
A Large-scale Study on API Misuses in the Wild

Xia Li

Department of Software Engineering and

Game Design, Kennesaw State University

xli37@kennesaw.edu

Jiajun Jiang†

College of Intelligence and

Computing, Tianjin University

jiangjiajun@tju.edu.cn

Samuel Benton

Department of Computer Science,

The University of Texas at Dallas

Samuel.Benton1@utdallas.edu

Yingfei Xiong

Key Laboratory of High Confidence Software

Technologies (MoE); DCST, Peking University

xiongyf@pku.edu.cn

Lingming Zhang

Department of Computer Science,

University of Illinois at Urbana-Champaign

lingming@illinois.edu

Abstract—API misuses are prevalent and extremely harmful.
Despite various techniques have been proposed for API-misuse
detection, it is not even clear how different types of API misuses
distribute and whether existing techniques have covered all major
types of API misuses. Therefore, in this paper, we conduct the
first large-scale empirical study on API misuses based on 528,546
historical bug-fixing commits from GitHub (from 2011 to 2018).
By leveraging a state-of-the-art fine-grained AST differencing
tool, GumTree, we extract more than one million bug-fixing
edit operations, 51.7% of which are API misuses. We further
systematically classify API misuses into nine different categories
according to the edit operations and context. We also extract
various frequent API-misuse patterns based on the categories
and corresponding operations, which can be complementary to
existing API-misuse detection tools. Our study reveals various
practical guidelines regarding the importance of different types
of API misuses. Furthermore, based on our dataset, we perform
a user study to manually analyze the usage constraints of 10
patterns to explore whether the mined patterns can guide the
design of future API-misuse detection tools. Specifically, we find
that 7,541 potential misuses still exist in latest Apache projects
and 149 of them have been reported to developers. To date, 57
have already been confirmed and fixed (with 15 rejected misuses
correspondingly). The results indicate the importance of studying
historical API misuses and the promising future of employing our
mined patterns for detecting unknown API misuses.

Index Terms—Pattern generation, Program adaptation, Code
abstraction

I. INTRODUCTION

Over the past decades, software systems have been widely

used in almost all aspects of human lives, and are making our

lives more and more convenient. However, software systems

also inevitably suffer from bugs or faults, which can incur

significant loss of properties and even lives. During modern

software development, developers always reuse Application

Programming Interfaces (APIs) provided by third-party li-

braries and frameworks rather than implementing from scratch

to improve work efficiency and code quality. As a result, API

related bugs spread widely due to API misuses, reducing soft-

ware performance or causing software crashes [1], [2]. In Java,

for example, the correct way to create a new thread is to call

† Corresponding author.

API Thread.start(), while Thread.run() is often misused,

which does not create new threads. Therefore, analyzing the

behaviors of API misuses is essential and can provide practical

guidance for software development, especially the detection

of API misuses. Such misuse behaviors can be potentially

obtained from historical bug fixes.

A large number of historical bug fixes are publicly avail-

able on open-source platforms (e.g., GitHub [3] and Source-

Forge [4]) and issue tracking systems (e.g., JIRA [5]). Many

researchers have conducted various studies to analyze bug

fixes and have many findings. For example, Martinez and

Monperrus [6] found that most bug fixes are related to more

than one source file, and statement-level code changes (e.g.,

inserting or deleting a statement) are most prevalent by analyz-

ing 89,993 historical bug fixes. Even though these researchers

have studied historical bug fixes, they only examined a small

dataset, and the findings could be limited. In this paper, we

conduct a study on API misuses by analyzing much more

comprehensive bug-fixing dataset than any prior work.

Many techniques define API misuses as violations of certain

frequent API usage patterns which are mined from source

code [7]–[11]. These techniques were evaluated to be effective

on some kinds of misuses. However, a recent study on state-

of-the-art API-misuse detectors [1] shows that API misuses

are prevalent and existing API-misuse detectors suffer from

extremely low precision and recall on the widely used API-

misuse dataset MUBENCH [12]. MUBENCH includes only

89 API misuses from 33 real-world projects, which not only

makes it hard to analyze the distribution of various API

misuses but also incurs dataset overfitting issues for evaluating

existing API-misuse detection techniques.

Due to the limited amount of dataset in previous studies

of bug-fixing and API misuses, in this paper, we conduct a

more systematic and extensive empirical study by analyzing

a large-scale bug-fixing dataset. We start with mining the

historical repositories from GitHub Archive [13] that records

the public GitHub timeline dataset. Then, we extract all bug-

fixing commits of Java projects from 2011 to 2018 according

to specific search criteria, resulting in 528,546 bug-fixing com-

mits. Finally, we extract fine-grained edit operations on AST



(Abstract Syntax Tree) of buggy and fixed source code via

leveraging GumTree [14] to identify API misuses. Following

existing studies [1], we classify API misuses into different

categories and statistically analyze their distributions. From

the statistical results, we observe various practical guidelines

regarding the importance of different categories of API mis-

uses. For example, API calls (missing/redundant) are the most

frequent (34.05% of all API misuses) and synchronization is

the least frequent (0.06% of all API misuses). In addition,

we find that about 38.33% API misuses are replacing API

components (i.e., arguments, receiver, or name), which have

never been systematically explored by any prior studies.

Inspired by the statistical results, we extract a large set

of frequent API-misuse patterns for each category, and carry

out two studies on API-misuse detection. (1) API-misuse

detection in MUBENCH. Following previous studies [1], [15],

we analyze how many API-misuse patterns in MUBENCH can

also be found in the historical bug fixes and compare the

results with existing state-of-the-art techniques. The results

show that 12 out of 32 unique patterns in MUBENCH have

already occurred before, and 7 of them cannot be detected

by any existing techniques, demonstrating the possibility to

build more effective misuse detection tools via analyzing

large-scale historical bug fixes. (2) API-misuse detection in

the wild. Based on our dataset, we perform a user study to

manually analyze the usage constraints of 10 representative

API-misuse patterns to explore whether the mined patterns

can guide the design of future API-misuse detection tools. The

results of the experiments on 688 Apache projects show that

the misuses extracted from historical records still exist in the

latest projects (7,541 potential API misuses in total). We have

reported 149 misuses to developers. Up to now, 57 of them

have already been confirmed and fixed while 15 are rejected.

