
Node Proximity Is All You Need:
Unified Structural and Positional Node and Graph Embedding

Jing Zhu∗† Xingyu Lu∗† Mark Heimann‡ Danai Koutra∗

Abstract
While most network embedding techniques model the
relative positions of nodes in a network, recently there
has been significant interest in structural embeddings
that model node role equivalences, irrespective of their
distances to any specific nodes. We present PhU-
SION, a proximity-based unified framework for comput-
ing structural and positional node embeddings, which
leverages well-established methods for calculating node
proximity scores. Clarifying a point of contention in the
literature, we show which step of PhUSION produces
the different kinds of embeddings and what steps can be
used by both. Moreover, by aggregating the PhUSION
node embeddings, we obtain graph-level features that
model information lost by previous graph feature learn-
ing and kernel methods. In a comprehensive empirical
study with over 10 datasets, 4 tasks, and 35 methods, we
systematically reveal successful design choices for node
and graph-level machine learning with embeddings.

1 Introduction
Node embeddings model node similarities in a multi-
dimensional feature space: the more similar two nodes
are in a network, the closer they lie in this space. Two
broad categories of node similarity are prevalent in the
literature: (i) positional proximity, which embeds close
nodes similarly [1]; and (ii) structural similarity, which
embeds nodes similarly if they have similar roles or
patterns of interaction with other nodes, irrespective
of their relative locations [2]. In turn, these similarities
lead to positional or proximity-preserving embeddings,
and structural or role-based embeddings, respectively.

Characterizing the relationship between proximity-
preserving and structural node embeddings is an open
and contested problem, with recent works making op-
posing claims. For instance, Rossi et al. character-

∗Computer Science & Engineering, University of Michigan.
Email: {jingzhuu, luxingyu, mheimann, dkoutra}@umich.edu

†Authors contributed equally to this work.
‡Lawrence Livermore National Laboratory. Work partially

completed while a student at the University of Michigan.

ize these classes of methods as fundamentally differ-
ent methodologically and in terms of applications [3].
Meanwhile, concurrent work proposed a theoretical
framework in which the analogous concepts are actually
equivalent for downstream tasks [4]. However, accord-
ing to [3], it is unclear how this theoretical framework
maps onto real-world graph mining methods.

A seminal work, NetMF [5], showed that various
positional node embeddings amount to the same em-
bedding technique (matrix factorization) applied to var-
ious matrices capturing pairwise node proximity scores.
Going further, we propose PhUSION, a proximity-
based unified framework for computing structural and
positional node embeddings. PhUSION has three steps:
(i) computation of pairwise node proximities, (ii) appli-
cation of a nonlinear filter, and (iii) application of a
dimensionality-reducing embedding function. We show
which steps can be used for proximity-preserving or
structural embedding and which step makes them dif-
ferent, revealing similarities and differences between the
two classes of methods.

Additionally, PhUSION generalizes existing meth-
ods and yields novel ones from 35 different combinations
of design choices, some of which improve on the varia-
tions studied in the literature. We extensively perform
an empirical study of possible design choices for both
structural and proximity-preserving node embeddings,
to understand what works and why. In particular, non-
linear filtering has very recently been identified [6] as
a key ingredient to the success of proximity-preserving
node embedding. We analyze this observation in much
greater detail for proximity-preserving embeddings and
for the first time apply it to structural embeddings.

We extend PhUSION to embed entire graphs, a
problem for which separate solutions have been pro-
posed using graph signatures and similarity scores de-
rived from node proximity matrices [7, 8] and aggre-
gated structural node embeddings [9]. Since we have
shown that node proximity matrices can be used to de-
rive structural node embeddings, we interpret previous
methods [7, 8] as embedding aggregation; we use PhU-
SION to learn more expressive graph features by ag-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

ar
X

iv
:2

10
2.

13
58

2v
1

 [c
s.S

I]
 2

6
Fe

b
20

21

gregating our more informative node embeddings, that
model information we show that previous works cannot.

Our contributions are summarized as follows:

• Unifying Embedding Perspective: We propose
PhUSION, which can use pairwise node proximity
matrix to generate embeddings that model node sim-
ilarity based on structural roles or positional prox-
imity. Our analysis of PhUSION shows the techni-
cal similarities and differences between structural and
proximity-preserving node embeddings, a contested
open question [3, 4].

• Study of Successful Design Choices: On bench-
mark tasks for proximity-preserving and structural
embedding choices, we investigate the combination of
node proximity matrices, nonlinear transformation,
and embedding functions. Our results uncover new
insights that can improve both proximity-preserving
and structural embeddings.

• Graph-Level Learning: We turn PhUSION into a
method for learning features for entire networks from
their node proximity matrices based on node embed-
ding aggregation. We interpret previous graph ker-
nels [8] and feature learning methods [7] as simplified
versions of PhUSION, and show what information we
can capture with more expressive design choices that
these previous works cannot.

We provide code and additional supplementary material
at https://github.com/GemsLab/PhUSION.

2 Related Work
Frameworks for Node Embedding. Node embed-
dings are latent feature vectors for nodes in a network
that are similar for similar nodes. Most embedding
methods define node similarity in terms of proxim-
ity (e.g. direct or indirect connection) within a sin-
gle graph. In contrast, structural embedding methods
capture a node’s structural role independent of its prox-
imity to specific nodes; this independence makes embed-
dings comparable across distant parts of a graph [10] or
separate graphs [11, 9]. Both kinds of embeddings may
be obtained using a diverse range of shallow and deep
learning methods. For more information, we refer the
reader to a survey [1] on proximity-preserving or posi-
tional embeddings, and a recent comprehensive empiri-
cal study on structural or role-based embeddings [10].

The plethora of node embedding methods has raised
interest in finding unifying frameworks for different
methods, which can also lead to new technical ad-
vances. For example, many proximity-preserving em-
bedding methods were shown to implicitly factorize dif-
ferent proximity-based node similarity matrices; this in-
sight inspired the NetMF method based on explicit ma-

trix factorization [5]. It is known that many (proximity-
preserving) node embedding methods can be summa-
rized as a two-step process of node similarity matrix
construction and dimensionality reduction [12]. How-
ever, PhUSION is the first framework to subsume both
proximity-preserving and structural embedding meth-
ods. Moreover, in light of recent work [6], we carefully
study a third step of applying a nonlinearity before per-
forming dimensionality reduction.
Graph Comparison. For comparing entire graphs,
aggregating node embeddings (as we do) is competitive
to deep neural networks, graph kernels, and feature
construction [9]. Because a graph’s node proximity
matrix captures important information, many works
have sought to use this within-graph information for
cross-graph comparison. A challenge is that nodes in
different graphs may not correspond. Feature learning
method NetLSD [7] and graph kernel RetGK [8] solve
this problem by only considering node self-similarities,
which forgoes directly modeling a node’s similarity
to other nodes (cross-node similarities). Other graph
similarity functions such as DeltaCon [13] model cross-
node similarities, but are restricted to graphs defined on
the same set of nodes. However, PhUSION can model
within-graph cross-node similarities for more expressive
general cross-graph comparison.

