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Abstract

We investigate the representation power of graph neural networks in the semi-
supervised node classification task under heterophily or low homophily, i.e., in
networks where connected nodes may have different class labels and dissimilar
features. Many popular GNNs fail to generalize to this setting, and are even
outperformed by models that ignore the graph structure (e.g., multilayer percep-
trons). Motivated by this limitation, we identify a set of key designs—ego- and
neighbor-embedding separation, higher-order neighborhoods, and combination of
intermediate representations—that boost learning from the graph structure under
heterophily. We combine them into a graph neural network, HoGCN, which we
use as the base method to empirically evaluate the effectiveness of the identified
designs. Going beyond the traditional benchmarks with strong homophily, our
empirical analysis shows that the identified designs increase the accuracy of GNNs
by up to 40% and 27% over models without them on synthetic and real networks
with heterophily, respectively, and yield competitive performance under homophily.

1 Introduction

We focus on the effectiveness of graph neural networks (GNNs) [42] in tackling the semi-supervised
node classification task in challenging settings: the goal of the task is to infer the unknown labels of
the nodes by using the network structure [44], given partially labeled networks with node features
(or attributes). Unlike most prior work that considers networks with strong homophily, we study the
representation power of GNNSs in settings with different levels of homophily or class label smoothness.

Homophily is a key principle of many real-world networks, whereby linked nodes often belong to the
same class or have similar features (“birds of a feather flock together”) [21]. For example, friends are
likely to have similar political beliefs or age, and papers tend to cite papers from the same research
area [23]. GNNs model the homophily principle by propagating features and aggregating them
within various graph neighborhoods via different mechanisms (e.g., averaging, LSTM) [17, 11, 36].
However, in the real world, there are also settings where “opposites attract”, leading to networks with
heterophily: linked nodes are likely from different classes or have dissimilar features. For instance,
the majority of people tend to connect with people of the opposite gender in dating networks, different
amino acid types are more likely to connect in protein structures, fraudsters are more likely to connect
to accomplices than to other fraudsters in online purchasing networks [24].

Since many existing GNNs assume strong homophily, they fail to generalize to networks with
heterophily (or low/medium level of homophily). In such cases, we find that even models that ignore
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the graph structure altogether, such as multilayer perceptrons or MLPs, can outperform a number of
existing GNNs. Motivated by this limitation, we make the following contributions:

* Current Limitations: We reveal the limitation of GNNs to learn over networks with heterophily,
which is ignored in the literature due to evaluation on few benchmarks with similar properties. § 3

* Key Designs for Heterophily & New Model: We identify a set of key designs that can boost learn-
ing from the graph structure in heterophily without trading off accuracy in homophily: (D1) ego-
and neighbor-embedding separation, (D2) higher-order neighborhoods, and (D3) combination of
intermediate representations. We justify the designs theoretically, and combine them into a model,
H>GCN, that effectively adapts to both heterophily and homophily. We compare it to prior GNN
models, and make our code and data available at https://github. com/GemsLab/H2GCN. § 3-4

* Extensive Empirical Evaluation: We empirically analyze our model and competitive existing
GNN models on both synthetic and real networks covering the full spectrum of low-to-high
homophily (besides the typically-used benchmarks with strong homophily only). In synthetic
networks, our detailed ablation study of HoGCN (which is free of confounding designs) shows
that the identified designs result in up to 40% performance gain in heterophily. In real networks,
we observe that GNN models utilizing even a subset of our identified designs outperform popular
models without them by up to 27% in heterophily, while being competitive in homophily. § 5

2 Notation and Preliminaries %%,

ol N | Py
We summarize our notation in Table A.1 (App. A). Let G = (V, ) be o\ U " e
an undirected, unweighted graph with nodeset VV and edgeset £. We o N X S e
denote a general neighborhood centered around v as N(v) (G may e - \ . e
have self-loops), the corresponding neighborhood that does not include oy o/ 9
the ego (node v) as N(v), and the general neighbors of node v at /7 '
exactly ¢ hops/steps away (minimum distance) as V;(v). For example, * & N
Ni(v) = {u : (u,v) € £} are the immediate neighbors of v. Other ®e0®

examples are shown in Fig. 1. We represent the graph by its adjacency .
matrix A € {0,1}"*" and its node feature matrix X € R"*¥, where ~Figure 1: Neighborhoods.
the vector x,, corresponds to the ego-feature of node v, and {x,, : u € N(v)} to its neighbor-features.

We further assume a class label vector y, which for each node v contains a unique class label y,,. The
goal of semi-supervised node classification is to learn a mapping ¢ : ¥V — ), where ) is the set of
labels, given a set of labeled nodes 7y, = {(v1,¥1), (v2,¥2), ...} as training data.

Graph neural networks From a probabilistic perspective, most GNN models assume the following
local Markov property on node features: for each node v € V), there exists a neighborhood N (v) such
that y,, only depends on the ego-feature x, and neighbor-features {x,, : u € N(v)}. Most models
derive the class label y, via the following representation learning approach:

r = f (rg,k*l), {rgﬁ1> tu € N(’U)}) , ' = x,, and y, = arg max{softmax(rgk))W}, (1)

where the embedding function f is applied repeatedly in K total rounds, node v’s representation
(or hidden state vector) at round k, r{®’, is learned from its ego- and neighbor-representations in
the previous round, and a softmax classifier with learnable weight matrix W is applied to the final
representation of v. Most existing models differ in their definitions of neighborhoods N (v) and
embedding function f. A typical definition of neighborhood is N7 (v)—i.e., the 1-hop neighbors of v.
As for f, in graph convolutional networks (GCN) [17] each node repeatedly averages its own features
and those of its neighbors to update its own feature representation. Using an attention mechanism,
GAT [36] models the influence of different neighbors more precisely as a weighted average of the
ego- and neighbor-features. GraphSAGE [11] generalizes the aggregation beyond averaging, and
models the ego-features distinctly from the neighbor-features in its subsampled neighborhood.

Homophily and heterophily In this work, we focus on heterophily in class labels. We first define
the edge homophily ratio h as a measure of the graph homophily level, and use it to define graphs
with strong homophily/heterophily:

Definition 1 The edge homophily ratio h = |{(“’U):(”’“|)5€‘S/\y“:y”}l is the fraction of edges in a
graph which connect nodes that have the same class label (i.e., intra-class edges).

Definition 2 Graphs with strong homophily have high edge homophily ratio h — 1, while graphs
with strong heterophily (i.e., low/weak homophily) have small edge homophily ratio h — 0.
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The edge homophily ratio in Dfn. 1 gives an overall trend for all the edges in the graph. The actual
level of homophily may vary within different pairs of node classes, i.e., there is different tendency of
connection between each pair of classes. In App. B, we give more details about capturing these more
complex network characteristics via an empirical class compatibility matrix H, whose 4, j-th entry is
the fraction of outgoing edges to nodes in class j among all outgoing edges from nodes in class .

Heterophily # Heterogeneity. We remark that heterophily, which we study in this work, is a distinct
network concept from heterogeneity. Formally, a network is heterogeneous [34] if it has at least two
types of nodes and different relationships between them (e.g., knowledge graphs), and homogeneous
if it has a single type of nodes (e.g., users) and a single type of edges (e.g., friendship). The type
of nodes in heterogeneous graphs does not necessarily match the class labels y,,, therefore both
homogeneous and heterogeneous networks may have different levels of homophily.

3 Learning Over Networks with Heterophily

While many GNN models have been proposed, most of Table 1: Example of a heterophily setting
them are designed under the assumption of homophily, (h = 0.1) where existing GNNs fail to
and are not capable of handling heterophily. As a moti- generalize, and a typical homophily setting
vating example, Table 1 shows the mean classification (h = 0.7): mean accuracy and standard
accuracy for several leading GNN models on our syn- deviation over three runs (cf. App. G).
thetic benchmark syn-cora, where we can control the
homophily/heterophily level (see App. G for details on
the data and setup). Here we consider two homophily g%\] [17] 37.1dxa60 - 84.52+0.54
. . . [36] 33.11+1.20  84.03+0.97
ratios, h = 0.1 and h = 0.7, one for high heterophily  GcoN-Cheby 7] 68.104175  84.9241.03
and one for high homophily. We observe that for het-  GraphSAGE [11]  72.89+2.42  85.06+0.51
erophily (h = 0.1) all existing methods fail to perform  MixHop [1] 58.93+2.84  84.43+0.94
better than a Multilayer Perceptron (MLP) with 1 hidden =~ MLP 74.85+0.76  71.72+0.62
layer, a graph-agnostic baseline that relies solely onthe " GCN (ours)  76.87+043 88.28-0.66
node features for classification (differences in accuracy
of MLP for different h are due to randomness). Especially, GCN [17] and GAT [36] show up to
42% worse performance than MLP, highlighting that methods that work well under high homophily
(h = 0.7) may not be appropriate for networks with low/medium homophily.

h=0.1 h=0.7

Motivated by this limitation, in the following subsections, we discuss and theoretically justify a set
of key design choices that, when appropriately incorporated in a GNN framework, can improve the
performance in the challenging heterophily settings. Then, we present HoGCN, a model that, thanks
to these designs, adapts well to both homophily and heterophily (Table 1, last row). In Section 5, we
provide a comprehensive empirical analysis on both synthetic and real data with varying homophily
levels, and show that the identified designs significantly improve the performance of GNNs (not
limited to HoGCN) by effectively leveraging the graph structure in challenging heterophily settings,
while maintaining competitive performance in homophily.

3.1 Effective Designs for Networks with Heterophily

We have identified three key designs that—when appropriately integrated—can help improve the
performance of GNN models in heterophily settings: (D1) ego- and neighbor-embedding separation;
(D2) higher-order neighborhoods; and (D3) combination of intermediate representations. While these
designs have been utilized separately in some prior works [11, 7, 1, 38], we are the first to discuss
their importance under heterophily by providing novel theoretical justifications and an extensive
empirical analysis on a variety of datasets.

3.1.1 (D1) Ego- and Neighbor-embedding Separation

The first design entails encoding each ego-embedding (i.e., a node’s embedding) separately from the
aggregated embeddings of its neighbors, since they are likely to be dissimilar in heterophily settings.
Formally, the representation (or hidden state vector) learned for each node v at round & is given as:

r®) — COMBINE (rgk—1)7 AGGR({r" Y :ue N(v) })) ; @

the neighborhood N (v) does not include v (no self-loops), the AGGR function aggregates representa-
tions only from the neighbors (in some way—e.g., average), and AGGR and COMBINE may be followed



by a non-linear transformation. For heterophily, after aggregating the neighbors’ representations, the
definition of COMBINE (akin to ‘skip connection’ between layers) is critical: a simple way to combine
the ego- and the aggregated neighbor-embeddings without ‘mixing’ them is with concatenation as in
GraphSAGE [11]—rather than averaging all of them as in the GCN model by Kipf and Welling [17].

