is not even clear
how different types of API misuses distribute among all
API misuses or projects. Whether the existing techniques
have covered all major types of API misuses is also not
investigated. Furthermore, the recent widely used API-misuse
dataset MUBENCH [12] includes only limited number of API
misuses, and is insufficient for evaluating API-misuse detec-
tion techniques. Therefore, in this work, we aim to perform
a systematic and extensive empirical study to characterize the
distribution of various types of API misuses in the wild and
construct a much larger dataset for API-misuse detection.

III. EMPIRICAL STUDY

In this section, we introduce how we construct our dataset
and conduct our study. We first introduce the collection of the
dataset used in our study (Section III-A), and then introduce
the categorization of API misuses (Section III-B). Finally, we
discuss how we apply source-code differencing to infer API
misuses from bug fixes (Section III-C).

A. Data Collection

We aim to mine API-misuse patterns from all bug-fixing
commits of Java projects on GitHub. To collect our dataset,
we first download all public GitHub events for all program
languages from GitHub Archive [13] between 2011 and 2018.
We then focus on Java projects and exclude all test cases since
they are not functional parts and cannot reflect API usages.
Next, following prior work [53], we identify a commit as a
bug fix if its commit message contains the keywords (“fix”
or “solve” or “repair”’) and (“bug” or “failure” or “issue” or
“error” or “fault” or “defect” or “flaw” or “glitch”). Since
the commit message may not identify bug-fixing commits
accurately, we randomly select 100 commit samples, and two
authors independently analyze them to check whether they are
actual bug fixes. The result is that 94% of the identified bug-
fixing commits are real bug fixes, which provides us more
confidence for the subsequent analysis. We also keep only
unique commits by removing duplicates. Next, we download
the source files before and after the code change for each
bug-fixing commit. To mitigate the impact of irrelevant code
changes, we discard commits or files that meet any of the
following criteria.

« Commits with changes involving more than five Java files
or six lines of source code [53], [54], since such commits
may include many changes not related to bug fixes.

« Non-Java files as they are irrelevant to Java API misuses.

« Java files that deleted or newly introduced in the commits.

As a result, we finally get 528,546 bug-fixing commits

(including 220,053 projects and 744,000 pairs of buggy and
fixed files) for further API-misuse pattern mining.

B. Categorization of API Misuses

Following prior study [1], we define an API misuse as a pair
of a violation type and an API-usage element (e.g., API call,
iteration, condition, and exception handling) involved in a bug

fix. Besides the missing and redundant violation types studied
in prior study [1], in this paper, we further investigate the
type of replaced, describing that an API is incorrectly invoked
and should be replaced with another one. This type of API
misuses has never been systematically studied before, but is
prevalent in real-world projects (will be shown in the following
sections). In total, we classify API misuses into four basic
categories, including Condition, Exception, Synchronization
and API call, each of which consists of some specific sub-
categories. In the following, we demonstrate each category of
API misuses in detail.

Condition. This category includes missing and redundant
guard conditions for certain API invocations. Following the
previous study [1], we further categorize it into the following
three sub-categories:

e NULL checks. This sub-category indicates removing or
newly introducing an if condition with NULL checks for
the variable that is returned by a prior API call or will be
used as the receiver or an argument of a following API
call, e.g., 0.API(); => if (o!=null){ 0.API();}.

e Return value. This sub-category indicates the removed
or newly introduced if condition that checks the return
value of some APIs, e.g., o = 2PI(); a =
; =>o0 = API(); if(o < 0){o = 0;} a =
)i

o Object state. This sub-category indicates the removed or
newly introduced if condition relates to some variables
that will be used in an API call immediately, e.g., a =
list.get(i); => if(i > 0){a =

list.get (0)
list.get (o

list.get (i);}.

Importantly, the three sub-categories of Condition are not
orthogonal to each other as one if condition may belong
to multiple categories. We will introduce this in detail in
Section III-C.

Exception. This category includes missing and redundant
exception handlers, following the definitions in the prior
work [1]. More specifically, we further divide this category
into two types of fine-grained code changes, i.e., inserting or
deleting Try or catch blocks. The reason is that in the studied
commits, we find that some fixes are related to a complete
try-catch statement, but some others may only involve catch
blocks. Therefore, we analyze them separately. Especially, we
regard a try or catch as API-related iff there exist API calls in
the corresponding code block; otherwise, we consider it as API
irrelevant. Besides, like the Condition category introduced
above, a code change may involve both try and catch blocks.
In such cases, we record these two categories respectively.

o Try. This category subjects to addition or deletion of try
blocks, in which some API invocations reside.

e Catch. This category subjects to addition or deletion of
catch blocks, whose corresponding try blocks contain
API invocations.

Synchronization. This category includes missing and redun-
dant synchronizations in multi-threaded environments, follow-
ing the previous study by Amann et al. [1]. The difference is

// replaced arguments

——— row=Math.abs (rand.nextInt (seed) %$data.length-1);

+++ row=Math.abs (rand.nextInt () % (data.length-1));

// replaced name

——— nVal=tmpl.substring (0, tmpl.indexOf ("\""));

+++ nVal=tmpl.substring(l,tmpl.lastIndexOf ("\""));

// replaced name and arguments

—-—— Statement stmt = con.createStatement ();

+++ PreparedStatement stmt=con.
prepareStatement (sql) ;

// replaced receiver

—--— return this_path.equals (that_path);

+++ return Objects.equals (this_path, that_path);

Fig. 1: Examples of replaced bugs

that we classify this type of code changes as an independent
one rather than a sub-category of Condition.

