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Abstract

Many aspects of human reasoning, including language, require learning rules
from very little data. Humans can do this, often learning systematic rules from
very few examples, and combining these rules to form compositional rule-based
systems. Current neural architectures, on the other hand, often fail to generalize in
a compositional manner, especially when evaluated in ways that vary systematically
from training. In this work, we present a neuro-symbolic model which learns entire
rule systems from a small set of examples. Instead of directly predicting outputs
from inputs, we train our model to induce the explicit system of rules governing a
set of previously seen examples, drawing upon techniques from the neural program
synthesis literature. Our rule-synthesis approach outperforms neural meta-learning
techniques in three domains: an artificial instruction-learning domain used to
evaluate human learning, the SCAN challenge datasets, and learning rule-based
translations of number words into integers for a wide range of human languages.

1 Introduction

Humans have a remarkable ability to learn compositional rules from very little data. For example,
a person can learn a novel verb “to dax" from a few examples, and immediately understand what
it means to “dax twice" or “dax around the room quietly.” When learning language, children must
learn many interrelated concepts simultaneously, including the meaning of both verbs and modifiers
(“twice", “quietly", etc.), and how they combine to form complex meanings. People can also
learn novel artificial languages and generalize systematically to new compositional meanings (see
Figure 3). Fodor and Marcus have argued that this systematic compositionality, while critical
to human language and thought, is incompatible with classic neural networks (i.e., eliminative
connectionism) [1, 2, 3]. Despite advances, recent work shows that contemporary neural architectures
still struggle to generalize in systematic ways when directly learning rule-like mappings between
input sequences and output sequences [4, 5]. Given these findings, Marcus continues to postulate
that hybrid neural-symbolic architectures (implementational connectionism) are needed to achieve
genuine compositional, human-like generalization [3, 6, 7].

An important goal of Al is to build systems which possess this sort of systematic rule-learning
ability, while retaining the speed and flexibility of neural inference. In this work, we present a
neural-symbolic framework for learning entire rule systems from examples. As illustrated in Figure
1B, our key idea is to leverage techniques from the program synthesis community [8], and frame
the problem as explicit rule-learning through fast neural proposals and rigorous symbolic checking.
Instead of training a model to predict the correct output given a novel input (Figure 1A), we train our
model to induce the explicit system of rules governing the behavior of all previously seen examples
(Figure 1B; Grammar proposals). Once inferred, this rule system can be used to predict the behavior
of any new example (Figure 1B; Symbolic application).
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Figure 1: Illustration of our synthesis-based rule learner and comparison to previous work. A)
Previous work [9]: Support examples are encoded into an external neural memory. A query output
is predicted by conditioning on the query input sequence and interacting with the external memory
via attention. B) Our model: Given a support set of input-output examples, our model produces a
distribution over candidate grammars. We sample from this distribution, and symbolically check
consistency of each sampled grammar against the support set until a grammar is found which satisfies
the input-output examples in the support set. This approach allows much more effective search than
selecting the maximum likelihood grammar from the network.

This explicit rule-based approach confers several advantages compared to a pure input-output ap-
proach. Instead of learning a blackbox input-output mapping, and applying it to each new query item
for which we would like to predict an output (Figure 1A), we instead search for an explicit program
which we can check against previous examples (the support set). This allows us to propose and check
candidate programs, sampling programs from the neural model and only terminating search when the
proposed solution is consistent with prior data.

The program synthesis framing also allows immediate and automatic generalization: once the correct
rule system is learned, it can be correctly applied in novel scenarios which are a) arbitrarily complex
and b) outside the distribution of previously seen examples. We draw on work in the neural program
synthesis literature [10, 11] to solve complex rule-learning problems that pose difficulties for both
neural and traditional symbolic methods. Our neural synthesis approach is distinctive in its ability
to simultaneously and flexibly attend over a large number of input-output examples, allowing it to
integrate different kinds of information from varied support examples.

Our training scheme is inspired by meta-learning. Assuming a distribution of rule systems, or a
“meta-grammar," we train our model by sampling grammar-learning problems and training on these
sampled problems. We can interpret this as an approximate Bayesian grammar induction, where our
goal is to maximize the likelihood of a latent program which explains the data [12].

