Tackling the Objective Inconsistency Problem
in Heterogeneous Federated Optimization

Jianyu Wang Qinghua Liu
Carnegie Mellon University Princeton University
Pittsburgh, PA 15213 Princeton, NJ 08544
jianyuwl@andrew.cmu.edu qinghual@princeton.edu
Hao Liang Gauri Joshi H. Vincent Poor
Carnegie Mellon University Carnegie Mellon University Princeton University
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Princeton, NJ 08544
hliang2@andrew.cmu.edu gaurij@andrew.cmu.edu poor@princeton.edu
Abstract

In federated learning, heterogeneity in the clients’ local datasets and computation
speeds results in large variations in the number of local updates performed by each
client in each communication round. Naive weighted aggregation of such models
causes objective inconsistency, that is, the global model converges to a stationary
point of a mismatched objective function which can be arbitrarily different from
the true objective. This paper provides a general framework to analyze the conver-
gence of heterogeneous federated optimization algorithms. It subsumes previously
proposed methods such as FedAvg and FedProx, and provides the first principled
understanding of the solution bias and the convergence slowdown due to objective
inconsistency. Using insights from this analysis, we propose FedNova, a normal-
ized averaging method that eliminates objective inconsistency while preserving
fast error convergence.

1 Introduction

Federated learning [1-5] is an emerging sub-area of distributed optimization where both data collec-
tion and model training is pushed to a large number of edge clients that have limited communication
and computation capabilities. Unlike traditional distributed optimization [6, 7] where consensus
(either through a central server or peer-to-peer communication) is performed after every local gradient
computation, in federated learning, the subset of clients selected in each communication round
perform multiple local updates before these models are aggregated in order to update a global model.

Heterogeneity in the Number of Local Updates in Federated Learning. The clients participating
in federated learning are typically highly heterogeneous, both in the size of their local datasets as
well as their computation speeds. The original paper on federated learning [1] proposed that each
client performs E epochs (traversals of their local dataset) of local-update stochastic gradient descent
(SGD) with a mini-batch size B. Thus, if a client has n; local data samples, the number of local
SGD iterations is 7; = | En;/B], which can vary widely across clients. The heterogeneity in the
number of local SGD iterations is exacerbated by relative variations in the clients’ computing speeds.
Within a given wall-clock time interval, faster clients can perform more local updates than slower
clients. The number of local updates made by a client can also vary across communication rounds
due to unpredictable straggling or slowdown caused by background processes, outages, memory
limitations etc. Finally, clients may use different learning rates and local solvers (instead of vanilla

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

SGD, they may use proximal gradient methods or adaptive learning rate schedules) which may result
in heterogeneity in the model progress at each client.

Heterogeneity in Local Updates Causes Objective Inconsistency. Most recent works that analyze
the convergence of federated optimization algorithms [8—37] assume that number of local updates
is the same across all clients (that is, 7; = 7 for all clients 7). These works show that periodic
consensus between the locally trained client models attains a stationary point of the global objective
function F(z) = >_." n;F;(x)/n, which is a sum of local objectives weighted by the dataset
size n;. However, no current analysis provides insight into the convergence of local-update or
federated optimization algorithms in the practical setting when the number of local updates 7; varies
across clients 1,...,m. In fact, as we show in Section 3, standard averaging of client models
after heterogeneous local updates results in convergence to a stationary point — not of the original

objective function F(x), but of an inconsistent objective F(x), which can be arbitrarily different
from F(x) depending upon the relative values of ;. To gain intuition into this phenomenon, observe
in Figure 1 that if client 1 performs more local updates, then the updated z(**1:9) strays towards the
local minimum 7, away from the true global minimum x*.

The Need for a General Analysis Framework. A naive approach

to overcome heterogeneity is to fix a target number of local updates o)
7 that each client must finish within a communication round and T Heterogeneous setting
keep fast nodes idle while the slow clients finish their updates. This [R

~~ S

method will ensure objective consistency (that is, the surrogate ob- TS

jective F'(x) equals to the true objective F'(x)), nonetheless, waiting m(w;:&
for the slowest one can significantly increase the total training time. 4 u ‘w;
More sophisticated approaches such as FedProx [38], VRLSGD [21] *2 x

and SCAFFOLD [20], designed to handle non-IID local datasets, can - ---=-========-----.
be used to reduce (not eliminate) objective inconsistency to some p(t0) Homogeneous setting
extent, but these methods either result in slower convergence or &/\\)

require additional communication and memory. So far, there is no . _\

rigorous understanding of the objective inconsistency and the speed O 10)

of convergence for this challenging setting of federated learning with A
heterogeneous local updates. It is also unclear how to best combine A " T

models trained with heterogeneous levels of local progress.

Contributions of this Paper. To the best of our knowledge, this Figure 1: Model updates in
work provides the first fundamental understanding of the bias in the the parameter space. Green
solution (caused by objective inconsistency) and how the conver- squares and blue triangles de-
gence rate is influenced by heterogeneity in clients’ local progress. note the minima of global and
In Section 4 we propose a general theoretical framework that allows ~local objectives, respectively.
heterogeneous number of local updates, non-IID local datasets as

well as different local solvers such as GD, SGD, SGD with proximal gradients, gradient tracking, adap-
tive learning rates, momentum, etc. It subsumes existing methods such as FedAvg and FedProx and
provides novel insights on their convergence behaviors. In Section 5 we propose FedNova, a method
that correctly weigh local models when averaging. It ensures objective consistency while preserving
fast error convergence and outperforms existing methods as shown in Section 6. FedNova works
with any local solver and server optimizer and is therefore complementary to existing approaches
such as [38, 39, 20, 40].