API call. Previous studies have focused on missing [45], [46]
and redundant [52] API call misuses. However, more fine-
grained API changes (such as changing only the arguments,
names or receiver objects of API invocations) were not been
systematically and extensively studied by existing studies. In
this paper, besides missing and redundant API changes, we
further investigate the distributions of replaced API misuses,
which include four categories in detail. For the missing and
redundant API misuses, previous study [1] already introduced
them (a.k.a. Method Call). To make the article self-contained,
we redundantly explain them briefly.

o Missing & Redundant API call. Missing API call denotes
that an API is not called at a certain place, where the API
usage constraint requires the API as a must. For example,
after opening a file and writing data, the API of File.
close () should be called. Otherwise, errors would be
incurred. This kind of code changes is usually related
to those pairwise APIs that have usage dependency.
Similarly, Redundant API call represents that an API is
redundantly used at an improper place. For example, we
cannot call the API of List.remove () to delete elements
in a list that is being iterated over. Otherwise, exceptions
would be raised. This kind of code changes is usually
caused when the API has side-effects, whose execution
may conflict with the followed functionality.

o Replaced arguments. This category indicates that devel-
opers may pass incorrect arguments or arguments with
wrong orders when invoking an API. This type of code
changes usually appears in classes with multiple methods
with similar functionalities for polymorphism, such as
the first example shown in Figure 1, where the desired
API is nextInt () without arguments. On the contrary, a
wrong API nextInt (int) is used with an argument seed
, which will constrain the upper bound of the generated
random value. Please note that we consider replaced API
misuses iff the types of arguments do not match before
and after the change (order matters), while it is not our
cases to change the referred object of same types. For
example, the code change replacing 10 in nextInt (10)
with 100 is not regarded as a replaced API misuse since
the argument type is not changed and thus the API is not

changed. Therefore, a complex points-to analysis [55] is
not needed, and the built-in type analysis of GumTree
will be sufficient.

e Replaced name. This category implies that developers
call a wrong API with exactly the same arguments but
different API names from the same class. This kind of
misuses is usually caused by the similarity or confusion of
different API names. Figure 1 shows one such example,
in which the API call of indexof is replaced with
lastIndexOf and the argument stays unchanged.

e Replaced name and arguments. This category implies
that both the name and the arguments are incorrectly
used for a method call, which can be introduced when
developers are not familiar with the class under use and
mistakenly pick an improper API in the same class. For
example, when a database is frequently accessed in a loop
with the same query clause, prepareStatement (String)
rather than createstatement () should be used to avoid
high overhead as it will be pre-compiled by the database
management system (ref. Figure 1).

e Replaced receiver. The above three replaced API mis-
uses are all related to misuses of APIs from the same
class. However, sometimes developers even misuse APIs
belonging to different classes. We classify this kind of re-
placements as replaced receiver. As introduced above, we
only consider the type change of receiver. For example,
the last code change in Figure 1 shows that the developer
fixed the bug by using the equals API in the object
class for string comparison rather than comparing them
directly. The reason is that this_path is not guaranteed to
be properly set, and it may cause NullPointerException
and crash the program.

In the study, we do not consider the “iteration” category
in our classification since it is hard to automatically identify
whether the code change is related to iteration or not. For
example, as presented in the previous study, API call wait ()
on an object should always occur in a loop, which is described
in the documents. It is easy to identify this API misuse by
manual inspection [1], while it will be infeasible in our study
on such a large dataset, because it is hard to automatically
analyze such specifications of all API usages from informal
documents that are usually presented via natural language.

C. Edit Operation Extraction

To study different misuses defined in Section III-B, we first
extract code changes from historical bug-fixing commits and
then map them into corresponding categories.

In our study, we apply a state-of-the-art AST (Abstract
Syntax Tree) differencing tool GumTree [14], which can
extract fine-grained AST operations and has been widely
employed by previous studies [27], [30], [56]. According
to the classifications, we consider three types of operations
defined by it, i.e., update, delete and insert. Then, according
to the content of changed code and the type of operation, we
map AST operations to the corresponding misuse categories.
Particularly, a commit may include multiple operations.

public static List<String> writeFiles (State
state, ...){

fPath=fPath.replaceAll ("/",File.separator);
// The first arg of replaceAll ()
fPath=fPath.replace("/",File.separator);
// will be treated as regex

+++

if (!isLoaded) {
Log.e ("WavefrontLoader", "Error loading");
System.exit (1); // should not terminate
the application
}
}

Fig. 2: Examples of update and delete operations.

public void setAnimationStyle (int animRes) {
Window window = dialog.getWindow () ;
+++ if (window != null)
{ // add NPE check to avoid crash
window.setWindowAnimations (animRes) ;
+++ }

}

Fig. 3: Examples of insert and move operations.

However, it is not straightforward to map GumTree opera-
tions to our API misuse categories since those operations do
not comprise context information related to the code changes,
such as data and control dependency. Therefore, we further
implement a demand-driven lightweight intra-procedural data-
and control-dependency analysis. More concretely, to identify
whether an inserted if condition is checking the return value
of some APIs, we need to analyze the Use-Define chain [57],
[58] for variables used in the condition: the operation can be
mapped to the type of “Return value” only if the variables are
the return values of some early API invocations. Similarly,
to identify the type of “Object state”, both data and control
dependencies will be utilized. As a result, for variables used
as receivers or arguments of certain APIs, we will perform a
backward slicing within the method. While for the variables
defined by APIs, a forward slicing will be computed. In
this way, a relatively small number of variables need to be
analyzed, and thus it is highly efficient compared to a thorough
analysis of the complete program. Finally, we combine the
results of GumTree and our lightweight dependency analysis to
determine the API-misuse categories of bug-fixing operations.