3 Unified Theoretical Framework
In this section, we present the abstract steps of our PhU-
SION framework for node and graph feature learning,
before describing concrete choices in the next section.
Preliminaries. We consider a graph G with node set
V and adjacency matrix A containing edges between
nodes. We learn an n × d matrix Y of d-dimensional
node embeddings, where the i-th row Yi is a feature
representation for node i. For ease of reference, we
define common quantities for graph learning and node
embedding, along with parameters specific to certain
node proximity functions, in Tab. 1.
Structural vs Positional Embeddings. Structural
node embedding should learn similar features for auto-
morphically equivalent or near-equivalent nodes [10, 4],
even if they are distant from each other in the net-
work. On the other hand, for nodes to have similar
positional embeddings, they must be close in the net-
work. Although these are two very different embedding
outcomes, the steps we present below can generate ei-
ther kind of embedding; later, we will show concretely
where the difference arises.

3.1 Node Feature Learning For learning node fea-
tures from a graph with adjacency matrix A, we per-
form the following three steps:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/GemsLab/PhUSION

Table 1: Symbols and definitions

Symbol Definition

Standard
graph
matrices

A Adjacency matrix
D Diagonal matrix of node degrees
L Unnormalized Laplacian matrix (D−A)

L+ Pseudoinverse of L
R Random walk transition matrix (D−1A)
k Matrix power

PhUSION
functions

Ψ() Node proximity function
σ() Nonlinear transformation function
ζ() Embedding function
S Matrix of node proximities S = Ψ(A)

S̃ Matrix of nonlinearly filtered node proximities S̃ = σ(Ψ(A))
Y Matrix of node embeddings Y = ζ(σ(Ψ(A)))

PPMI [5]
vol(G) Σi,jAij

T Window size
b Parameter for negative sampling

Heat
kernel
[2, 7]

gs Filter kernel with scaling parameter s
Λ Diagonal matrix of eigenvalues of L
U Eigenvectors of L (L = UΛUT)

FaBP [14]
hh

√
(−c1 +

√
c21 + 4c2)/8c2,

where c1 =trace(D) + 2; c2 =trace(D)− 1
a 4h2h/(1− 4h2h)
c 2hh/(1− 4h2h)

PPR [15] β Decay parameter

Step 1: Calculate node proximities S using a function
Ψ(A);

Step 2: Filter these proximities via a nonlinearity func-
tion S̃ = σ(S); and

Step 3: Embed the transformed proximities using a
dimensionality reduction function: Y = ζ(S̃).

Our node embedding framework can be precisely sum-
marized by function composition:

(3.1) Y = ζ(σ(Ψ(A)))

Multiscale Node Embeddings. Many proximity
functions can be tuned with scaling parameters to cap-
ture more local or global proximity [2, 16]. We can
create multiscale embeddings by concatenating embed-
dings using the same node proximity function at several
different scales:

(3.2) Y = ||iY(si) = Y(s1)||Y(s2)|| . . . ||Y(st),

where embeddings at each individual scale are computed
with Eq. (3.1) using the desired scale parameter to
compute node proximity: Y(si) = ζ(σ(Ψ(A; si))).

3.2 Graph Feature Learning We can aggregate a
graph’s node embeddings into a single feature vector
that describes the entire graph using a function ρ():

(3.3) f = ρ(Y)

4 Unifying Node Embedding Methods
We now propose concrete function choices for Eqs. (3.1)-
(3.3), and characterize general and specific choices.

4.1 Step 1: Computing Node Proximities Ψ().
The first step of our framework, PhUSION, is to create
a matrix of pairwise node proximities S ∈ Rn×n. Sij
should be large for nodes that are close in the graph
(e.g. neighbors) and small for faraway nodes. Different
proximity matrices have been used not only for node
embedding but throughout graph mining, including:

• Positive pointwise mutual information (PPMI) [5]:
S = vol(G)

bT (
∑T
r=1 Rr)D−1.

• Heat kernel (HK) [2]: S = Ugs(Λ)U>.
• Belief Propagation (FaBP) [14]: S = (I+aD−cA)−1.
• Personalized Pagerank (PPR) [15]: S = (I −
βA)−1(βA).

• Laplacian pseudoinverse (L+) [6]: S = L+, which
approximates the PPMI matrix as the window size
T →∞, up to a low-rank correction term.

• Powers of the adjacency matrix (Adj) [15, 16] or
random walk matrix (RW) [8]: S = Ak or S = Rk.

4.2 Step 2: Nonlinear Transformations of Node
Proximities σ(). As a preprocessing step before em-
bedding, we can filter the node proximities with a non-
linear function σ(S). Recent work [6] argues that such
nonlinearity is largely responsible for the performance
gain of recent deep learning-inspired node embedding
methods. Thus, we consider the following functions:

• No nonlinearity: σ(S) = S (Identity function).
• Elementwise logarithm (Log): For proximity-

preserving embedding with PPMI, we set σ(S)i,j =
log(max{Si,j , 1}) [5]. For other matrices with values
concentrated in [0, 1], we propose to keep more infor-
mation by only filtering out negative or zero elements:

σ(S)i,j =


0 ,Si,j ≤ 0

log(
Si,j

min(S+)
) ,Si,j > 0

where min(S+) is the smallest positive element in S.
• Thresholded binarization (Bin-p) [6]: Let a ∈ N be

the p-th percentile (p% smallest element) in S. Then
σ(S) is defined elementwise as:

σ(S)i,j =

{
0 ,Si,j ≤ a
1 ,Si,j > a

4.3 Step 3: Embedding Node Proximities ζ().
Given a (filtered) similarity matrix S̃, node embeddings
learn low-dimensional feature representations using var-
ious dimensionality reduction techniques. We represent
the embedding process as a function ζ(S̃).

• One way to generate d-dimensional embeddings is by
factorizing the node similarity matrix, prototypically

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

with singular value decomposition (SVD) [5]. Based
on rank-d SVD S̃ ≈ UdΣdVd, we can obtain the node
embeddings as ζ(S̃) = UdΣ

1
2

d .
• Another way to generate a d-dimensional embeddings

from an n × n similarity matrix S̃ is characteristic
function sampling (CFS). For even dimensionality d,
we compute the embedding of each node u by sam-
pling real and imaginary components from its empiri-
cal characteristic function, φu(t) =

∑n
v=1 exp(itS̃vu),

evaluated at d
2 evenly spaced landmarks t1, . . . , td/2

between 0 and 100 [2]. CFS is a permutation-
invariant function applied row-wise to S̃ that models
the distribution of a node’s proximity scores [2].

Special Cases. PhUSION generalizes several existing
proximity-preserving and structural embedding meth-
ods, which we summarize in the following result:

Theorem 4.1. Special cases of Eq. (3.2) include but
are not limited to: GraphWave [2], NetMF [5], Infinite-
Walk [6], HOPE [15], GraRep [16], DNGR [17], and
sRDE [18] for signed networks.

Proof. We give the constructions in App. A.1.

4.4 What Makes Node Embeddings Positional
or Structural? We isolate the embedding function ζ()
as the responsible design choice for making PhUSION
yield positional or structural embeddings. Concretely,
embedding a proximity matrix using SVD produces po-
sitional embeddings, while using CFS (or any other
permutation-invariant row function) produces struc-
tural embeddings. On the other hand, any choice of Ψ()
and σ() can yield positional or structural embeddings.