We demonstrate that, when trained on a general meta-grammar of rule-systems, our rule-synthesis
method can outperform neural meta-learning techniques. Concretely, our main contributions are:

e We present a neuro-symbolic program synthesis model which can learn novel rule systems
from few examples. Our model employs a symbolic program representation for compo-
sitional generalization and neural program synthesis for fast and flexible inference. This
allows us to leverage search in the space of programs, for a guess-and-check approach.

e We show that our model can learn to interpret artificial languages from few examples,
solving SCAN and outperforming 10 alternative models.

e Finally, we show that our model can outperform baselines in learning how to interpret
number words in unseen languages from few examples.



Synthesized grammar G: Symbolic application of grammar:

G =
dax -> RED
lug -> BLUE
zup -> YELLOW

G.apply ('zup blicket wif kiki dax fep')

= [dax fep][zup blicket wif]
Decoder LSTM ® ®

support examples X

lug fep wif -> GREEN = [dax] [dax] [dax] [zup] [wif] [zup]
u2 fep -> [u2] [u2] [u2]
BLUE BLUE BLUE-—» x2 kiki x1 -> [x1] [x2] = RED RED RED YELLOW GREEN YELLOW

ul blicket u2 -> [ul] [u2] [ul]
ul x1 -> [ul] [x1]

Figure 2: llustration of our synthesis-based rule learner neural architecture and grammar application.
Support examples are encoded via BILSTMs. The decoder LSTM attends over the resulting vectors
and decodes a grammar, which can be symbolically applied to held out query inputs. Middle: an
example of a fully synthesized grammar which solves the task in Figure 3.
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Our approach builds on work in neural program
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expensive, requiring an additional outer loop of ~grammar in Figure 2.

meta-learning [22], or repeating search every time a new counterexample is found (as in CEGIS [23]).
Our approach uses neural attention to flexibly condition on many examples at once, without the need
for an additional outer search or learning loop. This is especially relevant for our domains, given the
diversity of examples, and the fact that different subsets of examples inform each rule. For a more
detailed discussion of the differences between our approach and RobustFill, see Section 4.1.

There is also related work from the programming languages community, such as Sketch [23], PROSE
[24], and a large class of synthesizers from the SyGuS competition [25]. However, our problems are
outside the scope of domains these systems can support (integer, bit-vector and FlashFill-style string
editing). Our problems are also outside the scope of functional synthesizers such as Lambda? [26] or
Synquid [27]. We compare against alternative synthesis approaches in our experiments on SCAN.

3  Our Approach

Overview: Given a small support set of input-output examples, X = {(z;,y;) }i=1..n, our goal is to
produce the outputs corresponding to a query set of inputs {g; };—1..m (see Figure 3). To do this, we
build a neural program synthesis model py(-|X’) which accepts the given examples and synthesizes
a symbolic program G, which we can execute on query inputs to predict the desired query outputs,
r; = G(g;). Our symbolic program consists of an “interpretation grammar," which is a sequence
of rewrite rules, each of which represents a transformation of token sequences. The details of the



interpretation grammar are discussed below. At test time, we employ our neural program synthesis
model to drive a simple search process. This search process proposes candidate programs by sampling
from the program synthesis model and symbolically checks whether candidate programs satisfy the
support examples by executing them on the support inputs, i.e., checking that G(x;) = y; for all
i = 1..n. During each training episode, our model is given a support set X’ and is trained to infer an
underlying program G which explains the support and held-out query examples.

Model: A schematic of our architecture is shown in Figure 2. Our neural model py(G|X) is a
distribution over programs G given the support set X. Our implementation is quite simple and
consists of two components: an encoder Enc(-), which encodes each support example (x;, y;) into a
vector h;, and a decoder Dec(-), which decodes the program while attending to the support examples:

po(-|X) = Dec({hi}i=1..n),
where {h;}i=1..n = Enc(X)

Encoder: For each support example (z;, y; ), the input sequence x; and output sequence y; are each
encoded into a vector by taking the final hidden state of an input BILSTM encoder f;(z;) and an
output BILSTM encoder fo(y;), respectively (Figure 2; left). These hidden states are then combined
via a single feedforward layer with weights W to produce one vector h; per support example:

h; = ReLU (W {[fr(x:); fo(y:)])

Decoder: We use an LSTM for our decoder (Figure 2; center). The decoder hidden state wug is
initialized with the sum of all of the support example vectors, ug = » . h;, and the decoder produces
the program token-by-token while attending to the support vectors h; via attention [28]. The decoder
outputs a tokenized program, which is then parsed into an interpretation grammar.