Intuition. In heterophily settings, by definition (Dfn. 2), the class label y, and original features x,
of a node and those of its neighboring nodes {(y.,x,) : v € N(v)} (esp. the direct neighbors
N; (v)) may be different. However, the typical GCN design that mixes the embeddings through an
average [17] or weighted average [36] as the COMBINE function results in final embeddings that are
similar across neighboring nodes (especially within a community or cluster) for any set of original
features [28]. While this may work well in the case of homophily, where neighbors likely belong to
the same cluster and class, it poses severe challenges in the case of heterophily: it is not possible to
distinguish neighbors from different classes based on the (similar) learned representations. Choosing
a COMBINE function that separates the representations of each node v and its neighbors N (v) allows
for more expressiveness, where the skipped or non-aggregated representations can evolve separately
over multiple rounds of propagation without becoming prohibitively similar.

Theoretical Justification. We prove theoretically that, under some conditions, a GCN layer that
co-embeds ego- and neighbor-features is less capable of generalizing to heterophily than a layer that
embeds them separately. We measure its generalization ability by its robustness to test/train data
deviations. We give the proof of the theorem in App. C.1. Though the theorem applies to specific
conditions, our empirical analysis shows that it holds in more general cases (§ 5).

Theorem 1 Consider a graph G without self-loops (§ 2) with node features x,, = onehot(y, ) for
each node v, and an equal number of nodes per class y € Y in the training set Ty,. Also assume that

all nodes in Ty, have degree d, and proportion h of their neighbors belong to the same class, while

proportion \311|%hl of them belong to any other class (uniformly). Then for h < %‘@M, a simple

GCN layer formulated as (A + 1) XW is less robust, i.e., misclassifies a node for smaller train/test
data deviations, than a AXW layer that separates the ego- and neighbor-embeddings.

Observations. In Table 1, we observe that GCN, GAT, and MixHop, which ‘mix’ the ego- and
neighbor-embeddings explicitly!, perform poorly in the heterophily setting. On the other hand,
GraphSAGE that separates the embeddings (e.g., it concatenates the two embeddings and then applies
a non-linear transformation) achieves 33-40% better performance in this setting.

3.1.2 (D2) Higher-order Neighborhoods

The second design involves explicitly aggregating information from higher-order neighborhoods in
each round k, beyond the immediate neighbors of each node:

r®) = COMBINE (rfﬁfl), AGGR({rfF ™V tue Ni(v) }), AGGR{r( ™ :ue No(v) })7) 3)

where N;(v) denotes the neighbors of v at exactly i hops away, and the AGGR functions applied to
different neighborhoods can be the same or different. This design—employed in GCN-Cheby [7] and
MixHop [1]—augments the implicit aggregation over higher-order neighborhoods that most GNN
models achieve through multiple rounds of first-order propagation based on variants of Eq. (2).

Intuition. To show why higher-order neighborhoods help in the heterophily settings, we first define
homophily-dominant and heterophily-dominant neighborhoods:

Definition 3 N (v) is expectedly homophily-dominant if P(y., = yu|¥u) = P(Yu = ylyw),Vu €
N(v)andy € Y # y,. If the opposite inequality holds, N (v) is expectedly heterophily-dominant.

From this definition, we can see that expectedly homophily-dominant neighborhoods are more
beneficial for GNN layers, as in such neighborhoods the class label y, of each node v can in
expectation be determined by the majority of the class labels in NV (v). In the case of heterophily, we
have seen empirically that although the immediate neighborhoods may be heterophily-dominant, the
higher-order neighborhoods may be homophily-dominant and thus provide more relevant context.
This observation is also confirmed by recent works [2, 6] in the context of binary attribute prediction.

! These models consider self-loops, which turn each ego also into a neighbor, and thus mix the ego- and
neighbor-representations. E.g., GCN and MixHop operate on the symmetric normalized adjacency matrix

augmented with self-loops: A=D: (A+ I)]j_% , where I is the identity and D the degree matrix of A + 1.



Theoretical Justification. Below we formalize the above observation for 2-hop neighborhoods under
non-binary attributes (labels), and prove one case when they are homophily-dominant in App. C.2:

Theorem 2 Consider a graph G without self-loops (§ 2) with label set ), where for each node v,

its neighbors’ class labels {y,, : u € N(v)} are conditionally independent given y,, and P(y, =
Yol¥o) = h P(yu = ylys) = Sjl%hl,Vy # yy. Then, the 2-hop neighborhood N2 (v) for a node v
will always be homophily-dominant in expectation.

Observations. Under heterophily (h = 0.1), GCN-Cheby, which models different neighborhoods by
combining Chebyshev polynomials to approximate a higher-order graph convolution operation [7],
outperforms GCN and GAT, which aggregate over only the immediate neighbors N, by up to +31%
(Table 1). MixHop, which explicitly models 1-hop and 2-hop neighborhoods (though ‘mixes’ the
ego- and neighbor-embeddings', violating design D1), also outperforms these two models.

3.1.3 (D3) Combination of Intermediate Representations

The third design combines the intermediate representations of each node at the final layer:
i) — COMBINE ( rfPor® rgK)) )

to explicitly capture local and global information via COMBINE functions that leverage each represen-
tation separately—e.g., concatenation, LSTM-attention [38]. This design is introduced in jumping
knowledge networks [38] and shown to increase the representation power of GCNs under homophily.

Intuition. Intuitively, each round collects information with different locality—earlier rounds are more
local, while later rounds capture increasingly more global information (implicitly, via propagation).
Similar to D2 (which models explicit neighborhoods), this design models the distribution of neighbor
representations in low-homophily networks more accurately. It also allows the class prediction to
leverage different neighborhood ranges in different networks, adapting to their structural properties.

Theoretical Justification. The benefit of combining intermediate representations can be theoretically
explained from the spectral perspective. Assuming a GCN-style layer—where propagation can be
viewed as spectral filtering—, the higher order polynomials of the normalized adjacency matrix
A is a low-pass filter [37], so intermediate outputs from earlier rounds contain higher-frequency
components than outputs from later rounds. At the same time, the following theorem holds for graphs
with heterophily, where we view class labels as graph signals (as in graph signal processing):

Theorem 3 Consider graph signals (label vectors) s, t € {0, 1}M defined on an undirected graph
G with edge homophily ratios hs and hy, respectively. If hy < hy, then signal s has higher energy
(Dfn. 5) in high-frequency components than t in the spectrum of unnormalized graph Laplacian L.

In other words, in heterophily settings, the label distribution contains more information at higher than
lower frequencies (see proof in App. C.3). Thus, by combining the intermediate outputs from different
layers, this design captures both low- and high-frequency components in the final representation,
which is critical in heterophily settings, and allows for more expressiveness in the general setting.

Observations. By concatenating the intermediate representations from two rounds with the embedded
ego-representation (following the jumping knowledge framework [38]), GCN’s accuracy increases to
58.93%=+3.17 for h = 0.1, a 20% improvement over its counterpart without design D3 (Table 1).

Summary of designs To sum up, D1 models (at each layer) the ego- and neighbor-representations
distinctly, D2 leverages (at each layer) representations of neighbors at different distances distinctly,
and D3 leverages (at the final layer) the learned ego-representations at previous layers distinctly.

3.2 H->GCN: A Framework for Networks with Homophily or Heterophily

We now describe Hy GCN, which exemplifies how effectively combining designs D1-D3 can help
better adapt to the whole spectrum of low-to-high homophily, while avoiding interference with other
designs. It has three stages (Alg. 1, App. D): (S1) feature embedding, (S2) neighborhood aggregation,
and (S3) classification.

The feature embedding stage (S1) uses a graph-agnostic dense layer to generate for each node v the
feature embedding r'?) € R” based on its ego-feature x,: r\y) = o(x, W.), where o is an optional

non-linear function, and W, € R¥*? is a learnable weight matrix.



In the neighborhood aggregation stage (S2), the generated embeddings are aggregated and repeatedly
updated within the node’s neighborhood for K rounds. Following designs D1 and D2, the neighbor-
hood N (v) of our framework involves two sub-neighborhoods without the egos: the 1-hop graph

neighbors N1 (v) and the 2-hop neighbors Ny (v), as shown in Fig. 1:
r® = COMBINE (AGGR{rL’“*1> cu € Ni(v)}, AGGR{rF Y s u e Ny (v)}) . (5)
We set COMBINE as concatenation (as to not mix different neighborhood ranges), and AGGR as a
degree-normalized average of the neighbor-embeddings in sub-neighborhood N;(v):
e = (1) and 2l = aGeR{ETY w € Ni(0)} = Xy, 18TV ©)

v,1 v,1 u,i

where d,, ; = | N;(v)| is the i-hop degree of node v (i.e., number of nodes in its i-hop neighborhood).
Unlike Eq. (2), here we do not combine the ego-embedding of node v with the neighbor-embeddings.
We found that removing the usual nonlinear transformations per round, as in SGC [37], works better
(App. D.2), in which case we only need to include the ego-embedding in the final representation. By
design D3, each node’s final representation combines all its intermediate representations:

i) — COMBINE (rg°>, ro el >> , (7
where we empirically find concatenation works better than max-pooling [38] as the COMBINE function.
In the classification stage (S3), the node is classified based on its final embedding rS,ﬁ“a‘):

y, = arg max{softmax(r{"™W.)}, 8)

oK+1_1)

where W, € R( PX|YI is a learnable weight matrix. We visualize our framework in App. D.
Time complexity The feature embedding stage (S1) takes O(nnz(X) p), where nnz(X) is the
number of non-0s in feature matrix X € R"*¥ and p is the dimension of the feature embeddings. The
neighborhood aggregation stage (S2) takes O (|€|dmax) to derive the 2-hop neighborhoods via sparse-
matrix multiplications, where dyay is the maximum degree of all nodes, and O (25 (|€] + |&2|)p)

for K rounds of aggregation, where |2 = £ 3~ ., |[N2(v)|. We give a detailed analysis in App. D.

4 Other Related Work

We discuss relevant work on GNNs here, and give other related work (e.g., classification under
heterophily) in Appendix E. Besides the models mentioned above, there are various comprehensive
reviews describing previously proposed architectures [42, 5, 41]. Recent work has investigated GNN’s
ability to capture graph information, proposing diagnostic measurements based on feature smoothness
and label smoothness [12] that may guide the learning process. To capture more graph information,
other works generalize graph convolution outside of immediate neighborhoods. For example, apart
from MixHop [1] (cf. § 3.1), Graph Diffusion Convolution [18] replaces the adjacency matrix with a
sparsified version of a diffusion matrix (e.g., heat kernel or PageRank). Geom-GCN [26] precomputes
unsupervised node embeddings and uses neighborhoods defined by geometric relationships in the
resulting latent space to define graph convolution. Some of these works [1, 26, 12] acknowledge the
challenges of learning from graphs with heterophily. Others have noted that node labels may have
complex relationships that should be modeled directly. For instance, Graph Agreement Models [33]
augment the classification task with an agreement task, co-training a model to predict whether pairs
of nodes share the same label; Graph Markov Neural Networks [27] model the joint label distribution
with a conditional random field, trained with expectation maximization using GNNs; Correlated
Graph Neural Networks [15] model the correlation structure in the residuals of a regression task with
a multivariate Gaussian, and can learn negative label correlations for neighbors in heterophily (for
binary class labels); and the recent CPGNN [43] method models more complex label correlations by
integrating the compatibility matrix notion from belief propagation [10] into GNNss.

