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Abstract

We propose a novel unsupervised generative model that learns to disentangle object
identity from other low-level aspects in class-imbalanced data. We first investigate
the issues surrounding the assumptions about uniformity made by InfoGAN [10],
and demonstrate its ineffectiveness to properly disentangle object identity in im-
balanced data. Our key idea is to make the discovery of the discrete latent factor
of variation invariant to identity-preserving transformations in real images, and
use that as a signal to learn the appropriate latent distribution representing object
identity. Experiments on both artificial (MNIST, 3D cars, 3D chairs, ShapeNet)
and real-world (YouTube-Faces) imbalanced datasets demonstrate the effectiveness
of our method in disentangling object identity as a latent factor of variation.

1 Introduction

Generative models aim to model the true data distribution, so that fake samples that seemingly belong
to the modeled distribution can be generated [1, 42, 6]. Recent deep neural network based models
such as Generative Adversarial Networks [19, 44, 43] and Variational Autoencoders [33, 24] have
led to promising results in generating realistic samples for high-dimensional and complex data such
as images. More advanced models show how to discover disentangled (factorized) representations
[57, 10, 49, 26, 47], in which different latent dimensions can be made to represent independent factors
of variation (e.g., pose, identity) in the data (e.g., human faces).

InfoGAN [10] in particular, learns an unsupervised disentangled representation by maximizing
the mutual information between the discrete or continuous latent variables and the corresponding
generated samples. For discrete latent factors (e.g., digit identities), it assumes that they are uni-
formly distributed in the data, and approximates them accordingly using a fixed uniform categorical
distribution. Although this assumption holds true for many benchmark datasets (e.g., MNIST [34]),
real-word data often follows a long-tailed distribution and rarely exhibits perfect balance between the
categories. Indeed, applying InfoGAN on imbalanced data can result in incoherent groupings, since
it is forced to discover potentially non-existent factors that are uniformly distributed in the data; see
Fig. 1.

In this work, we augment InfoGAN to discover disentangled categorical representations from imbal-
anced data. Our model, Elastic-InfoGAN, makes two improvements to InfoGAN which are simple
and intuitive. First, we remodel the way the latent distribution is used to fetch the latent variables;
we lift the assumption of any knowledge about the underlying class distribution, where instead of
deciding and fixing them beforehand, we treat the class probabilities as learnable parameters of
the optimization process. To enable the flow of gradients back to the class probabilities, we employ
the Gumbel-Softmax distribution [30, 36], which acts as a proxy for the categorical distribution,

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

utkarshojha.github.io/elastic-infogan/


Balanced Dataset
(InfoGAN)

Imbalanced Dataset
(InfoGAN)

Imbalanced Dataset
(Elastic-InfoGAN (Ours) )

Figure 1: (Left & Center) Samples generated with an InfoGAN model learned with a fixed uniform
categorical distribution Cat(K = 10, p = 0.1) on balanced and imbalanced data, respectively. Each
row corresponds to a different learned latent category. (Right) Samples generated with Elastic-
InfoGAN using its automatically learned latent categorical distribution. Although InfoGAN discovers
digit identities in the balanced data, it produces redundant/incoherent groupings in the imbalanced
data. In contrast, our model is able to discover digit identities in the imbalanced data.

generating differentiable samples having properties similar to that of categorical samples. Our second
improvement stems from an observation of a failure case of InfoGAN (Fig. 1 center); we see that
the model has trouble generating consistent images from the same category for a latent dimension
(e.g., rows 1, 2, 4). This indicates that there are other low-level factors (e.g., rotation, thickness)
which the model focuses on while categorizing the images. Although there are multiple meaningful
ways to partition unlabeled data—e.g., with digits, one partitioning could be based on identity,
whereas another could be based on stroke width—we aim to discover the partitioning that groups
objects according to a high-level factor like identity while being invariant to low-level “nuisance”
factors like lighting, pose, and scale changes. To this end, we take inspiration from self-supervised
contrastive representation learning literature [4, 23, 9] to learn representations focusing on object
identity. Specifically, we enforce (i) similar representations for positive pairs (e.g., an image and
its mirror-flipped version), and (ii) dissimilar representations for negative pairs (e.g., two different
images). As a result, the discovered latent factors align more closely with object identity, and less
with other factors. Such partitionings focusing on object identity are more likely to be useful for
downstream visual recognition applications; e.g. (i) semi-supervised object recognition [43, 41]
or image retrieval using object-identity based image features; (ii) performing data augmentation to
remove class-imbalance using synthetic images.