S,
i [T)

- move(t4, t5, 2)

: deleted node.

~ :replaced node.
: moved node.

=== : data dependency.
«=+=» : control dependency.

([: leaf node.
Fig. 4: GumTree operations of examples in Figures 2-3.

: inserted node.

Before introducing the classification process in detail, we
first introduce some preliminary concepts and notations:

Definition 1. An abstract syntax tree (AST) is a partial
ordered tree whose root node can be represented as a tuple
(I,v,p,i,C), where
o [: denotes the label of the root node of the subtree. (e.g.,
StringLiteral.)
e v: saves the value if it is a leaf node, otherwise is L.
(e.g., 4)
e p: represents its parent node in a super tree if exists,
otherwise is L.
e i: is the index of the root node in a super tree p, it is
undefined if p = L.
C' contains a sequence of immediate child nodes in the
subtree, it will be () for leaf nodes.

Finally, based on the description of operations in
GumTree [14], it will be straightforward to give the operation
definitions under the AST definition.

Definition 2. A GumTree operation is one of the following
AST node changes:

o update(t,t'): replace the subtree rooted ¢ with a subtree
rooted t/;

o delete(t): deletes subtree rooted node ¢.

o insert(t,t’,i): adds a new node t as the i’ child of node
t' if ¢’ is not L. Otherwise, ¢ is the new root node and
the previous root node will be the only child of ¢.

o move(t,t',7): moves subtree rooted node ¢ to be the i*"
child of node ¢'.

Particularly, we discard all move operations in the mapping
process as it mainly changes the code structure but not the API
itself, which is hard to be automatically analyzed as misuses.
Next, we use the operations shown in Figure 4 as examples to
demonstrate the mapping process in detail. According to the
explanation for each category of API misuses in Section III-B,
the operation delete(t1) will be classified as redundant API
call, while the operation update(t2,t2') will be classified as
Replaced name of API call. In particular, when the name and
arguments of a method call are changed together, the opera-
tions will be combined as one Replaced name and arguments
(e.g., updating createStatement () tO prepareStatement (
string) in Figure 1). For the operation move(t4,t5,2), we
simply ignore it and in fact it does not misuse any API. Finally,
as for the operation of insert(t5,t3, 2), from the figure we can
see that a NULL check condition for the variable window is
inserted, which is the returned value of API getwindow (). As a
consequence, it will be classified as missing both NULL checks
and Return value. Additionally, variable window is further used
by API setwindowAnimations () that has control-dependency
on the condition w.r.t. window. As a result, it will be classified
as Object state as well. Thus, one operation may be classified
into multiple categories in Condition. Based on this process,
we automatically classify GumTree operations into different
categories for further analysis.

IV. EMPIRICAL RESULT ANALYSIS

According to the previous sections, we collect a large
number of API misuses in real-world projects. In this section,
we conduct various empirical studies and discuss the results.

A. Distributions of API Misuses

In this research question, we count the number of edit
operations from GumTree for API misuses and non-API mis-
uses, and then analyze the distribution of different categories
of API misuses. The result shows that there are 576,515
studied operations involving API misuses, which is about
51.7% of all edit operations (i.e., 48.3% for non-API misuses).
This finding shows that developers tend to introduce API
misuses frequently in modern software development. One
potential reason is that developers are using more and more
third-party libraries to save development efforts and improve
code quality. To our best knowledge, this is the first study
quantitatively demonstrating the importance of API-misuse in
modern software systems.

TABLE I: Distribution of API misuses

Category Missing Redundant
API call 142,206 (24.67%) | 54,101 (9.38%)
Synchronization 308 (0.05%) 58 (0.01%)
NULL checks 11,750 (2.04%) 1,320 (0.23%)
Condition Return value 21,900 (3.80%) 3,162 (0.55%)
Object state 29,873 (5.18%) 4,330 (0.75%)
Total 63,523 (11.02%) 8,812 (1.53%)
Try 6,118 (1.06%) 790 (0.14%)
Exception Catch 7,183 (1.25%) 1,152 (0.20%)
Total 13,301 (2.31%) 1,942 (0.34%)
Rep Receiver 101,985 (17.69%)
Rep Name 45,963 (7.97%)
Replaced API | Rep Args 52,277 (9.07%)
Rep Name&Args 20,744 (3.60%)
Total 220,969 (38.33%)

Table I presents the distributions of different categories of
API misuses described in Section III-B. In the table, the first
column represents the categories of misuses, and the last two
columns represent the number of operations for missing and
redundant misuses, respectively. Particularly, the percentage
in the table represents the number of operations over that
of all API-related operations (i.e., 576,515). As explained
before, different categories may overlap each other (e.g.,
NULL checks and Return value). Besides, we also separately
list the number and percentage of operations related to misuses
of Replaced API, which is an important category in the study.
In addition, for clarity, we omit the operations that are not
related to API misuses as they are not the focus of this paper.
From this table, we have following findings.

First, API call and Replaced API misuses are more
prevalent. From the table, the percentages of operations about
API call and Replaced API are more than 70%. Particularly,
38.33% misuses are about Replaced API, which are more than
any other types of API misuses. By analyzing the data, we find
that one important reason for such a large portion of Replaced
API misuses is that most of APIs share similar signatures
when their functionalities are close. Therefore, if developers
do not well understand the difference between APIs, they tend
to be confused and use a wrong API. For example, when one

wants to only get the miliseconds of current time, System.
currentTimeMillis () is a preferable API with high efficiency.
However, developers tend to misuse the API new Date().
getTime (), which is simply a wrapper of the former. Due
to the new pate object, the latter API may cause performance
issues, especially when it is intensively used in time-critical
programs. Therefore, if possible, it is better to directly use the
API system.currentTimeMillis () to speed up the underlying
system. The result demonstrates the importance of Replaced
API misuses, and more research efforts are informed to be
dedicated to detecting such misuses.