The promising initial results indicate that the misuse patterns

complement existing approaches and can potentially improve

the practicability of future API-misuse detection techniques.

In summary, this paper makes the following contributions:

• Dataset. A publicly available dataset including 528,546

historical bug-fixing commits from GitHub (from 2011

to 2018).

• Study. An extensive study to analyze API misuses in the

wild and a systematic classification of them via static

analysis.

• Patterns. A large set of API-misuse patterns, which

complement existing API-misuse detection tools and can

be used for detecting unknown API misuses in the wild.

• Guidelines. Various practical guidelines regarding the

importance of different types of API misuses, such as (1)

among the API misuses covered by prior techniques, API

call is the most frequent (34.05%) while synchronization

is the least frequent (0.06%), (2) Replaced API misuses,

not covered by any prior techniques, account for the

largest portion among all misuses (38.33%), (3) misuse

patterns related to class java.lang.String account for

the vast majority of all patterns, and (4) most frequent

Replaced API-misuse patterns are related to APIs in the

same class.

• Application. Finally, we explore whether the dataset

and patterns can be applied to API-misuse detection

by leveraging 10 patterns and manually-defined heuristic

rules after analyzing the corresponding repair histories in

our dataset. The experimental results show that misuses

extracted from historical records still exist in the latest

versions of Apache projects (149 of them are reported

to developers, 57 have already been confirmed and fixed,

and 15 are rejected).

II. BACKGROUND AND RELATED WORK

In this section, we first introduce previous studies on his-

torical bug fixes and then discuss existing techniques working

on API-misuse detection.

A. Analysis of Historical Bug Fixes

During modern software development, a large number of

historical bug fixes get accumulated on open-source platforms

(e.g., GitHub and SourceForge) and issue tracking systems

(e.g., JIRA). Understanding and analyzing the historical bug

fixes can potentially provide practical guidelines for manual

or automated bug detection [16]–[19], localization [20]–[25],

and repair [26]–[30]. Therefore, various studies have been

conducted on historical bug fixes. Zhong and Su [31] built

a bug-fixing extraction tool named BugStat and analyzed

more than 9,000 real bug fixes from six popular open-source

Java projects. They found that most bug fixes only update

existing source code files and do not add or delete source

files. Additionally, they found that most bug fixes are related

to if conditions, which is also confirmed by Soto et al. [32].

Pan et al. [33] also analyzed the distribution of different bug-

fixing patterns from seven open-source projects. They found

that updating method call parameters and if conditions are

the most common bug fixes. Recently, the benchmark De-

fects4J [34] which includes various real bugs has been widely

used in the field of software debugging. Sobreira et al. [35]

studied 395 bugs in Defects4J and found that the top-3 most

applied bug-fixing actions (77% of the total bugs) are addition

of method calls, conditionals, and assignments. Martinez et

al. and Madeiral et al. proposed different bug detection tools

(Coming [36] and PPD [37] respectively) and evaluated them

on Defects4J benchmark with promising performance.

Besides, there were also studies on domain-specific bug

patterns or bug pattern distribution across different projects.

Wan et al. [38] used the card-sorting approach to analyze

the characteristics of bugs in Blockchain systems. Meng et

al. [39] conducted an empirical study on StackOverflow posts

related to code security, which revealed the huge gap between

security theory and coding practices, and informed effective

secure coding assistance. Similarly, Hanam et al. [40] studied

the bug patterns in JavaScript projects and found that the

same bug-fixing patterns exist among different JavaScript

projects. Additionally, this finding was further confirmed on

Java projects by Yue et al. [41] and Nguyen et al. [42].

Ray et al. [43] found that although source code is highly



repetitive and predictable (like natural languages), the buggy

code tends to be unnatural. After comparing with different

statistical models, they found that “entropy” is a relatively

good model to measure the similarity between code fragments,

which can be used in search-based bug-fixing approaches.

Although various existing studies have already conducted

on general software bugs, the API misuses have not been

systematically explored yet. Therefore, we aim to perform

an extensive study on the categorization and distribution of

API misuses in the wild, which complements existing re-

search. Furthermore, to the best of our knowledge, our study

involves 528,546 historical bug-fixing commits from open-

source projects and represents the most extensive study on

historical bug fixes to date.

B. Studies on API-misuse Detection

API usage is often subject to certain constraints [1]. For

example, a resource must be released or closed after it is used.

Violations of such usage patterns are regarded as API misuses.

A large number of techniques have been proposed to detect

API misuses automatically over the past decades.

Most approaches utilize data mining techniques to detect

API misuses. Livshits et al. [44] introduced DynaMiner,

aiming to mine software revision histories to detect misuses

violating method pairs or certain mined state machines. Simi-

larly, Li and Zhou [45] proposed PR-Miner to extract implicit

programming rules of APIs by leveraging frequent itemset

mining approaches on source code. Acharya and Xie [9]

proposed to mine specifications from static program traces.

Although such techniques utilize different data sources, they

share the same assumption that the more frequent a pattern

is, the higher possibility a pattern is correct. Other similar

techniques also include DMMC [2], [46], GrouMiner [47],

COLIBRI/ML [7], etc. Additionally, Wasylkowski et al. [8]

and Nguyen et al. [48] proposed to employ graph theories for

mining programming artifacts.

Researchers have also proposed data-mining-based tech-

niques to detect other specific types of API misuses. Williams

et al. [19] and Hovemeyer et al. [18] targeted missing

NULL pointer checks, while Thummalapenta and Xie focused

on exception-handling related misuses [10] and neglected-

condition misuses [11]. More recently, Liang et al. [17] aimed

at detecting missing NULL pointer and resource-leaking mis-

uses (e.g., missing API invocations to close resource accesses)

via analyzing existing bug fixes of the same projects.

Besides data mining, researchers also employed pro-

gram analysis and machine learning for API-misuse detec-

tion. Ramanathan et al. proposed CHRONICLER [49] and

RGJ07 [50], utilizing path-sensitive control-flow or data-flow

analysis to infer function precedence protocols or predicates.

Wasylkowski and Zeller [51] proposed TIKANGA to combine

static analysis with model checking for mining Computation

Tree Logic (CTL) formulas. Nguyen et al. [52] leveraged

Hidden Markov Model to check anomalies of call sequences.

Most recently, Wen et al. [15] applied mutation analysis to

discover API misuse patterns to improve the state-of-the-art.

