
 
 

  

I. INTRODUCTION 

Despite long feedback delays, humans excel at physical 
interaction with complex objects. Nonetheless, neuroscience 
research has primarily focused on the examination of 
unconstrained motions such as reaching and pointing. To 
search for fundamentals which underlie human physical 
interaction, we developed an upper limb crank turning task.  

One widely observed pattern in unconstrained movement 
trajectories is that velocity systematically scales with 
curvature in the so-called “2/3 power law” [1]. The 2/3 power 
is exact in simple curves such as an ellipse. In more complex 
curves the power changes, but all shapes show a coincidence 
between velocity and curvature extrema [2], [3]. This power 
law relation is ascribed to neural control, and has been 
observed in isometric tasks where subjects managed force to 
move a virtual point [4], and in monkey motor cortical activity 
[5]. However, alternative observations were reported [6], [7]. 

Motion under a circular constraint (i.e. turning a crank) 
imposes constant curvature of the hand path and hence should 
not show variations of speed. However, constrained motion 
also includes forces against the constraint, implying a zero-
force trajectory (defined below) that is not circular and does 
not show constant speed. We determined the zero-force 
trajectory and hypothesize that the power law relation will 
arise if this relation is of neural origin. A detailed treatment 
of this work was recently published [8], [9]. 

II. METHODS 

Ten right-handed subjects turned a crank (radius 10 cm) in 
two directions (clockwise and counterclockwise), and in three 
speed conditions: slow (0.075 rev/s), medium (0.5 rev/s), and 
fast (2 rev/s). Visual velocity feedback was provided on a 
display. Subjects completed 23 trials in each condition.   

Because kinematically-constrained actions necessarily 
involve significant physical interaction, disentangling the 
influences of biomechanics and neural control is a challenge. 
We assumed a plausible mathematical model of interactive 
dynamics and used it to ‘peel back’ peripheral biomechanics, 
revealing underlying neural influence expressed in terms of 
motion. We called this quantity the zero-force trajectory – this 
computation is explained in the appendix.  

For each local minimum in tangential speed of the zero-
force trajectory, the nearest local maximum in curvature of 
the zero-force trajectory was found. The signed distance 
between the two extrema was normalized by the target speed, 
and defined as the interval, Δ. This was computed for each 
subject in each condition, and the data were pooled across 
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trials. The 95% confidence interval for each subject in each 
condition was computed.  

III. RESULTS 

Figure 1 shows the experimental set-up and a representative 
plot of the zero-force trajectory for the circular constraint. The 
zero-force trajectory systematically deviates from the circular 
constraint (dashed black line) showing an elliptic shape. The 
color coding illustrates how the velocity decreased as the 
curvature increased. Figure 2a shows tangential velocity vs. 
angle, illustrating the coincidence of extrema in velocity and 
curvature. Figure 2b summarizes the intervals Δ in a 
histogram. The interval Δ often slightly led or lagged zero but 
all 95% confidence intervals for Δ were less than 3% of a 
revolution from zero.  

 
Figure 1: (a) A mechanical crank presented a circular constraint. The 
subject was provided with visual velocity feedback. The wrist was 
braced, the elbow was supported by a sling, and the shoulders were 
strapped to the chair. (b) Representative trial from one subject in the 
CW direction in the medium conditions: zero-force trajectory 
(variable color line), path defined by the constraint (black dashed 
lines).  

 
Figure 2: (a) Tangential speed and curvature 𝜅 of the zero-force 
trajectory for a single trial plotted vs. the angle of the circular 
constraint; successive cycles are superimposed. (b) Histogram of the 
interval Δ for all trials performed by one subject at the medium speed 
in the CW direction. 

IV. DISCUSSION/CONCLUSIONS  

Even though the hand was confined to a circular path, when 
the peripheral biomechanics were subtracted, a velocity-
curvature relation consistent with unconstrained movements 
was revealed. There was a significant coincidence of 
curvature and velocity extrema in the zero-force trajectory. 

(corresponding author to provide phone: 608-444-2779; (e-mail: 
jhermus@mit.edu).  