Importantly, Elastic-InfoGAN retains InfoGAN’s ability to jointly model both continuous and discrete
factors in either balanced or imbalanced data scenarios. To our knowledge, our work is the first
to tackle the problem of disentangled representation learning in the scenario of imbalanced data,
without the knowledge of ground-truth class distribution (Fig. 1 right). We show qualitatively and
quantitatively our superiority in terms of the ability to disentangle object identity as a factor of
variation, in comparison to relevant baselines. And in order to discover object identity as a factor, our
results also provide interesting observations regarding the ideal distribution for the latent variables.

2 Related Work

Disentangled representation learning has a vast literature [25, 5, 57, 10, 38, 49, 12, 26, 47]. In
particular, InfoGAN [10] learns disentanglement without supervision by maximizing the mutual
information between the latent codes and generated images, and has shown promising results for
class-balanced datasets like MNIST [34], CelebA [35], and SVHN [39]. JointVAE [15] extends
beta-VAE [24] by jointly modeling both continuous and discrete factors, using Gumbel-Softmax
sampling. However, both InfoGAN and JointVAE assume uniformly distributed data, and hence fail
to be equally effective in imbalanced data, evident by Fig. 1 and our experiments. Our work proposes
improvements to InfoGAN to enable it to discover meaningful latent factors in imbalanced data.

Learning from imbalanced data Real world data have a long-tailed distribution [20, 50], which
can impede learning, since the model can get biased towards the dominant categories. Re-sampling
[8, 22, 46, 7, 60] and class re-weighting techniques [48, 28, 13, 37] can alleviate this issue for the
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Figure2:(Left)OurmodeltakesasampledcategoricalcodefromaGumbel-Softmaxdistribution
andanoisevectortogeneratefakesamples.Theuseofdifferentiablelatentvariablesfromthe
Gumbel-Softmaxenablesgradientstoflowbacktotheclassprobabilitiestoupdatethem.(Right)
ApartfromtheoriginalInfoGAN[10]losses,wehaveanadditionallossforcontrastivelearningof
representations.WetransformarealimageIusingcommonlyuseddataaugmentationsδ(e.g.mirror
flipping,randomcrop)tocreateapositivepair{I,Ipos},andenforcesimilarityintheirrespective
featuresextractedusingQ.Thesamerealimageisalsopairedupwithanarbitraryimagefromthe
samebatchtocreateanegativepair{I,Ineg},whosefeaturerepresentationsaremadedissimilar.

supervisedsetting,inwhichtheclassdistributionsareknownapriori.Therearealsounsupervised
clusteringmethodsthatdealwithimbalanceddatainunknownclassdistributions(e.g.,[40,59]).
Ourmodelworksinthesameunsupervisedsetting;however,unlikethesemethods,weproposea
generativemodelmethodthatlearnstodisentanglelatentcategoricalfactorsinimbalanceddata.

DataaugmentationforunsupervisedimagegroupingUnsuperviseddeepclusteringmethods[18,
58,45,54]trytogroupunlabeledinstancesthatbelongtothesameobjectcategory.Someworks[29,
14,27,31,4,9]usedataaugmentationforimagetransformationinvariantclusteringorrepresentation
learning.Themainideaistomaximizethemutualinformationorsimilaritybetweenthefeatures
ofanimageanditscorrespondingtransformedimage.Someapproachesalsotrytomakedifferent
imagesmoredissimilar[4,9].However,unlikeourapproach,thesemethodstypicallydonottarget
imbalanceddataanddonotperformgenerativemodeling.

Differentiableapproximationofcategoricalvariables Existenceofdiscreterandomvariables
withinacomputationgraphintroducesnon-differentiability. Consequently,recentworkshave
introducedareparameterizationtrickusingGumbel-Softmax,enablingdifferentiablesamplingof
variableswhichapproximatethecategoricalones[30,36].Thishasbeenusedinneuralarchitecture
search[52,55,53],whereitmakestheprocessofchoosingblocks(e.g.outofkdistinctoptions)fora
layerdifferentiable,enablingtheoverallsearchprocesspossiblethroughgradient-basedoptimization
methods.Recently,ithasalsofounduse-casesinapproximatingdiscretesegmentationmasksfor
scenegeneration[3].OurworkusesGumbel-Softmaxreparameterizationforadifferentapplication,
whereweseektolearnabettermultinomialdistributionfordiscretefactors(e.g.objectidentity)in
class-imbalanceddata.