Although various techniques have been proposed for de-

tecting different types of API misuses, it is not even clear

how different types of API misuses distribute among all

API misuses or projects. Whether the existing techniques

have covered all major types of API misuses is also not

investigated. Furthermore, the recent widely used API-misuse

dataset MUBENCH [12] includes only limited number of API

misuses, and is insufficient for evaluating API-misuse detec-

tion techniques. Therefore, in this work, we aim to perform

a systematic and extensive empirical study to characterize the

distribution of various types of API misuses in the wild and

construct a much larger dataset for API-misuse detection.

III. EMPIRICAL STUDY

In this section, we introduce how we construct our dataset

and conduct our study. We first introduce the collection of the

dataset used in our study (Section III-A), and then introduce

the categorization of API misuses (Section III-B). Finally, we

discuss how we apply source-code differencing to infer API

misuses from bug fixes (Section III-C).

A. Data Collection

We aim to mine API-misuse patterns from all bug-fixing

commits of Java projects on GitHub. To collect our dataset,

we first download all public GitHub events for all program

languages from GitHub Archive [13] between 2011 and 2018.

We then focus on Java projects and exclude all test cases since

they are not functional parts and cannot reflect API usages.

Next, following prior work [53], we identify a commit as a

bug fix if its commit message contains the keywords (“fix”

or “solve” or “repair”) and (“bug” or “failure” or “issue” or

“error” or “fault” or “defect” or “flaw” or “glitch”). Since

the commit message may not identify bug-fixing commits

accurately, we randomly select 100 commit samples, and two

authors independently analyze them to check whether they are

actual bug fixes. The result is that 94% of the identified bug-

fixing commits are real bug fixes, which provides us more

confidence for the subsequent analysis. We also keep only

unique commits by removing duplicates. Next, we download

the source files before and after the code change for each

bug-fixing commit. To mitigate the impact of irrelevant code

changes, we discard commits or files that meet any of the

following criteria.

• Commits with changes involving more than five Java files

or six lines of source code [53], [54], since such commits

may include many changes not related to bug fixes.

• Non-Java files as they are irrelevant to Java API misuses.

• Java files that deleted or newly introduced in the commits.

As a result, we finally get 528,546 bug-fixing commits

(including 220,053 projects and 744,000 pairs of buggy and

fixed files) for further API-misuse pattern mining.

B. Categorization of API Misuses

Following prior study [1], we define an API misuse as a pair

of a violation type and an API-usage element (e.g., API call,

iteration, condition, and exception handling) involved in a bug



fix. Besides the missing and redundant violation types studied

in prior study [1], in this paper, we further investigate the

type of replaced, describing that an API is incorrectly invoked

and should be replaced with another one. This type of API

misuses has never been systematically studied before, but is

prevalent in real-world projects (will be shown in the following

sections). In total, we classify API misuses into four basic

categories, including Condition, Exception, Synchronization

and API call, each of which consists of some specific sub-

categories. In the following, we demonstrate each category of

API misuses in detail.

Condition. This category includes missing and redundant

guard conditions for certain API invocations. Following the

previous study [1], we further categorize it into the following

three sub-categories:

• NULL checks. This sub-category indicates removing or

newly introducing an if condition with NULL checks for

the variable that is returned by a prior API call or will be

used as the receiver or an argument of a following API

call, e.g., o.API(); => if(o!=null){ o.API();}.

• Return value. This sub-category indicates the removed

or newly introduced if condition that checks the return

value of some APIs, e.g., o = API(); a = list.get(o)

; => o = API(); if(o < 0){o = 0;} a = list.get(o

);.

• Object state. This sub-category indicates the removed or

newly introduced if condition relates to some variables

that will be used in an API call immediately, e.g., a =

list.get(i); => if(i > 0){a = list.get(i);}.

Importantly, the three sub-categories of Condition are not

orthogonal to each other as one if condition may belong

to multiple categories. We will introduce this in detail in

Section III-C.

Exception. This category includes missing and redundant

exception handlers, following the definitions in the prior

work [1]. More specifically, we further divide this category

into two types of fine-grained code changes, i.e., inserting or

deleting Try or Catch blocks. The reason is that in the studied

commits, we find that some fixes are related to a complete

try-catch statement, but some others may only involve catch

blocks. Therefore, we analyze them separately. Especially, we

regard a try or catch as API-related iff there exist API calls in

the corresponding code block; otherwise, we consider it as API

irrelevant. Besides, like the Condition category introduced

above, a code change may involve both try and catch blocks.

In such cases, we record these two categories respectively.

• Try. This category subjects to addition or deletion of try

blocks, in which some API invocations reside.

• Catch. This category subjects to addition or deletion of

catch blocks, whose corresponding try blocks contain

API invocations.

Synchronization. This category includes missing and redun-

dant synchronizations in multi-threaded environments, follow-

ing the previous study by Amann et al. [1]. The difference is

// replaced arguments

--- row=Math.abs(rand.nextInt(seed)%data.length-1);

+++ row=Math.abs(rand.nextInt()%(data.length-1));

// replaced name

--- nVal=tmp1.substring(0,tmp1.indexOf("\""));

+++ nVal=tmp1.substring(1,tmp1.lastIndexOf("\""));

// replaced name and arguments

--- Statement stmt = con.createStatement();

+++ PreparedStatement stmt=con.

prepareStatement(sql);

// replaced receiver

--- return this_path.equals(that_path);

+++ return Objects.equals(this_path, that_path);

Fig. 1: Examples of replaced bugs

that we classify this type of code changes as an independent

one rather than a sub-category of Condition.

API call. Previous studies have focused on missing [45], [46]

and redundant [52] API call misuses. However, more fine-

grained API changes (such as changing only the arguments,

names or receiver objects of API invocations) were not been

systematically and extensively studied by existing studies. In

this paper, besides missing and redundant API changes, we

further investigate the distributions of replaced API misuses,

which include four categories in detail. For the missing and

redundant API misuses, previous study [1] already introduced

them (a.k.a. Method Call). To make the article self-contained,

we redundantly explain them briefly.

• Missing & Redundant API call. Missing API call denotes

that an API is not called at a certain place, where the API

usage constraint requires the API as a must. For example,

after opening a file and writing data, the API of File.

close() should be called. Otherwise, errors would be

incurred. This kind of code changes is usually related

to those pairwise APIs that have usage dependency.