Second, missing API is more prevalent than redundant.
The results show that developers tend to miss some API
calls or handlers (such as Condition, Synchronization, and
Exception) rather than writing redundant ones. For example,
the percentage of missing API calls is 24.67%, almost three
times higher than the opposite. Similarly, the percentage of
missing condition is also much higher than that of redundant
condition (11.02% vs 1.53%).

Finding 1: (1) API call and Replaced API are the most
prevalent API misuses, and Replaced API misuses ac-
counts for the largest portion among all misuses, calling
for new detection approaches. (2) Developers tend to
miss some components to satisfy the constraint of a
certain API.

B. Frequencies of API Misuse Patterns

In Section IV-A, we have performed quantitative analysis on
API misuses. In this research question, we further qualitatively
analyze the misuse patterns mined from the studied dataset. We
first extract a ranked list for each misuse category according to
the cross-project frequencies. The reason we consider cross-
project frequencies is that the mined patterns should be more
helpful in detecting unknown misuses if they widely exist in
more various projects. We remove patterns related to printing

and logging because they are usually for debugging and
maintenance purposes; we also remove APIs with “Android”
and “Javax” since we target general Java programs. Table II
presents the popular misuse patterns for each general category.
Column 1 denotes the category names. Column 2 presents
the top-5 popular patterns for each category. Column 3 and
4 show the number of projects in which the corresponding
pattern appeared and the total number of pattern occurrences,
respectively. From this table we have following findings.

First, API misuses related to class java.lang.String

account for the vast majority of all misuse patterns.
For example, 18 out of 45 misuses in all categories are from
the class of string. Also, for both missing API and missing
condition misuses, all top-5 API patterns are related to string
. Specifically, we have the following observations. (1) For the
missing condition, most patterns miss checking if the index
of a substring or a character inside a string is valid, such as
String.charat (int). (2) There are various ways to fix bugs
related to API misuses. For example, to deal with potential

bugs of string.lastIndexOf (String), inserting either con-
dition or exception handling is reasonable in historical bug-
fixing dataset. The findings show the importance of string
and guide developers how to detect and fix misuses related to
String by mining bug-fixing dataset.

Second, most Replaced API misuse patterns are related
to the names and arguments in the same class, even though
the Replaced Receiver is the majority in Table I. For example,
developers tend to misunderstand between Integer.valueOf
(String) and Integer.parselnt (String), where the former
returns an Integer object while the latter returns a primitive
int value.

Third, it is possible to design an automated technique
based on the mined patterns to detect unknown misuses
in other projects. For example, there is a misuse pattern
File.mkdir ()=>File.mkdirs () in the ranking list. We have
detected such misuses existing in Apache projects, and one
submitted pull request has been accepted by developers, shown
in Figure 7. In fact, there are many valuable patterns in the
ranking list and we will introduce how we are inspired to
improve misuse detection in the following two sections.

Finding 2: (1) API misuses related to class java.lang
.String account for the vast majority of all misuse
patterns. (2) Most frequent Replaced API misuse patterns
are related to the names and arguments in the same class.
(3) The frequent API misuses in Table II informs new
misuse detection techniques.

C. Study of API Misuse Detection on MUBENCH

In this section, we present the potential recall of misuse de-
tection on the recently widely used benchmark MUBENCH [1],
[12] with the patterns mined from our dataset. We manually
analyze the fix patterns in the MUBENCH and then check
whether the same patterns exist in the studied dataset. We
assume that an ideal detection approach can accurately mine
API-misuse patterns from historical fixes if at least one fix
instance exists in the dataset. In addition, to explore the
complementariness to existing approaches, we also include
the results of state-of-the-art misuse detection approaches,
including MutAPI [15], DMMC [2], Jadet [8], Tikanga [51]
and GrouMiner [47].

Figure 5 presents the overlaps of misuses detected by
different approaches, where “This work” denotes the results
mined from our dataset. As a result, the 53 misuse examples in
MUBENCH involve 32 different kinds of API-misuse patterns
(multiple examples may relate to a same pattern), and 12
patterns can be found in our dataset, which correspond to 22
misuse examples. In other words, 22 misuses in MUBENCH
potentially can be detected with the patterns mined from
historical bug fixes. Besides, 7/12 misuse patterns cannot be
detected by any existing approaches, indicating that mining
misuse patterns from large-scale historical bug fixes has the
potential to further improve the effectiveness of API misuse
detection. For example, the API misuse of string.getBytes ()

TABLE II: Top-5 frequently appeared fixing patterns for each category in our dataset.