Comparison of HoGCN to existing GNN models As shown Table 2: Design Comparison.
in Table 2, HoGCN differs from existing GNN models with  prethod DI D2 D3
respect to designs D1-D3, and their implementations (we give

oSl GCN [17 X X X
more details in App. D). Notably, HoGCN learns a graph-  gar [[36]] X X x
agnostic feature embedding in stage (S1), and skips the non-  GCN-Cheby [7] X v X
linear embeddings of aggregated repres§ntations per round that Sﬂiﬁgﬁﬁ? [ '; 5 ;
other models use (e.g., GraphSAGE, MixHop, GCN), resulting

H2GCN (proposed) v v v

in a simpler yet powerful architecture.




Table 3: Statistics for Synthetic Datasets

Benchmark Name  #Nodes |V| #Edges |£| #Classes || #Features F' Homophily » #Graphs
syn-cora 1,490 2,965 t0 2,968 5 cora [30, 39] [0,0.1,...,1] 33 (3 per h)
syn-products 10, 000 59,640 to 59, 648 10 ogbn-products [13] [0,0.1,...,1] 33 3 per h)

5 Empirical Evaluation

We show the significance of designs D1-D3 on synthetic and real graphs with low-to-high homophily
(Tab. 3, 5) via an ablation study of HoGCN and comparison of models with and without the designs.

Baseline models We consider MLP with 1 hidden layer, and all the methods listed in Table 2.
For H,GCN, we model the first- and second-order neighborhoods (N7 and N3), and consider two
variants: HoGCN-1 uses one embedding round (/' = 1) and HGCN-2 uses two rounds (K = 2).
We tune all the models on the same train/validation splits (see App. F for details).

5.1 Evaluation on Synthetic Benchmarks

Synthetic datasets & setup We generate synthetic graphs
with various homophily ratios i (Tab. 3) by adopting an ap- ¢
proach similar to [16]. In App. G, we describe the data gener- ¢ | e

ation process, the experimental setup, and the data statisticsin g / ccncrety
. —e— GraphSAGE
v

.

detail. All methods share the same training, validation and test 04 B
splits (25%, 25%, 50% per class), and we report the average 03 : Bl
accuracy and standard deviation (stdev) over three generated o 02 04 06 08 1

graphs per heterophily level and benchmark dataset.

Model comparison Figure 2 shows the mean test accuracy 1]
(and stdev) over all random splits of our synthetic benchmarks.
‘We observe similar trends on both benchmarks: HoGCN has
the best trend overall, outperforming the baseline models in
most heterophily settings, while tying with other models in
homophily. The performance of GCN, GAT and MixHop,
which mix the ego- and neighbor-embeddings, increases with
respect to the homophily level. But, while they achieve near- "
perfect accuracy under strong homophily (h — 1), they are
significantly less accurate than MLP (near-flat performance
curve as it is graph-agnostic) for many heterophily settings. Hop acc < 30%; GAT acc < 50% for
GraphSAGE and GCN-Cheby, which leverage some of the h <04.

identified designs D1-D3 (Table 2, § 3), are more competitive Figure 2: Performance of GNN mod-
in such settings. We note that all the methods—except GCN els on synthetic datasets. HoGCN-
and GAT—learn more effectively under perfect heterophily 2 outperforms baseline models in
(h=0) than weaker settings (e.g., h € [0.1,0.3]), as evidenced most heterophily settings, while ty-
by the J-shaped performance curves in low-homophily ranges. ing with other models in homophily.
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(b) syn-products (Table G.3). Mix-

Significance of design choices Using syn-products, we show the significance of designs D1-D3
(§ 3.1) through ablation studies with variants of HoGCN (Fig. 3, Table G.4).

(D1) Ego- and Neighbor-embedding Separation. We consider HoGCN-1 variants that separate
the ego- and neighbor-embeddings and model: (S0) neighborhoods N; and N; (i.e., HoGCN-1);
(S1) only the 1-hop neighborhood N; in Eq. (5); and their counterparts that do not separate the
two embeddings and use: (NSO) neighborhoods N; and N, (including v); and (NS1) only the 1-
hop neighborhood V;. Figure 3a shows that the variants that learn separate embedding functions
significantly outperform the others (NSO/1) in heterophily settings (h < 0.7) by up to 40%, which
shows that design D1 is critical for success in heterophily. HoGCN-1 (S0) performs best in homophily.

(D2) Higher-order Neighborhoods. For this design, we consider three variants of HoGCN-1 without
specific neighborhoods: (NO) without the 0-hop neighborhood Ny (v) = v (i.e, the ego-embedding)
(N1) without Ny (v); and (N2) without N5 (v). Figure 3b shows that HoGCN-1 consistently performs
better than all the variants, indicating that combining all sub-neighborhoods works best. Among the
variants, in heterophily settings, No(v) contributes most to the performance (NO causes significant
decrease in accuracy), followed by N (v), and No(v). However, when h > 0.7, the importance of
sub-neighborhoods is reversed. Thus, the ego-features are the most important in heterophily, and
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Figure 3: (a)-(c): Significance of design choices D1-D3 via ablation studies. (d): Performance of
H>GCN for different node degree ranges. In heterophily, the performance gap between low- and
high-degree nodes is significantly larger than in homophily, i.e., low-degree nodes pose challenges.

higher-order neighborhoods contribute the most in homophily. The design of HoGCN allows it to
effectively combine information from different neighborhoods, adapting to all levels of homophily.

(D3) Combination of Intermediate Representations. We consider three variants (K-0,1,2) of HoGCN-2
that drop from the final representation of Eq. (7) the 0", 15¢ or 2"?-round intermediate representation,
respectively. We also consider only the 2"? intermediate representation as final, which is akin to what
the other GNN models do. Figure 3c shows that HoGCN-2, which combines all the intermediate
representations, performs the best, followed by the variant K2 that skips the round-2 representation.
The ego-embedding is the most important for heterophily 2 < 0.5 (see trend of KO).

The challenging case of low-degree nodes Figure 3d plots the mean accuracy of HoGCN variants
on syn-products for different node degree ranges both in a heterophily and a homophily setting
(h € {0.2,0.8}). We observe that under heterophily there is a significantly bigger performance gap
between low- and high-degree nodes: 13% for HoGCN-1 (10% for HoGCN-2) vs. less than 3%
under homophily. This is likely due to the importance of the distribution of class labels in each
neighborhood under heterophily, which is harder to estimate accurately for low-degree nodes with
few neighbors. On the other hand, in homophily, neighbors are likely to have similar classes y € ),
so the neighborhood size does not have as significant impact on the accuracy.

5.2 Evaluation on Real Benchmarks Table 4: Real benchmarks: Average rank per
method (and their employed designs among
D1-D3) under heterophily (benchmarks with
h < 0.3), homophily (h > 0.7), and across
the full spectrum (“Overall”). The “*” de-
notes ranks based on results reported in [26].

Real datasets & setup We now evaluate the perfor-
mance of our model and existing GNNs on a variety
of real-world datasets [35, 29, 30, 22, 4, 31] with edge
homophily ratio i ranging from strong heterophily
to strong homophily, going beyond the traditional
Cora, Pubmed and Citeseer graphs that have strong

. L Method (Desi Het. Hom. Overall
homophily (hence the good performance of existing ethod (Destgns) ¢ o vera
GNNs on them). We summarize the data in Table 5, gzgg:; Eg}’ gg’ gg; i:g ;:8 g:g
and describe them in App. H, where we also point GraphSAGE (D1) 5.0 6.0 53
out potential data limitations. For all benchmarks (ex- ﬁ-Cl}‘iC"e"i (D2) Z(S) 2(3) 2§
cept Cora-Full), we use the feature vectors, class ixHop (D2) : : :
labels, and 10 random splits (48%/32%/20% of nodes g?ﬁ%ﬁ%}g&?gfﬁ §(7J ;(7) gg

. . . . -Chel s . A .
per class for train/validation/test*) provided by [26].  Gcenek (53) 75 87 77
For Cora-Full, we generate 3 random splits, with
. . GCN 9.8 53 8.3
25%/25%/50% of nodes per class for train/valida-  gar 1ns 107 12
tion/test. GEOM-GCN* 8.2 4.0 6.8
MLP 62 113 7.9

Effectiveness of design choices Table 4 gives the
average ranks of our Ho GCN variants and other mod-
els on real benchmarks with heterophily, homophily, and across the full spectrum. Table 5 gives
detailed results (mean accuracy and stdev) per benchmark. We observe that models which utilize all
or subsets of our identified designs D1-D3 (§ 3.1) perform significantly better than GCN and GAT
which lack these designs, especially in heterophily. Next, we discuss the effectiveness of each design.

(D1) Ego- and Neighbor-embedding Separation. We compare GraphSAGE, which separates the
ego- and neighbor-embeddings, and GCN that does not. In heterophily settings, GraphSAGE has

2[26] claims that the ratios are 60%/20%/20%, which is different from the actual data splits shared on GitHub.



Table 5: Real data: mean accuracy =+ stdev over different data splits. Best model per benchmark
highlighted in gray. The “*” results are obtained from [26] and “N/A” denotes non-reported results.

Texas  Wisconsin  Actor Squirrel Chameleon Cornell CoraFull Citeseer Pubmed Cora
Hom. ratio i 0.11 0.21 0.22 0.22 0.23 0.3 0.57 0.74 0.8 0.81
#Nodes |V| 183 251 7,600 5,201 2,277 183 19,793 3,327 19,717 2,708
#Edges || 295 466 26,752 198,493 31,421 280 63,421 4,676 44,327 5,278
#Classes |)/| 5 5 5 5 5 5 70 7 3 6
H>GCN-1 84.86+6.77 86.67+4.60 35.86+1.03 36.42+1.89 57.11+1.58 82.16+4.80 68.13+0.49 77.07+1.64 89.40+0.34 86.92+1.37
H>;GCN-2 82.16+5.28 85.88+4.22 35.62+1.30 37.90+2.02 59.39+1.98 82.16+6.00 69.05+0.37 76.88+1.77 89.59+0.33 87.81+1.35

GraphSAGE 82.43+6.14 81.18+5.56 34.23+0.99 41.61+0.74 58.73+1.68 75.95+5.01 65.14+0.75 76.04+1.30 88.45+0.50 86.90+1.04
GCN-Cheby 77.30+4.07 79.41+4.46 34.11+1.09 43.86+1.64 55.24+2.76 74.32+7.46 67.41+0.69 75.82+1.53 88.72+0.55 86.76+0.95