Interpretation Grammar: The programs in this work are instances of an interpretation grammar,
which is a form of term rewriting system [29]. The interpretation grammar used in this work consists
of an ordered list of rules. Each rule consists of a left hand side (LHS) and a right hand side (RHS).
The left hand side consists of the input words, string variables x (regexes that match entire strings),
and primitive variables u (regexes that match single words). Evaluation proceeds as follows: An
input sequence is checked against the rules in order of the rule priority. If the rule LHS matches the
input sequence, then the sequence is replaced with the RHS. If the RHS contains bracketed variables
(i.e., [x] or [ul), then the contents of these variables are evaluated recursively through the same
process. In Figure 2 (right), we observe grammar application on the input sequence zup blicket
wif kiki dax fep. The first matching rule is the kiki rule,” so its RHS is applied, producing
[dax fep] [zup blicket wif], and the two bracketed strings are recursively evaluated using
the fep and blicket rules, respectively.

Search: At test time, we sample candidate programs from our neural program synthesis model. If
the new candidate program G satisfies the support set —i.e., if G(x;) = y; for all i = 1..n —then
search terminates and the candidate program G is returned as the solution. The program G is then
applied to the held-out query set to produce final query predictions r; = G(g;). During search, we
maintain the best program so far, defined as the program which satisfies the largest number of support
examples.? If the search timeout is exceeded and no program has been found which solves all of the
support examples, then the best program so far is returned as the solution.

This search procedure confers major advantages compared to pure neural approaches. In a pure
neural induction model (Figure 1A), given a query input and corresponding output prediction, there
is no way to check consistency with the support set. Conversely, casting the problem as a search for
a satisfying program allows us to explicitly check each candidate program against the support set,
to ensure that it correctly maps support inputs to support outputs. The benefit of such an approach
is shown in Section 4.2, where we can achieve perfect accuracy on SCAN by increasing our search
budget and searching until a program is found which satisfies all of the support examples.

Training: We train our model in a similar manner to [9]. During each training episode, we randomly
sample an interpretation grammar G from a distribution over interpretation grammars, or “meta-
grammar” M. We then sample a set of input sequences consistent with the sampled interpretation
grammar, and apply the interpretation grammar to each input sequence to produce the corresponding

Note that the fep rule is not applied first because u2 is a primitive variable, so it only matches when fep is
preceded by a single primitive word.
3Sequences which do not parse into a valid programs are simply discarded.



output sequence, giving us a support set of input-output examples X. We train the parameters 6 of
our network py via supervised learning to output the grammar G when conditioned on the support set
of input-output examples, maximizing ( E) [log po(G|Xp)] by gradient descent.
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Figure 4: MiniSCAN generalization results. We train on random grammars with 3-4 primitives,
2-4 higher order rules, and 10-20 support examples. Left: At test time, we vary the number of
higher-order rules. The synthesis-based approach using search achieves near-perfect accuracy for
most test conditions. Right: Length generalization results. A key challenge for compositional learning
is generalization across lengths. We plot accuracy as a function of query output length for the “4
higher-order rules" test condition. The accuracy of our synthesis approach does not degrade as a
function of query output length, whereas the performance of baselines decreases.

Our first experimental domain is the paradigm introduced in [13], informally dubbed “MiniSCAN."
The goal of this domain is to learn compositional, language-like rules from a very limited number
of examples. In [13], human subjects were allowed to study the 14 example ‘support instructions’
in Figure 3. Participants were then tested on the 10 ‘query instructions’ in Figure 3, to determine
how well they had learned to execute instructions in this novel language. Our aim is to build a model
which learns this artificial language from few examples, similar to humans. We test our model on
MiniSCAN to determine how well it can induce such language-like rules systems, both when they are
similar to those seen during training, as well as when they vary systematically from training data.