Cat. | Pattern #Proj Occur | #Occur |[Cat. [Pattern #Proj Occur | #Occur
2 | StringBuilder.append(String) 193 255 StringBuilder.append (String) 615 995
L -g‘ String.toLowerCase () 92 125 s %ﬂ String.trim() 458 676
& £ | system.exit (int) 89 109 & & | string.toLowerCase () 380 682
<E String.trim() 87 110 <§ String.replace (String, String) 305 439
[List<String>.add (String) 69 94 String.replaceAll (String, String) 294 421
L g | Class.forName (String) 44 59 & 0 String.replaceAll (String, String) 152 202
2 5 | java.text.SimpleDateFormat.parse (String) 22 27 .S £ | Thread.sleep (int) 135 160
& £ | Class<?>.newInstance () 20 34 2 g | org.json.JSONObject.getString (String) | 112 138
2 2 File.isDirectory () 17 21 2 = | String.lastIndexOf (String) 109 127
o & §‘awaitTerm"watlo'w(mt,concurre'wt."l"wmeUmt) 11 12 =) BufferedReader.readLine () 88 107
| 2| 0Object.notifyAll() 13 18 | Object.wait () 7 7
£ § | object .wait (long) 4 5 £ 2 | List<String>.add (int,String) 6 6
B _5 * .Database.create (T .ProcessInstanceTmpl) 3 6] % | t.configuration.getString (String) 4 5
] *.Database.begin () 3 6 u>f§ Object.notify () 4 5
& | * Database.commit () 3 6 Map<9,||>.get (mperm.getActionEffect ()) |3 4
L g | string.substring(int) 499 590 & I, String.substring(int, int) 928 1108
c .§ File.mkdir () 61 65 .S £ | Sstring.length() 607 709
5 § | HashMap<String, String>.put (String, String) 42 52 5 % | Integer.parselnt (String) 444 542
5 | reflect.Field.getType () 29 33 §S | string.indexOf (String) 263 306
O & | request.getSession () .getAttribute (String) 26 32 O String.charAt (int) 230 254
— | String.split (String)=>String.split (String, int) 89 127
A § String.equals (String)=>String.equalsIgnoreCase (String) 87 189
% a Scanner.next () =>Scanner.nextLine () 83 118
:ﬂé Integer.valueOf (String)=>Integer.parselnt (String) 75 124
String.getBytes ()=>String.getBytes (java.nio.charset.Charset) | 70 110

In this table, we omit all the commonly used package declaration for clarity, such as java.lang, java.util and java.io.
#: package of org.exolab.castor. jdo, {: package of engine.instance, I: package of org.apache.commons.configuration
§: package of concurrent .ExecutorService, : Action.ActionEffect, ||: org.jboss.as.controller.access.permission.ManagementPermission

DMMC

MutAPI

This work Tikanga

Fig. 5: Overlaps of API-misuse analysis on MUBENCH.

(should be replaced with string.getBytes ("UTF8")) cannot
be detected by any existing approaches, while thousands of
bug fixes of this pattern exist in our dataset.

However, detecting API misuses based on historical fixes is
not easy since some patterns are still less prevalent and hard
to learn, such as adding try-catch for sortedvap.firstKey
(), which only occurred once in history. Therefore, learning
patterns from a small number of examples is desirable, which
is also the key challenge for automatic techniques. Neverthe-
less, the result shows that detecting API misuses by mining
historical fixing commits has the potential to further improve
existing techniques and the recent study by Nielebock et
al. [59] also confirms this conclusion. Therefore, more research
can be carried out on this topic.

Finding 3: 7 misuse patterns in MUBENCH cannot be
detected by any existing approaches but exist in our
dataset, indicating the potential to further improve the
effectiveness of API misuse detection.

D. Study of API Misuse Detection on Apache Projects

In this section, we explore whether the dataset and patterns
from previous analysis can be applied to API-misuse detection
in the latest Apache projects.

Patterns. We select 10 misuse patterns of Replaced API
from the ranking list obtained in Section IV-B. The reason
we select Replaced API misuses is that the detection of such
misuses has not been evaluated systematically, and according
to the statistical analysis in Section IV-A it accounts for
the most majority in history. Also, since some Replaced
API misuse patterns have been studied by existing popular
detectors, e.g., Findbugs [60], Infer [61] and SpotBugs [62],
we select the 10 patterns that cannot been detected by any of
these detectors and thus will complement them. The details of
the patterns are listed in Table III.

Dataset. We use the latest Apache projects as our experi-
mental dataset. The reasons are twofold. First, those projects
are widely used by both commercial corporations and re-
searchers, and thus the quality of projects can be relatively
reliable. Second, most of them are well maintained and we
potentially can get quick feedback. As a result, we download
688 Apache projects in total.

Procedure. First, we manually analyze the usage constrains
and repair histories per pattern to build corresponding heuristic
rules. To assist our analysis, we have implemented a simple
tool to encode such heuristics via static program analysis.
Then, we run the tool over the experiment dataset, and poten-
tial API misuses will be reported. Next, we randomly sample
100 reports (if exist) per pattern for manual confirmation. Two
authors manually check them and discuss to reach a consensus
for disagreements. Finally, we report the confirmed misuses to
maintainers as many as possible.

Results. Table III shows the empirical results. In the table,
the first column represents the patterns. The following columns
show the number of misuses that are reported, sampled for
manual inspection, confirmed by us, submitted to project
maintainers, accepted and merged as true misuses, and rejected
as false positives. All above data are updated until the paper
submission. From the table, we can find 57 out of 149 reported
instances are real misuses and 15 are rejected, indicating the
potential of building more practical API-misuse detection tool
via leveraging our mined patterns. However, the current tool
implementation still depends on our handcrafted detection

TABLE III: Detected API misuses and the feedback of submitted pull requests.