2 System Model and Prior Work

The Federated Heterogeneous Optimization Setting. In federated learning, a total of m clients
aim to jointly solve the following optimization problem:

(D

min
xcRd

F(x) := ZpZFl(a:)

where p; = n;/n denotes the relative sample size, and F;(x) = n% > cep, Ji(@;§) is the local
objective function at the i-th client. Here, f; is the loss function (possibly non-convex) defined by
the learning model and & represents a data sample from local dataset D;. In the ¢-th communication

round, each client independently runs 7; iterations of local solver (e.g., SGD) starting from the current
global model (%) to optimize its own local objective.

In our theoretical framework, we treat 7; as an arbitrary scalar which can also vary across rounds. In
practice, if clients run for the same local epochs E, then 7; = | En;/B], where B is the mini-batch
size. Alternately, if each communication round has a fixed length in terms of wall-clock time, then 7;
represents the local iterations completed by client ¢ within the time window and may change across
clients (depending on their computation speeds and availability) and across communication rounds.

The FedAvg Baseline Algorithm. Federated Averaging (FedAvg) [1] is the first and most common
algorithm used to aggregate these locally trained models at the central server at the end of each
communication round. The shared global model is updated as follows:

FedAvg: w(t-‘rLO) — w(t70) — Z:’;l pZAEt) — Z:’;l i - 77221:_01 gi(a:,gt’k)) (2)

where wgt’k) denotes client 7’s model after the k-th local update in the ¢-th communication round and
Agt) = azit’”) — scgt’o) denotes the cumulative local progress made by client ¢ at round ¢. Also, n
is the client learning rate and g; represents the stochastic gradient over a mini-batch of B samples.
When the number of clients m is large, then the central server may only randomly select a subset of

clients to perform computation at each round.

Convergence Analysis of FedAvg. [8-10] first analyze FedAvg by assuming the local objectives are
identical and show that FedAvg is guaranteed to converge to a stationary point of F'(«). This analysis
was further expanded to the non-1ID data partition and client sampling cases by [11-18, 23, 24].
However, in all these works, they assume that the number of local steps and the client optimizer
are the same across all clients. Besides, asynchronous federated optimization algorithms proposed
in [41, 9] take a different approach of allowing clients make updates to stale versions of the global
model, and their analyses are limited to IID local datasets and convex local functions.

FedProx: Improving FedAvg by Adding a Proximal Term. To alleviate inconsistency due to
non-1ID data and heterogeneous local updates, [38] proposes adding a proximal term £ ||z — x(1:0)|2
to each local objective, where 1+ > 0 is a tunable parameter. This proximal term pulls each local
model backward closer to the global model z(**). Although [38] empirically shows that FedProx
improves FedAvg, its convergence analysis is limited by assumptions that are stronger than previous
FedAvg analysis and only works for sufficiently large ;1. Since FedProx is a special case of our
general framework, our convergence analysis provides sharp insights into the effect of . We show
that a larger p mitigates (but does not eliminate) objective inconsistency, albeit at an expense of slower
convergence. Our proposed FedNova method can improve FedProx by guaranteeing consistency
without slowing down convergence.

Improving FedAvg via Momentum and Cross-client Variance Reduction. The performance of
FedAvg has been improved in recent literature by applying momentum on the server side [25, 42, 40],
or using cross-client variance reduction such as VRLSGD and SCAFFOLD [21, 20]. Again, these works
do not consider heterogeneous local progress. Our proposed normalized averaging method FedNova
is orthogonal to and can be easily combined with these acceleration or variance-reduction techniques.
Moreover, FedNova is also compatible with and complementary to gradient compression/quantization
[43—48] and fair aggregation techniques [49, 50].

3 A Case Study to Demonstrate the Objective Inconsistency Problem

In this section, we use a simple quadratic model to illustrate the convergence problem. Suppose that

the local objective functions are F;(x) = ||z — e;||?, where e; € R is an arbitrary vector and it is

the minimum «; of the local objective. Consider that the global objective function is defined as
F(x)=L1Y" Fi(z) =", |z —el/?, whichis minimizedby z* = L 3™ e;. (3)

Below, we show that the convergence point of FedAvg can be arbitrarily away from x*.

Lemma 1 (Objective Inconsistency in FedAvg). For the objective function in (3), if client i performs

7; local steps per round, then FedAvg (with sufficiently small learning rate 1, deterministic gradients
and full client participation) will converge to

ie1 Ti€i ~ ™ .Fi(x
(1.0 = %, which minimizes the surrogate obj.:F(x) = M
T 00 Do Ti ST

Distance to the optimum

Same local steps

—— FedAvg
== FedProx

VRLSGD
==+ FedNova

2 2
&
.
~ .
7

.
&
L~
4
/
/

Communication rounds

0 200 400 600 800 1000 1200

Distance to the optimum

Different local steps

Random local steps (lID)

S,

¥ —

0 200 400 600 800 1000 1200

Communication rounds

Distance to the optimum

200 400 600 800 1000 1200
Communication rounds

Figure 2: Simulations comparing the FedAvg, FedProx (i = 1), VRLSGD and our proposed FedNova
algorithms for 30 clients with the quadratic objectives defined in (3), where e; ~ N (0,0.011),i €
[1, 30]. Clients perform GD with n = 0.05, which is decayed by a factor of 5 at rounds 600 and 900.
Left: Clients perform the same number of local steps 7; = 30 — FedNova is equivalent to FedAvg in
this case; Middle: Clients take different local steps 7; € [1, 96] with mean 30 but fixed across rounds;
Right: local steps are IID, and time-varying Gaussians with mean 30, i.e., 7;(t) € [1,96]. FedNova
significantly outperforms others in the heterogeneous 7; setting.