Training details: We trained our model on a series of meta-training episodes. During each episode,
a grammar was sampled from the meta-grammar distribution, and our model was trained to recover
this grammar given a support set of example sequences. In our experiments, the meta-grammar
randomly sampled grammars with 3-4 primitive rules and 2-4 higher-order rules. Primitive rules map
a word to a color (e.g. dax -> RED), and higher order rules encode variable transformations given
by aword (e.g. x1 kiki x2 -> [x2] [x1]). (In a higher-order rule, the LHS can be one or two
variables and a word, and the RHS can be any sequence of bracketed forms of those variables.) For
each grammar, we trained with a support set of 10-20 randomly sampled examples. More details can
be found in Section A.1.1 of the supplement.

Alternate Models: In this experiment, we compare against two closely related alternatives. The
first is meta seq2seq [9]. This model is also trained on episodes of randomly sampled grammars.
However, instead of synthesizing a grammar, meta seq2seq conditions on support examples and
attempts to translate query inputs directly to query outputs in a seq-to-seq manner (Figure 1A). Meta
seq2seq therefore uses a learned representation, in contrast to our symbolic program representation.
The second alternate model is a lesioned version of our synthesis approach, dubbed the no search
baseline. This model does not perform guess-and-check search, and instead returns the grammar
produced by greedily decoding the most likely token at each step. This baseline allows us to determine
how much of our model’s performance is due to its ability to perform guess-and-check search.

Test Details: Our synthesis methods were tested by sampling from the network for the best grammar,
or until a candidate grammar was found which was consistent with all of the support examples, using
a timeout of 30 sec (on one GPU; compute details in supplemental Section A.1). We tested on 50
held-out grammars, each containing 10 query examples.



Results: To evaluate our rule-learning model and baselines, we test the models on a battery of
evaluation schemes. In general, we observe that the synthesis methods are much more accurate
than the pure neural meta seq2seq method, and only the search-based synthesis method is able to
consistently predict the correct query output sequence for all test conditions. Our main results varying
the number of higher order rules are shown in Figure 4, with additional results varying the number
of support examples and number of primitives in the supplement (Figure A.1 To determine how
well these models could generalize to grammars systematically different than those seen during
training. we varied the number of higher-order functions in the test grammars (Figure 4 left). For
these experiments, each support set contained 30 examples.

Both synthesis models are able to correctly translate query items with high accuracy (89% or above)
when tested on held-out grammars within the training distribution (3-4 higher order rules). However,
only the search-based synthesis model maintains high performance as the number of higher order
rules increases beyond the training distribution, indicating that the ability to search for a consistent
program plays a large role in out-of-sample generalization.

Furthermore, in instances where the synthesis-based methods have perfect accuracy because they
recover exactly the generating grammar (or some equivalent grammar), they would also be able to
trivially generalize to query examples of any size or complexity, as long as these examples followed
the same generating grammar. On the other hand, as reported in many previous studies [30, 4, 9],
approaches which attempt to neurally translate directly from inputs to outputs struggle to generate
sequences much longer than those seen during training. This is a clear conceptual advantage of the
synthesis approach; symbolic rules, if accurately inferred, necessarily allow correct translation in
every circumstance. To investigate this property, we plot the performance of our models as a function
of the query example length for the 4 higher-order rule test condition above (Figure 4 right). The
performance of the baselines decays as the length of the query examples increases, whereas the
search-based synthesis model experiences no such decrease in performance.

This indicates a key benefit of the program synthesis approach: When a correct program is found, it
trivially generalizes correctly to arbitrary query inputs, regardless of how out-of-distribution they
may be compared to the support inputs, as long as those query inputs follow the same rules as the
support inputs. The model’s ability to search the space of programs also plays a crucial role, as it
allows the system to find a grammar which satisfies the support examples, even if it is not the most
likely grammar under the neural network distribution.

We also note that our model is able to solve the task in Figure 3; we achieve a score of 98.75% on the
query set, which is higher than the average score for human participants in [13]. The no search and
meta seq2seq model are not able to solve the task, achieving scores of 37.5% and 25%, respectively.