Theorem 4.2. Let connected graphs G1, G2 have an
isomorphism π : V1 → V2, i.e. a bijective mapping
between the nodes and A2 = PA1P

>, where the binary
matrix P has nonzero elements exactly at the entries
(π(i), i) for i ∈ [1, . . . , |V |]. Define a combined graph G
with block diagonal adjacency matrix A = [A1,0; 0,A2],
so that π encodes an automorphism within G. Assume
that node proximity and nonlinearity functions Ψ() and
σ() preserve this automorphism: S̃2 = PS̃1P

>, where
S̃i = σ(Ψ(Ai)). Also assume that disconnected nodes
have proximity score 0 (unchanged by nonlinearity),
so that S̃ = σ(Ψ(A)) = [S̃1,0; 0, S̃2]. Let Y be the
combined embeddings of G, which can be split into
embeddings Y(1) and Y(2) corresponding respectively to
the nodes originally in G1 and G2. Then:

1. If Y = SVD(S̃), then Y
(1)
i 6= Y

(2)
π(i).

2. If Y = CFS(S̃), or more generally any permutation-
invariant function ζ(S̃), then Y

(1)
i = Y

(2)
π(i).

Proof. See supplementary App. A.2.

Note: Some existing methods learn structural em-
beddings with implicit or explicit matrix factoriza-
tion [19, 11], which in PhUSION would produce po-
sitional embeddings. The key difference is that these
methods do not factorize a pairwise node proximity ma-
trix, but a structural similarity matrix (where discon-
nected nodes may have a nonzero similarity score). One
advantage of PhUSION is that the node proximity ma-
trices we use are well studied throughout graph mining.

5 Unifying Graph Embedding Methods
Our PhUSION framework also produces features that
describe an entire graph, when we aggregate its nodes’
embeddings into a single feature vector. Here, we show
that two recent graph kernels and feature maps are in
essence special cases of PhUSION.
PhUSION:NetLSD. NetLSD computes graph fea-
tures from its heat kernel matrix at multiple scales [7].
For scales s1, . . . , sd, the resulting d-dimensional feature
vector has as its i-th entry h(si), the trace of the heat
kernel matrix at scale si. For size invariance, the au-
thors propose normalizing an n-node graph’s features
by the heat trace of the n-node empty graph, which
amounts to multiplying by 1

n . Thus, the exact normal-
ized NetLSD features are: 1

n [h(s1), . . . , h(sd)].

Theorem 5.1. NetLSD (using the heat kernel with
empty graph normalization) is a special case of Eq. (3.3)
where Ψ() computes the graph’s heat kernel matrix at
multiple scales s as its proximity matrix S, ζ(S) =
diag(S), σ() is the identity function, and ρ() averages
the embeddings.

Proof. At scale sk, the one-dimensional node embed-
ding of node i is given by y

(sk)
i = S

(sk)
ii . Thus, for

d scales s1, . . . , sd, the multiscale embedding of node i
given by Eq. (3.2) is yi = [S

(s1)
ii , . . . ,S

(sd)
ii]. Aggregating

these node features into graph features using Eq. (3.3)
gives f = 1

n

∑
i yi = 1

n [
∑
i S

(s1)
ii , . . . ,

∑
i S

(sd)
ii] =

1
n [Tr(S(s1)), . . . ,Tr(S(sd))]. When S is the heat kernel
matrix, each term becomes Tr(S(si)) = h(si).

PhUSION:RetGK. The scalable graph kernel
(RetGKII) [8] based on approximate feature maps [20]
is defined as K(G1, G2) = κ

(
f(G1), f(G2)

)
. Without

node attributes, f(G) =
∑n
i=1 φ(yi) where the j-th

entry of yi is the return probability of a random walk of
length j starting from node i (formally Rj

ii), and φ is a
feature map approximating a vector-valued kernel [20].
It can thus be seen that RetGK has essentially the
same form as the other methods:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Theorem 5.2. Without node attributes and with φ and
κ both set to the linear kernel, RetGK is a special case of
Eq. (3.3) where: for multiple values of the parameter s,
Ψ() computes the graph’s s-step random walk transition
matrix as its proximity matrix S, ζ(S) = diag(S), σ() is
the identity function, and ρ() averages the embeddings.

In practice, [8] proposes to set φ to be a random
Fourier feature map to approximate the Gaussian ker-
nel [20], and κ to be a Gaussian or Laplace kernel, ap-
plying the successive embedding trick used for graph
kernels [21]. Node attributes may be incorporated by
taking the Kronecker product of the attribute vectors
with the embeddings [8]. All of these techniques readily
apply to any of the other methods we have proposed.
Expressive Graph Comparison with PhUSION.
Postprocessing aside, we can interpret RetGK and
NetLSD as instances of PhUSION: they average mul-
tiscale embeddings learned from different node proxim-
ity matrices (HK for NetLSD, RW for RetGK). However,
they use a 1-dimensional embedding function mapping
nodes to their corresponding diagonal elements in S. Of
course, this simple embedding loses off-diagonal infor-
mation in S (namely, inter-node proximities), which our
embeddings capture. To show the greater expressivity
of our embeddings Y by a fair comparison, we also use
mean pooling for our ρ(Y), although more complex ag-
gregation functions could be used [9].

6 Experiments
To extensively evaluate PhUSION in a variety of con-
texts, we consider several real datasets for node clas-
sification (Tab. 2a) for which positional and structural
role-based embeddings have been shown to be most ef-
fective (§ 6.1). For the latter, we also use synthetic data
exhibiting clear role equivalences, the structure of which
we can precisely control [2, 10]. We also evaluate ag-
gregated structural embeddings for graph classification
(§ 6.2) on real benchmark datasets (Tab. 2b).

6.1 Node-level Embedding. First we evaluate
PhUSION in the node classification task with positional
and structural node embeddings.
Setup. We combine 7 node proximity functions Ψ()
and 5 different nonlinearities σ() (including Identity).
Following our theoretical analysis (§4.4), we use SVD to
generate positional node embeddings and CFS to gen-
erate structural embeddings. In total, the PhUSION
framework gives us 35 different node embedding
methods of each type, including positional embeddings
NetMF [5], InfiniteWalk [6], and HOPE [15] and struc-
tural embedding method GraphWave [2] as special cases.
We tune hyperparameters with grid search and report

Table 2: Real Datasets

(a) Node Classification

Dataset # Nodes # Edges Labels

P
ro
xi
m
. BlogCatalog [5] 10,312 333,983 Blogger Interests (39)

PPI [5] 3,890 76,584 Biological states (50)
Wikipedia [5] 4,777 184,812 Part-of-Speech tags (40)

St
ru
ct
. Brazil [19] 131 1,038 # landings & take-off (4)

Europe [19] 399 5,995 # landings & take-off (4)
USA [19] 1,190 13,599 # passengers (4)

(b) Graph Classification

Dataset # Graphs Avg # Nodes Labels

IMDB-M [22] 1,500 13.00 Collaboration genre (3)
PROTEINS [22] 1,113 39.06 Protein type (2)
PTC-MR [22] 344 14.29 Molecular property (2)

the procedure and best parameters in App. B. Interest-
ingly, we find that the best parameters strongly model
local node proximity.