D. Sternad is with the Departments of Biology, Electrical & Computer 
Engineering, and Physics, Northeastern University, Boston, MA 02115 USA  

N. Hogan is with the Departments of Brain and Cognitive Sciences and 
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 
MA 02139 USA 

James Hermus, Dagmar Sternad, and Neville Hogan 

Features of Free Motion Persist in Constrained Actions 



 
 

This observation was not evident in endpoint Cartesian space, 
as it was disguised by the interactive dynamic properties of 
the limb. These findings indicate that movement planning in 
zero-force space may be similar in unconstrained and 
constrained motion. 

V. APPENDIX 

The model of the human was constructed of the upper arm 
(link 1), and forearm (𝑓) plus hand (ℎ) (link 2). Each of the 
body segments was described by the following parameters: 
length (𝑙), mass (𝑚), inertia (𝐼), radius of gyration (𝑘!), and 
center of mass (𝑐). The length 𝑙" was the distance from the 
elbow to the center of the fist; the length 𝑐# was the distance 
from the center of the wrist to the center of the hand. The hand 
was assumed to be a point mass at the end of the forearm.  

The model of the arm and crank system was constructed in 
the same manner as performed by Ohta et al. [10].  Figure 3 
displays the variables and notation of the model. The system 
has one degree of freedom; therefore, there is a kinematic 
relation which can be used to transform from Cartesian 
position, 𝒙 = [𝑥, 𝑦]$, to joint position, 𝒒 = [𝑞%, 𝑞&]$, and to 
crank position, 𝜃, where the center of the crank is defined as 
𝒙𝒄 = [𝑥( , 𝑦(]. 

 

 𝒙 =	 4 l%C% 	+	 l&C%&	l%S% 	+	 l&S%&	
9 		= :	r	 cos 𝜃r sin 𝜃 A + 𝒙( (1) 

 
The notation 𝑆%, 𝐶% denote sin(𝑞%), cos(𝑞%) and 𝑆%&, 𝐶%& 

denote sin(𝑞% + 𝑞&), cos(𝑞% + 𝑞&). The radius of the crank is 
𝑟, the damping of the crank is 𝑏(, and the inertia is 𝐼. The 
upper arm denoted 1 and the forearm denoted 2 are described 
by length 𝑙%, 𝑙&, mass 𝑚%, 𝑚&, inertia about the z axis 𝐼%, 𝐼&, 
and center of mass distance from the joint axis 𝑐%, 𝑐&. The 
force on the handle is 𝑭 = I𝐹) , 𝐹*K

$
, with the normal unit 

vector, 𝒏 and tangential unit vector, 𝒆. The joint torque is 
denoted 𝝉	 = 	 [𝜏%, 𝜏&]$. 

From the sum of moments acting on the crank,  
 

 𝐼𝜃̈ + 𝑏(𝜃̇ = 𝑟𝒆$𝑭 (2)  
 

summation of moments about the shoulder, 
 

 𝑴𝒒̈ + 𝒉 = 𝝉 − 𝑱$𝑭 (3) 
 

and the kinematic relationship that equates the acceleration at 
the handle to the acceleration at the hand, 

 

 𝒙̈ = 	𝑱𝒒̈ +	 𝑱̇𝒒̇ = 𝑟(𝜃̈𝒆 −	 𝜃̇&𝒏)	 (4) 
   

and the joint torque was defined by,  
 

 𝝉 = 𝑲(𝒒+ − 𝒒) + 𝑩(𝒒̇+ − 𝒒̇) (5)  
   

a model of the system can be constructed. Substituting 
Equation 5 into Equation 2, 3, and 4, the equation can be 
manipulated to solve for 𝒒̇+. 

 
𝒒̇+
= 𝑩,%I𝑴𝑱,%I{𝑱𝑴,%𝑱$ + 𝑟&𝐼,%𝒆𝒆$}𝑭 − 𝑱̇𝒒̇
− 𝑟𝜃̇Z𝜃̇𝒏 + 𝑏(𝐼,%𝒆[K + 𝒉 −𝑲(𝒒+ − 𝒒)K + 𝒒̇ 

(6) 

Terms comprising these equations include the mass matrix, 
the centrifugal and Coriolis forces, and the Jacobian relating 
unconstrained differential arm motions to hand motions. 

 

Figure 3: Model of crank rotation task which displays the sign 
convention and notation used in the computations. 
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