Similarly, Redundant API call represents that an API is

redundantly used at an improper place. For example, we

cannot call the API of List.remove() to delete elements

in a list that is being iterated over. Otherwise, exceptions

would be raised. This kind of code changes is usually

caused when the API has side-effects, whose execution

may conflict with the followed functionality.

• Replaced arguments. This category indicates that devel-

opers may pass incorrect arguments or arguments with

wrong orders when invoking an API. This type of code

changes usually appears in classes with multiple methods

with similar functionalities for polymorphism, such as

the first example shown in Figure 1, where the desired

API is nextInt() without arguments. On the contrary, a

wrong API nextInt(int) is used with an argument seed

, which will constrain the upper bound of the generated

random value. Please note that we consider replaced API

misuses iff the types of arguments do not match before

and after the change (order matters), while it is not our

cases to change the referred object of same types. For

example, the code change replacing 10 in nextInt(10)

with 100 is not regarded as a replaced API misuse since

the argument type is not changed and thus the API is not





Before introducing the classification process in detail, we

first introduce some preliminary concepts and notations:

Definition 1. An abstract syntax tree (AST) is a partial

ordered tree whose root node can be represented as a tuple

〈l, v, p, i, C〉, where

• l: denotes the label of the root node of the subtree. (e.g.,

StringLiteral.)

• v: saves the value if it is a leaf node, otherwise is ⊥.

(e.g., 4.)

• p: represents its parent node in a super tree if exists,

otherwise is ⊥.

• i: is the index of the root node in a super tree p, it is

undefined if p = ⊥.

• C: contains a sequence of immediate child nodes in the

subtree, it will be ∅ for leaf nodes.

Finally, based on the description of operations in

GumTree [14], it will be straightforward to give the operation

definitions under the AST definition.

Definition 2. A GumTree operation is one of the following

AST node changes:

• update(t, t′): replace the subtree rooted t with a subtree

rooted t′;

• delete(t): deletes subtree rooted node t.

• insert(t, t′, i): adds a new node t as the ith child of node

t′ if t′ is not ⊥. Otherwise, t is the new root node and

the previous root node will be the only child of t.

• move(t, t′, i): moves subtree rooted node t to be the ith

child of node t′.

Particularly, we discard all move operations in the mapping

process as it mainly changes the code structure but not the API

itself, which is hard to be automatically analyzed as misuses.

Next, we use the operations shown in Figure 4 as examples to

demonstrate the mapping process in detail. According to the

explanation for each category of API misuses in Section III-B,

the operation delete(t1) will be classified as redundant API

call, while the operation update(t2, t2′) will be classified as

Replaced name of API call. In particular, when the name and

arguments of a method call are changed together, the opera-

tions will be combined as one Replaced name and arguments

(e.g., updating createStatement() to prepareStatement(

String) in Figure 1). For the operation move(t4, t5, 2), we

simply ignore it and in fact it does not misuse any API. Finally,

as for the operation of insert(t5, t3, 2), from the figure we can

see that a NULL check condition for the variable window is

inserted, which is the returned value of API getWindow(). As a

consequence, it will be classified as missing both NULL checks

and Return value. Additionally, variable window is further used

by API setWindowAnimations() that has control-dependency

on the condition w.r.t. window. As a result, it will be classified

as Object state as well. Thus, one operation may be classified

into multiple categories in Condition. Based on this process,

we automatically classify GumTree operations into different

categories for further analysis.

IV. EMPIRICAL RESULT ANALYSIS

According to the previous sections, we collect a large

number of API misuses in real-world projects. In this section,

we conduct various empirical studies and discuss the results.

A. Distributions of API Misuses

In this research question, we count the number of edit

operations from GumTree for API misuses and non-API mis-

uses, and then analyze the distribution of different categories

of API misuses. The result shows that there are 576,515

studied operations involving API misuses, which is about

51.7% of all edit operations (i.e., 48.3% for non-API misuses).

This finding shows that developers tend to introduce API

misuses frequently in modern software development. One

potential reason is that developers are using more and more

third-party libraries to save development efforts and improve

code quality. To our best knowledge, this is the first study

quantitatively demonstrating the importance of API-misuse in

modern software systems.

TABLE I: Distribution of API misuses
Category Missing Redundant

API call 142,206 (24.67%) 54,101 (9.38%)

Synchronization 308 (0.05%) 58 (0.01%)

Condition

NULL checks 11,750 (2.04%) 1,320 (0.23%)
Return value 21,900 (3.80%) 3,162 (0.55%)
Object state 29,873 (5.18%) 4,330 (0.75%)
Total 63,523 (11.02%) 8,812 (1.53%)

Exception
Try 6,118 (1.06%) 790 (0.14%)
Catch 7,183 (1.25%) 1,152 (0.20%)
Total 13,301 (2.31%) 1,942 (0.34%)

Replaced API

Rep Receiver 101,985 (17.69%)
Rep Name 45,963 (7.97%)
Rep Args 52,277 (9.07%)
Rep Name&Args 20,744 (3.60%)
Total 220,969 (38.33%)

Table I presents the distributions of different categories of

API misuses described in Section III-B. In the table, the first

column represents the categories of misuses, and the last two

columns represent the number of operations for missing and

redundant misuses, respectively. Particularly, the percentage

in the table represents the number of operations over that

of all API-related operations (i.e., 576,515). As explained

before, different categories may overlap each other (e.g.,

NULL checks and Return value). Besides, we also separately

list the number and percentage of operations related to misuses

of Replaced API, which is an important category in the study.

In addition, for clarity, we omit the operations that are not

related to API misuses as they are not the focus of this paper.

From this table, we have following findings.

First, API call and Replaced API misuses are more

prevalent. From the table, the percentages of operations about

API call and Replaced API are more than 70%. Particularly,

38.33% misuses are about Replaced API, which are more than

any other types of API misuses. By analyzing the data, we find

that one important reason for such a large portion of Replaced

API misuses is that most of APIs share similar signatures

when their functionalities are close. Therefore, if developers

do not well understand the difference between APIs, they tend

to be confused and use a wrong API. For example, when one



wants to only get the miliseconds of current time, System.

currentTimeMillis() is a preferable API with high efficiency.