We follow the supervised machine learning setup
of [19]: we randomly sample 80% of the dataset for
training and the rest for testing. For multi-label
prediction, we use the one-vs-rest logistic regression
model [5] and evaluate using micro-F1 scores.

6.1.1 Positional Node Embedding. We report
raw results for all 35 positional node embedding meth-
ods derived from PhUSION in Fig. 1. Table 3 performs
a drilldown on a per-design choice basis.
Results. We can see that PPMI does an excellent job,
while L+ is also competitive. As for the nonlinearity
σ(), our findings support recent work [6] that adding
nonlinearity is a critical part of outperforming the
original spectral embedding approaches: it is almost
always beneficial for all proximity matrices. On average,
we find that Log does the best; however, Bin-p also
performs better than Identity (no nonlinearity), and
indeed the best embedding method for two of the three
datasets (PPI and Wikipedia) uses binarization.

The use of binarization as nonlinearity and L+ for
proximity was proposed by InfiniteWalk [6], and the use
of PPMI node proximities with Log nonlinearity is the
NetMF method [5]. Our findings confirm that these
recently identified design choices are indeed among the
most successful overall. However, new design choices
are competitive with them and may warrant further
exploration. Moreover, no single choice of nonlinearity
function σ() performs best, nor does performance vary
monotonically with the sparsity of the resulting matrix
(Bin-50 performs better than both Bin-5 and Bin-95).
Corroborating [6], deeper characterization of various
choices of σ() and their effects is of continued interest.

Observation 1.(1) Nonlinearity has a complex effect,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 1: Node classification performance (micro-F1 scores) with positional embedding. Nonlinearity
generally helps, but the best nonlinearity function varies across proximity matrices, and the best proximity
matrix varies across datasets.

Table 3: Average rank and average/max micro-F1 scores of different proximity Ψ() and nonlinearity
functions σ() on all datasets used for positional node embedding. Design choices used in existing methods
NetMF and InfiniteWalk perform well on average (better than HOPE , which uses various Ψ() functions
but no nonlinearity). However, new design combinations are competitive.

BlogCatalog PPI Wikipedia
Avg Rank Avg Acc Max Acc Avg Rank Avg Acc Max Acc Avg Rank Avg Acc Max Acc

Ψ()

PPMI 10.4 35.56 42.21 10.8 22.03 25.25 14.2 51.41 59.10
HK 13.2 32.66 41.99 12.0 21.44 23.61 13.4 51.33 56.89
PPR 21.6 24.61 32.80 23.8 16.84 23.63 17.2 49.38 52.69
FaBP 20.6 26.94 31.98 24.8 17.57 19.89 22.2 46.79 54.43
L+ 10.0 35.49 41.55 8.8 22.52 25.80 11.8 52.11 56.47
A2 17.2 29.25 34.06 15.2 20.21 21.04 14.6 51.13 57.01
R2 26.0 24.25 28.04 23.0 17.61 20.48 25.4 44.57 51.52

σ()

Identity 25.43 23.31 33.04 24.0 16.9 20.93 27.86 42.53 55.82
Log 10.86 34.30 42.21 12.86 21.07 25.25 8.86 53.97 57.01
Bin-5 20.43 27.44 30.14 18.71 19.39 23.23 19.14 48.76 51.77
Bin-50 14.0 31.95 40.85 12.71 21.16 23.97 11.57 52.53 59.10
Bin-95 14.29 32.11 41.99 16.29 20.21 25.80 17.43 49.86 55.63

but is essential in improving the performance of
positional node embedding.

(2) Generally, design choices identified by recent
works [5, 6] are among the most successful across
datasets, but new combinations are often competitive.

6.1.2 Structural Node Embedding. We now eval-
uate the 35 methods we obtain from the PhUSION
framework for structural role-based node embedding in
two major tasks, node classification and clustering.
Node Classification. We again perform supervised
machine learning to predict the node labels from the
node embeddings, but in this case on datasets where
the labels correspond to nodes’ structural roles. We
plot the accuracy of each combination of design choice
in Fig. 2, and the average rank, mean and maximum
accuracy of each individual design choice in Tab. 4.
Node Clustering. Following the literature on structural
node embedding [2, 10], we also assess our methods us-

ing networks that are constructed to manifest distinctive
structural roles. Our goal is to cluster nodes with simi-
lar structural roles. We follow the dataset construction
(cf. App. C) and clustering setup of [2]. These datasets
exhibit clear role equivalence (perturbed by noise). For
brevity, we only report results from embeddings with-
out nonlinearity. We assess the clustering quality using
homogeneity, completeness, and silhouette score.
Results. Node Classification. We see different trends
than positional node embeddings. In this case, nonlin-
earity is not always helpful; indeed Identity is on aver-
age much more competitive. However, all datasets, us-
ing another proximity method or nonlinearity improves
on GraphWave as proposed, highlighting the flexibil-
ity of PhUSION. We find that a very simple nonlin-
earity, binarization, produces the best methods on two
datasets: as CFS models the distribution of entries in
each row, embedding a binary distribution simply mod-
els how many large proximities a node has to other

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 4: Real data (left): Average rank and average/max accuracy of different proximity Ψ() and
nonlinearity σ() functions on all datasets used for structural node embedding. Synthetic data (right):
Averaged clustering results for synthetic data with planted structural roles. For both tasks, we can
dramatically improve on GraphWave by using a different proximity matrix and/or nonlinearity.

Brazil Europe USA Synthetic
Avg
Rank

Avg
Acc

Max
Acc

Avg
Rank

Avg
Acc

Max
Acc

Avg
Rank

Avg
Acc

Max
Acc Hom Comp Silh

Ψ()

PPMI 28.00 37.72 43.48 29.80 37.06 46.82 25.80 43.71 54.13 .5283 .5029 .4986
HK 6.80 68.75 72.37 7.20 52.65 54.45 7.20 58.96 63.49 .5951 .5488 .4392
PPR 20.20 53.04 63.41 22.00 45.43 50.07 25.60 43.55 51.16 .5951 .5973 .9307
FaBP 19.80 52.70 70.15 23.00 44.94 49.90 22.00 47.65 56.92 .7157 .6627 .5531
L+ 27.60 39.18 53.41 15.00 46.42 56.02 24.00 44.02 59.94 .2071 .1896 .2499
A2 9.80 64.03 71.85 12.80 50.27 53.97 9.80 57.67 59.83 .7156 .6750 .5760
R2 13.40 63.01 67.56 16.00 48.97 51.80 11.40 56.56 58.56 .6551 .6071 .4232

σ()

Identity 14.23 60.33 71.78 12.57 50.71 56.02 13.43 54.28 59.95

N/A
Log 18.43 54.60 71.85 21.71 44.19 53.65 16.14 52.01 62.73
Bin-5 20.14 50.68 71.85 20.14 44.90 51.58 19.43 48.61 60.71
Bin-50 11.85 60.78 72.37 13.14 49.21 54.68 17.14 51.94 63.49
Bin-95 25.57 43.91 62.96 22.29 43.67 54.45 23.86 44.68 56.97

Figure 2: Node classification performance with structural embeddings. Many different proximity matrices
and nonlinearity functions can yield high accuracy, often higher than existing method GraphWave.

nodes. This corroborates a recent claim [10] that simple
structural information suffices for these datasets.
Node Clustering. The results in Tab. 4 (right) show
that a variety of proximity matrices successfully cluster
nodes by their structural roles, in some cases better than
the heat kernel used in GraphWave [2]. We show similar
results on unperturbed graphs in the supplementary § C.