Pattern Reported | Sampled | Confirmed | Submitted | Accepted | Rejected
JSONObject.getString (String)
3 3
=>JSONObject.optString(String) 17 17 13 1 0
JSONObject .get JSONArray (String) 6 6 3 2 0 0
=>JSONObject .opt JSONArray (String) -
JSONObject .get JSONObject (String) 9 9 1 1 1 0
=>JSONObject .opt JSONObject (String)
java.io.File.mkdir ()
1 1 1 1 4
=>java.io.File.mkdirs () 6 6 0 0 6
String.replaceAll (String, String)
1 1 4 1
=>String.replace (String, String) 798 00 87 6 6 8
j . 1.C ti . teStat t
Jjava éq onnection cFea eStatement () ' 70 70 9 9 0 0
=>7java.sqgl.Connection.prepareStatement (String)
concurrent .Executors.newCachedThreadPool () 9 9 4 3 1 0
=>concurrent .Executors.newFixedThreadPool (int)
Date.getTime ()
1 2 1 3
=>java.lang.System.currentTimeMillis () 339 00 %9 0 0
java.io.FileWriter.close ()
4 4 1 3 2
=>java.io.BufferedWriter.close () ! ! 6 0 0 0
String.equals (String)
203 1
=>0bjects.equals (String, String) 5,20 00 73 6 0 0
Total 7,541 501 360 149 57 15

private void migrateTagsInResult (String
hostAddress, ...){

updateTagsForHit (updated, hit.getString ("_id")
reee)i

+++ updateTagsForHit (updated, hit.optString ("_id")

peee)i

if (hitsObject.getInt ("total")>currentOffset) {
migrateTagsInResult (..., rJSON.getString ("
_scroll_id"));
migrateTagsInResult (..
_scroll_id"));

+++ ., rJSON.optString ("

} //https://github.com/apache/unomi/commit/
cd447224

Fig. 6: Accepted JsoNObject.getString() misuse

rules. Effective and automated rule mining techniques should
be further explored, such as combining machine learning
techniques [52] to characterize more context features, etc.

Details of API-misuse patterns. For clarity, we omit the
class scope of APIs in Table III if no ambiguity will be caused.

JSONObject.getString (String)=>JSONObject.optString
(string). The former API will throw JSoNException when
the Jgsonobject does not has the query attribute (i.e., the
given argument), which may crash the program if it is
not handled. Therefore, to detect such misuses, we search
the usages of the API where the exception is not properly
tackled. Figure 6 shows one accepted misuse in project
Apache Unomi. In this example, the queried keys may not
exist and exceptions will be thrown and crash the program.
As a result, they are immediately confirmed and fixed
after reporting to maintainers. getJSONArray (String) and
getJSONObject (String) are similar.

File.mkdir ()=>File.mkdirs (). Both File.mkdir() and
File.mkdirs() are used to create a directory and return a
boolean value to indicate whether the creation succeeds or
not. The difference is the latter can recursively create the
directories when nested paths do not exist, while mkdir cannot.
The failure of directory creation may cause file access errors
during program running, and is hard to debug. Therefore, when

private Mpack downloadMpackMetadata (String
mpackURI) throws IOException {

File stagingDir = new File (mpackStaging.
toString()+File.separator +
MPACK_TAR_LOCATION) ;

if (!stagingDir.exists()) {

stagingDir.mkdir () ;
stagingDir.mkdirs () ;

} ...} //https://github.com/apache/ambari/
commit/b99bb28

+++

Fig. 7: Accepted File.mkdir () misuse

private void runBenchmarkTasks () throws
Exception {
- ExecutorService executor = Executors.
newCachedThreadPool () ;
+++ ExecutorService executor = Executors.
newFixedThreadPool (tasks.size());

} //https://github.com/apache/bookkeeper/commit
/0988el2

Fig. 8: Accepted newCachedThreadPool () misuse

creating a nested directory, the return value of the API call
should be checked to avoid potential errors. Otherwise, mkdirs

should be used to ensure the success of creation. Figure 7
shows one accepted misuse in project Apache Helix.

Executors.newCachedThreadPool () =>Executors.
newFixedThreadPool (int). Both APIs can create a
thread pool in multiple-thread environment. However,

newCachedThreadPool () has no bounded thread number
and newFixedThreadPool (int) can set the maximal thread
number. In this case, newCachedThreadPool () may consume
more and more memory if it is not constrained and the system
will risk in crashing and throwing outofMemoryException.
To detect this kind of misuse, we focus on the cases that
executors created from newCachedThreadpPool () submit tasks
in a loop without constraints. Figure 8 shows one accepted
misuse in project Apache bookkeeper.

String.replaceAll (String, String)=>String.replace
(string, string). Both APIs replace all occurrences of

a string with others. However, the first argument for
replaceAll is a regular expression, while plain text for
replace. Compiling regex patterns will be more complex
and consequently slower so we detect the misuse of the API
replaceall if it takes a plain string as the argument.

Connection.createStatement () =>Connection.
prepareStatement (String). Both APIs are used to execute
SQL statements in Java. However, the former will highly
degrade the performance of database access if intensively
executing the same SQL statements in a loop. In this
case, prepareStatement (String) should be used to enable
the database to precompile the SQL statements and gain
a better performance. We detect this kind of misuse by
focusing on the case that an object of statement created by
createStatement () is used in a loop.

Date.getTime () =>System.currentTimeMillis (). We de-
tect this kind of misuses by checking if the object of class
pate only invokes the method getTime (). The reason is that
new Date () for creating the pate object is simply a wrapper
of method system.currentTimeMillis (). If it is intensively
invoked in the program, the performance will be damaged.
Using the method system.currentTimeMillis() can also
avoid creating the temporary pate object.

FileWriter.close () =>BufferedWriter.close().
Indeed, this misuse is caused by creating a wrong writer
object, i.e., FileWriter but not Bufferedwriter. Large
amount of input and output (IO) operations will significantly
affect the performance of the program. BufferedWriter
can effectively reduce the times of IO access with caches.
Therefore, we detect such misuses by searching Filewriter
object that is intensively used in a loop.