MixHop T7.84+7.73 75.88+4.90 32.22+2.34 43.80+1.48 60.50+2.53 73.51+6.34 65.59+0.34 76.26+1.33 85.31+0.61 87.61+0.85
GraphSAGE+JK 83.78+2.21 81.96+4.96 34.28+1.01 40.85+1.29 58.11+1.97 75.68+4.03 65.31+0.58 76.05+1.37 88.34+0.62 85.96+0.83
Cheby+JK 78.38+6.37 82.55+4.57 35.14+1.37 45.03+1.73 63.79+2.27 74.59+7.87 66.87+0.29 74.98+1.18 89.07+0.30 85.49+1.27
GCN+JK 66.49+6.64 T4.31+6.43 34.18+0.85 40.45+1.61 63.42+2.00 64.59+8.68 66.72+0.61 T4.51+1.75 88.41+0.45 85.79+0.92
GCN 59.46+5.25 59.80+6.99 30.26+0.79 36.89+1.34 59.82+2.58 57.03+4.67 68.39+0.32 76.68+1.64 87.38+0.66 87.28+1.26
GAT 58.3844.45 55.29+8.71 26.28+1.73 30.62+2.11 54.69+1.95 58.9243.32 59.81+0.92 75.46+1.72 84.68+0.44 82.68+1.80
GEOM-GCN* 67.57 64.12 31.63 38.14 60.90 60.81 N/A 77.99 90.05 85.27

MLP 81.89+4.78 85.29+3.61 35.76+0.98 29.68+1.81 46.36+2.52 81.08+6.37 58.76+0.50 72.41+2.18 86.65+0.35 74.75+2.22

an average rank of 5.0 compared to 9.8 for GCN, and outperforms GCN in almost all heterophily
benchmarks by up to 23%. In homophily settings (h > 0.7), GraphSAGE ranks close to GCN (6.0 vs.
5.3), and GCN never outperforms GraphSAGE by more than 1% in mean accuracy. These results
support the importance of D1 for success in heterophily and comparable performance in homophily.

(D2) Higher-order Neighborhoods. To show the benefits of design D2 under heterophily, we compare
the performance of GCN-Cheby and MixHop—which define higher-order graph convolutions—to that
of (first-order) GCN. Under heterophily, GCN-Cheby (rank 7.0) and MixHop (rank 6.5) have better
performance than GCN (rank 9.8), and outperform the latter in all but one heterophily benchmarks by
up to 20%. In most homophily benchmarks, the performance difference between these methods is
less than 1%. Our observations highlight the importance of D2, especially in heterophily.

(D3) Combination of Intermediate Representations. We compare GraphSAGE, GCN-Cheby and
GCN to their corresponding variants enhanced with JK connections [38]. GCN and GCN-Cheby
benefit significantly from D3 in heterophily: their average ranks improve (9.8 vs. 7.2 and 7 vs 3.7,
respectively) and their mean accuracies increase by up to 14% and 8%, respectively, in heterophily
benchmarks. Though GraphSAGE+JK performs better than GraphSAGE on half of the heterophily
benchmarks, its average rank remains unchanged. This may be due to the marginal benefit of D3
when combined with D1, which GraphSAGE employs. Under homophily, the performance with and
without JK connections is similar (gaps mostly less than 2%), matching the observations in [38].

While other design choices and implementation details may confound a comparative evaluation of
D1-D3 in different models (motivating our introduction of HoGCN and our ablation study in § 3.1),
these observations support the effectiveness of our identified designs on diverse GNN architectures
and real-world datasets, and affirm our findings in the ablation study. We also observe that our
H>GCN variants, which combine the three identified designs, have consistently strong performance
across the full spectrum of low-to-high homophily: HoGCN-2 achieves the best average rank (3.3)
across all datasets (or homophily ratios h), followed by HoGCN-1 (3.6).

Additional model comparison In Table 4, we also report the best results among the three recently-
proposed GEOM-GCN variants (§ 4), directly from the paper [26]: other models (including ours)
outperform this method significantly under heterophily. We note that MLP is a competitive baseline
under heterophily (ranked 6.2), indicating that many existing models do not use the graph information
effectively, or the latter is misleading in such cases. All models perform poorly on Squirrel and
Actor likely due to their low-quality node features (small correlation with class labels). Also,
Squirrel and Chameleon are dense, with many nodes sharing the same neighbors.

6 Conclusion

We have focused on characterizing the representation power of GNNs in challenging settings with
heterophily or low homophily, which is understudied in the literature. We have highlighted the current
limitations of GNNs, presented designs that increase representation power under heterophily and
are theoretically justified with perturbation analysis and graph signal processing, and introduced
the HoGCN model that adapts to both heterophily and homophily by effectively synthetizing these
designs. We analyzed various challenging datasets, going beyond the often-used benchmark datasets
(Cora, Pubmed, Citeseer), and leave as future work extending to a larger-scale experimental testbed.



Broader Impact

Homophily and heterophily are not intrinsically ethical or unethical—they are both phenomena
existing in the nature, resulting in the popular proverbs “birds of a feather flock together” and
“opposites attract”. However, many popular GNN models implicitly assume homophily; as a result,
if they are applied to networks that do not satisfy the assumption, the results may be biased, unfair,
or erroneous. In some applications, the homophily assumption may have ethical implications.
For example, a GNN model that intrinsically assumes homophily may contribute to the so-called
“filter bubble” phenomenon in a recommendation system (reinforcing existing beliefs/views, and
downplaying the opposite ones), or make minority groups less visible in social networks. In other
cases, a reliance on homophily may hinder scientific progress. Among other domains, this is critical
for applying GNN models to molecular and protein structures, where the connected nodes often
belong to different classes, and thus successful methods will need to model heterophily successfully.

Our work has the potential to rectify some of these potential negative consequences of existing GNN
work. While our methodology does not change the amount of homophily in a network, moving
beyond a reliance on homophily can be a key to improve the fairness, diversity and performance
in applications using GNNs. We hope that this paper will raise more awareness and discussions
regarding the homophily limitations of existing GNN models, and help researchers design models
which have the power of learning in both homophily and heterophily settings.
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A Nomenclature

We summarize the main symbols used in this work and their definitions below:

Table A.1: Major symbols and definitions.

Symbols Definitions

G=W,¢&) graph G with nodeset V, edgeset £

A n x n adjacency matrix of G

X n x F' node feature matrix of G

Xy F'-dimensional feature vector for node v

L unnormalized graph Laplacian matrix

Yy set of class labels

Yo class label for node v € V

y n-dimensional vector of class labels (for all the nodes)

Ty = {(v1,51), (v2,42), ...

training data for semi-supervised node classification

N(v) general type of neighbors of node v in graph G

N(v) general type of neighbors of node v in G without self-loops (i.e., excluding v)

N;i(v), Ni(v) i-hop/step neighbors of node v in G (at exactly distance ¢) maybe-with/without
self-loops, resp.

& set of pairs of nodes (u, v) with shortest distance between them being 2

d, dmax node degree, and maximum node degree across all nodes v € V, resp.

h edge homophily ratio

H class compatibility matrix

r(vk) node representations learned in GNN model at round / layer k

K the number of rounds in the neighborhood aggregation stage

W learnable weight matrix for GNN model

o non-linear activation function

| vector concatenation operator

AGGR function that aggregates node feature representations within a neighborhood

COMBINE function that combines feature representations from different neighborhoods

B Homophily and Heterophily: Compatibility Matrix

As we mentioned in § 2, the edge homophily ratio in Definition 1 gives an overall trend for all the
edges in the graph. The actual level of homophily may vary within different pairs of node classes,
i.e., there is different tendency of connection between each pair of classes. For instance, in an online
purchasing network [24] with three classes—fraudsters, accomplices, and honest users—, fraudsters
connect with higher probability to accomplices and honest users. Moreover, within the same network,
it is possible that some pairs of classes exhibit homophily, while others exhibit heterophily. In belief
propagation [40], a message-passing algorithm used for inference on graphical models, the different
levels of homophily or affinity between classes are captured via the class compatibility, propagation
or coupling matrix, which is typically pre-defined based on domain knowledge. In this work, we
define the empirical class compatibility matrix H as follows:

Definition 4 The class compatibility matrix H has entries [H); ; that capture the fraction of outgoing
edges from a node in class i to a node in class j:

o {(u,v) @ (u,0) € ENyy =i Ny = j}

{(,0) < (w,0) € E Ay = i}]

[H]

By definition, the class compatibility matrix is a stochastic matrix, with each row summing up to 1.
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C Proofs and Discussions of Theorems

C.1 Detailed Analysis of Theorem 1

Proof 1 (for Theorem 1) We first discuss the GCN layer formulated as f(X; A, W) = (A+I1)XW.
Given training set ‘T, the goal of the training process is to optimize the weight matrix W' to minimize
the loss function L([(A+1)X] 7, . W, [Y]r, ..), where [Y|r, . is the one-hot encoding of class labels
provided in the training set, and [(A + I)X] 1, . W is the predicted probability distribution of class
labels for each node v in the training set Ty,.

Without loss of generality, we reorder Ty, accordingly such that the one-hot encoding of labels for
nodes in training set [Y |, . is in increasing order of the class label y,,:

1 0 0 --- 07
1 0 0 | 0
010 -0
Yn.= |0 10 - 0 ©)
000 - 1
0 0 0 1

- = VIx|YI

Now we look into the term [(A + I)X]r, ., which is the aggregated feature vectors within neigh-
borhood N for nodes in the training set. Since we assumed that all nodes in Ty, have degree d,
proportion h of their neighbors belong to the same class, while proportion Dl,‘%hl of them belong to

any other class uniformly, and one-hot representations of node features x,, = onehot(y,) for each
node v, we obtain:

hd+1 pryd prrd 1 |
M1 g e e
At hd+l gehd e et
(A+Dpr. = | gete b1 gt - g L
A g e o hdel
EE T E T

= VIx[Y|

For [Y|r,,. and [(A+1I)X]r, . that we derived in Eq. (9) and (10), we can find an optimal weight ma-
trix W such that [(A+I)X] 7, . W, = [Y]7, ., making the loss L([(A+D)X] 7, .-W., [Y]7,.) =0.

We can use the following way to find W ,.: First, sample one node from each class to form a smaller
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set Ts C Ty, therefore we have:

1 0 0 0
010 -~ 0
Y], = Lo : - I|y\><\3}|
000 Ly
and 1-h 1—h 1—}
(A +DX]7s,. = pr-1d hd+1 prgd o pd
Syt T
1—h 11 1-h . .
¢ ¢ e o ML

Note that [(A + I)X]r, . is a circulant matrix, therefore its inverse exists. Using the Sherman-
Morrison formula, we can find its inverse as:

1
A+DX] ) = .
(A + DX )" =@ D=1+ k- Do)
(Y =1)+ (Y| =2+ h)d (h—=1)d (h—1)d
(h—1)d (YI-1)+ (Y| -2+h)d - (h—1)d
(h—1)d (h—1)d (Y] = 1)+ (Y| — 2+ h)d

Let W, = ([(A +1)X]7,..)"", and we have [(A + 1)X]7. W, = [Y]7,. = Ly x|y It is also

easy to verify that [(A + 1)X] 7, . W, = [Y]5,.. W, = ([((A +1)X]7,.)"" is the optimal weight
matrix we can learn under Ty, since it satisfies L([(A + D) X]r, W, [Y]7,..) =0.