Observation 2. Within our PhUSION framework, we
discover design choices for structural embedding that im-
prove on downstream tasks compared to existing meth-
ods. In particular, we discover that some design choices
used for positional node embeddings, like nonlinearity,
can improve structural embeddings as well.

6.1.3 Comparing Design Choices for Positional
& Structural Embeddings. Based on all our node-
level experiments, we see that although the same design
choices prior to embedding (Ψ(), σ()) can be used for po-

sitional or structural embeddings, in practice the best
design choices for each kind of embedding tend to be dif-
ferent. For instance, nonlinearity is almost always help-
ful for positional node embeddings, but only sometimes
helpful for structural embeddings. Proximity functions
PPMI and L+ tend to be successful for positional node
embeddings, but do not produce the best structural em-
beddings (clearly seen on the clustering tasks).

This analysis raises an important question: Can
we characterize node proximity matrices that produce
good embeddings of either type? We perform initial ex-
ploratory analysis in App. E, investigating properties of
the matrices produced by each combination of Ψ() and
σ(). We find that the row-wise sums of elements in ma-
trices producing good positional node embeddings tend
to have a bell-shaped distribution, whereas we observe
power-law distributions in matrices that produce good
structural embeddings.

Observation 3. While positional and structural node

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 5: Graph classification using averaged node embeddings (Eq. 3.3) and baselines (gray). We improve
on NetLSD (3/3 datasets) and RetGK (2/3 datasets), which leverage simpler features from HK and RW
matrices, using our embeddings of these matrices. We may also use different proximity matrices like Adj,
which can further increase performance.

PPMI FaBP HK PPR Adj RW L+ NetLSD RetGK

IMDB-M 38.98± 0.56 46.54± 0.27 48.18± 0.19 41.62± 0.07 49.44± 0.36 47.42± 0.32 45.44± 0.47 44.17± 0.05 43.91± 0.74
PROTEINS 70.50± 0.36 73.38± 0.19 73.94± 0.16 71.64± 0.08 72.36± 0.34 71.52± 0.17 70.76± 0.30 71.96± 0.04 74.37± 0.06
PTC-MR 56.80± 0.40 55.48± 0.80 59.18± 0.97 58.84± 0.71 55.02± 0.77 58.22± 0.60 58.44± 0.59 58.84± 1.37 57.56± 1.27

embeddings may begin with the same node proximity
designs, in practice the best designs for each kind of
embedding method tend to differ.

This may be one reason why the survey work [3],
characterizing existing examples of positional and struc-
tural node embedding methods, judged their method-
ology to be fundamentally different (even though our
framework and the theory of [4] show a methodological
connection in principle).

6.2 Graph-Level Embedding. We now investigate
PhUSION’s effectiveness in learning graph features from
various node proximity matrices. Intuitively, we expect
that our more expressive features will allow us to classify
graphs more accurately than previous works.
Setup. Our experiments evaluate the graph classifica-
tion accuracy on PTC-MR, IMDB-M and PROTEINS
datasets [22]. As our focus is learning from the graph
structure alone, we ignore node attributes. We only use
CFS (i.e. structural embeddings), which are compara-
ble across graphs [9], and do not use nonlinearity σ() as
the baselines do not. We use a linear SVM to predict
graphs’ labels from their features; we report the 10-fold
cross-validation accuracy averaged over 5 trials [9].

We compare against NetLSD [7] and RetGK [8], al-
ternative ways of deriving graph features from HK and RW
proximity matrices, respectively (§5). We use NetLSD’s
default 250 heat kernel values logarithmically spaced in
the range {10−2, 102}. We run RetGK using its defaults
of 50th-order random walk return probabilities and its
proposed exact and approximate successive kernel em-
bedding (κ and φ in §5). We describe our hyperpa-
rameter settings in supplementary App. B; we paral-
lel the settings of NetLSD and RetGK, and carefully
avoid giving ourselves any unfair advantage over them
(in fact, they have a slight advantage if anything: we
leave NetLSD with its default higher dimensionality and
RetGK with its default successive kernel embeddings).
Results. In Tab. 5, we see that our methods generally
improve on NetLSD and RetGK as a way of getting
graph features from their node proximity matrices. In
particular, embedding RW using Eq. 3.2 outperforms

RetGK, which is also based on the RW proximity matrix,
on two out of three datasets (PTC-MR and IMDB-M).
Similarly embedding HK outperforms NetLSD, which
also uses the heat kernel matrix, on all three datasets
(and outperforms all other methods on two datasets).
This is strong evidence that by modeling each node’s full
distribution of proximities rather than its self-proximity,
PhUSION captures more useful information.

Because we keep the embedding dimension the
same as (or lower) than NetLSD and RetGK, which
capture only a single value for a node at each proximity
scale (whereas we return a 10-dimensional embedding),
we necessarily consider much fewer scales. Our good
comparative performance indicates that modeling more
graph information at fewer scales is generally superior
to modeling less information at more scales.

Observation 4. PhUSION gives us a way to learn
graph features from a given node proximity matrix that
yield greater accuracy than previous works [7, 8], likely
because of their expressivity (§ 5).

6.3 Additional Analysis. For all our classification
tasks, we also study the effect of proximity order for
multiscale embeddings in the supplementary App. D. In
general, we find that modeling strongly local informa-
tion with low-order proximity yields good performance
(and is computationally cheapest).

7 Conclusion
We have proposed the first unifying perspective that
encompasses both proximity-preserving and structural
node embedding methods, clarifying their contested
technical relationship [4, 3]. This allows us to learn
either kind of node embedding from any node proxim-
ity matrix that can be computed on a graph, which
arises throughout the field of graph mining. Our three-
step framework PhUSION opens up a variety of design
choices (we empirically study 35), encompassing exist-
ing methods and also producing novel ones. We pro-
vide insights into productive design choices for node-
level graph mining using either kind of embedding. By
aggregating a graph’s embeddings, we can derive graph-
level features from the node proximities; we show pre-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

cisely what information we can capture that is lost by
other graph kernels and feature learning methods.

Within PhUSION there is still room to explore more
design choices, such as other embedding functions (e.g.
nonlinear autoencoders used by a few methods for posi-
tional node embedding [17], or trainable characteristic
function sampling recently proposed for node and graph
embedding [23]). For graph embedding, other designs
use successive kernel embedding and the incorporation
of node attributes [8]. Furthermore, fast approximate
computation of node proximities can allow PhUSION
to scale to very large graphs [5, 2].