3 Approach

LetX = {x1,x2,...,xN}beadatasetofNunlabeledimagesfromkdifferentclasses. No
knowledgeaboutthenatureofclassimbalanceisknownbeforehand.Ourgoalistolearnagenerative
modelGwhichcanlearntodisentangleobjectcategoryfromotheraspects(e.g.,digitsinMNIST
[34],faceidentityinYouTube-Faces[51])inimbalanceddata,byapproximatingtheappropriate
latentdistribution.Inthefollowing,wefirstbrieflydiscussInfoGAN[10],whichaddressedthis
problemforthebalancedsetting.Wethenexplainhowitcanbeimprovedtohandleimbalanceddata.
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3.1 Background: InfoGAN

Learning disentangled representations using the GAN [19] framework was introduced in InfoGAN
[10]. The intuition is for the generated samples to retain information about latent variables, and
consequently for latent variables to gain control over certain aspects of the generated image. In this
way, different types of latent variables (e.g., discrete categorical vs. continuous) can control properties
like discrete (e.g., digit identity) or continuous (e.g., digit rotation) variations in the generated images.

Formally, InfoGAN does this by maximizing the mutual information between the latent code c and
the generated samples G(z, c), where z ∼ Pnoise(z) and G is the generator network. The mutual
information I(c,G(c, z)) can then be used as a regularizer in the standard GAN training objective.
Computing I(c,G(c, z)) however, requires P (c|x), which is intractable and hard to compute. The
authors circumvent this by using a lower bound of I(c,G(c, z)), which can approximate P (c|x) via
a neural network based auxiliary distribution Q(c|x). The training objective hence becomes:

min
G,Q

max
D

VInfoGAN (D,G,Q) = VGAN (D,G)− λ1L1(G,Q), (1)

where L1(G,Q) = Ec∼P (c),x∼G(z,c)[logQ(c|x)] + H(c), D is the discriminator network, and
H(c) is the entropy of the latent code distribution. Training with this objective results in latent
codes c having control over the different factors of variation in the generated images G(z, c). To
model discrete variations in the data, InfoGAN employs non-differentiable samples from a uniform
categorical distribution with fixed class probabilities; i.e., c ∼ Cat(K = k, p = 1/k) where k is the
number of discrete categories to be discovered.

3.2 Disentangling object identity in imbalanced data

As shown in Fig. 1, applying InfoGAN to an imbalanced dataset results in suboptimal disentanglement,
since the uniform prior assumption does not match the actual ground-truth data distribution of the
discrete factor (e.g., digit identity). To address this, we propose two improvements to InfoGAN. The
first is to enable learning of the latent distribution’s parameters (class probabilities), which requires
gradients to be backpropagated through latent code samples c, and the second involves constrastive
learning of representations, so that the discovered factor aligns closely with object identity.

Learning the prior distribution To learn the prior distribution, we replace the fixed categorical
distribution in InfoGAN with the Gumbel-Softmax distribution [30, 36], which enables sampling of
differentiable samples. The continuous Gumbel-Softmax distribution can be smoothly annealed into
a categorical distribution. Specifically, if p1, p2..., pk are the class probabilities, then sampling of a
k-dimensional vector c can be done in a differentiable way:

ci =
exp((log(pi) + gi)/τ)∑k

j=1 exp((log(pj) + gj)/τ)
for i = 1, ..., k. (2)

Here gi, gj are samples drawn from Gumbel(0, 1), and τ (softmax temperature) controls the degree
to which samples from Gumbel-Softmax resemble the categorical distribution. Low values of τ make
the samples possess properties close to that of a one-hot sample.