However, developers tend to misuse the API new Date().

getTime(), which is simply a wrapper of the former. Due

to the new Date object, the latter API may cause performance

issues, especially when it is intensively used in time-critical

programs. Therefore, if possible, it is better to directly use the

API System.currentTimeMillis() to speed up the underlying

system. The result demonstrates the importance of Replaced

API misuses, and more research efforts are informed to be

dedicated to detecting such misuses.

Second, missing API is more prevalent than redundant.

The results show that developers tend to miss some API

calls or handlers (such as Condition, Synchronization, and

Exception) rather than writing redundant ones. For example,

the percentage of missing API calls is 24.67%, almost three

times higher than the opposite. Similarly, the percentage of

missing condition is also much higher than that of redundant

condition (11.02% vs 1.53%).

Finding 1: (1) API call and Replaced API are the most

prevalent API misuses, and Replaced API misuses ac-

counts for the largest portion among all misuses, calling

for new detection approaches. (2) Developers tend to

miss some components to satisfy the constraint of a

certain API.

B. Frequencies of API Misuse Patterns

In Section IV-A, we have performed quantitative analysis on

API misuses. In this research question, we further qualitatively

analyze the misuse patterns mined from the studied dataset. We

first extract a ranked list for each misuse category according to

the cross-project frequencies. The reason we consider cross-

project frequencies is that the mined patterns should be more

helpful in detecting unknown misuses if they widely exist in

more various projects. We remove patterns related to printing

and logging because they are usually for debugging and

maintenance purposes; we also remove APIs with “Android”

and “Javax” since we target general Java programs. Table II

presents the popular misuse patterns for each general category.

Column 1 denotes the category names. Column 2 presents

the top-5 popular patterns for each category. Column 3 and

4 show the number of projects in which the corresponding

pattern appeared and the total number of pattern occurrences,

respectively. From this table we have following findings.

First, API misuses related to class java.lang.String

account for the vast majority of all misuse patterns.

For example, 18 out of 45 misuses in all categories are from

the class of String. Also, for both missing API and missing

condition misuses, all top-5 API patterns are related to String

. Specifically, we have the following observations. (1) For the

missing condition, most patterns miss checking if the index

of a substring or a character inside a String is valid, such as

String.charAt(int). (2) There are various ways to fix bugs

related to API misuses. For example, to deal with potential

bugs of String.lastIndexOf(String), inserting either con-

dition or exception handling is reasonable in historical bug-

fixing dataset. The findings show the importance of String

and guide developers how to detect and fix misuses related to

String by mining bug-fixing dataset.

Second, most Replaced API misuse patterns are related

to the names and arguments in the same class, even though

the Replaced Receiver is the majority in Table I. For example,

developers tend to misunderstand between Integer.valueOf

(String) and Integer.parseInt(String), where the former

returns an Integer object while the latter returns a primitive

int value.

Third, it is possible to design an automated technique

based on the mined patterns to detect unknown misuses

in other projects. For example, there is a misuse pattern

File.mkdir()=>File.mkdirs() in the ranking list. We have

detected such misuses existing in Apache projects, and one

submitted pull request has been accepted by developers, shown

in Figure 7. In fact, there are many valuable patterns in the

ranking list and we will introduce how we are inspired to

improve misuse detection in the following two sections.

Finding 2: (1) API misuses related to class java.lang

.String account for the vast majority of all misuse

patterns. (2) Most frequent Replaced API misuse patterns

are related to the names and arguments in the same class.

(3) The frequent API misuses in Table II informs new

misuse detection techniques.

C. Study of API Misuse Detection on MUBENCH

In this section, we present the potential recall of misuse de-

tection on the recently widely used benchmark MUBENCH [1],

[12] with the patterns mined from our dataset. We manually

analyze the fix patterns in the MUBENCH and then check

whether the same patterns exist in the studied dataset. We

assume that an ideal detection approach can accurately mine

API-misuse patterns from historical fixes if at least one fix

instance exists in the dataset. In addition, to explore the

complementariness to existing approaches, we also include

the results of state-of-the-art misuse detection approaches,

including MutAPI [15], DMMC [2], Jadet [8], Tikanga [51]

and GrouMiner [47].

Figure 5 presents the overlaps of misuses detected by

different approaches, where “This work” denotes the results

mined from our dataset. As a result, the 53 misuse examples in

MUBENCH involve 32 different kinds of API-misuse patterns

(multiple examples may relate to a same pattern), and 12

patterns can be found in our dataset, which correspond to 22

misuse examples. In other words, 22 misuses in MUBENCH

potentially can be detected with the patterns mined from

historical bug fixes. Besides, 7/12 misuse patterns cannot be

detected by any existing approaches, indicating that mining

misuse patterns from large-scale historical bug fixes has the

potential to further improve the effectiveness of API misuse

detection. For example, the API misuse of String.getBytes()





TABLE III: Detected API misuses and the feedback of submitted pull requests.
Pattern Reported Sampled Confirmed Submitted Accepted Rejected

JSONObject.getString(String)

=>JSONObject.optString(String)
17 17 13 13 3 0

JSONObject.getJSONArray(String)

=>JSONObject.optJSONArray(String)
6 6 3 2 0 0

JSONObject.getJSONObject(String)

=>JSONObject.optJSONObject(String)
9 9 1 1 1 0

java.io.File.mkdir()

=>java.io.File.mkdirs()
16 16 10 10 6 4

String.replaceAll(String,String)

=>String.replace(String,String)
1,798 100 87 46 16 8

java.sql.Connection.createStatement()

=>java.sql.Connection.prepareStatement(String)
70 70 9 9 0 0

concurrent.Executors.newCachedThreadPool()

=>concurrent.Executors.newFixedThreadPool(int)
9 9 4 3 1 0

Date.getTime()

=>java.lang.System.currentTimeMillis()
339 100 99 20 10 3

java.io.FileWriter.close()

=>java.io.BufferedWriter.close()
74 74 61 39 20 0

String.equals(String)

=>Objects.equals(String,String)
5,203 100 73 6 0 0

Total 7,541 501 360 149 57 15

private void migrateTagsInResult(String

hostAddress, ...){

...

--- updateTagsForHit(updated,hit.getString("_id")

,...);

+++ updateTagsForHit(updated,hit.optString("_id")

,...);

...

if(hitsObject.getInt("total")>currentOffset){

--- migrateTagsInResult(...,rJSON.getString("

_scroll_id"));

+++ migrateTagsInResult(...,rJSON.optString("

_scroll_id"));

...