Acknowledgements
This work is supported by NSF Grant No. IIS 1845491,
Army Young Investigator Award No. W9-11NF1810397,
and Adobe, Amazon, Facebook, and Google faculty
awards. Any opinions, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the funding parties.

References
[1] Palash Goyal and Emilio Ferrara. Graph embed-

ding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 2018.

[2] Claire Donnat, Marinka Zitnik, David Hallac, and
Jure Leskovec. Learning structural node embed-
dings via diffusion wavelets. In KDD, 2018.

[3] Ryan A. Rossi, Di Jin, Sungchul Kim, Nesreen K.
Ahmed, Danai Koutra, and John Boaz Lee. On
proximity and structural role-based embeddings in
networks: Misconceptions, methods, and applica-
tions. TKDD, 2020.

[4] Balasubramaniam Srinivasan and Bruno Ribeiro.
On the equivalence between positional node em-
beddings and structural graph representations. In
ICLR, 2020.

[5] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li,
Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line,
pte, and node2vec. In WSDM, 2018.

[6] Sudhanshu Chanpuriya and Cameron Musco. In-
finitewalk: Deep network embeddings as laplacian
embeddings with a nonlinearity. In KDD, 2020.

[7] Anton Tsitsulin, Davide Mottin, Panagiotis Kar-
ras, Alexander Bronstein, and Emmanuel Müller.
Netlsd: hearing the shape of a graph. In KDD,
2018.

[8] Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan
Huang, and Arye Nehorai. Retgk: Graph kernels

based on return probabilities of random walks. In
NeurIPS, 2018.

[9] Mark Heimann, Tara Safavi, and Danai Koutra.
Distribution of node embeddings as multiresolution
features for graphs. In ICDM, 2019.

[10] Junchen Jin, Mark Heimann, Di Jin, and Danai
Koutra. Understanding and evaluating structural
node embeddings. In KDD MLG Workshop, 2020.

[11] Mark Heimann, Haoming Shen, Tara Safavi, and
Danai Koutra. Regal: Representation learning-
based graph alignment. In CIKM, 2018.

[12] Cheng Yang, Maosong Sun, Zhiyuan Liu, and Cun-
chao Tu. Fast network embedding enhancement
via high order proximity approximation. In IJCAI,
2017.

[13] Danai Koutra, Joshua T Vogelstein, and Christos
Faloutsos. Deltacon: A principled massive-graph
similarity function. In SDM, 2013.

[14] Danai Koutra, Tai-You Ke, U Kang, Duen
Horng Polo Chau, Hsing-Kuo Kenneth Pao, and
Christos Faloutsos. Unifying guilt-by-association
approaches: Theorems and fast algorithms. In
PKDD, 2011.

[15] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang,
and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In KDD, 2016.

[16] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep:
Learning graph representations with global struc-
tural information. In CIKM, 2015.

[17] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep
neural networks for learning graph representations.
In AAAI, 2016.

[18] Mark Heimann, Goran Murić, and Emilio Fer-
rara. Structural node embedding in signed social
networks: Finding online misbehavior at multiple
scales. In Complex Networks, 2020.

[19] Leonardo FR Ribeiro, Pedro HP Saverese, and
Daniel R Figueiredo. struc2vec: Learning node
representations from structural identity. In KDD,
2017.

[20] Ali Rahimi and Benjamin Recht. Random features
for large-scale kernel machines. In NeurIPS, 2008.

[21] Giannis Nikolentzos and Michalis Vazirgiannis. En-
hancing graph kernels via successive embeddings.
In CIKM, 2018.

[22] Christopher Morris, Nils M Kriege, Franka Bause,
Kristian Kersting, Petra Mutzel, and Marion Neu-
mann. Tudataset: A collection of benchmark
datasets for learning with graphs. In ICML GRL
Workshop, 2020.

[23] Benedek Rozemberczki and Rik Sarkar. Charac-
teristic functions on graphs: Birds of a feather,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

from statistical descriptors to parametric models.
In CIKM, 2020.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

A Proofs
A.1 Existing Node Embedding Methods as
Special Cases of Eq. (3.2). For all the methods in
Theorem 4.1, we list the specific choices of node proxim-
ity Ψ(), nonlinearity σ(), and embedding ζ() functions
(as well as whether or not they use multiscale proximity)
that make them conform to our framework.

• GraphWave [2]: the node proximity Ψ() computes the
graph’s heat kernel matrix, the nonlinearity σ() is
the identity function, and the embedding function ζ()
is characteristic function sampling. The multiscale
version of GraphWave is given by Equation 3.2.

• NetMF [5]: the node proximity Ψ() computes the
graph’s PPMI matrix, the nonlinearity σ() is Log, and
the embedding function ζ() is SVD.

• InfiniteWalk [6]: the node proximity Ψ() computes
the PPMI matrix in the window size limit T =∞, or
the Laplacian pseudoinverse L+ as an approximation
of this quantity up to a low-rank correction term.
The nonlinearity σ() is Log (or, for the Laplacian
pseudoinverse, the authors consider Bin-p), and the
embedding function ζ() is SVD.

• HOPE [15]: the node proximity Ψ() computes the
personalized pagerank matrix or the common neigh-
bors matrix A2, the nonlinearity σ() is the identity
function, and the embedding is SVD (possibly ap-
proximated for scalability [15]).

• GraRep [16]: the node proximity Ψ() is derived
from powers of the adjacency matrix, the nonlinearity
σ() is Log, and the embedding function is SVD;
this method computes multiscale node embeddings
by concatenating embeddings derived from different
powers of the adjacency matrix.

• DNGR [17]: the node proximity Ψ() computes the
graph’s PPMI matrix (in a slightly different way
than NetMF), the nonlinearity σ() is Log, and the
nonlinear embedding function ζ() is implemented
with a stacked denoising autoencoder.

• sRDE [18]: the node proximity Ψ() in a signed
network is computed using a signed random walk with
restart procedure, the nonlinearity σ() is the identity
function, and the embedding function ζ() consists of
computing a histogram (which is also permutation-
invariant) of each node’s signed proximity scores.

A.2 Embedding Functions that Produce Posi-
tional vs. Structural Node Embeddings Here we
give the proof of Theorem 4.2:

Proof. Part 1: SVD yields different embeddings
for automorphic nodes. Recall that finding the
SVD of S̃ = [S̃1,0; 0, S̃2] is equivalent to finding
the eigendecomposition of S̃S̃>: the singular vectors
(columns of U) are the eigenvectors and the singular
values (diagonal entries of Σ) the square roots of
eigenvalues of S̃S̃>. Since the embeddings are formed
from the first d columns of U and Σ, we equivalently
analyze the eigendecomposition of S̃S̃>.