In theory, InfoGAN’s behavior in the class balanced setting (Fig. 1 left) can be replicated in the
imbalanced case (where grouping becomes incoherent, Fig. 1 center), by simply replacing the fixed
uniform categorical distribution with Gumbel-Softmax with learnable class probabilities pi’s; i.e.
gradients can flow back to update the class probabilities (which are uniformly initialized) to match
the true class imbalance. And once the true imbalance gets reflected in the class probabilities, the
possibility of proper categorical disentanglement (Fig. 1 right) becomes feasible.

vs

Empirically, however, this ideal behavior is not observed in a con-
sistent manner. As shown in the figure on the right, unsupervised
grouping can focus on non-categorical attributes such as rotation of
the digit (left). Although this is one valid way to group unlabeled
data, our goal is to have groupings that correspond to class identity
(right). This would enable useful applications for downstream tasks such as semi-supervised image
classification, removing class-imbalance with generated data, and identity-based image retrieval.

Learning object identities Based on Eq. 1, the factor of variation discovered by the latent vector c
will depend on the factor that Q focuses on while making the classification decision (whether images
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are assigned different classes based on e.g., pose, illumination, identity, etc.). So, to enable the
discovery of object identity as the factor, we enforce Q to learn representations using a contrastive
loss [21]. The idea is to create positive pairs (e.g., a car and it’s mirror flipped version) and negative
pairs (e.g., a red hatchback and a white sedan) based on object identity, and have Q produce similar
and dissimilar representations for them respectively.

Since we do not have any category labels, we treat each instance (image) as its own class. Intuitively,
and as validated by prior work [4, 9], forcing a model to predict the same feature for two different
views (augmentations) of the same image leads to the model learning a representation focusing on
high-level factors like object identity. Formally, for a sampled batch of N real images, we construct
their augmented version, by applying identity preserving transformations (δ) to each image, resulting
in a total of 2N images. For each image Ii in the batch, we define the corresponding transformed
image as Ipos, and all other 2(N − 1) images as Ineg . We define the following loss for each image Ii
in the batch, where {Ii, Ipos} and {Ii, Ineg} act as positive and negative pairs, respectively:

`i = − log
exp

(
sim(fi, fj)/τ

′
)

∑2N
k=1 1[k 6=i] exp (sim(fi, fk)/τ

′)
(3)

where j indexes the positive pair, f represents the feature extracted using Q (we use the penultimate
layer), τ

′
is a softmax temperature, and sim(.) refers to cosine similarity. Note that since any two

(unlabeled) images in a batch, except Ii and Ipos, are treated as negative pairs, there would be
cases where the sampled pair will be a false negative (i.e., images belonging to the same category).
However, the fraction of false negatives remains considerably low except for highly-skewed data
scenarios (we provide analysis in the supplementary), and even then we take the penultimate layer’s
features for computing similarity/dissimilarity which provides some robustness to such errors as the
final layer can still put two false negatives to be similar to each other. These aspects make the above
approximation of sampling negative pairs practically applicable in our setting. We denote the overall
loss as Lntxent =

∑N
i=1 `i (normalized temperature-scaled cross entropy loss [9]). Our training

objective hence becomes:

min
G,Q,pi

max
D

Lfinal = VInfoGAN (D,G,Q, pi) + λ2Lntxent(Q). (4)

VInfoGAN plays the role of generating realistic images and associating the latent variables to
correspond to some factor of variation in the data, while the addition of Lntxent will push the
discovered factor of variation to be close to object identity. The latent codes sampled from Gumbel-
softmax, generated fake images, and losses operating on fake images are all functions of class
probabilities pi’s too. Thus, during the minimization phase of Lfinal, the gradients are used to
optimize the class probabilities along with G and Q in the backward pass. Overall, we leverage
previous ideas used in orthogonal areas: Gumbel-Softmax was introduced for differentiable sampling
of one-hot like variables, and data augmentations have been used for various visual recognition tasks.
Our framework integrates them in a coherent way to address the new problem of generative modeling
of latent object identity factor in class-imbalanced data.

4 Experiments

In this section, we perform quantitative and qualitative analyses to demonstrate the advantage of our
model in discovering categorical disentanglement for imbalanced datasets.