The proof (of a more general version of Lemma 1) is deferred to the Appendix. While FedAvg aims at
optimizing F'(x), it actually converges to the optimum of a surrogate objective F'(x). As illustrated
in Figure 2, there can be an arbitrarily large gap between Zgq4,,, and * depending on the relative
values of 7; and F;(x). This non-vanishing gap also occurs when the local steps 7; are [ID random
variables across clients and communication rounds (see the right panel in Figure 2).

Convergence Problem in Other Federated Algorithms. We can generalize Lemma 1 to the case
of FedProx to demonstrate its convergence gap, as given in the Appendix. From the simulations
shown in Figure 2, observe that FedProx can slightly improve on the optimality gap of FedAvg, but
it converges slower. Besides, previous cross-client variance reduction methods such as variance-
reduced local SGD (VRLSGD) [21] and SCAFFOLD [20] are only designed for homogeneous local steps
case. In the considered heterogeneous setting, if we replace the same local steps 7 in VRLSGD by
different 7;’s, then we observe that it has drastically different convergence under different settings
and even diverge when clients perform random local steps (see the right panel in Figure 2). These
observations emphasize the critical need for a deeper understanding of objective inconsistency and
new heterogeneous federated optimization algorithms.

4 New Theoretical Framework For Heterogeneous Federated Optimization

We now present a general theoretical framework that subsumes a suite of federated optimization algo-
rithms and helps analyze the effect of objective inconsistency on their error convergence. Although
the results are presented for the full client participation setting, it is fairly easy to extend them to the
case where a subset of clients are randomly sampled in each round'.

4.1 A Generalized Update Rule for Heterogeneous Federated Optimization

Recall from (2) that the update rule of federated optimization algorithms can be written as
210 — g0 =57 5 AW where A = @) — 2(:9) denote the local parameter changes
of client ¢ at round ¢ and p; = n;/n, the fraction of data at client ¢. We re-write this update rule in a
more general form as follows:

210 _ £ (t0) — _Teffz w; ndl(-t), which optimizes ﬁ(m) = Z w; Fy(x). (@)
i=1 i=1

The following three key elements of this update rule take different forms for different algorithms:

'In the case of client sampling, the update rule of FedAvg (2) should hold in expectation in order to guarantee
convergence [12, 13, 38, 40]. One can achieve this by either (i) sampling g clients with replacement with respect
to probability p;, and then averaging the cumulative local changes with equal weights, or (ii) sampling g clients
without replacement uniformly at random, and then weighted averaging local changes, where the weight of
client 7 is re-scaled to p;m/q. Our convergence analysis can be easily extended to these two cases.

1. Locally averaged gradient dl(.t): Without loss
of generality, we can rewrite the cumulative local

changes as A(t) —nG(t)az, where th)

s, gi(l® D), gi@(™)] € R stacks all
stochastlc gradlents in the t- th round, and a; € R™ is a
non-negative vector and defines how stochastic gradients
are locally accumulated. Then, by normalizing the gradi-
ent Welghts a;, the locally averaged gradient is defined as
dE) = =G az/||al\|1 The normalizing factor ||a;||; in the
denomlnator is the /1 norm of the vector a;. By setting
different a;, (4) works for most common client optimizers
such as SGD with proximal updates, local momentum, and
variable learning rate, and more generally, any solver whose
cumulative changes A;”’ = —nG; " a;, a linear combina-
tion of local gradients.

Specifically, if the client optimizer is vanilla SGD (i.e.,
the case of FedAvg), then a@; = [1,1,...,1] € R™ and
llailli = 7i- As a result, the normalized gradient is just
a simple average of all stochastic gradients within current
round: dgt) = th)ai/n =31 ' gi(x! (¢ k))/n Later in
this section, we will present more spe(:1ﬁc examples on how
to set @, in other algorithms.

2. Aggregation weights w;: Each client’s locally averaged
gradient d; is multiplied with weight w; when computing
the aggregated gradient) .- | w;d,;. By definition, these
weights satisfy > ;—1 w; = 1. Observe that these weights
determine the surrogate objective F(x) = S7" i wiFi(x),
which is optimized by the general algorithm in (4) instead
of the true global objective F(x) = Y ", p;F;(z) — we
will prove this formally in Theorem 1.

3. Effective number of steps 7.¢: Since client ¢ makes 7;

(t+1,0)
xFedNova

Novel Generalized Update Rule

1L
3, f ¢
PSS) I 2 Teﬁzwé . nd& !
i=1
m

ZwF

Figure 3: Comparison between the
novel framework and FedAvg in the
model parameter space. Solid black
arrows denote local updates at clients.
Green and blue dots denote the global
updates made by the novel general-
ized update rule and FedAvg respec-
tively. While w; controls the direc-
tion of the solid green arrow, effec-
tive steps 7. determines how far the
global model moves along with this di-
rection. FedAvg implicitly assigns too
higher weights for clients with more lo-
cal steps, resulting in a biased global
direction.