} //https://github.com/apache/unomi/commit/

c447224

Fig. 6: Accepted JSONObject.getString() misuse

rules. Effective and automated rule mining techniques should

be further explored, such as combining machine learning

techniques [52] to characterize more context features, etc.

Details of API-misuse patterns. For clarity, we omit the

class scope of APIs in Table III if no ambiguity will be caused.

JSONObject.getString(String)=>JSONObject.optString

(String). The former API will throw JSONException when

the JSONObject does not has the query attribute (i.e., the

given argument), which may crash the program if it is

not handled. Therefore, to detect such misuses, we search

the usages of the API where the exception is not properly

tackled. Figure 6 shows one accepted misuse in project

Apache Unomi. In this example, the queried keys may not

exist and exceptions will be thrown and crash the program.

As a result, they are immediately confirmed and fixed

after reporting to maintainers. getJSONArray(String) and

getJSONObject(String) are similar.

File.mkdir()=>File.mkdirs(). Both File.mkdir() and

File.mkdirs() are used to create a directory and return a

boolean value to indicate whether the creation succeeds or

not. The difference is the latter can recursively create the

directories when nested paths do not exist, while mkdir cannot.

The failure of directory creation may cause file access errors

during program running, and is hard to debug. Therefore, when

private Mpack downloadMpackMetadata(String

mpackURI) throws IOException {

File stagingDir = new File(mpackStaging.

toString()+File.separator +

MPACK_TAR_LOCATION);

if (!stagingDir.exists()) {

--- stagingDir.mkdir();

+++ stagingDir.mkdirs();

} ...} //https://github.com/apache/ambari/

commit/b99bb28

Fig. 7: Accepted File.mkdir() misuse

private void runBenchmarkTasks() throws

Exception {

...

--- ExecutorService executor = Executors.

newCachedThreadPool();

+++ ExecutorService executor = Executors.

newFixedThreadPool(tasks.size());

...

} //https://github.com/apache/bookkeeper/commit

/0988e12

Fig. 8: Accepted newCachedThreadPool() misuse

creating a nested directory, the return value of the API call

should be checked to avoid potential errors. Otherwise, mkdirs

should be used to ensure the success of creation. Figure 7

shows one accepted misuse in project Apache Helix.

Executors.newCachedThreadPool()=>Executors.

newFixedThreadPool(int). Both APIs can create a

thread pool in multiple-thread environment. However,

newCachedThreadPool() has no bounded thread number

and newFixedThreadPool(int) can set the maximal thread

number. In this case, newCachedThreadPool() may consume

more and more memory if it is not constrained and the system

will risk in crashing and throwing OutOfMemoryException.

To detect this kind of misuse, we focus on the cases that

executors created from newCachedThreadPool() submit tasks

in a loop without constraints. Figure 8 shows one accepted

misuse in project Apache bookkeeper.

String.replaceAll(String,String)=>String.replace

(String,String). Both APIs replace all occurrences of



a String with others. However, the first argument for

replaceAll is a regular expression, while plain text for

replace. Compiling regex patterns will be more complex

and consequently slower so we detect the misuse of the API

replaceAll if it takes a plain String as the argument.

Connection.createStatement()=>Connection.

prepareStatement(String). Both APIs are used to execute

SQL statements in Java. However, the former will highly

degrade the performance of database access if intensively

executing the same SQL statements in a loop. In this

case, prepareStatement(String) should be used to enable

the database to precompile the SQL statements and gain

a better performance. We detect this kind of misuse by

focusing on the case that an object of Statement created by

createStatement() is used in a loop.

Date.getTime()=>System.currentTimeMillis(). We de-

tect this kind of misuses by checking if the object of class

Date only invokes the method getTime(). The reason is that

new Date() for creating the Date object is simply a wrapper

of method System.currentTimeMillis(). If it is intensively

invoked in the program, the performance will be damaged.

Using the method System.currentTimeMillis() can also

avoid creating the temporary Date object.

FileWriter.close()=>BufferedWriter.close().

Indeed, this misuse is caused by creating a wrong writer

object, i.e., FileWriter but not BufferedWriter. Large

amount of input and output (IO) operations will significantly

affect the performance of the program. BufferedWriter

can effectively reduce the times of IO access with caches.

Therefore, we detect such misuses by searching FileWriter

object that is intensively used in a loop.

String.equals(String)=>Objects.equals(String,

String). Both APIs are used to check if two String values

are same. However, It is possible that the first String

in String.equals(String) may be NULL so that the

NullPointerException would be thrown. We detect this

kind of misuses by checking the possibility of causing

NullPointerException. That is, there is no guard condition

to check the nullness of the object before using.

As discussed above, a lot of submitted misuses have been

accepted by maintainers. However, there are 15 misuses are re-

jected. We investigate these misuses and find some major rea-

sons as follows. (1) There are no performance differences be-

tween two APIs in a sample or small project. For example, in

project Apache CXF, the project maintainer rejected our sub-

mitted misuse by claiming that System.currentTimeMillis()

and new Date().getTime() would not make the difference

since this case occurs in a sample (small) project under

Apache CXF. In Apache NetBeans, the project maintainer

doubts that the change File.mkdir()=>File.mkdirs() is just

a theoretical problem so they reject our pull request. (2)

The submitted cases will change the code style of the entire

project. For example, in project Apache NetBeans, the project

maintainers claim that the change Date.getTime()=>System

.currentTimeMillis() will reduce the readability since other

Date cases can not be changed due to the context.

Finding 4: Based on the 10 Replaced misuse patterns,

we have reported 149 misuses in latest Apache projects;

57 of them have been fixed by project maintainers so far.

V. THREATS TO VALIDITY

The threats to external validity lie in the dataset used. To

collect a large set of data for analysis, we mined bug-fixing

commits from GitHub repositories. The dataset may be noisy

for different reasons (i.e., not real bug fixes). We also define

API misuses as code edit operations related to some APIs in a

bug fix. In fact, it may also inaccurate results. The reasons are

twofold. First, API misuses may occur in regular code changes,

while we compute the percentage of API misuses over the

operations from bug-fixing commits. Second, edit operations

related to APIs may be not real API misuses.

The threats to internal validity relate to our implementation.

To reduce errors, we use GumTree to extract AST operations,

which is widely used in previous studies [30], [36], [37], [56].