Comparison to RobustFill: Previous neural I/O synthesis models, such as RobustFill, as well as
[18, 17, 10]—designed for a small, fixed number of examples—generally use a separate encoder-
decoder model (possibly with attention) for each example. Information from the separate examples is
only combined through a max-pool or vector concatenation bottleneck—there is no attention across
examples. This makes these models unsuitable for domains where it is necessary to integrate relevant
information across a large number of diverse examples. To confirm this, we tested a re-implementation
of the RobustFill model on MiniSCAN. Using standard hyperparameters (hidden size 512, embedding
size 128, learning rate 0.001), the RobustFill model only achieves 3%, 4%, 3%, 3.5% accuracy on
grammars with 3-6 higher-order rules, respectively. In contrast, our model encodes each I/O example
with an example encoder, and then a single decoder model attends over these example vectors while
decoding. By attending across examples, our approach can focus on the relevant examples at each
decoding step. This is particularly important for the domains studied in this work, because there are
many support examples, and only a subset are relevant at each decoding step (i.e., each rule).

4.2 ScAN Challenge

Our next experiments concern the SCAN dataset [4, 5]. The goal of SCAN is to test the compositional
abilities of neural networks when test data varies systematically from training data. We test our model
on SCAN to determine if our rule-learning approach can solve these compositional challenges.

SCAN consists of simple English commands paired with corresponding discrete actions (see Figure
5). The dataset has roughly 21,000 command-to-action examples, arranged in several test-train splits
to examine different aspects of compositionality. We focus on four splits: The simple split randomly



walk walk -> WALK jump -> JUMP
WALK run -> RUN look -> LOOK
left -> LTURN right -> RTURN
turn -> EMPTY_STRING

ul opposite u2 -> [u2] [u2] [ul]
Jjump ul around u2 ->

JUMP [u2] [u1] [u2] [u1] [u2] [u1] [u2] [ul]
x2 twice -> [x2] [x2]

x1 thrice -> [x1] [x1] [x1]

x2 after x1 -> [x1] [x2]

walk right x1 and x2 -> [x1] [x2]

RTURN WALK ul u2 ->[u2] [ui]

walk left twice
LTURN WALK LTURN WALK

Jjump around left
LTURN JUMP LTURN JUMP LTURN JUMP LTURN JUMP

Figure 5: Right: Example SCAN data. Each example consists of a synthetic language command (top)
paired with a discrete action sequence (bottom). Fig. adapted from [14]. Left: Induced grammar
which solves SCAN.

sorts data into the train and test sets. The length split places all examples with output length of up to
22 tokens into the train set, and all other examples (24 to 48 tokens long) into the test set. The add
jump split teaches the model how to ‘jump’ in isolation, along with the compositional uses of other
primitives, and then evaluates it on all compositional uses of jump, such as ‘jump twice’ or ‘jump
around to the right.” The add around right split is similar to the ‘add jump’ split, except the phrase
‘around right’ is held out from the training set. The ‘add jump’ and ‘add around right’ splits test if a
model can learn to compositionally use words or phrases previously only seen in isolation.

Training Setup: Previous work on SCAN has used a variety of techniques [14, 9, 15]. Most related to
our approach, [9] trained a model to solve related problems via meta-learning. At test time, samples
from the SCAN train split were used as support items, and samples from the SCAN test split were used
as query items. However, in [9], the meta-training distribution consisted of different permutations
of assigning the SCAN primitive actions (‘run’, ‘jump’, ‘walk’, ‘look’) to their commands (‘RUN’,
‘JUMP’, “‘WALK’, ‘LOOK”), while maintaining the same SCAN task structure between meta-train
and meta-test. Therefore, in these experiments, the goal of the learner is to assign primitive actions to
commands within a known task structure, while the higher-order rules, such as ‘twice’, and ‘after’,
remain constant between meta-train and meta-test.

In contrast, we approach learning the entire SCAN grammar from few examples, by meta-training
on a general and broad meta-grammar for SCAN-like rule systems, similar to our approach above in
Section 4.1. Training details can be found in Section A.1.2 of the supplement.