Optimizes F

local updates, the average number of local SGD steps per communication round is 7 = Z:"Zl 7 /m.
However, the server can scale up or scale down the effect of the aggregated updates by setting the
parameter T.g larger or smaller than 7 (analogous to choosing a global learning rate [25, 40]). We
refer to the ratio 7/7g as the slowdown, and it features prominently in the convergence analysis
presented in Section 4.2.

The general rule (4) enables us to freely choose 7. and w; for a given local solver a;, which
helps design fast and consistent algorithms such as FedNova, the normalized averaging method
proposed in Section 5. In Figure 3, we further illustrate how the above key elements influence the
algorithm and compare the novel generalized update rule and FedAvg in the model parameter space.
Besides, in terms of the implementation, the server is not necessary to know the specific form of local
accumulation vector a;. Each client can send the normalized u date fnd to the central server,
which is just a re-scaled version of cumulative local changes A

Previous Al orlthms as Special Cases. Any previous algorithms whose cumulative changes
A() = nG a;, a linear combination of local gradients can be subsumed by the above formulation.
One can validate this as follows:

G’ a;
pt+1,0) _ (t,0) sz A® — sz”azHl 77 H)
(t)
pillaill: G, a;
pillalh (Ga, "
<Z)Z; s pillaill @i
w;: weight

Tefi: effective local steps d;: normalized gradient

Unlike the more general form (4), in (6), which subsumes the following previous methods, 7. and w;
are implicitly fixed by the choice of the local solver (i.e., the choice of a;). Due to space limitations,
the derivations of following examples are relegated to the Appendix.

* Vanilla SGD as Local Solver (FedAvg). In FedAvg, the local solver is SGD such that a; =
[1,1,...,1] € R™ and ||a;||1 = 7;. As a consequence, the locally averaged gradient d; is a simple
average over 7; iterations, Tefr = .oy PiTi» and w; = p;7;/ Y v, p;7;. That is, the normalized
gradients with more local steps will be implicitly assigned higher weights.
* Proximal SGD as Local Solver (FedProx). In FedProx, local SGD steps are corrected by a
proximal term. It can be shown that a; = [(1 —)" 7L, (1 —)72 ..., (1 — a),1] € R™, where
a = np and p is a tunable parameter. In this case, we have ||a;||1 = [1 — (1 — @)™]/a and hence,
=0 0 pill - (=), wi=pi[l—(1—a)"]/ 30 pil - (1)) (D
When a = 0, FedProx is equivalent to FedAvg. As o = nu increases, the w; in FedProx is
more similar to p;, thus making the surrogate objective F'(x) more consistent. However, a larger «
corresponds to smaller 7g, which slows down convergence, as we discuss more in the next subsection.
* SGD with Decayed Learning Rate as Local Solver. Suppose the clients’ local learning rates are
exponentially decayed, then we have a; = [1,7;,...,7, i_l] where ; > 0 can vary across clients.
As aresult, we have |la;||1 = (1 —~")/(1 —) and w; x p;(1 —~;")/(1 — ;). Comparing with
the case of FedProx (7), changing the values of +y; has a similar effect as changing (1 — «).
* Momentum SGD as Local Solver. If we use momentum SGD where the local momentum buffers
of active clients are reset to zero at the beginning of each round [25] due to the stateless nature of
cross-device FL [2], then we have a; = [1 — p™i,1 — p"i=1 ... 1 — p]/(1 — p), where p is the
momentum factor, and ||a;||1 = [— p(1 — p™) /(1 = p)]/(1 — p).

More generally, the new formulation (6) suggests that w; # p; whenever clients have different ||a;||1,
which may be caused by imbalanced local updates (i.e., a;’s have different dimensions), or various
local learning rate/momentum schedules (i.e., a;’s have different scales).

4.2 Convergence Analysis for Smooth Non-Convex Functions

In Theorem 1 and Theorem 2 below we provide a convergence analysis for the general update rule (4)
and quantify the solution bias due to objective inconsistency. The analysis relies on Assumptions 1
and 2 used in the standard analysis of SGD [51] and Assumption 3 commonly used in the federated
optimization literature [38, 12, 13, 20, 40, 2] to capture the dissimilarities of local objectives.

Assumption 1 (Smoothness). Each local objective function is Lipschitz smooth, that is,
IVE(2) - VE ()| < Lla -yl Vi € {L,2,...,m}.
Assumption 2 (Unbiased Gradient and Bounded Variance). The stochastic gradient at each client
is an unbiased estimator of the local gradient: E¢[g;(x|§)] = VF;(x), and has bounded variance
2)
Ee[l|lgi(x|€) — VF;(2)||7] < 02, Vi€ {1,2,...,m},0% > 0.
Assumption 3 (Bounded Dissimilarity). For any sets of weights {w; > 0}/, > w; = 1, there
exist constants 3* > 1, k% > 0 such that > | w; |V (x)|? < B2 1>, inF,»(:Jc)H2 + K2 If
local functions are identical to each other, then we have 3? = 1, k% = 0.
Theorem 1 (Convergence to the Surrogate Objective ﬁ(w)’s Stationary Point). Under Assump-
tions 1 to 3, any federated optimization algorithm that follows the update rule (4), will converge to
a stationary point of a surrogate objective F(x) = Y. | w;F;(x). More specifically, if the total
communication rounds T is pre-determined and the learning rate 1 is small enough n = \/™/zT
where T = % Z:’;l T;, then the optimization error will be bounded as follows:
~ T/ Topr Ac? mBo? mCk?
min E||VF (2" 2<O<T/Teﬁ)+0<)+O(>+0() 8)
Ry EIVEETON <0\ Tarr T 7T) !

denoted by €,p; in (10)

where O swallows all constants (including L), and quantities A, B, C are defined as follows:

‘21‘2 2 2
A=mrg Yt B = T willlasl; - a?), € = maxi{laill} - llall ai-1} ©)

where a; _1 is the last element in the vector a;.

