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I. INTRODUCTION

Despite long feedback delays, humans excel at physical
interaction with complex objects. Nonetheless, neuroscience
research has primarily focused on the examination of
unconstrained motions such as reaching and pointing. To
search for fundamentals which underlie human physical
interaction, we developed an upper limb crank turning task.

One widely observed pattern in unconstrained movement
trajectories is that velocity systematically scales with
curvature in the so-called “2/3 power law” [1]. The 2/3 power
is exact in simple curves such as an ellipse. In more complex
curves the power changes, but all shapes show a coincidence
between velocity and curvature extrema [2], [3]. This power
law relation is ascribed to neural control, and has been
observed in isometric tasks where subjects managed force to
move a virtual point [4], and in monkey motor cortical activity
[5]. However, alternative observations were reported [6], [7].

Motion under a circular constraint (i.e. turning a crank)
imposes constant curvature of the hand path and hence should
not show variations of speed. However, constrained motion
also includes forces against the constraint, implying a zero-
force trajectory (defined below) that is not circular and does
not show constant speed. We determined the zero-force
trajectory and hypothesize that the power law relation will
arise if this relation is of neural origin. A detailed treatment
of this work was recently published [8], [9].

II. METHODS

Ten right-handed subjects turned a crank (radius 10 cm) in
two directions (clockwise and counterclockwise), and in three
speed conditions: slow (0.075 rev/s), medium (0.5 rev/s), and
fast (2 rev/s). Visual velocity feedback was provided on a
display. Subjects completed 23 trials in each condition.

Because kinematically-constrained actions necessarily
involve significant physical interaction, disentangling the
influences of biomechanics and neural control is a challenge.
We assumed a plausible mathematical model of interactive
dynamics and used it to ‘peel back’ peripheral biomechanics,
revealing underlying neural influence expressed in terms of
motion. We called this quantity the zero-force trajectory — this
computation is explained in the appendix.

For each local minimum in tangential speed of the zero-
force trajectory, the nearest local maximum in curvature of
the zero-force trajectory was found. The signed distance
between the two extrema was normalized by the target speed,
and defined as the interval, A. This was computed for each
subject in each condition, and the data were pooled across
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trials. The 95% confidence interval for each subject in each
condition was computed.

III. RESULTS

Figure 1 shows the experimental set-up and a representative
plot of the zero-force trajectory for the circular constraint. The
zero-force trajectory systematically deviates from the circular
constraint (dashed black line) showing an elliptic shape. The
color coding illustrates how the velocity decreased as the
curvature increased. Figure 2a shows tangential velocity vs.
angle, illustrating the coincidence of extrema in velocity and
curvature. Figure 2b summarizes the intervals A in a
histogram. The interval A often slightly led or lagged zero but
all 95% confidence intervals for A were less than 3% of a
revolution from zero.
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Figure 1: (a) A mechanical crank presented a circular constraint. The
subject was provided with visual velocity feedback. The wrist was
braced, the elbow was supported by a sling, and the shoulders were
strapped to the chair. (b) Representative trial from one subject in the
CW direction in the medium conditions: zero-force trajectory
(variable color line), path defined by the constraint (black dashed
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Figure 2: (a) Tangential speed and curvature x of the zero-force
trajectory for a single trial plotted vs. the angle of the circular
constraint; successive cycles are superimposed. (b) Histogram of the
interval A for all trials performed by one subject at the medium speed
in the CW direction.

IV. DISCUSSION/CONCLUSIONS

Even though the hand was confined to a circular path, when
the peripheral biomechanics were subtracted, a velocity-
curvature relation consistent with unconstrained movements
was revealed. There was a significant coincidence of
curvature and velocity extrema in the zero-force trajectory.
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This observation was not evident in endpoint Cartesian space,
as it was disguised by the interactive dynamic properties of
the limb. These findings indicate that movement planning in
zero-force space may be similar in unconstrained and
constrained motion.

V. APPENDIX

The model of the human was constructed of the upper arm
(link 1), and forearm (f) plus hand (h) (link 2). Each of the
body segments was described by the following parameters:
length (1), mass (m), inertia (I), radius of gyration (k,), and
center of mass (c). The length [, was the distance from the
elbow to the center of the fist; the length ¢, was the distance
from the center of the wrist to the center of the hand. The hand
was assumed to be a point mass at the end of the forearm.

The model of the arm and crank system was constructed in
the same manner as performed by Ohta et al. [10]. Figure 3
displays the variables and notation of the model. The system
has one degree of freedom; therefore, there is a kinematic
relation which can be used to transform from Cartesian
position, x = [x,y]7, to joint position, g = [¢,, g,]", and to
crank position, 8, where the center of the crank is defined as
x. =[x, yc]-
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The notation S;, C; denote sin(q,), cos(q,) and S5, C;,
denote sin(q, + q,), cos(q; + q,). The radius of the crank is
r, the damping of the crank is b,, and the inertia is I. The
upper arm denoted 1 and the forearm denoted 2 are described
by length [;, [,, mass m,, m,, inertia about the z axis I;, I,,
and center of mass distance from the joint axis c¢;, ¢,. The
force on the handle is F = [Fx, Fy]T, with the normal unit
vector, n and tangential unit vector, e. The joint torque is
denoted T = [14,7,]".

From the sum of moments acting on the crank,

16 + b0 =re"F (2)
summation of moments about the shoulder,
Mg+h=1t—-]J'F 3)

and the kinematic relationship that equates the acceleration at
the handle to the acceleration at the hand,

X=Jqg+ jg=rfe— 6°n) 4)

and the joint torque was defined by,
T=K(qo—q) +B(qo— Q) (5)

a model of the system can be constructed. Substituting
Equation 5 into Equation 2, 3, and 4, the equation can be
manipulated to solve for q,.
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Terms comprising these equations include the mass matrix,
the centrifugal and Coriolis forces, and the Jacobian relating
unconstrained differential arm motions to hand motions.

Figure 3: Model of crank rotation task which displays the sign
convention and notation used in the computations.
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