1. S̃1 and S̃2 are similar matrices and thus have the
same eigenvalues and eigenvectors.

2. S̃S̃> has the same eigenvalues as S̃1 (equivalently,
S̃2). First, we show that all eigenvalues of S̃1, S̃2

are eigenvalues of S̃S̃>: if S̃1vλ = λvλ, then
S̃S̃>[vλ,0] = λ[vλ,0]; S̃S̃>[0,vλ] = λ[0,vλ]. Con-
versely, we also show that all eigenvalues of S̃S̃>

are eigenvalues of S̃1, S̃2. Without loss of general-
ity we can write any eigenvector v of S̃ split in half
as [v1,v2], such that S̃S̃>[v1,v2] = λ[v1,v2]. Then
S̃S̃>[v1,v2] = [S̃1S̃

>
1 ,0; 0, S̃2S̃

>
2][v1,v2] = [S̃1v1 +

0v2,0v1 + S̃2v2] = [S̃1v1, S̃2v2]. Since [v1,v2] was
an eigenvector of S̃S̃>, [S̃1v1, S̃2v2] = λ[v1,v2] and
thus S̃1v1 = λv1 and S̃2 = v2, meaning that λ is
also an eigenvalue of S̃1 and S̃2.

3. Thus, each of the top singular vectors of S̃ that
form the dimensions of Y which form the embedding
dimensions up to weighing by the singular values,
has the form [0,vλ] or [vλ,0]. (Since the graphs are
connected i.e. nonempty, vλ 6= 0.) That is, along
any dimension the nodes in one graph will have a
nonzero embedding value and the nodes in the other
graph will have a zero embedding value.

This is of course an extreme case for a highly con-
trived example (perfectly automorphic nodes in per-
fectly disconnected components of a graph), but in gen-
eral we can see (and the research community has found
experimentally on real-world networks) that the SVD
embeddings encode positional rather than structural in-
formation, and nodes in very different parts of the graph
will generally not be close in the embedding space.
Part 2: Permutation-invariant row functions
such as CFS yield identical embeddings for au-
tomorphic nodes. Let n be the number of nodes in
either graphG1 orG2. Then the first n nodes inG corre-
spond to G1 and the second n nodes in graph correspond
to G2. So for node i ∈ [1, . . . , n], the ID of its counter-
part under the isomorphism π is π(i)+n. Thus, we want
to show that the rows of node i and node π(i) + n in
S̃ are equivalent up to permutation. Formally, we show
that for any i, j ∈ [1, . . . , n], S̃ij = S̃π(i)+n,π(j)+n.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Let ei be the i-th standard basis. Then S̃ij = S̃1ij =

eiS̃1e
>
j = eiP

>S̃2Pe>j = eπ(i)S̃2e
>
π(j) = S̃2π(i)π(j)

=

S̃π(i)+n,π(j)+n. This shows that any nonzero element
in the i-th row of S̃ (which must occur in the first
n elements) has a corresponding element among the
second j elements of the (π(i) + n)-th row. Of course,
the second n elements in the i-th row and the first n
elements in the (π(i) + n)-th row of S̃ are zeros. Thus,
these rows have the same elements and are identical up
to permutation.

B Node Proximity Hyperparameters
For positional node embeddings: All embeddings
have the standard 128 dimensions [5]. We tuned the
hyperparameters of the node proximity functions PPMI,
PPR, HK, and FaBP on the Wikipedia dataset via grid
search over the following values:

1. HK: we tried scale values of s ∈ [0.01, 0.1, 1, 10, 25, 50],
and find best performance from s = 0.1.

2. PPR: we tried decay parameter values β ∈
[0.9, 0.5, 0.1, 0.01], and find best performance from
β = 0.01.

3. PPMI: we tried window size T ∈ [2, 5, 10] and found
little difference, so we use T = 10 with the approxi-
mate NetMF method [5].

4. FaBP: we tried values for the parameters a, c ∈
{0.01, 0.1, 1, 10}. We found little difference for values
of a, but smaller c can lead to better performance,
so we chose a = 1 and c = 0.01.

For structural embeddings: On these smaller
graphs, all embeddings are 50-dimensional. We tuned
the hyperparameters of the node proximity functions
PPMI, PPR, HK, and FaBP on the USA dataset via grid
search over the following values:

1. HK: we used multiscale embeddings following [2].
We found that on the airports datasets, their
automatic scale selection procedure yielded un-
intuitively large and poorly performing scales. 1

Thus, we tried {1, 5, 10, 25, 50}, {0.1, 1, 10, 25, 50}
and {0.01, 0.1, 1, 10, 100}, and find best performance
from the latter.

2. PPR: we tried decay parameter values β ∈
[0.9, 0.5, 0.1, 0.01], and find β = 0.01 works best.

1For example, applying the official implemention of Graph-
Wave [2] using the automatic scale selection on USA-airports
dataset gives a range of scale parameters smin = 2014340.3 and
smax = 8763076.3.

3. PPMI: we tried window size T ∈ [2, 5, 10] and found
that T = 10 achieves best performance.

4. FaBP: we tried parameter values a, c ∈
[0.01, 0.1, 1, 10], but in the end we found that the
heuristic proposed in [14] for setting a and c works
best: a = 4h2h/(1−4h2h), c = 2hh/(1−4h2h). Here the

“about-half” homophily factor hh =

√
−c1+
√
c21+4c2

8c2

where c1 = Tr(D) + 2, c2 = Tr(D2)− 1.

For graph classification: For HK, we use scale param-
eters s ∈ {0.01, 0.1, 1, 10, 100} to parallel NetLSD. For
proximity functions computed by matrix powers (Adj
and RW), we consider powers k ∈ {1, 2, 3, 4, 5}. At each
of the five parameter settings, we learn 10-dimensional
embeddings and use Eq. 3.2 to form a multiscale em-
bedding with 50 dimensions (to match or stay below
the modeling capacity of NetLSD and RetGK). Between
NetLSD’s higher (250) dimension and RetGK’s succes-
sive kernel embeddings, our experimental setup gives
NetLSD and RetGK each a small advantage.

C Clustering Structural Node Embedding:
Additional Details and Results

We use the synthetic graph generation pipeline provided
by GraphWave [2]. The graphs are given by 5 basic
shapes of one of different types (“house”, “fan”, “star”) [2]
that are placed on a cycle of length 30. In the main
paper, we add 10% random edges to perturb the other-
wise perfect role equivalences of nodes in the same part
of different shape; however, in Tab. 6, we include clus-
tering results on noiseless networks exhibiting perfect
role equivalence. We use agglomerative clustering (with
single linkage) to cluster the node embeddings learned
by each method.

PPMI FaBP HK PPR A2 R2 L+

Homogeneity 0.8738 1.000 0.9727 1.000 1.000 0.9297 0.8370
Completeness 0.8367 1.000 0.9407 1.000 1.000 0.9057 0.7812
Silhouette 0.8241 0.9089 0.8814 0.9702 0.9204 0.8616 0.8313

Table 6: Clustering results on noiseless synthetic
datasets. HK used in GraphWave is outperformed
on all metrics by other proximity matrices.