Testing Setup: We test our fully trained

model on each split of SCAN as if it were a Table 1: Accuracy on SCAN splits.

new few-shot test episode with support ex- length simple jump right
amples and a held out query set, as above.  Synth (Ours) 100 100 100 100
For each SCAN split, we use the training  Synth (no search) 0.0 133 35 00
set as test-time support elements, and in- Meta Seq2Seq 0.04 088 0.51 0.03
put sequences from the SCAN test set are  MCMC 0.02 0.0 0.01 0.01
used as query elements. The SCAN training ~ Sampling from prior 0.04 0.03  0.03 0.01
sets have thousands of examples, so it is ~ Enumeration 0.0 0.0 0.0 0.0
infeasible to attend over the entire training  DeepCoder 0.0 0.03 00 00
set at test time. Therefore, at test time, we =~ GECA [14] — — 87 82
randomly sample 100 examples from the =~ Meta Seq2Seq (perm) 16.64 - 99.95 98.71
SCAN training set to use as the support set ~ Syntactic attention 152 - 78.4  28.9
for our network. We can then run program  Seq2Seq [4] 13.8  99.8 0.08 -

inference, conditioned on just these 100 ex-

amples from the SCAN training set. The SCAN dataset is formed by enumerating all possible examples
from the SCAN grammar up to a fixed depth; our models were trained by sampling examples from the
target grammar. This causes a distributional mismatch which we rectify using heuristics to upsample
shorter examples at test time, while ensuring that all rules are demonstrated. Details can be found in
the supplement.

Because of the large number of training examples, we are also able to slightly modify our test-time
search algorithm to increase performance: We select 100 examples as the initial support set for our
network, and search for a grammar which perfectly satisfies them. If no satisfying grammar is found
within a set timeout of 20 seconds, we resample another 100 support examples and retry searching for
a grammar. We repeat this process until a satisfying grammar is found. This methodology, inspired



by RANSAC [31], allows us to utilize many examples in the training set without attending over
thousands of examples at once.

We compare our full model with 10 alternative models, both baselines and ablations. Because the
SCAN grammar lies within the support of the meta-grammar distribution, we test two probabilistic
inference baselines: MCMC and sampling directly from the meta-grammar. We also test two
program synthesis baselines: enumeration and DeepCoder [16]. The failure of these baselines
suggests that precise recognition models are needed to search effectively in this large space; it is not
enough to only predict which tokens are present in the program, as DeepCoder does. Baseline details
can be found in Section A.1.2 of the supplement.

Results: Table 1 shows the overall performance of our model compared to baselines. Using search,
our synthesis model is able to achieve perfect performance on each SCAN split. Without search, the
synthesis approach cannot solve SCAN, never achieving performance greater than 15%. Likewise,
meta seq2seq, using neither a program representation nor search, cannot solve SCAN when trained on
a very general meta-grammatr, solving less than 1% of the test set.

One advantage of our approach is that we don’t need to retrain the model for each split. Once
meta-training has occurred, the model can be tested on each of the splits and is able to induce a
satisfying grammar for all four splits. In previous work, a separate meta-training set was used for
each SCAN split (99.95% for ‘jump’ and 98.71% for ‘right’ [9]). In contrast, we meta-train once, and
test on all 4 splits. Previous meta-learning approaches fail in this setting (0.51% and 0.03%).

Whereas previous approaches use the entire SCAN training set, our model requires less than 2% of the
training data to solve SCAN. Supplement Table A.3 reports how many examples and how much time
are required to find a grammar satisfying all support examples. Supplement Table A.4 reports running
our algorithm without swapping out support sets when no perfectly satisfying grammar is found.