Now consider an arbitrary training datapoint (v,y,) € Ty, and a perturbation added to the
neighborhood N (v) of node v, such that the number of nodes with a randomly selected class
label y,, € YV # 1y, is 01 less than expected in N (v). We denote the perturbed graph adjacency matrix
as A a. Without loss of generality, we assume node v has y,, = 1, and the perturbed class is y, = 2.
In this case we have

(Aa+ DXy, = [ hd+1 petd =& petd - pityd |

Applying the optimal weight matrix we learned on Ty, to the aggregated feature on the perturbed
neighborhood [(Aa + I)X], ., we obtain [(Aa + I)X], . W, which equals to:

1 (h=1)ds, (Y=Y -2+ ds, (h—1)ds, L (h—1)ds,
@DI+HE-Dd @OV 1HVR-Dd) @D 1+(VA-1)d) @DV THYE-Dd)

. (h—1)ds (h—1)ds
Notice that we always have 1 — (d+1)(\y|71+(|)11\h71)d) > — (d+1)(\y|71+(|)11\h71)d)’ thus the GCN

layer formulated as (A 4+ 1)XW would misclassify only if the following inequality holds:
(h —1)dd, ((YI=1) + (Y] =2+ h)d)do

@+ DY~ 1+ (Y -Dd) = (d+ (Y~ L+ Y[k - Dd)

Solving the above inequality for 61, we get the amount of perturbation needed as

5 > w,wheno <h< flllfa\jlrctl#rl
5§ < “hVId-IYl+d+1 —|Y|+d+1 (11
1 V-1 Y[d

—h|Y|d—|Y|+d+1
6] = | IR AL,

,when h >
and the least absolute amount of perturbation needed is
Now we move on to discuss the GCN layer formulated as f(X;A, W) = AXW without self

loops. Following similar derivations, we obtain the optimal weight matrix W, which makes
‘C([AX]Tv,iw*? [Y]Tv,i) = 0as:

~(1Y]=2+h) 1—h -
W, = (AX]7 ) = L—h  —(¥=2+h) - -
.= Tsr) T =RV : E
o 1oh e (V]S 24h)
(12)
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Again if for an arbitrary (v,y,) € Ty, a perturbation is added to the neighborhood N (v) of the node
v, such that the number of nodes with a randomly selected class label y, € Y # y, is 02 less than
expected in N (v), we have:

1—h 1—-h 1—h
[AaX]y: = | hd pgd =02 prgd - \yl—ld}

Then applying the optimal weight matrix that we learned on Ty, to the aggregated feature on perturbed
neighborhood [AaX], ., we obtain [AaX], . W . which equals to:

[1_ (1=h)sy  ([¥]|=24h)ss (1—h)ss (1—h)ss }
(

1-hlYDd  (1-h[YDd (1-hYDd (1-hYDd
Thus, the GCN layer formulated as AXW would misclassify when the following inequality holds:
(1 —h)dy - (Y] =2+ h)ds
(1—=hlYDd ~ (1—hY))d

1—

Or the amount of perturbation is:

(A=h|Y])d 1
{52 > (19,’1“3}1|)d,when 0< h1< N (13)
52 < W7W}l€nh > m
As a result, the least absolute amount of perturbation needed is |02 = |(1‘_yh|# |-

By comparing the least absolute amount of perturbation needed for both formulations to misclassify
(|61] = |W| derived in Eq. (11) for the (A + I)XW formulation; 65| = |(1|7yh‘#|
derived in Eq. (13) for the AXW formulation), we can see that |01 = |02| if and only if 51 = —6,,
which happens when h = %. When h < % (heterophily), we have |01| < |d2|, which

means the (A + I)XW formulation is less robust to perturbation than the AXW formulation. R

Discussions From the above proof, we can see that the least absolute amount of perturbation |J]|
needed for both GCN formulations is a function of the assumed homophily ratio A, the node degree d
for each node in the training set 7Ty, and the size of the class label set |)|. Fig. 4 shows the plots of
|01| and |d2| as functions of h, || and d: from Fig. 4a, we can see that the least absolute amount
of perturbations |4| needed for both formulation first decreases as the assumed homophily level h
increases, until 0 reaches 0, where the GCN layer predicts the same probability for all class labels;
after that, 0 decreases further below 0, and |§| increases as h increases; the (A + I)XW formulation
1-|Y|+2d
e
as our proof shows, where |d1| = |02|. Figure 4b shows the changes of |J| as a function of |)| when
fixed h = 0.1 and d = 20. For both formulations, |§| first decrease rapidly as || increases until &
reaches 0, after that ¢ increases slowly as || increases; this reveals that both GCN formulations are
more robust when || << d under high homophily level, and in that case AX'W formulation is
more robust than the (A + I)X'W formulation. Figure 4c shows the changes of |d| as a function of d
for fixed h = 0.1 and |Y| = 5: in this case the AX'W formulation is always more robust than the
(A +I)XW formulation, and for the (A + I)X'W formulation, |J| follows again a “V”-shape curve
as d changes.

is less robust to perturbation than the AXW formulation at low homophily level until A =

C.2 Detailed Analysis of Theorem 2

Proof 2 (for Theorem 2) For all v € V), since its neighbors’ class labels {y,, : uw € N(v)} are
conditionally independent given y,,, we can define a matrix P, for each node v as [P,); j = P(y, =
Jlyy, =1),Vi,j € Y, u € N(v). Following the assumption that for all v € V, P(yy = Yu|ys) = h,

P(yu = ylyo) = 725, ¥y # Yo, we have

1—h 1—-h
h pEr o o
1—h h . lfhl

—1 —

g o P wey (14)
1—h 1-h ) X
V-1 -1 h
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(a) |9| as a function of h under (b) 4] as a function of | Y| under (c) |8 as a function of d under
d=20,|Y| =5. h =0.1,d = 20. h=0.1,|Y| =5.

Figure 4: Perturbation |0| needed in order for GCN layers (A + I)XW and AXW to misclassify a
node: Examples of perturbation |§| as functions of h, || and d, respectively.

Now consider node w € Na(v), we have:

Plyw =Klyo =) = Y P(yw = Klyu = )Py = jlys =) = > [Pl;x[Pls; = P? (15)
JEIYI JEIYI

Therefore, to prove that the 2-hop neighborhood Ny (v) for any node v € V is homophily-dominant
in expectation (i.e. P(yy = t|y, = 1) > P(yw = jlys = 1),Vj € Y # i,w € No(v)), we need to
show that the diagonal entries [P?); ; of P? are larger than the off-diagonal entries [P?]; ;.

Denote p = ‘;Tfl. From Eq. (14), we have
(P25 = b + (|¥] = 1)p? (16)
and for 1 ]
fort7.d P2, =2h —2)p? 17
[P=lij =2hp+ (Y| = 2)p (17)
Thus,

[Pz]m - [Pz]i,j =h®—2hp+p®=(h—p)> >0

with equality if and only if h = p, namely h = \Tlil Therefore, we proved that the 2-hop neighborhood
Ny (v) for any node v € V will always be homophily-dominant in expectation. |

C.3 Detailed Analysis of Theorem 3

Preliminaries We define unnormalized Laplacian matrix of graph G as L = D — A, where
A € {0, 1}Vl is the adjacency matrix and D is the diagonal matrix with [D];; = Y [A], ;.
Without loss of generality, since the eigenvalues {\; } of L are real and nonnegative [32], we assume
the following order for the eigenvalues of L: 0 = Ag < A1 < Ay < -+ < Ayj-1 = Apaa-
Furthermore, since L is real and symmetric, there exists a set of orthonormal eigenvectors {v; } that
form a complete basis of RIV!. This means that for any graph signal s € RIVl, where s,, is the value
of the signal on node v € V, it can be decomposed to a weighted sum of {v;}. Mathematically,
s is represented as s = ZLZ'& ! Cs,iVi, where ¢g; = sTv,;. We regard c, ; as the coefficient of s
at frequency component ¢ and regard the coefficients at all frequencies components {c; ;} as the
spectrum of signal s with respect to graph G. In the above order of the eigenvalues, \; which are
closer to O would correspond to lower-frequency components, and \; which are closer to A4, would
correspond to higher-frequency components. Interested readers are referred to [32] for further details
regarding signal processing on graphs.

The smoothness score of a signal s on graph G, which measures the amount of changes of signal s
along the edges of graph G, can be defined using L as

s'Ls = ZAij(sZ— — sj)2 = Z Z (su — sv)z. (18)
1,J

u€V veEN (u)
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Then, for two eigenvectors v; and v; corresponding to eigenvalues A; < A; of L, we have:
V;rLVi = /\1 S )‘j = V;!—LVJ‘
which means that v; is more smooth than v;. This matches our expectations that a lower-frequency

signal on G should have smaller smoothness score. The smoothness score for arbitrary graph
signal s € R!VI can be represented by its coefficients of each frequency component as:

[V|—1
STLS = (Z CSJ'Vi) L (Z cs,ivl) = Z C?)i)\i (19)
i i i=0
with the above preliminaries, we can define the following concept:

Definition 5 Suppose s = ELZ‘O Csiviandt = ZM ct,iV; are two graph signals defined on
G. In the spectrum of the unnormalized graph laplacian L, graph signal s has higher energy on

high- frequency components than t if there exists integer 0 < M < |V| — 1 such that ZMM cs ;>
Vi-1

ZI |-

Based on these preliminary definitions, we can now proceed with the proof of the theorem:

Proof 3 (for Theorem 3) We first prove that for graph signals s, t € {0, 1}|V|, edge homophily
ratio hs < hy if and only if s"Ls > tTLt. Following Dfn. 1, the edge homophily ratio for signal s
(similarly for t) can be calculated as:

1 1
hs:ﬁ;j dy — Z (Su_sv>2 :m;}du |Z Z SUQ (20)

vEN (v) u€V veN (v)
Plugging this in Eq. (18), we obtain:
1 1
he = =— —s'Ls=1-——s'L
* o] ZV 2|s|s ST

where |E| is the number of edges in G. From the above equation, we have

1 1
he<h © 1——s'Ls<1——t'Lt & s'Ls>t'Lt
' 2/€| 21€|

i.e. edge homophily ratio hy < hy if and only if s"Ls > tTLt.