D Proximity Order in Structural Embedding
The order of proximity that node embeddings model has
been shown to be very important. While some methods
by default model low-order (e.g. 2nd-order) proximi-
ties [10], other methods try to balance low-order and
high-order proximities to capture local and global in-
formation. This has been done with multiscale embed-
dings, whether positional [16] or structural [2]. Setting

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

hyperparameters that govern the order of proximity is
thus important to understand.
Setup. For node and graph classification, we consider
the effect of varying the order for methods consisting of
powers of a (filtered) similarity matrix S̃ (i.e. Adj or
RW) when computing multiscale embeddings (Eq. 3.2).
We only consider up to 4th order for positional node
embeddings due to the larger size of those datasets
(which is also why we omit the largest dataset Blog-
Catalog). For any value of k, we compute the embed-
dings from each power of S̃, S̃2, . . . , S̃k (using Log non-
linearity for positional node embeddings and Identity
for structural embeddings, nonlinearity functions which
performed well on average for each kind of embedding
in § 6) and concatenate the resulting embeddings. Note
that for graph classification experiments, we now learn
a 50-dimensional embedding at each scale, as we are not
comparing to baseline methods now.
Results. The results are shown in Fig. 3. We can see,
confirming the intuition of prior structural embedding
methods [10] that lower order proximity is sufficient for
best performance and saves the computational expense
of computing higher order node proximities (which
amounts to additional multiplications of increasingly
dense matrices).

Observation 5. Modeling low-order node proximity
(however, beyond first-order proximity, or direct edge
connections alone) is generally sufficient for both kinds
of embedding methods.

E Proximity Matrix Properties for Effective
Node Embeddings

A powerful tool for the design of future node embed-
ding methods would be an intrinsic characterization
of successful design choices for node embedding; this
could allow for effective model selection without rely-
ing on extrinsic evaluation (i.e. performance on down-
stream tasks as in § 6). The node embedding step usu-
ally leverages standard dimensionality reduction tech-
niques; from a graph mining perspective, the most in-
teresting part is the construction of (potentially nonlin-
early transformed) node proximities. Thus, we seek to
understand: how can we characterize choices Ψ(σ(A))
that yield useful (positional or structural) node embed-
dings? While effective intrinsic analysis of node embed-
ding methods is a major open question, we present some
initial exploratory analysis to prompt further investiga-
tion.

E.1 Positional Embeddings In a node proximity
matrix, the sums of each row correspond to the total
proximity scores each node has to all other nodes. Our

(a) Proximity node classi-
fication: Multiscale Adj

(b) Proximity node classi-
fication: Multiscale RW

(c) Structural node classi-
fication: Multiscale Adj

(d) Structural node classi-
fication: Multiscale RW

(e) Graph classification:
Multiscale Adj

(f) Graph classification:
Multiscale RW

Figure 3: Effect of proximity order on node and
graph classification. Low order proximities are
sufficient to achieve good performance.

intuition is that if we are to expect good positional
node embeddings, most nodes should have a moderate
amount of total proximity to other nodes—too low, and
the embedding objective will have too little similarity
information to learn an effective embedding; too high,
and the embedding objective will try to embed this node
indiscriminately similarly to many other nodes.
Setup. In Fig. 4, we visualize the distribution of
row sums of all node proximity matrices, arising from
each combination of node proximity and nonlinearity
function that we evaluated in this work.
Results. Some of these distributions exhibit a bell
curve shape with the values concentrated in the middle
of the distribution, while others exhibit a power law
distribution with a single long tail. (Note that for the
Bin-5 nonlinearity, the tail is on the left as most values
in the matrix are 1, so low row sums are the exception.
In general, the tail consists of the large row sums, as is
typical for most power law distributions.)

Many successful design choices produce a bell shape

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 4: Degree (row sum) distributions of matrices resulting from all different combinations of Ψ() and
σ() on BlogCatalog. In general, some of the best-performing embedding methods (darker colors) come
from matrices whose row sum distributions follow a bell curve rather than a power law.

distribution of row sums. For example, the Log nonlin-
earity filter (the best-performing nonlinearity on aver-
age) produces bell-shaped row sum distributions for all
proximity matrices. Bin-95 produces a somewhat bell-
shaped distribution for PPMI, one of the best-performing
proximity matrices. In general, this lines up with our
intuition to expect mostly moderate row sums.

Observation 6. Some of the matrices yielding the
best positional node embeddings have a bell curve rather
than a power law distribution of row sums: that is,
most nodes have moderate total proximity scores to all
other nodes.

E.2 Structural Embeddings The CFS embedding
method treats each row of the proximity matrix as
a probability distribution. When learning structural
embeddings using CFS, GraphWave notes that two cases
will be uninformative for structural embedding: if the

distribution of row entries is either too uniform or if it
has too few nonzero values.
Setup. To measure the row-wise uniformity of the ma-
trices, we consider the variance of each row. Meanwhile,
we use entropy to diagnose rows with a few large entries
and otherwise mostly small ones. Thus, we plot the row-
wise distribution of variances and entropy for each prox-
imity matrix, as well as the distribution of row sums as
in § E.1. For brevity, we do not consider nonlinearity.
Note that for PPR and L+, we truncate entropy values
close to −∞ to −10 for ease of visualization.
Results. For most proximity matrices, the row-wise
distribution of all three statistics tends to follow a power
law distribution. The row-wise sum and variance distri-
butions for the PPMI matrix, which generally leads to
some of the the weaker structural embedding methods,
tend to follow this pattern much more noisily. Proximity
matrices PPR and FaBP, on the other hand, tend to follow
an extreme power law distribution with a very thin tail.
This may indicate that a moderate power law distri-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 5: Distribution of row distribution statistics (degree, variance, and entropy) of proximity matrices
(without nonlinearity) on USA Airports dataset used for structural embeddings. Methods leading to more
accurate structural embeddings have darker color. Some of the best embeddings come from matrices whose
rows’ variance and entropy follow a power law distribution.

bution may be the most informative for structural em-
beddings. The contrast with proximity-preserving em-
beddings (§ E.1), where the most successful embeddings
tended to come from matrices with a bell-curve distri-
bution of row sums, corroborates our finding that the
best positional and structural node embedding methods
tended to use very different design choices.

Observation 7. Proximity matrices that yield good
structural embeddings often follow a power law distri-
bution of row-wise statistics. The contrast with Obs. 6
indicates that proximity matrices that lead to success-
ful positional or structural node embeddings may have
fundamentally different properties.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

	1 Introduction
	2 Related Work
	3 Unified Theoretical Framework
	3.1 Node Feature Learning
	3.2 Graph Feature Learning

	4 Unifying Node Embedding Methods
	4.1 Step 1: Computing Node Proximities ().
	4.2 Step 2: Nonlinear Transformations of Node Proximities ().
	4.3 Step 3: Embedding Node Proximities ().
	4.4 What Makes Node Embeddings Positional or Structural?

	5 Unifying Graph Embedding Methods
	6 Experiments
	6.1 Node-level Embedding.
	6.1.1 Positional Node Embedding.
	6.1.2 Structural Node Embedding.
	6.1.3 Comparing Design Choices for Positional & Structural Embeddings.

	6.2 Graph-Level Embedding.
	6.3 Additional Analysis.

	7 Conclusion
	A Proofs
	A.1 Existing Node Embedding Methods as Special Cases of Eq. (3.2).
	A.2 Embedding Functions that Produce Positional vs. Structural Node Embeddings

	B Node Proximity Hyperparameters
	C Clustering Structural Node Embedding: Additional Details and Results
	D Proximity Order in Structural Embedding
	E Proximity Matrix Properties for Effective Node Embeddings
	E.1 Positional Embeddings
	E.2 Structural Embeddings