Datasets (1) MNIST [34] is by default a balanced dataset with 70k images, with a similar number
of training samples for each of 10 classes. We artificially introduce imbalance over 50 random
splits, and report the results averaged over them. (2) 3D Cars [17] and (3) 3D Chairs [2] consist of
synthetic objects rendered with varying identity and poses. We choose 10 random object categories
for both 3D cars (out of 183 total categories) and 3D chairs (out of 1396 total categories), where
each category contains 96 and 62 images for cars and chairs, respectively. Within the chosen 10
categories, we introduce imbalance over 5 random splits. The whole process is repeated 5 times
(choosing a different set of 10 categories randomly each time) so as to test the generalizability of the
approach. (4) ShapeNet is a dataset of 3D models of diverse object categories, whose 2D renderings
can be obtained in different pose/viewpoints. We choose 5 categories (synsets) from ShapeNetCore
- cars, airplanes, bowl, can, rifle - which are more diverse in object shape/appearance compared to
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Elastic-InfoGAN (Ours)Uniform InfoGAN JointVAE

Figure 3: Representative generations on a random imbalanced MNIST split. Each row corresponds
to a learned latent variable. Elastic-InfoGAN generates inconsistent images in only the 4th row (8
with 3’s), whereas Uniform InfoGAN and JointVAE do so in many rows (e.g. rows 1, 9 and rows 3, 8
respectively).

Uniform InfoGAN JointVAE Elastic-InfoGAN (Ours)

Figure 4: Image generations on a random imbalanced 3D Cars split, on a randomly chosen sets of
categories. Each row corresponds to a learned latent variable. The images are much more consistent
corresponding to a latent variable for Elastic-InfoGAN, compared with Uniform InfoGAN. JointVAE
struggles in the aspects of realism as well as consistency among the generations for a latent code.

3D Cars/Chairs. Each category has a large number of instances (different car models within the cars
synset). We select different number of instances for each of the categories to introduce imbalance,
and generate 30 renderings 1 for each instance in different viewpoints. (5) YouTube-Faces [51]
is a real world imbalanced dataset with varying number of training samples (frames) for 40 face
identity classes (as used in [45]). The smallest/largest class has 53/695 images, with a total of 10,066
tightly-cropped face images. The results are reported over the average of 5 runs over the same
imbalanced dataset. (The imbalance statistics for all datasets are in the supplementary).

Baselines and evaluation metrics We design different baselines to show the importance of different
components of our approach. (i) Uniform InfoGAN [10]: This is the original InfoGAN with fixed
and uniform categorical distribution. (ii) Ground-truth InfoGAN: This is InfoGAN with a fixed,
but imbalanced categorical distribution where the class probabilities reflect the ground-truth class
imbalance. (iii) Ground-truth InfoGAN + Lntxent: Similar to the previous baseline but with the
contrastive loss (Eq. 3). (iv) Gumbel-softmax: Similar to InfoGAN, but this baseline does not have
a fixed prior for the latent variables. Instead, the priors are learned using the Gumbel-softmax
technique [30]. (v) Gumbel-softmax + pos-Lntxent: This is the version where apart from having a
learnable prior, we also apply a part of Lntxent, where we enforce the positive pairs to have similar
latent prediction Q(c|x) but do not use negative pairs. (vi) Elastic-InfoGAN: This is our final model
in which we use the complete form of Lntxent. (vii) JointVAE [15]: We also include this VAE
based baseline, which performs joint modeling of disentangled discrete and continuous factors. The
objective function uses two KL-divergence loss terms to enforce the inferred discrete and continuous

1we use - https://github.com/panmari/stanford-shapenet-renderer
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Figure 5: Image generations on a random imbalanced 3D Chairs split, on a randomly chosen sets
of categories. Each row corresponds to a learned latent variable. Similar to the results on existing
datasets, images are much more consistent corresponding to a latent variable for Elastic-InfoGAN,
compared with Uniform-InfoGAN or JointVAE. Due to lack of details in the results for JointVAE, it
is hard to figure out if some categories repeat in multiple rows.

latent variables to follow their respective prior distributions (e.g., uniform categorical and standard
normal respectively). We tune the weights for both of these loss functions separately, and report the
best configuration’s results (see supplementary for more details).