Next we prove that if s"Ls > tTLt, then following Dfn.5, signal s has higher energy on high-
Sfrequency components than t. We prove this by contradiction: suppose integer 0 < M < |V| -1

does not exist such that ZM ! 2 Zlv‘ ! 2. when s'Ls > t"Lt, then all of the following
inequalities must hold, as the etgenvalues of Lisatisfy 0 =g <A1 < X <--- < )\|v| 1= Amaz:

0= /\O(Cg,o + Ci,l + Cfg +oeet Cg,\w—ﬂ = )‘O(Ct2,0 + Cil + 65,2 +ee CtZ,\V\—l) =0
(A — /\0)(05,1 + 03,2 +ot Cg,\v|—1) < (A - /\0)(03,1 + Ciz +ot Cf,\v|_1)
Ao = A) (o +--+ Ci,\v|—1) <= M)(Eat -+ Cf,|v|—1)

2 2
Api=1 = Aw=2)¢s jy—1 < Apj—1 = Ay—2)eg v
Summing over both sides of all the above inequalities, we have

Moot ALCS 1+ Ao R Ay 1o¢S y_1 S AosCh o T AL CE  F A2 gt A Ay 16y
ie., ZLZIO_l AN < ZLZ'O ' 2 \i. However, from Eq. (19), we should have

V|—1 V-1
s'Ls>t'Lt Z N > Z i
i=0 i=0
which contradicts with the previous resulting inequality. Therefore, the assumption should not
hold, and there must exist an integer 0 < M < |V| — 1 such that ZM Y2 > ZLV‘Ml 2, when
s'Ls > t'Lt. [ |
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Extension of Theorem 3 to one-hot encoding of class label vectors Theorem 3 discusses only
the graph signal s, t € {0, 1}V with only 1 channel (i.e., with only 1 value assigned to each node).

It is possible to generalize the theorem to one-hot encoding Y, Y, € {0, 1}|V| <Yl as graph signal
with | Y|-channels by modifying Dfn. 5 as follows:

Definition 6 Suppose [Y } Elv‘ ! Cs,j,iVi and [Yt]: ZM ! ¢t,j,iVi are one-hot encoding
of class label vector y s,y deﬁned as graph signals on G, where Cs,ji = [YS}Ijvi is the coefficient

of the jth-channel of Y s at frequency component i. In the spectrum of the unnormalized graph
laplacian L, graph signal Y s has higher energy on high -frequency components than Y if there

exists integer 0 < M < |V| — 1 such that ZLZ‘Ml Z] L€ Zlvl ! Z i
Under this definition, we can prove Theorem 3 for one-hot encoding of class label vectors Y, Y; as
before, with the modification that in this case we have for signal Y, (similarly for Y):

1
hszmz 2d, — > Z — Y] )?
uey

vEN (v) j=1

instead of Eq. (20). The rest of the proof is similar to Proof 3.

D Our H;GCN model: Details

In this section, we give the pipeline and pseudocode of HoGCN, elaborate on its differences from
existing GNN models, and present a detailed analysis of its computational complexity.

D.1 Pseudocode & Pipeline

In Fig. 5 we visualize HoGCN, which we describe in § 3.2. We also give its pseudocode in
Algorithm 1.

D.2 Detailed Comparison of H;GCN to existing GNN models

In § 4, we discussed several high-level differences between HoGCN and the various GNN models
that we consider in this work, including the inclusion or not of designs D1-D3. Here we give some
additional conceptual and mechanism differences.

As we have mentioned, HoGCN differs from GCN [17] in a number of ways: (1) In each round
of propagation/aggregation, GCN “mixes” the ego- and neighbor-representations by repeatedly
averaging them to obtain the new node representations, while HoGCN keeps them distinct via
concatenation; (2) GCN considers only the 1-hop neighbors (including the ego / self-loops), while
H>GCN considers higher-order neighborhoods (/N7 and Ns); (3) GCN applies non-linear embedding
transformations per round (e.g., RELU), while HoGCN perform feature embedding for the ego in
the first layer and drops all other non-linearities in the aggregation stage; and (4) GCN does not use
the jumping knowledge framework (unlike HoGCN), and makes the node classification predictions
based on the last-round representations.

Unlike GAT, HoGCN does not use any attention mechanism. Creating attention mechanisms that can
generalize well to heterophily is an interesting future direction. Moreover, GCN-Cheby uses entirely
different mechanisms than the other GNN models that we consider (i.e., Chebysev polynomials),
though it has some conceptual similarities to HoGCN in terms of the higher-order neighborhoods
that it models.

GraphSAGE differs from HoGCN in the same ways that are described in (2)-(4) above. In addition to
leveraging only the 1-hop neighborhood, GraphSAGE also samples a fixed number of neighbors per
round, while HoGCN uses the full neighborhood. With respect to ego- and neighbor-representations,
GraphSAGE concatenates them (as we do) but subsequently applies non-linear embedding transfor-
mations to them jointly (while we simplify all non-linear transformations). Our empirical analysis
has revealed that such transformations lead to a decrease in performance in heterophily settings (see
paragraph below on “Non-linear embedding transformations...”).
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Figure 5: HoGCN-2 pipeline. It consists of 3 stages: (S1) feature embedding, (S2) neighborhood
aggregation, and (S3) classification. The feature embedding stage (S1) uses a graph-agnostic dense
layer to generate the feature embedding r{” of each node v based on its ego-feature x,,. In the
neighborhood aggregation stage (S2), the generated embeddings are aggregated and repeatedly
updated within the node’s neighborhood; the 1-hop neighbors N; (v) and 2-hop neighbors Ny (v) are
aggregated separately and then concatenated, following our design D2. In the classification stage
(S3), each node is classified based on its final embedding riﬁ“al), which consists of its intermediate
representations concatenated as per design D3.

Finally, MixHop differs from HoGCN in the same ways that are described in (1) and (3)-(4) above. It
explicitly considers higher-order neighborhoods up to N, though [1] defines the 2-hop neighborhoods
as that including neighbors up fo 2-hop away neighbors. In our framework, we define the i-hop
neighborhood as the set of neighbors with minimum distance exactly ¢ from the ego (§ 2). Finally, the
output layer of MixHop uses a tailored, column-wise attention layer, which prioritizes specific features,
before the softmax layer. In contrast, before the classification layer, HoGCN uses concatenation-
based jumping knowledge in order to represent the high-frequency components that are critical in
heterophily.

Non-linear embedding transformations per round in H,GCN? GCN [17], GraphSAGE [11]
and other GNN models embed the intermediate representations per round of feature propagation
and aggregation. However, as we show in the ablation study in App. G.2 (Table G.4, last row
“Non-linear”), introducing non-linear transformations per round of the neighborhood aggregation
stage (S2) of HoGCN-2 (i.e., with K = 2) as follows leads to worse performance than the framework
design that we introduce in Eq. (5) of § 3.2:

r*) — COMBINE (a (W [rg’“‘”, AGGR{r{" ™V 1w e Ni(v)},AGGR{r "™ s u € NQ(U)}D) , @D

where ¢ is RELU and W is a learnable matrix. Our design in Eq. 5 aggregates different neigh-

borhoods in a similar way to SGC [37], which has shown that removing non-linearities does not
negatively impact performance in homophily settings. We actually find that removing non-linearities
even improves the performance under heterophily.

D.3 H,;GCN: Time Complexity in Detail

Preliminaries The worst case time complexity for calculating A - B when both A and B are
sparse matrices is O(nnz(A) - cg), where nnz(A) is the number of non-zero elements in matrix
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Algorithm 1: H,GCN Framework for Node Classification under Homophily & Heterophily

Input: Graph Adjacency Matrix A € {0, 1}™*™; Node Feature Matrix X € R™* ¥ Set of Labels V;
Labeled Nodes Ty
Hyper-parameters: Dropout Rate; Non-linearity function o; Number of Embedding Rounds K;
Dimension of Feature Embedding p;

Network Parameters: W, € RF"*P, W, e R@KH’””D"
Output: Class label vector y
begin

forv € V do
L rSP) +— o (xoWe)

Ao — In
A+ I[A -1, >0
Ay« TI[A*-A-1,>0;
fori <+ 1to2do

forv € Vdo

L dy,i = Y ok,

D; « diag{d,,; : v € V};

_ __1_ __1
| Ai < Di 2A»L'D
for k£ < 1to K do
ng) — AlR(k_l)
R{"Y « AR,

i R® (ng)HRék))

R (R<°)||R(1)|\ S HR(K))

R dropout(R )
forv € V do
Pv — softmax(r(vh"“l)wc);
Yo < arg max(p.)

A, and cg = max(d_;I[b;; > 0]) is the maximum number of non-zero elements in any row of

matrix B. The time complexity for calculating A - X, when X is a dense matrix with F' columns, is
O(nnz(A)F).

Time complexity of HoGCN We analyze the time complexity of HoGCN by stage (except the
classification stage).

The feature embedding stage (S1) takes O(nnz(X)p) to calculate o(XW,) where W, € RF*P is a
learnable dense weight matrix, and X € R™*F is the node feature matrix.

In the neighborhood aggregation stage (S2), we perform the following computations:
* Calculation of higher-order neighborhoods. Given that A is sparse, we can obtain the 2-hop
neighborhood by calculating A? in O (|€|dyax ), where |€] is the number of edges in G (equal to

the number of non-zeroes in A), and dy, .« is the maximum degree across all nodes v € V (which
is equal to the maximum number of non-zeroes in any row of A).

* Feature Aggregation. We begin with a p-dimensional embedding for each node after feature
embedding. In round k, since we are using the neighborhoods N; and N;, we have an em-
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bedding R*—1 ¢ Rx2"7Vp g input. We aggregate embedding vectors within neighbor-
hood by R%®) = (A;R*~D||A,R*~V), in which A; corresponds to the adjacency matrix
of neighborhood N;. The two sparse matrix-matrix multiplications in the concatenation take
O (|€]2¢k=Vp 4 |&5[2k=Vp), where |E5| = £ 3=, 1, [N2(v)|. Over K rounds of embedding, the

complexity becomes O (ZK(|5\ + |52|)P)-

veY

Adding all the big-O terms above, we have the overall time complexity for stages (S1) and (S2) of
H5>GCN as:
O (nnz(X) p + |€|dmax + 25 (€] + |E2])p)

where K is usually a small number (e.g., 2). For small values of K, the complexity becomes
O (|€ldmax + (nnz(X) + €] + |E2])p).

E Additional Related Work

In § 4, we discuss relevant work on GNNs. Here we briefly mention other approaches for node
classification.

Collective classification in statistical relational learning focuses on the problem of node classification
by leveraging the correlations between the node labels and their attributes [30]. Since exact inference
is NP-hard, approximate inference algorithms (e.g., iterative classification [14, 20], loopy belief
propagation) are used to solve the problem. Belief propagation (BP) [40] is a classic message-
passing algorithm for graph-based semi-supervised learning, which can be used for graphs exhibiting
homophily or heterophily [19] and has fast linearized versions [10, 8]. Different from the setup
where GNNs are employed, BP does not by itself leverage node features, and usually assumes a
pre-defined class compatibility or edge potential matrix (§ 2). We note, however, that Gatterbauer
[9] proposed estimating the class compatibility matrix instead of using a pre-defined one in the
BP formulation. Moreover, the recent CPGNN model [43] integrates the compatibility matrix as
a set of learnable parameters into GNN, which it initializes with an estimated class compatibility
matrix. Another classic approach for collective classification or graph-based semi-supervised learning
is label propagation, which iteratively propagates the (up-to-date) label information of each node
to its neighbors in order to minimize the overall smoothness penalty of label assignments in the
graph. Standard label propagation approaches inherently assume homophily by penalizing different
label assignments among immediate neighborhoods, but more recent works have also looked into
formulations which can better address heterophily: Before applying label propagation, Peel [25]
transforms the original graph into either a similarity graph by measuring similarity between node
neighborhoods or a new graph connecting nodes that are two hops away; Chin et al. [6] decouple
graph smoothing where the notion of “identity” and “preference” for each node are considered
separately. However, like BP, these approaches do not by themselves utilize node features.