In the Appendix, we also provide another version of this theorem that explicitly contains the local
learning rate 7). Moreover, since the surrogate objective F'(«) and the original objective F'(x) are
just different linear combinations of the local functions, once the algorithm converges to a stationary
point of F'(x), one can also obtain some guarantees in terms of F'(x), as given by Theorem 2 below.

Theorem 2 (Convergence in Terms of the True Objective F'(x)). Under the same conditions as
Theorem 1, the minimal gradient norm of the true global objective function F(x) = >\ | p;F;(x)
will be bounded as follows:

min IVF(z®0)2 < 2 [Xf,uw(ﬁ2 1)+ 1] o+ 2 |k (10)
——

vanishing error term non-vanishing error due to obj. inconsistency

where €, denotes the vanishing optimization error given by (8) and X?g”w = Z:il (pi — wi)Q/wi
represents the chi-square divergence between vectors p = [p1,...,pm] and w = [wy, ..., Wy,).

Discussion: Theorems 1 and 2 describe the conver-
gence behavior of a broad class of federated hetero-

geneous optimization algorithms. Observe that when 1.00 o [10 S
all clients take the same number of local steps us- " E oS
ing the same local solver, we have p = w such $ 075 = <
that x2 = 0. Also, when all local functions are E 0.50 Sl08T
identical to each other, we have 32 = 1,k = 0. 5 3 i
Only in these two special cases, is there no objec- g 0.25 E 0'7%
tive inconsistency. For most other algorithms sub- 0.00 @ 062
sumed by the general update rule in (4), both w; 00 05 10

and 7 are influenced by the choice of a;. When a=nu

clients have different local progress (i.e., different

a; vectors), previous algorithms will end up with Figure 4: Illustration on how the parame-
a non-zero error floor x??, which does not van- o, — nu influences the convergence of
ish to 0 even with sufficiently small learning rate. pogprox. We set m — 30,p; = 1/m,7i ~
In Appendix, we further construct a lower bound N(20,20). ‘Weight bias’ denotes the chi-
and show that limy_, o minye 7y [VF(z-9)|? = square distance between p and w. ‘Slow-
Q(Xf,\|w’i2)’ suggesting (10) is tight. down’ and ’Relative Variance’ quantify how

the first and th dt in (8) ch .
Novel Insights Into the Convergence of FedProx e first and the second terms in (8) change

and the Effect of ;1. Recall that in FedProx a; =

[(1 —a)7 Y ..., (1 —a),1], where @ = nu. Accordingly, substituting the effective steps and
aggregated weight, given by (7), into (8) and (10), we get the convergence guarantee for FedProx.
Again, it has objective inconsistency because w; # p;. As we increase «, the weights w; come
closer to p; and thus, the non-vanishing error x2x? in (10) decreases (see blue curve in Figure 4).
However increasing « worsens the slowdown 7 /7, which appears in the first error term in (8) (see
the red curve in Figure 4). In the extreme case when a = 1, although FedProx achieves objective
consistency, it has a significantly slower convergence because 7.¢s = 1 and the first term in (8) is 7
times larger than that with FedAvg (eq. to a = 0).

Theorem 1 also reveals that, in FedProx, there should exist a best value of « that balances all terms in
(8). In Appendix, we provide a corollary showing that o = O(m% /72 7%) optimizes the error bound
(8) of FedProx and yields a convergence rate of O(1/vm=T + 1/7%) on the surrogate objective. This
can serve as a guideline on setting « in practice.

Linear Speedup Analysis. Another implication of Theorem 1 is that when the communication
rounds 7" is sufficiently large, then the convergence of the surrogate objective will be dominated by
the first two terms in (8), which is 1/vm#z7. This suggests that the algorithm only uses 7'/~ total
rounds when using ~ times more clients (i.e., achieving linear speedup) to reach the same error level.

5 FedNova: Proposed Federated Normalized Averaging Algorithm

Theorems 1 and 2 suggest an extremely simple solution to overcome the problem of objective
inconsistency. When we set w; = p; in (4), then the second non-vanishing term Xf,” wnz in (10) will

just become zero. This simple intuition yields the following new algorithm:
FedNova z(+10) —gt0) = e(ftf) S D nd() where d(t) th)agt)/ﬂaz(-t)ﬂl (11)

The proposed algorithm is named federated normalized averaging (FedNova), because the locally
normalized updates d; are averaged/aggregated instead of the local changes A; = —nG;a;. When
the local solver is vanilla SGD, then a; = [1,1,...,1] € R™ and d is a simple average over
current round’s gradients. In order to be consistent with FedAvg whose update rule is (6), one can

simply set Téff) =3 i 7 Then, in this case, the update rule of FedNova is equivalent to

! 05" Aj"
(10— g(10) sz sz Rox (12)
Comparing to previous algorithm xtH10) — g0 = S~ A(, each local change in FedNova

is re-scaled by (Y} i~ piT;) / T(). This simple tweak in the aggregation weights eliminates incon-
sistency in the solution.