The standard metrics for evaluating disentanglement require access to the ground-truth latent factors
[16, 32, 24], which is rarely the case with real-world datasets. Furthermore, our evaluation should
specifically capture the ability to disentangle class-specific information from other factors in an
imbalanced dataset. Since the aforementioned metrics don’t capture this property, we propose to
use the following metrics: (a) Average Entropy (ENT): Evaluates two properties: (i) whether the
images generated for a given categorical code belong to the same ground-truth class i.e., whether
the ground-truth class histogram for images generated for each categorical code has low entropy; (ii)
whether each ground-truth class is associated with a single unique categorical code. We generate
1000 images for each of the k latent categorical codes, compute class histograms using a pre-trained
classifier2 to get a k × k matrix (where rows index latent categories and columns index ground-truth
categories). We report the average entropy across the rows (tests (i)) and columns (tests (ii)). (b)
Normalized Mutual Information (NMI) [56]: We treat our latent category assignments of the fake
images (we generate 1000 fake images for each categorical code) as one clustering, and the category
assignments of the fake images by the pre-trained classifier as another clustering. NMI measures the
correlation between the two clusterings. The value of NMI will vary between 0 to 1; higher the NMI,
stronger the correlation.

Implementation details Transformations (δ) used: (i) MNIST: Rotation (±10 deg) + Zoom
(±0.1×); for (ii) 3D Cars, (iii) 3D Chairs, and (iv) ShapeNet: Rotation (±10 deg) + Random
horizontal flip + Random crop (preserving 95% of image); (v) YouTube-Faces: Random horizontal
flip + Random crop (scale image by 1.1× and crop 64 × 64 patch) + Gamma contrast (gamma
∼ U(0.3, 4.0)). Refer to supplementary for more implementation details.

4.1 Quantitative evaluation

Comparisons to baselines assuming uniform prior As explained in previous sections, baselines
using this prior for the latent categorical distribution would (in theory) have difficulty in disentangling
object identity as a separate factor in class imbalanced data. We observe this behavior empirically too
(see Table 1); Elastic-InfoGAN, which learns the latent categorical distribution, obtains significant
boosts of 0.113 and 0.127 in NMI, and -0.244 and -0.395 in ENT compared to the Uniform InfoGAN
baseline for MNIST and YouTube-Faces, respectively. The boost is even more significant when
compared to JointVAE: 0.209, 0.345 in NMI, and -0.4877, -0.1.081 in ENT for MNIST and YouTube-

2We train the classifier by creating a 80/20 train/val split on a per class basis. Classification accuracies: (i)
MNIST: 98%, (ii) 3D Cars: 99%, (iii) 3D Chairs: 97%, (iv) ShapeNet: 95%, (v) YouTube-Faces: 96%. See
supplementary for details.
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MNIST YTF 3D-cars 3D-chairs ShapeNet
NMI ENT NMI ENT NMI ENT NMI ENT NMI ENT

JointVAE [15] 0.704 0.661 0.485 1.554 0.458 1.024 0.480 1.817 0.189 1.101
Uniform-InfoGAN [10] 0.777 0.457 0.666 1.031 0.499 1.108 0.253 1.663 0.638 0.531
Gumbel-Softmax 0.836 0.326 0.760 0.757 0.400 1.318 0.236 1.696 0.603 0.619
Gumbel-Softmax + pos-Lntxent 0.878 0.235 0.765 0.719 0.582 0.919 0.454 1.209 0.724 0.397
Elastic-InfoGAN (Ours) 0.889 0.213 0.792 0.636 0.850 0.303 0.650 0.765 0.790 0.297
Ground-truth InfoGAN 0.783 0.412 0.694 0.961 0.451 1.191 0.174 1.837 0.549 0.673
Ground-truth InfoGAN + Lntxent 0.801 0.369 0.742 0.767 0.784 0.437 0.592 0.885 0.531 0.716

Table 1: Distentanglement quality measured by NMI (↑) and ENT (↓). The first five methods have no
knowledge of the ground-truth distribution, while the last two methods do. We see that incorporating
contrastive loss within a baseline (either Gumbel-Softmax or Ground-truth InfoGAN) helps the model
better learn the disentangled representations. Overall, Elastic-InfoGAN demonstrates the ability to
better disentangle object identity from other factors compared to baselines. (See supplementary for
error bars.)

Uniform InfoGAN Elastic-InfoGAN (Ours)JointVAE

Figure 6: Image generations on ShapeNet: different categorical latent codes capture object identity
(e.g., planes/cars) much more consistently in Elastic-InfoGAN than Uniform-InfoGAN, which mixes
up generations (e.g., cars with cans in row 3). JointVAE shares this issue, in addition to poor quality
of generations.