F Experimental Setup & Hyperparameter Tuning

F.1 Setup

H>;GCN Implementation We use K = 1 for HoGCN-1 and K = 2 for HoGCN-2. For loss
function, we calculate the cross entropy between the predicted and the ground-truth labels for nodes
within the training set, and add L regularization of network parameters W, and W_. (cf. Alg. 1)

Baseline Implementations For all baselines besides MLP, we used the official implementation
released by the authors on GitHub.
* GCN & GCN-Cheby [17]: https://github.com/tkipf/gecn

* GraphSAGE [11]: https://github.com/williamleif/graphsage-simple (PyTorch im-
plementation)

* MixHop [1]: https://github.com/samihaija/mixhop

* GAT [36]: https://github.com/PetarV-/GAT. (For large datasets, we make use of the sparse
version provided by the author.)
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For MLP, we used our own implementation of MLP with 1-hidden layer, which is equivalent to the
case of K = 0 in Algorithm 1. We use the same loss function as HoGCN for training MLP.

Hardware Specifications We run experiments on synthetic benchmarks with an Amazon EC2
instance with instance size as p3.2xlarge, which features an 8-core CPU, 61 GB Memory, and
a Tesla V100 GPU with 16 GB GPU Memory. For experiments on real benchmarks, we use a
workstation with a 12-core AMD Ryzen 9 3900X CPU, 64GB RAM, and a Quadro P6000 GPU with
24 GB GPU Memory.

F.2 Tuning the GNN Models

To avoid bias, we tuned the hyperparameters of each method (HGCN and baseline models) on
each benchmark. Below we list the hyperparameters tested on each benchmark per model. As the
hyperparameters defined by each baseline model differ significantly, we list the combinations of
non-default command line arguments we tested, without explaining them in detail. We refer the
interested reader to the corresponding original implementations for further details on the arguments,
including their definitions.

Synthetic Benchmark Tuning For each synthetic benchmark, we report the results for different
heterophily levels under the same set of hyperparameters for each method, so that we can compare
how the same hyperparameters perform across the full spectrum of low-to-high homophily. We report
the best performance, for the set of hyperparameters which performs the best on the validation set on
the majority of the heterophily levels for each method.

For syn-cora, we test the following command-line arguments for each baseline method:

* H;GCN-1 & H,GCN-2:
— Dimension of Feature Embedding p: 64

— Non-linearity Function o: ReLU

- Dropout Rate: a € {0,0.5}

We report the best performance, for a = 0.
* GCN [17]:

- hiddenl: a € {16, 32,64}

- early_stopping: b € {40,100,200}

— epochs: 2000

We report the best performance, for a = 32,b = 40.
¢ GCN-Cheby [17]:

— Set 1:
* hiddenl: a € {16, 32,64}
% dropout: 0.6
* weight_decay: b € {le-5, 5e-4}
* max_degree: 2
* early_stopping: 40
— Set 2:
* hiddenl: a € {16,32,64}
* dropout: 0.5
* weight_decay: be-4
* max_degree: 3
* early_stopping: 40

We report the best performance, for Set 1 with a = 64,b = 5e-4.
* GraphSAGE [11]:

- hid_units: a € {64,128}

- 1r: b € {0.1,0.7}

— epochs: 500
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We report the performance with a = 64,b = 0.7.
e MixHop [1]:

— hidden_dims_csv: a € {64,192}

— adj_pows: 0, 1,2

We report the performance with a = 192.
* GAT [36]:

— hid_units: a € {8,16, 32,64}

- n_heads: b € {1,4,8}

We report the performance with a = 8,b = 8.
* MLP

— Dimension of Feature Embedding p: 64
— Non-linearity Function o: ReLU
— Dropout Rate: 0.5

For syn-products, we test the following command-line arguments for each baseline method:

* H;GCN-1 & H,GCN-2:

— Dimension of Feature Embedding p: 64

— Non-linearity Function o: ReLU

- Dropout Rate: a € {0,0.5}

We report the best performance, for a = 0.5.
* GCN[17]:

— hiddenl: 64

- early_stopping: a € {40,100, 200}

— epochs: 2000

In addition, we disabled the default feature normalization in the official implementation, as the
feature vectors in this benchmark have already been normalized, and we found the default normal-
ization method hurts the performance significantly. We report the best performance, for a = 40.

* GCN-Cheby [17]:
hidden1: 64
max_degree: 2
early_stopping: 40
epochs: 2000
We also disabled the default feature normalization in the official implementation for this baseline.
* GraphSAGE [11]:
- hid_units: a € {64,128}
- 1r: b € {0.1,0.7}
— epochs: 500
We report the performance with a = 128,b = 0.1.
e MixHop [1]:
— hidden_dims_csv: a € {64,192}
- adj_pows: 0, 1,2

We report the performance with a = 192.
* GAT [36]:

— hid_units: 8

We also disabled the default feature normalization in the official implementation for this baseline.
« MLP

— Dimension of Feature Embedding p: 64
— Non-linearity Function o: ReLU
— Dropout Rate: 0.5
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Real Benchmark (except Cora-Full) Tuning For each real benchmark in Table 5 (except Cora-
Full), we perform hyperparameter tuning (see values below) and report the best performance of each
method on the validation set. So, for each method, its performance on different benchmarks can be
reported from different hyperparameters. We test the following command-line arguments for each
baseline method:

* H;GCN-1 & H,GCN-2:
— Dimension of Feature Embedding p: 64
— Non-linearity Function o: {ReLU, None}
— Dropout Rate: {0,0.5}
— L2 Regularization Weight: {1e-5, 5e-4}
* GCN[17]:
— hiddenl: 64
- early_stopping: {40,100, 200}
— epochs: 2000
* GCN-Cheby [17]:
— hiddenl: 64
— weight_decay: {le-5, be-4}
— max_degree: 2
- early_stopping: {40,100, 200}
— epochs: 2000
* GraphSAGE [11]:
— hid_units: 64
- 1r: {0.1,0.7}
— epochs: 500
* MixHop [1]:
— hidden_dims_csv: {64,192}
— adj_pows: 0, 1,2
* GAT [36]:
— hid_units: 8
« MLP
— Dimension of Feature Embedding p: 64
- Non-linearity Function o: {ReLU, None}
- Dropout Rate: {0,0.5}

For GCN+JK, GCN-Cheby+JK and GraphSAGE+JK, we enhanced the corresponding base model
with jumping knowledge (JK) connections using JK-Concat [38] without changing the number of
layers or other hyperparameters for the base method.

Cora Full Benchmark Tuning The number of class labels in Cora-Full are many more compared
to the other benchmarks (Table 5), which leads to a significant increase in the size of training
parameters for each model. Therefore, we need to re-tune the hyperparameters, especially the
regularization weights and learning rates, in order to get reasonable performance. We test the
following command-line arguments for each baseline method:

* H;GCN-1 & H,GCN-2:
— Dimension of Feature Embedding p: 64
— Non-linearity Function o: {ReLU, None}
- Dropout Rate: {0,0.5}
- L2 Regularization Weight: {1e-5, 1le-6}
« GCN [17]:
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hiddenl: 64
early_stopping: {40, 100,200}
weight_decay: {5e-5, le-5, le-6}
epochs: 2000
« GCN-Cheby [17]:
— hiddenl: 64
- weight_decay: {5e-5, 1le-5, le-6}
— max_degree: 2
- early_stopping: {40,100, 200}
— epochs: 2000
* GraphSAGE [11]:
— hid_units: 64
- 1r: 0.7
— epochs: 2000
e MixHop [1]:
- adj_pows: 0, 1,2
- hidden_dims_csv: {64,192}
- l2reg: {5e-4, 5e-5}
* GAT [36]:
— hid_units: 8
- 12_coef: {be-4, 5e-5, le-5}
« MLP
Dimension of Feature Embedding p: 64
Non-linearity Function o: {ReLU, None}
Dropout Rate: {0,0.5}
L2 Regularization Weight: 1e-5
Learning Rate: 0.05

For GCN+JK, GCN-Cheby+JK and GraphSAGE+JK, we enhanced the corresponding base model
with jumping knowledge (JK) connections using JK-Concat [38] without changing the number of
layers or other hyperparameters for the base method.
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G Synthetic Datasets: Details

G.1 Data Generation Process & Setup

Synthetic graph generation We generate synthetic graphs with various heterophily levels by
adopting an approach similar to [1, 16]. In general, the synthetic graphs are generated by a modified
preferential attachment process [3]: The number of class labels || in the synthetic graph is prescribed.
Then, starting from a small initial graph, new nodes are added into the graph one by one, until the
number of nodes |V| has reached the preset level. The probability p,,, for a newly added node w in
class 4 to connect with an existing node v in class j is proportional to both the class compatibility H;;
between class 7 and 7, and the degree d,, of the existing node v. As a result, the degree distribution for
the generated graphs follow a power law, and the heterophily can be controlled by class compatibility
matrix H. Table 3 shows an overview of these synthetic benchmarks, and more detailed statistics can
be found in Table G.1.

Node features & classes Nodes are assigned randomly to each class during the graph generation.
Then, in each synthetic graph, the feature vectors of nodes in each class are generated by sampling
feature vectors of nodes from the corresponding class in a real benchmark (e.g., Cora [30, 39] or
ogbn-products [13]): We first establish a class mapping ¢ : Vs — ), between classes in the
synthetic graph ) to classes in an existing benchmark ). The only requirement is that the class size
in the existing benchmark is larger than that of the synthetic graph so that an injection between nodes
from both classes can be established, and the feature vectors for the synthetic graph can be sampled
accordingly. For syn-products, we further restrict the feature sampling to ensure that nodes in
the training, validation and test splits are only mapped to nodes in the corresponding splits in the
benchmark. This process respects the data splits used in ogbn-products, which are more realistic
and challenging than random splits [13]. For simplicity, in our synthetic benchmarks, all the classes
(5 for syn-cora and 10 for syn-products — Table G.1) are of the same size.

Table G.1: Statistics for Synthetic Datasets

Benchmark Name syn-cora syn-products

# Nodes 1490 10000

# Edges 2965 to 2968 59640 to 59648

# Classes 5 10
Features cora [30, 39] ogbn-products [13]
Homophily A [0,0.1,...,1] [0,0.1,...,1]
Degree Range 1 to 94 1to 336
Average Degree 3.98 11.93

Experimental setup For each heterophily ratio h of each benchmark, we independently generate
3 different graphs. For syn-cora and syn-products, we randomly partition 25% of nodes into
training set, 25% into validation and 50% into test set. All methods share the same training, partition
and test splits, and the average and standard derivation of the performance values under the 3
generated graphs are reported as the performance under each heterophily level of each benchmark.