Flexibility in Choosing Hyper-parameters and Local Solvers. Besides vanilla SGD, the new
formulation of FedNova naturally allows clients to choose various local solvers (i.e., client-side
optimizer). As discussed in Section 4.1, the local solver can also be GD/SGD with decayed local
learning rate, GD/SGD with proximal updates, GD/SGD with local momentum, etc. Furthermore,
the value of 7. is not necessarily to be controlled by the local solver as previous algorithms. For
example, when using SGD with proximal updates, one can simply set 7o = > ., p;7; instead of its
default value > | p;[1 — (1 — @)™]/c. This can help alleviate the slowdown problem discussed in
Section 4.2.

Combination with Acceleration Techniques. If clients are stateful and have additional com-
munication bandwidth, they can use cross-client variance reduction techniques to further accel-
erate the training [21, 20, 39]. In this case, the local gradient at the k-th local step becomes

gi(zR) 4 POy pidgt_l) — dgt_l). Besides, on the server side, one can also implement server
momentum or adaptive server optimizers [25, 42, 40], in which the aggregated normalized gradient
—Teft 4oy NPid; is used to update the server momentum buffer instead of directly updating the
server model.

Convergence Analysis. The local solvers at clients do not necessarily need to be the same or fixed
across rounds. In the following theorem, we obtain strong convergence guarantee for FedNova, even
with arbitrarily time-varying local updates and client optimizers.

Theorem 3 (Convergence of FedNova to a Consistent Solution). Suppose that each client performs
arbitrary number of local updates 7;(t) using arbitrary gradient accumulation method a;(t),t € [T

per round. Under Assumptions 1 to 3, if local learning rate is set as 1 = \/m? /K, where K =

m ZtT:_Ol 7;(t) denotes the number of processed mini-batches across all clients after T rounds, then
FedNowa converges to a stationary point of F'(x). The detailed bound is the same as the right hand
side of (8), except that T, A, B, C are replaced by their average values over all rounds.

Using the techniques developed in [12, 20, 13], Theorem 3 can be further generalized to incorporate
client sampling schemes. We provide corresponding corollaries in the Appendix. Moreover, forcing
all clients to perform 7 = min; 7; local steps (let us call this algorithm FedAvg-min) can also ensure
objective consistency. However, in each round, FedAvg-min will go over less data samples than
FedNova (mbrmi, versus b er 1 Ti where b is the mini-batch size), resulting in worse performance
Another drawback of a fixed 7 algorithm like FedAvg-min is that faster nodes would remain idle
in each round while waiting for slower nodes. FedNova avoids such straggling delays by allowing
nodes to make different numbers of local updates.

6 Experimental Results

Experimental Setup. We evaluate all algorithms on two setups with non-IID data partitioning: (1)
Logistic Regression on a Synthetic Federated Dataset: The dataset Synthetic(1,1) is originally
constructed in [38]. The local dataset sizes n;,% € [1,30] follows a power law. (2) DNN trained
on a Non-IID partitioned CIFAR-10 dataset: We train a VGG-11 [52] network on the CIFAR-
10 dataset [53], which is partitioned across 16 clients using a Dirichlet distribution Diry4(0.1),

as done in [54]. The original CIFAR-10 test set (without partitioning) is used to evaluate the
generalization performance of the trained global model. The local learning rate 7 is decayed by a
constant factor after finishing 50% and 75% of the communication rounds. The initial value of 7
is tuned separately for FedAvg with different local solvers. When using the same solver, FedNova
uses the same 7 as FedAvg to guarantee a fair comparison. On CIFAR-10, we run each experiment
with 3 random seeds and report the average and standard deviation. More details are in Appendix>.

i T= = i T= =0. =
595 Different, 94,C=1 25 Different, 94,C=0.3 2_25Random local epochs, C=0.3
» 2.001 — FedAvg » 2.001 & 2.00+
8 1.751 k\ —— FedProx (u=1) 8 1.751 8 1.754
»1.509 — - FedNova > 1.50 o 1.501
C 1 ‘\ c 1 c 1
= 1251 0N \ =125 =125
C ~ C C
‘® 1004 \ T~o "5 1.001 -5 1.001
o L -~— © C
F0751 N\, | T Tmm=———- = 0.75 = 0.754
0504 T 'Tr=e—nemmieme] 0504 Mo | 0501, TThe—e——n
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Communication rounds Communication rounds Communication rounds

Figure 5: Results on the synthetic dataset under three different settings. In FedProx, we set 1 = 1,
the best value reported in [38]. Left: All clients perform E; = 5 local epochs; Middle: Only C = 0.3
fraction of clients are randomly selected per round to perform E; = 5 local epochs; Right: Only
C = 0.3 fraction of clients are randomly selected per round to perform random and time-varying
local epochs E;(t) ~ U(1,5).