String.equals (String) =>Objects.equals (String,
string). Both APIs are used to check if two string values
are same. However, It is possible that the first string
in String.equals(String) may be NULL so that the
NullPointerException would be thrown. We detect this
kind of misuses by checking the possibility of causing
NullPointerException. That is, there is no guard condition
to check the nullness of the object before using.

As discussed above, a lot of submitted misuses have been
accepted by maintainers. However, there are 15 misuses are re-
jected. We investigate these misuses and find some major rea-
sons as follows. (1) There are no performance differences be-
tween two APIs in a sample or small project. For example, in
project Apache CXF, the project maintainer rejected our sub-
mitted misuse by claiming that system.currentTimeMillis ()
and new Date () .getTime () would not make the difference
since this case occurs in a sample (small) project under
Apache CXF. In Apache NetBeans, the project maintainer
doubts that the change File.mkdir ()=>File.mkdirs () iS just
a theoretical problem so they reject our pull request. (2)
The submitted cases will change the code style of the entire
project. For example, in project Apache NetBeans, the project
maintainers claim that the change pate.getTime () =>System
.currentTimeMillis () will reduce the readability since other
Date cases can not be changed due to the context.

Finding 4: Based on the 10 Replaced misuse patterns,
we have reported 149 misuses in latest Apache projects;
57 of them have been fixed by project maintainers so far.

V. THREATS TO VALIDITY

The threats to external validity lie in the dataset used. To
collect a large set of data for analysis, we mined bug-fixing
commits from GitHub repositories. The dataset may be noisy
for different reasons (i.e., not real bug fixes). We also define
API misuses as code edit operations related to some APIs in a
bug fix. In fact, it may also inaccurate results. The reasons are
twofold. First, API misuses may occur in regular code changes,
while we compute the percentage of API misuses over the
operations from bug-fixing commits. Second, edit operations
related to APIs may be not real API misuses.

The threats to internal validity relate to our implementation.
To reduce errors, we use GumTree to extract AST operations,
which is widely used in previous studies [30], [36], [37], [56].
However, we cannot get certain misuse categories, such as
missing NULL checks directly from GumTree. Therefore, we
revise GumTree by adding detailed program analysis to map
operations to our classifications. To mitigate the threats of
categorization noise from GumTree, we sample 100 opera-
tions for each category and confirm that 76% operations are
correctly classified. Furthermore, we carefully review our code
and scripts to ensure their correctness as much as we can.

VI. CONCLUSION

In this paper, we conduct an extensive empirical study
on API misuses based on 528,546 bug-fixing commits. We
extract fine-grained edit operations on AST of source code
and classify them into different categories of API misuses.
We also extract various frequent API-misuse patterns based
on the categories. The results show that API misuses are
prominent in practice and provide a set of guidelines for future
research. Finally, based on our dataset, we perform a user
study to manually analyze the usage constraints of 10 patterns
to explore whether the mined patterns can guide the design
of future API-misuse detection tools. The results show that
57 misuses (out of 149 reported misuses) have been fixed,
indicating the importance of historical API misuses and the
promising future for API-misuse detection. However, the cur-
rent implementation still depends on our handcrafted detection
rules. Effective and automated rule mining techniques should
be further explored, such as combining machine learning [52]
to characterize more context features, etc.

All experimental data and source code are open-source that
can be downloaded at: https://github.com/BID3/BID3.

ACKNOWLEDGEMENTS

This work was partially supported by National Key Re-
search and Development Program of China under Grant
No. SQ2019YFE010068, National Science Foundation under
Grant Nos. CCF-1763906 and CCF-1942430, Alibaba, and
National Natural Science Foundation of China under No.
61922003.

[1]

[2]

[3]

[4]

[5

[ty

[7

—

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, 2018.

M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 22, no. 1, p. 7, 2013.

“Github website,” 2019. [Online]. Available: https://github.com/
“Sourceforge website,” 2019. [Online]. Available: https://sourceforge.
net/

“Jira website,” 2019. [Online]. Available: https://www.atlassian.com/
software/jira/

M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” Empirical
Softw. Engg., vol. 20, no. 1, pp. 176-205, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1007/s10664-013-9282-8

C. Lindig, “Mining patterns and violations using concept analysis,” in
The Art and Science of Analyzing Software Data. Elsevier, 2015, pp.
17-38.

A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 2007, pp. 35-44.

M. Acharya and T. Xie, “Mining api error-handling specifications from
source code,” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2009, pp. 370-384.

S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in Proceedings of the 31st International
Conference on Software Engineering. 1EEE Computer Society, 2009,
pp. 496-506.

——, “Alattin: Mining alternative patterns for detecting neglected condi-
tions,” in Proceedings of the 2009 IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 2009,
pp. 283-294.

S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“Mubench: a benchmark for api-misuse detectors,” in 2016 IEEE/ACM
13th Working Conference on Mining Software Repositories (MSR).
IEEE, 2016, pp. 464-467.

“Github archive website,” 2019. [Online]. Available: https://www.
gharchive.org/

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering. ACM, 2014, pp. 313-324.

M. Wen, Y. Liu, R. Wu, X. Xie, S.-C. Cheung, and Z. Su, “Exposing
library api misuses via mutation analysis,” in Proceedings of the
41st International Conference on Software Engineering. 1EEE Press,
2019, p. 866877. [Online]. Available: https://doi.org/10.1109/ICSE.
2019.00093

L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation testing,”
in 2010 IEEE International Conference on Software Maintenance.
IEEE, 2010, pp. 1-10.

G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring project-specific bug
patterns for detecting sibling bugs,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering. ACM, 2013,
pp. 565-575.

D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not too
many,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering. ACM, 2007,
pp. 9-14.