G.2 Detailed Results on Synthetic Benchmarks
Tables G.2 and G.3 give the results on syn-cora and syn-products shown in Figure 2 of the main

paper (§ 5.1). Table G.4 provides the detailed results of the ablation studies that we designed in order
to investigate the significance of our design choices, and complements Fig. 3 in § 5.1.
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Table G.2: syn-cora (Fig. 2a): Mean accuracy and standard deviation per method and synthetic
dataset (with different homophily ratio h). Best method highlighted in gray.

h 0.00 0.10 0.20 0.30 0.40 0.50

H>;GCN-1  77.40+0.89 76.82+1.30 73.3840.95 75.2640.56 75.66+2.19 80.22+1.35

H;GCN-2  77.85+1.63 76.87+0.43 74.27+1.30 74.41+0.43 76.33+1.35 79.60+0.48

GraphSAGE 75.97+1.94 72.8942.42 70.56+1.42 71.8140.67 72.04+1.68 76.55+0.81

GCN-Cheby 74.23+0.54 68.10+1.75 64.70+1.17 66.71+1.63 68.14+1.56 73.33+2.05
MixHop 62.64+1.16 58.93+2.84 60.89+1.20 65.73+0.41 67.87+4.01 70.11+0.34

GCN 33.65+1.68 37.14+4.60 42.82+1.89 51.10+0.77 56.91+2.56 66.22+1.04
GAT 30.16+1.32 33.11+1.20 39.11+0.28 48.81+1.57 55.35+2.35 64.52+0.47
MLP 72.75+1.51 74.85+0.76 74.05+0.69 73.78+1.14 73.33+0.3¢ 74.81+1.90
h 0.60 0.70 0.80 0.90 1.00

H>GCN-1  83.62+0.82 88.14+0.31 91.63+0.77 95.53+0.61 99.06+0.27
H>;GCN-2  84.43+1.89 88.28+0.66 92.39+1.34 95.97+0.59 100.00+0.00
GraphSAGE 81.25+1.04 85.06+0.51 90.78+1.02 95.08+1.16 99.87+0.00
GCN-Cheby 78.88+0.21 84.92+1.03 90.92+1.62 95.97+1.07 100.00+0.00
MixHop 79.78+1.92 84.43+0.94 91.90+2.02 96.82+0.08 100.00+0.00

GCN 77.3241.17 84.52+0.54 91.23+1.29 96.11+0.82 100.00+0.00
GAT 76.2941.83 84.03+0.97 90.92+1.51 95.88+0.21 100.00+0.00
MLP 73.4241.07 71.72+0.62 72.26+1.53 72.53+2.77 73.65+0.41

Table G.3: syn-products (Fig. 2b): Mean accuracy and standard deviation per method and synthetic
dataset (with different homophily ratio h). Best method highlighted in gray.
h 0.00 0.10 0.20 0.30 0.40 0.50

H>GCN-1 82.06+0.24 78.39+1.56 79.37+0.21 81.10+0.22 84.25+1.08 88.15+0.28
H>GCN-2 83.37+0.38 80.03+0.84 81.09+0.41 82.79+0.49 86.73+0.66 90.75+0.43
GraphSAGE 77.66+0.72 74.04+1.07 75.29+0.82 76.39+0.24 80.49+0.96 84.51+0.51
GCN-Cheby 84.35+0.62 76.95+0.30 77.07+0.49 78.43+0.73 85.09+0.20 89.66+0.53
MixHop 15.39+1.38 11.91+1.17 14.03+1.70 14.92+0.56 17.04+0.40 18.90+1.49

GCN 56.4440.59 51.51+0.56 54.97+0.66 64.90+0.90 76.25+0.04 86.43+0.58
GAT 27.3942.47 21.49+2.25 37.27+3.99 44.46+0.68 51.86+8.52 69.42+5.30
MLP 68.63+0.58 68.20+1.20 68.85+0.73 68.65+0.18 68.37+0.85 68.70+0.61
h 0.60 0.70 0.80 0.90 1.00

H>GCN-1 92.39+0.06 95.69+0.19 98.09+0.23 99.63+0.13 99.93+0.01
H>GCN-2 94.81+0.27 97.67+0.18 99.13+0.05 99.89+0.08 99.99+0.01
GraphSAGE 89.51+0.29 93.61+0.52 96.66+0.19 98.78+0.11  99.63+0.08
GCN-Cheby 94.99+0.34 98.26+0.11 99.58+0.11 99.93+0.06 100.00+0.00

MixHop 19.47+5.21 21.15+2.28 24.16+3.19 23.21+5.30 25.09+5.08
GCN 93.35+0.28 97.61+0.24 99.33+0.08 99.93+0.01 99.99-+0.01
GAT 85.36+3.67 93.52+1.93 98.84+0.12 99.87+0.06 99.98+0.02
MLP 68.2140.93 68.72+1.11 68.10+0.54 68.36+1.42 69.08+1.03
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Table G.4: Ablation studies of HoGCN to show the significance of designs D1-D3 (Fig. 3(a)-(c)):
Mean accuracy and standard deviation per method on the syn-products networks.

Design h 0.00 0.10 0.20 0.30 0.40 0.50

D1-D3 [S0/K2] H,GCN-1 82.06+0.24 78.39+1.56 79.37+0.21 81.10+0.22 84.25+1.08 88.15+0.28
D3 H>GCN-2 83.37+0.38 80.03+0.84 81.09+0.41 82.79+0.49 86.73+0.66 90.75+0.43
D1 [NSO] N; + No 52.72+0.13 41.65+0.18 46.114+0.86 58.16+0.79 71.10+0.54 82.19+0.40
)| [NS1] Only Ny 40.35+0.58 35.17+0.92 40.35+0.92 52.45+0.85 65.62+0.56 76.05+0.38
D1, D2 [S1/N2] w/o N, 79.6540.27 76.0840.76 76.46+0.21 77.29+0.46 79.81+0.88 83.56+0.22
D2 [N1] w/o N, 72.274+0.55 73.05+1.23 75.814+0.67 76.83+0.72 80.49+0.72 82.91+0.44
D2 [NO] w/o 0-hop neighb. (ego) 63.55+0.46 46.73+0.42 42.29+0.55 48.20+0.59 61.22+0.35 75.1540.27
D3 [K0] No Round-0 75.6340.19 61.9940.57 56.36+0.56 61.27+0.71 73.33+0.88 84.5140.50
D3 [K1] No Round-1 75.75+0.90 75.65+0.73 79.25+0.18 81.19+0.33 84.64+0.35 88.46+0.60
D3 [R2] Only Round-2 73.1141.01 62.4741.35 59.9940.43 64.37+1.14 75.43+0.70 86.02+0.79
§D.2 Non-linear HGCN-2 (§ D.2) 82.23+0.25 78.78+1.04 80.47+0.15 82.08+0.10 85.89+0.53 89.78+0.11
Design h 0.60 0.70 0.80 0.90 0.99 1.00

D1, D3 [S0/K2] H,GCN-1 92.3940.06 95.69+0.19 98.09+0.23 99.63+0.13 99.88+0.06 99.93+0.01
D3 H>GCN-2 94.81+0.27 97.67+0.18 99.134+0.05 99.89+0.08 99.98+0.00 99.99+0.01
D1 [NSO] N7 + N2 90.3940.54 95.2540.06 98.27+0.13 99.69+0.03 99.98+0.02 100.00+0.00
Dl [NS1] Only N1_ 84.4140.44 90.15+0.27 95.2140.3¢ 97.71+0.06 99.56+0.11 99.49+0.11
D1, D2 [S1/N2] w/o N, 87.39+0.33 91.08+0.50 94.3640.32 97.01+0.40 98.79+0.23 98.71+0.15
D2 [N1] w/o N, 87.2440.21 92.5540.50 95.64+0.19 98.71+0.13 99.73+0.12 99.83+0.06
D2 [NO] w/o 0-hop neighb. (ego) 86.08+0.58 93.03+0.29 97.45+0.09 99.45+0.06 99.98+0.02 99.98+0.03
D3 [K0] No Round-0 92.4240.13 96.81+0.11 99.09+0.27 99.89+0.01 100.00+0.00 100.00+0.00
D3 [K1] No Round-1 93.0540.23 97.17+0.36 99.06+0.09 99.89+0.08 99.97+0.02 99.97+0.01
D3 [R2] Only Round-2 93.79+0.28 97.88+0.18 99.3840.12 99.89+0.05 100.00+0.00 100.00-£0.00
§D.2 Non-linear H,GCN-2 93.68+0.50 96.73+0.23 98.5540.06 99.74+0.05 99.96+0.04 99.93+0.03
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H Real Datasets: Details

Datasets In our experiments, we use the following real-world datasets with varying levels of
homophily ratios h. Some network statistics are given in Table 5.

* Texas, Wisconsin and Cornell are graphs representing links between web pages of the corre-
sponding universities, originally collected by the CMU WebKB project. We used the preprocessed
version in [26]. In these networks, nodes are web pages, which are classified into 5 categories:
course, faculty, student, project, staff.

* Squirrel and Chameleon are subgraphs of web pages in Wikipedia discussing the corresponding
topics, collected by [29]. For the classification task, we utilize the class labels generated by [26],
where the nodes are categorized into 5 classes based on the amount of their average traffic.

» Actor is a graph representing actor co-occurrence in Wikipedia pages, processed by [26] based on
the film-director-actor-writer network in [35]. We also use the class labels generated by [26].

* Cora, Pubmed and Citeseer are citation graphs originally introduced in [30, 22], which are among
the most widely used benchmarks for semi-supervised node classification [31, 13]. Each node is
assigned a class label based on the research field. These datasets use a bag of words representation
as the feature vector for each node.

* Cora Full is an extended version of Cora, introduced in [4, 31], which contain more papers and
research fields than Cora. This dataset also uses a bag of words representation as the feature vector
for each node.

Data Limitations As discussed in [31, 13], Cora, Pubmed and Citeseer are widely adopted as
benchmarks for semi-supervised node classification tasks; however, all these benchmark graphs
display strong homophily, with edge homophily ratio h > 0.7. As a result, the wide adaptation
of these benchmarks have masked the limitations of the homophily assumption in many existing
GNN models. Open Graph Benchmark is a recent effort of proposing more challenging, realistic
benchmarks with improved data quality comparing to the existing benchmarks [13]. However, with
respect to homophily, we found that the proposed OGB datasets display homophily A > 0.5.

In our synthetic experiments (§ G), we used ogbn-products from this effort to generate higher
quality synthetic benchmarks while varying the homophily ratio &. In our experiments on real datasets,
we go beyond the typically-used benchmarks (Cora, Pubmed, Citeseer) and consider benchmarks with
strong heterophily (Table 5). That said, these datasets also have limitations, including relatively small
sizes (e.g., WebKB benchmarks), artificial classes (e.g., Squirrel and Chameleon have class labels
based on ranking of page traffic), or unusual network structure (e.g., Squirrel and Chameleon are
dense, with many nodes sharing the same neighbors — cf. § 5.2). We hope that this paper will
encourage future work on more diverse datasets with different levels of homophily, and lead to higher
quality datasets for benchmarking GNN models in the heterophily settings.
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