Synthetic Dataset Simulations. In

Figure 5, we observe that by simply Table 1: Results comparing FedAvg and FedNova with var-
changing w; to p;, FedNovanotonly jous client optimizers (i.e., local solvers) trained on non-
converges faster than FedAvg but also [ID CIFAR-10 dataset. FedProx and SCAFFOLD correspond
achieves consistently the best perfor- to FedAvg with proximal SGD updates and cross-client

mance under three different settings. varjance-reduction (VR), respectively.
Note that the only difference between

FedNova and FedAvg is the aggre- Test Accuracy %

gated weights when averaging the nor- Local Epochs Client Opt.

malized gradients. FedAvg FedNova

. B Vanilla 60.68-1.05 66.31+0.86

Non-IID CIFAR-10 Experiments. f _<24 Momentum 65.2642.42 73.32-40.29

In Table 1 we compare the perfor- ~ (16=7i <408 prinal[38] 60.44+1.21 69.9240.34
FedN FedA

mance of FedNova and FedAvg on Vanilla 64.22+1.06 73.22+0.32

non-1D CIFAR-10 with various client ® Momentum 70.442.99 77.07+0.12
optimizers run for 100 communica- E;" ~U(2,5) proximal [38] 63.74-£1.44 73.41-0.45
tion rounds. When the client opti- a6<+V <1020 " yR0] 74.7240.31 74724019
mizer is SGD or SGD with momen- Momen.+VR Not Defined 79.19-+0.17

tum, simply changing the weights
yields a 6-9% improvement on the test
accuracy; When the client optimizer is proximal SGD, FedAvg is equivalent to FedProx. We man-
ually tune the value of y from {0.0005,0.001,0.005,0.01}. By setting 7efr = > ., p;7; and
correcting the weights w; = p; while keeping a; same as FedProx, FedNova-Prox achieves about
10% higher test accuracy than FedProx. When using variance-reduction methods such as SCAFFOLD
(that requires doubled communication), FedNova-based method preserves the same test accuracy.
Furthermore, combining local momentum and variance-reduction in FedNova achieves the highest
test accuracy among all other solvers. This kind of combination is non-trivial and has not appeared
yet in the literature. We provide its pseudo-code in the Appendix.

Effectiveness of Local Momentum. From Table 1, it is worth noting that using momentum SGD
as the local solver is an effective way to improve the performance. It generally achieves 3-7%
higher test accuracy than vanilla SGD. This local momentum scheme can be further combined with
server momentum [25, 42, 40]. When E;(t) ~ U(2,5), the hybrid momentum scheme achieves test
accuracy 81.15 4 0.38% As a reference, using server momentum alone achieves 77.49 + 0.25%.

20Our code is available at: https://github. com/JYWa/FedNova.

https://github.com/JYWa/FedNova

Broader Impact

The future of machine learning lies in moving both data collection as well as model training to the
edge. This nascent research field called federated learning considers a large number of resource-
constrained devices such as cellphones or IoT sensors that collect training data from their environment.
Due to limited communication capabilities as well as privacy concerns, these data cannot be directly
sent over to the cloud. Instead, the nodes locally perform a few iterations of training and only send
the resulting model to the cloud. In this paper, we develop a federated training algorithm that is
system-aware (robust and adaptable to communication and computation variabilities by allowing
heterogeneous local progress) and data-aware (can handle skews in the size and distribution of
local training data by correcting model aggregation scheme). This research has the potential to
democratize machine learning by transcending the current centralized machine learning framework.
It will enable lightweight mobile devices to cooperatively train a common machine learning model
while maintaining control of their training data.

Acknowledgments and Disclosure of Funding

This research was generously supported in part by NSF grants CCF-1850029, the 2018 IBM Faculty
Research Award, and the Qualcomm Innovation fellowship (Jianyu Wang). We thank Anit Kumar
Sahu, Tian Li, Zachary Charles, Zachary Garrett, and Virginia Smith for helpful discussions.

References

[1] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-
efficient learning of deep networks from decentralized data. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2017.

[2] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[3] Jakub Kone¢ny, H Brendan McMabhan, Felix X Yu, Peter Richtarik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[4] Jakub Konec¢ny, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

[5] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang,
Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A
comprehensive survey. IEEE Communications Surveys & Tutorials, 2020.

[6] Mu Li, David G Andersen, Jun Woo Park, Alexander J] Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In OSDI, volume 14, pages 583-598, 2014.

[7] Angelia Nedié, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-
computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953-976,
2018.

[8] Jianyu Wang and Gauri Joshi. Cooperative SGD: A unified framework for the design and
analysis of communication-efficient SGD algorithms. arXiv preprint arXiv:1808.07576, 2018.

[9] Sebastian U Stich. Local SGD converges fast and communicates little. In International
Conference on Learning Representations (ICLR), 2019.

[10] Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic
gradient descent algorithm for nonconvex optimization. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI), pages 3219-3227, 2018.

10

[11] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted SGD for non-convex optimization
with faster convergence and less communication. arXiv preprint arXiv:1807.06629, 2018.

[12] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of FedAvg on non-IID data. In International Conference on Learning Representations, 2020.

[13] Farzin Haddadpour and Mehrdad Mahdavi. On the convergence of local descent methods in
federated learning. arXiv preprint arXiv:1910.14425, 2019.

[14] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Trad-
ing redundancy for communication: Speeding up distributed SGD for non-convex optimization.
In International Conference on Machine Learning, pages 2545-2554, 2019.

[15] Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe.
Local SGD with periodic averaging: Tighter analysis and adaptive synchronization. In Advances
in Neural Information Processing Systems, pages 11080-11092, 2019.

[16] A Khaled, K Mishchenko, and P Richtarik. Tighter theory for local SGD on identical and
heterogeneous data. In The 23rd International Conference on Artificial Intelligence and Statistics
(AISTATS 2020), 2020.

[17] Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for
SGD with delayed gradients and compressed communication. arXiv preprint arXiv:1909.05350,
2019.