C. C. Williams and J. K. Hollingsworth, “Automatic mining of source
code repositories to improve bug finding techniques,” IEEE Transactions
on Software Engineering, vol. 31, no. 6, pp. 466-480, 2005.

X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169-180.

X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, pp. 1-30, 2017.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to
localize developer faults for evolving software,” in OOPSLA, 2013, pp.
765-784.

L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), 2011, pp.
23-32.

M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605-628, 2015.

S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Interna-
tional Conference on Software Testing, Verification and Validation, 2014,
pp. 153-162.

Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang,
“Can automated program repair refine fault localization? a unified
debugging approach,” in ISSTA, 2020, to appear.

X. B. D. Le, D. Lo, and C. L. Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), March 2016, pp. 213-224.

A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19-30.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2018, pp. 298-309.

H. Zhong and Z. Su, “An empirical study on real bug fixes,”
in Proceedings of the 37th International Conference on Software
Engineering, ser. ICSE ’15, 2015, pp. 913-923. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818864

M. Soto, F. Thung, C. Wong, C. Le Goues, and D. Lo, “A deeper look
into bug fixes: Patterns, replacements, deletions, and additions,” in 2016
IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), May 2016, pp. 512-515.

K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of
bug fix patterns,” Empirical Softw. Engg., vol. 14, no. 3, pp. 286-315,
2009. [Online]. Available: http://dx.doi.org/10.1007/s10664-008-9077-5
R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437-440.

V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a bug dataset: Anatomy of 395
patches from defects4j,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1EEE,
2018, pp. 130-140.

M. Martinez and M. Monperrus, “Coming: A tool for mining change
pattern instances from git commits,” in 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). 1EEE, 2019, pp. 79-82.

F. Madeiral, T. Durieux, V. Sobreira, and M. Maia, “Towards an
automated approach for bug fix pattern detection,” arXiv preprint
arXiv:1807.11286, 2018.

Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: A large-scale empirical study,” in 2017 IEEE/ACM 14th In-
ternational Conference on Mining Software Repositories (MSR), May
2017, pp. 413-424.

N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in java: Challenges and vulnerabilities,” in Proceedings
of the 40th International Conference on Software Engineering, ser.
ICSE ’18. New York, NY, USA: ACM, 2018, pp. 372-383. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180201

Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in javascript,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 144-156. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950308

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[61]

R. Yue, N. Meng, and Q. Wang, “A characterization study of repeated
bug fixes,” in 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2017, pp. 422-432.

H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan,
“A study of repetitiveness of code changes in software evolution,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Nov 2013, pp. 180-190.

B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and
P. Devanbu, “On the “naturalness” of buggy code,” in Proceedings
of the 38th International Conference on Software Engineering,
ser. ICSE ’16. ACM, 2016, pp. 428-439. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884848

B. Livshits and T. Zimmermann, “Dynamine: finding common error
patterns by mining software revision histories,” in ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 296—
305.

Z.Liand Y. Zhou, “Pr-miner: automatically extracting implicit program-
ming rules and detecting violations in large software code,” in ACM
SIGSOFT Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp.
306-315.

M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing method
calls in object-oriented software,” in European Conference on Object-
Oriented Programming. Springer, 2010, pp. 2-25.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
ESEC/FSE. New York, NY, USA: ACM, 2009, pp. 383-392. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595767

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug fixes in object-oriented programs,” in Pro-
ceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 315-324.

M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive infer-
ence of function precedence protocols,” in 29th International Conference
on Software Engineering (ICSE’07), May 2007, pp. 240-250.

M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specification
inference using predicate mining,” in ACM SIGPLAN Notices, vol. 42,
no. 6. ACM, 2007, pp. 123-134.

“Infer website,” 2019. [Online]. Available: https://fbinfer.com/

(51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[62]

A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” in Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 09, 2009,
pp- 295-306. [Online]. Available: https://doi.org/10.1109/ASE.2009.30
T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recommending
api usages for mobile apps with hidden markov model,” in 2015 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2015, pp. 795-800.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation,” in ASE, 2018, pp.
832-837.

J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transfor-
mations from singular examples via big code,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 255-266.

A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 1, p. 141, Jan. 2005.

K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software
Engineering, 2018.

A. Hajnal and I. Forgacs, “A precise demand-driven definition-use
chaining algorithm,” in Proceedings of the Sixth European Conference
on Software Maintenance and Reengineering, March 2002, pp. 77-86.
M. J. Harrold and M. L. Soffa, “Efficient computation of interprocedural
definition-use chains,” ACM Trans. Program. Lang. Syst., no. 2, pp. 175—
204, 1994.

S. Nielebock, R. Heumiiller, and F. Ortmeier, “Commits as a basis
for api misuse detection,” in Proceedings of the 7th International
Workshop on Software Mining, ser. SoftwareMining 2018. New
York, NY, USA: ACM, 2018, pp. 20-23. [Online]. Available:
http://doi.acm.org/10.1145/3242887.3242890
“Findbugs website,” 2019. [Online]. Available:
sourceforge.net/

“Spotbugs website,” 2019. [Online]. Available: https://spotbugs.github.
io/

http://findbugs.

	introduction
	Background and Related Work
	Analysis of Historical Bug Fixes
	Studies on API-misuse Detection

	Empirical Study
	Data Collection
	Categorization of API Misuses
	Edit Operation Extraction

	Empirical Result Analysis
	Distributions of API Misuses
	Frequencies of API Misuse Patterns
	Study of API Misuse Detection on MuBench
	Study of API Misuse Detection on Apache Projects

	Threats to Validity
	Conclusion
	References