4.3 Learning Number Words

Our final experimental domain is the problem of inferring — -1 X1 5yl —> [x1] * 10000 + [y1]
. . Z =2 F y1 -> 1000 * 1 + [y1]
the integer meaning of a number word sequence from few = 77 1 % y1 = Ixil = 1008 + Iyl]

examples, which provides a real-world example of com- .. Byl -> 100 % 1+ [yl

positional rule learning. See Figure 6 for an example. Our ~ + —> 10 X1 E yl => [x1] * 100 + [yl]

. . B —> 100 + y1 -> 10 * 1 + [yl]
goal is to determine whether our model can learn, from few = _J 1440 K1+ yl —> [x1] * 10 + [yl]
examples, the systematic rules governing number words, ul x1 - => [ul] + [x1]
similar to adult human learners of a foreign language. Figure 6: Induced grammar for Japanese

Setup: In this domain, each grammar G is an ordered list numbers. Given the words for necessary
of rules which defines a transformation from strings to inte- umbers (1-10, 100, 1000, 10000), as
gers (i.e, G(four thousand five hundred) — 4500, well as 30 random examples’ our 8ys-
or G(ciento treinta y siete)— 137). We modified ©™M 18 able to recover an interpretable
our interpretation grammar to allow for the simple math- Symbolic grammar to convert Japanese
ematics necessary to compute integer values. Using this words to integers for any number up to
modified interpretation grammar, we designed a training 99,999,999.

meta-grammar by examining the number systems for three languages: English, Spanish and Chinese.
More details can be found in Section A.1.3 in the supplement.

We designed the task to mimic how it might be encountered when learning a foreign language: When
presented with a core set of “primitive" words, such as the words for 1-20, 100, 1000, and a small
number of examples which show how to compose these primitives (e.g., forty five — 45 shows
how to compose forty and five), an agent should be able to induce a system of rules for decoding
the integer meaning of any number word. Therefore, for each train and test episode, we condition each
model on a support set of primitive number words and several additional compositional examples.
The goal of the model is to learn the system of rules for composing the given primitive words.

Results: Our results are reported in Table 2. We test our model on the three languages used to build
the generative model, and test on six additional unseen languages, averaging over 5 evaluation runs
for each. For many languages, our model is able to achieve perfect generalization to the held out
query set. The no search baseline is able to perform comparably for several languages, however
for some (Spanish, French) it is not able to generalize at all to the query set because the generated
grammar is invalid and does not parse. Meta seq2seq is outperformed by the synthesis approaches.



Table 2: Accuracy on few-shot number-word learning, using a maximum timeout of 45 seconds.

English Spanish Chinese | Japanese Italian Greek Korean French Viet.
Synth (Ours) 100 80.0 100 100 100 945 100 75,5 695
Synth (no search) 100 0.0 100 100 100 70.0 100 0.0 69.5
Meta Seq2Seq 68.6 64.4 63.6 46.1 737 89.0 458 400 36.6

5 Conclusion

We present a neuro-symbolic program synthesis model which can learn rule-based systems from
a small set of diverse examples. Our approach uses neural attention to flexibly condition on many
examples at once, integrating information from varied support examples. We demonstrate that
our model achieves human-level performance in a few-shot artificial language-learning domain,
dramatically improves upon existing benchmarks for the SCAN challenge, and successfully learns to
interpret number words across several natural languages. In all three domains, the use of a program
representation and explicit search provide strong out-of-sample generalization, improving upon
previous neural, symbolic, and neuro-symbolic approaches. We believe that explicit rule learning is a
key part of human intelligence, and is a necessary ingredient for building human-level and human-like
artificial intelligence.

Future work could explore learning the meta-grammar and interpretation grammar from data, allowing
our approach to be applied more broadly and with less supervision. Another important direction is to
build hybrid systems that jointly learn implicit neural rules and explicit symbolic rules, with the aim
of capturing the dual intuitive and deliberate characteristics of human thought [32].

Broader Impact

Our approach involves using program synthesis to learn explicit rule systems from just a few
examples. Compared to pure neural approaches, we expect that our approach has two main advantages:
robustness and interpretability. Because our approach combines a neural "proposer" and a symbolic
"checker", when neural inference fails, the symbolic checker can determine if the proposed program
satisfies the given examples. Because the representation produced by our model is a symbolic
program, it is also more interpretable than pure neural approaches; when mistakes are made, the
incorrect program can be analyzed in order to understand the error. We conjecture that, if systems
such as these are used in industrial or consumer settings, these interpretability and robustness features
could lead to better safety and security. We hesitate to speculate on the long-term effects of such a
research program, but we do not foresee certain groups of people being selectively advantaged.
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