However, we cannot get certain misuse categories, such as

missing NULL checks directly from GumTree. Therefore, we

revise GumTree by adding detailed program analysis to map

operations to our classifications. To mitigate the threats of

categorization noise from GumTree, we sample 100 opera-

tions for each category and confirm that 76% operations are

correctly classified. Furthermore, we carefully review our code

and scripts to ensure their correctness as much as we can.

VI. CONCLUSION

In this paper, we conduct an extensive empirical study

on API misuses based on 528,546 bug-fixing commits. We

extract fine-grained edit operations on AST of source code

and classify them into different categories of API misuses.

We also extract various frequent API-misuse patterns based

on the categories. The results show that API misuses are

prominent in practice and provide a set of guidelines for future

research. Finally, based on our dataset, we perform a user

study to manually analyze the usage constraints of 10 patterns

to explore whether the mined patterns can guide the design

of future API-misuse detection tools. The results show that

57 misuses (out of 149 reported misuses) have been fixed,

indicating the importance of historical API misuses and the

promising future for API-misuse detection. However, the cur-

rent implementation still depends on our handcrafted detection

rules. Effective and automated rule mining techniques should

be further explored, such as combining machine learning [52]

to characterize more context features, etc.

All experimental data and source code are open-source that

can be downloaded at: https://github.com/BID3/BID3.

ACKNOWLEDGEMENTS

This work was partially supported by National Key Re-

search and Development Program of China under Grant

No. SQ2019YFE010068, National Science Foundation under

Grant Nos. CCF-1763906 and CCF-1942430, Alibaba, and

National Natural Science Foundation of China under No.

61922003.



REFERENCES

[1] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions

on Software Engineering, 2018.

[2] M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 22, no. 1, p. 7, 2013.

[3] “Github website,” 2019. [Online]. Available: https://github.com/

[4] “Sourceforge website,” 2019. [Online]. Available: https://sourceforge.
net/

[5] “Jira website,” 2019. [Online]. Available: https://www.atlassian.com/
software/jira/

[6] M. Martinez and M. Monperrus, “Mining software repair models for
reasoning on the search space of automated program fixing,” Empirical

Softw. Engg., vol. 20, no. 1, pp. 176–205, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1007/s10664-013-9282-8

[7] C. Lindig, “Mining patterns and violations using concept analysis,” in
The Art and Science of Analyzing Software Data. Elsevier, 2015, pp.
17–38.

[8] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on

The foundations of software engineering. ACM, 2007, pp. 35–44.

[9] M. Acharya and T. Xie, “Mining api error-handling specifications from
source code,” in International Conference on Fundamental Approaches

to Software Engineering. Springer, 2009, pp. 370–384.

[10] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in Proceedings of the 31st International

Conference on Software Engineering. IEEE Computer Society, 2009,
pp. 496–506.

[11] ——, “Alattin: Mining alternative patterns for detecting neglected condi-
tions,” in Proceedings of the 2009 IEEE/ACM International Conference

on Automated Software Engineering. IEEE Computer Society, 2009,
pp. 283–294.

[12] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“Mubench: a benchmark for api-misuse detectors,” in 2016 IEEE/ACM

13th Working Conference on Mining Software Repositories (MSR).
IEEE, 2016, pp. 464–467.

[13] “Github archive website,” 2019. [Online]. Available: https://www.
gharchive.org/

[14] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings

of the 29th ACM/IEEE international conference on Automated software

engineering. ACM, 2014, pp. 313–324.

[15] M. Wen, Y. Liu, R. Wu, X. Xie, S.-C. Cheung, and Z. Su, “Exposing
library api misuses via mutation analysis,” in Proceedings of the

41st International Conference on Software Engineering. IEEE Press,
2019, p. 866877. [Online]. Available: https://doi.org/10.1109/ICSE.
2019.00093

[16] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. De Halleux, and H. Mei,
“Test generation via dynamic symbolic execution for mutation testing,”
in 2010 IEEE International Conference on Software Maintenance.
IEEE, 2010, pp. 1–10.

[17] G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring project-specific bug
patterns for detecting sibling bugs,” in Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering. ACM, 2013,
pp. 565–575.

[18] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but not too
many,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop

on Program analysis for software tools and engineering. ACM, 2007,
pp. 9–14.

[19] C. C. Williams and J. K. Hollingsworth, “Automatic mining of source
code repositories to improve bug finding techniques,” IEEE Transactions

on Software Engineering, vol. 31, no. 6, pp. 466–480, 2005.

[20] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the

28th ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2019, pp. 169–180.

[21] X. Li and L. Zhang, “Transforming programs and tests in tandem for
fault localization,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, pp. 1–30, 2017.

[22] L. Zhang, L. Zhang, and S. Khurshid, “Injecting mechanical faults to
localize developer faults for evolving software,” in OOPSLA, 2013, pp.
765–784.

[23] L. Zhang, M. Kim, and S. Khurshid, “Localizing failure-inducing
program edits based on spectrum information,” in 2011 27th IEEE

International Conference on Software Maintenance (ICSM), 2011, pp.
23–32.

[24] M. Papadakis and Y. Le Traon, “Metallaxis-fl: mutation-based fault
localization,” Software Testing, Verification and Reliability, vol. 25, no.
5-7, pp. 605–628, 2015.

[25] S. Moon, Y. Kim, M. Kim, and S. Yoo, “Ask the mutants: Mutating
faulty programs for fault localization,” in 2014 IEEE Seventh Interna-

tional Conference on Software Testing, Verification and Validation, 2014,
pp. 153–162.

[26] Y. Lou, A. Ghanbari, X. Li, L. Zhang, H. Zhang, D. Hao, and L. Zhang,
“Can automated program repair refine fault localization? a unified
debugging approach,” in ISSTA, 2020, to appear.

[27] X. B. D. Le, D. Lo, and C. L. Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), March 2016, pp. 213–224.

[28] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[29] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Ieee transactions on

software engineering, vol. 38, no. 1, pp. 54–72, 2011.

[30] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proceedings of

the 27th ACM SIGSOFT International Symposium on Software Testing

and Analysis, 2018, pp. 298–309.