[18] Shiqgiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He,
and Kevin Chan. Adaptive federated learning in resource constrained edge computing systems.
IEEE Journal on Selected Areas in Communications, 37(6):1205-1221, 2019.

[19] Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-
runtime trade-off in local-update SGD. arXiv preprint arXiv:1810.08313, 2018.

[20] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J Reddi, Sebastian U Stich,
and Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device
federated learning. arXiv preprint arXiv:1910.06378, 2019.

[21] Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei
Cheng. Variance reduced local SGD with lower communication complexity. arXiv preprint
arXiv:1912.12844, 2019.

[22] Blake Woodworth, Kumar Kshitij Patel, Sebastian U Stich, Zhen Dai, Brian Bullins, H Brendan
McMahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? arXiv
preprint arXiv:2002.07839, 2020.

[23] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U Stich. A
unified theory of decentralized SGD with changing topology and local updates. arXiv preprint
arXiv:2003.10422, 2020.

[24] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient
momentum SGD for distributed non-convex optimization. In International Conference on
Machine Learning, 2019.

[25] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. SlowMo: Improving
communication-efficient distributed SGD with slow momentum. In International Conference
on Learning Representations, 2020.

[26] Zhouyuan Huo, Qian Yang, Bin Gu, Lawrence Carin Huang, et al. Faster on-device training
using new federated momentum algorithm. arXiv preprint arXiv:2002.02090, 2020.

[27] Fan Zhou and Guojing Cong. A distributed hierarchical SGD algorithm with sparse global
reduction. arXiv preprint arXiv:1903.05133, 2019.

[28] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. FedPD: A feder-
ated learning framework with optimal rates and adaptivity to non-IID data. arXiv preprint
arXiv:2005.11418, 2020.

11

[29] Reese Pathak and Martin J Wainwright. FedSplit: An algorithmic framework for fast federated
optimization. arXiv preprint arXiv:2005.05238, 2020.

[30] Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. First analysis of local gd on
heterogeneous data. arXiv preprint arXiv:1909.04715, 2019.

[31] Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
oracle models, lower bounds, and gaps for parallel stochastic optimization. In Advances in
neural information processing systems, pages 8496-8506, 2018.

[32] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-IID data. arXiv preprint arXiv:1806.00582, 2018.

[33] Cong Xie, Oluwasanmi Koyejo, Indranil Gupta, and Haibin Lin. Local AdaAlter:
Communication-efficient stochastic gradient descent with adaptive learning rates. arXiv preprint
arXiv:1911.09030, 2019.

[34] Tao Lin, Sebastian U Stich, and Martin Jaggi. Don’t use large mini-batches, use local SGD. In
International Conference on Learning Representations (ICLR), 2020.

[35] Grigory Malinovsky, Dmitry Kovalev, Elnur Gasanov, Laurent Condat, and Peter Richtarik.
From local sgd to local fixed point methods for federated learning. arXiv preprint
arXiv:2004.01442, 2020.

[36] Jianyu Wang, Hao Liang, and Gauri Joshi. Overlap local-SGD: An algorithmic approach to
hide communication delays in distributed SGD. arXiv preprint arXiv:2002.09539, 2020.

[37] Aymeric Dieuleveut and Kumar Kshitij Patel. Communication trade-offs for local-sgd with
large step size. In Advances in Neural Information Processing Systems, pages 13579-13590,
2019.

[38] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In Conference on Machine Learning
and Systems, 2020.

[39] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smithy. Feddane: A federated newton-type method. In 2019 53rd Asilomar Conference on
Signals, Systems, and Computers, pages 1227-1231. IEEE, 2019.

[40] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[41] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. arXiv
preprint arXiv:1903.03934, 2019.

[42] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[43] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and
quantization. arXiv preprint arXiv:1909.13014, 2019.

[44] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Dis-
tributed SGD with quantization, sparsification and local computations. In Advances in Neural
Information Processing Systems, pages 14668—14679, 2019.

[45] Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and
Stephen Wright. Atomo: Communication-efficient learning via atomic sparsification. In
Advances in Neural Information Processing Systems, pages 9850-9861, 2018.

[46] Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. Robust and
communication-efficient federated learning from non-IID data. IEEE transactions on neural
networks and learning systems, 2019.

12

[47] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for compressed gradient
descent in distributed and federated optimization. arXiv preprint arXiv:2002.11364, 2020.

[48] Feijie Wu, Shiqi He, Yutong Yang, Haozhao Wang, Zhihao Qu, and Song Guo. On the
convergence of quantized parallel restarted sgd for serverless learning. arXiv preprint
arXiv:2004.09125, 2020.

[49] Tian Li, Maziar Sanjabi, and Virginia Smith. Fair resource allocation in federated learning. In
International Conference on Learning Representations (ICLR), 2020.

[50] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. arXiv
preprint arXiv:1902.00146, 2019.

[51] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, 2018.

[52] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[53] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

[54] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khaz-
aeni. Federated learning with matched averaging. In International Conference on Learning
Representations (ICLR), 2020.

13

	Introduction
	System Model and Prior Work
	A Case Study to Demonstrate the Objective Inconsistency Problem
	New Theoretical Framework For Heterogeneous Federated Optimization
	A Generalized Update Rule for Heterogeneous Federated Optimization
	Convergence Analysis for Smooth Non-Convex Functions

	FedNova: Proposed Federated Normalized Averaging Algorithm
	Experimental Results