[31] H. Zhong and Z. Su, “An empirical study on real bug fixes,”
in Proceedings of the 37th International Conference on Software

Engineering, ser. ICSE ’15, 2015, pp. 913–923. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2818754.2818864

[32] M. Soto, F. Thung, C. Wong, C. Le Goues, and D. Lo, “A deeper look
into bug fixes: Patterns, replacements, deletions, and additions,” in 2016

IEEE/ACM 13th Working Conference on Mining Software Repositories

(MSR), May 2016, pp. 512–515.

[33] K. Pan, S. Kim, and E. J. Whitehead, Jr., “Toward an understanding of
bug fix patterns,” Empirical Softw. Engg., vol. 14, no. 3, pp. 286–315,
2009. [Online]. Available: http://dx.doi.org/10.1007/s10664-008-9077-5

[34] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-

ceedings of the 2014 International Symposium on Software Testing and

Analysis, 2014, pp. 437–440.

[35] V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus, and
M. de Almeida Maia, “Dissection of a bug dataset: Anatomy of 395
patches from defects4j,” in 2018 IEEE 25th International Conference

on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2018, pp. 130–140.

[36] M. Martinez and M. Monperrus, “Coming: A tool for mining change
pattern instances from git commits,” in 2019 IEEE/ACM 41st Interna-

tional Conference on Software Engineering: Companion Proceedings

(ICSE-Companion). IEEE, 2019, pp. 79–82.

[37] F. Madeiral, T. Durieux, V. Sobreira, and M. Maia, “Towards an
automated approach for bug fix pattern detection,” arXiv preprint

arXiv:1807.11286, 2018.

[38] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: A large-scale empirical study,” in 2017 IEEE/ACM 14th In-

ternational Conference on Mining Software Repositories (MSR), May
2017, pp. 413–424.

[39] N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty, “Secure
coding practices in java: Challenges and vulnerabilities,” in Proceedings

of the 40th International Conference on Software Engineering, ser.
ICSE ’18. New York, NY, USA: ACM, 2018, pp. 372–383. [Online].
Available: http://doi.acm.org/10.1145/3180155.3180201

[40] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in javascript,” in Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 144–156. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950308



[41] R. Yue, N. Meng, and Q. Wang, “A characterization study of repeated
bug fixes,” in 2017 IEEE International Conference on Software Main-

tenance and Evolution (ICSME), 2017, pp. 422–432.
[42] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan,

“A study of repetitiveness of code changes in software evolution,” in
2013 28th IEEE/ACM International Conference on Automated Software

Engineering (ASE), Nov 2013, pp. 180–190.
[43] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and

P. Devanbu, “On the ”naturalness” of buggy code,” in Proceedings

of the 38th International Conference on Software Engineering,
ser. ICSE ’16. ACM, 2016, pp. 428–439. [Online]. Available:
http://doi.acm.org/10.1145/2884781.2884848

[44] B. Livshits and T. Zimmermann, “Dynamine: finding common error
patterns by mining software revision histories,” in ACM SIGSOFT

Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp. 296–
305.

[45] Z. Li and Y. Zhou, “Pr-miner: automatically extracting implicit program-
ming rules and detecting violations in large software code,” in ACM

SIGSOFT Software Engineering Notes, vol. 30, no. 5. ACM, 2005, pp.
306–315.

[46] M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing method
calls in object-oriented software,” in European Conference on Object-

Oriented Programming. Springer, 2010, pp. 2–25.
[47] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.

Nguyen, “Graph-based mining of multiple object usage patterns,” in
ESEC/FSE. New York, NY, USA: ACM, 2009, pp. 383–392. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595767

[48] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug fixes in object-oriented programs,” in Pro-

ceedings of the 32Nd ACM/IEEE International Conference on Software

Engineering-Volume 1. ACM, 2010, pp. 315–324.
[49] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive infer-

ence of function precedence protocols,” in 29th International Conference

on Software Engineering (ICSE’07), May 2007, pp. 240–250.
[50] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specification

inference using predicate mining,” in ACM SIGPLAN Notices, vol. 42,
no. 6. ACM, 2007, pp. 123–134.

[61] “Infer website,” 2019. [Online]. Available: https://fbinfer.com/

[51] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” in Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering, ser. ASE ’09, 2009,
pp. 295–306. [Online]. Available: https://doi.org/10.1109/ASE.2009.30

[52] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recommending
api usages for mobile apps with hidden markov model,” in 2015 30th

IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE). IEEE, 2015, pp. 795–800.

[53] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and
D. Poshyvanyk, “An empirical investigation into learning bug-fixing
patches in the wild via neural machine translation,” in ASE, 2018, pp.
832–837.

[54] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transfor-
mations from singular examples via big code,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 255–266.

[55] A. Milanova, A. Rountev, and B. G. Ryder, “Parameterized object
sensitivity for points-to analysis for java,” ACM Trans. Softw. Eng.

Methodol., vol. 14, no. 1, p. 141, Jan. 2005.

[56] K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon, “Mining
fix patterns for findbugs violations,” IEEE Transactions on Software

Engineering, 2018.

[57] A. Hajnal and I. Forgacs, “A precise demand-driven definition-use
chaining algorithm,” in Proceedings of the Sixth European Conference

on Software Maintenance and Reengineering, March 2002, pp. 77–86.

[58] M. J. Harrold and M. L. Soffa, “Efficient computation of interprocedural
definition-use chains,” ACM Trans. Program. Lang. Syst., no. 2, pp. 175–
204, 1994.

[59] S. Nielebock, R. Heumüller, and F. Ortmeier, “Commits as a basis
for api misuse detection,” in Proceedings of the 7th International

Workshop on Software Mining, ser. SoftwareMining 2018. New
York, NY, USA: ACM, 2018, pp. 20–23. [Online]. Available:
http://doi.acm.org/10.1145/3242887.3242890

[60] “Findbugs website,” 2019. [Online]. Available: http://findbugs.
sourceforge.net/

[62] “Spotbugs website,” 2019. [Online]. Available: https://spotbugs.github.
io/


	introduction
	Background and Related Work
	Analysis of Historical Bug Fixes
	Studies on API-misuse Detection

	Empirical Study
	Data Collection
	Categorization of API Misuses
	Edit Operation Extraction

	Empirical Result Analysis
	Distributions of API Misuses
	Frequencies of API Misuse Patterns
	Study of API Misuse Detection on MuBench
	Study of API Misuse Detection on Apache Projects

	Threats to Validity
	Conclusion
	References