Faces, respectively. Similar results can be observed for Cars, Chairs, and ShapeNet, where our method
gets a boost of 0.351, 0.397, 0.152 respectively in NMI, and -0.805, -0.897, -0.234 respectively in
ENT, compared to Uniform InfoGAN.

Effect of using contrastive loss From Table 1, we see that the performance of baselines learning
the prior distribution follow a particular order across all the datasets. Having an auxiliary constraint
to enforce positive pairs to have similar representations improves performance (Gumbel-Softmax vs.
Gumbel-Softmax + pos-Lntxent), and additionally constraining the negative pairs to have dissimilar
representations results in further gains (Gumbel-Softmax + pos-Lntxent vs. Elastic-InfoGAN). This
trend indicates that the absence of appropriate auxiliary constraints results in the model having no
signal to be invariant to undesirable factors. For example, one of the ways in which different ‘ones’ in
MNIST vary is rotation, which can be used as a factor (as opposed to object identity) to group data in
imbalanced cases (recall the different ways to group from Sec. 3.2). Similarly in Cars, if the number of
different poses actually match the number of discrete categories, pose could emerge as a factor instead
of object identity. These are the potential scenarios where Gumbel-Softmax/Ground-truth InfoGAN
will perform more poorly than Elastic-InfoGAN (see supplementary for more results on this). Note
that the transformations (δ) used in Lntxent are not supposed to capture all the intra-class variations
themselves; their role is to help the model (Q) focus more on object identity while predicting the
latent category, by ruling out the variations in δ as a way to group.

Interestingly, using a fixed ground-truth prior (Ground-truth InfoGAN) does not always result in
better disentanglement than learning the prior (Gumbel-softmax). This requires further investigation,
but we hypothesis an explanation based on the idea presented in [11]. The effective number of samples
in a category will not necessarily be the same as the number of instances in that category; e.g., two
0 digits that are almost equivalent to each other would result in an effective sample size closer to
one instance rather than two instances. It is therefore possible that the distribution for the effective
samples might not exactly match the ground-truth imbalanced distribution of instances, and hence
using the ground-truth distribution for the latent space might result in sub-optimal disentanglement.

4.2 Qualitative evaluation

We next qualitatively evaluate our method’s disentanglement ability. Figs. 3-7 show results for
MNIST, Cars, Chairs, ShapeNet, and YouTube-Faces. Overall, Elastic-InfoGAN generates more
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Elastic-InfoGAN (Ours)

Uniform InfoGAN

JointVAE

Figure 7: Image generations on YouTube-Faces. Each column corresponds to a latent variable.
Although there are a few redundant latent variables (e.g., 7th and 13th columns) in Elastic-InfoGAN,
it generates images belonging to the same person more consistently compared to Uniform-InfoGAN
and JointVAE, which tend to mix up face identities a lot more frequently.

consistent images for each latent code compared to Uniform InfoGAN and JointVAE. For example,
in Fig. 3, our model only generates inconsistent images in the 4th row (mixing up 8 with 3’s) whereas
the baselines generate inconsistent images in several rows. In Fig. 4 and Fig. 5, we see that for a
given latent variable, our model can consistently generate images from the same object category,
in different pose/viewpoints. For Chairs, there are some cases in which the images generated in
different rows look similar for Elastic-InfoGAN, but this still happens much less frequently than
Uniform InfoGAN and JointVAE. Fig. 6 further demonstrates the ability of Elastic-InfoGAN to
become invariant to other forms of continuous factors (e.g. object pose), with different categorical
codes accurately representing different high-level object categories; e.g,. rifles vs cars, in a better
way than the baseline methods. Similarly, in Fig. 7, our model generates faces of the same person
corresponding to a latent variable more consistently than the baselines. Both Uniform InfoGAN and
JointVAE, on the other hand, more often mix up identities within the same categorical code because
they incorrectly assume a prior uniform distribution.

Modeling continuous factors Finally, we demonstrate
that Elastic-InfoGAN does not impede modeling of con-
tinuous factors in the imbalanced setting. Specifically, one
can augment the input with continuous codes (e.g., r1,
r2 ∼ U (-1, 1)) along with the existing categorical and
noise vectors. In the right figure, we show the results of
continuous code interpolation; we can see that each of the
continuous codes largely captures a particular continuous factor (stroke width on left, digit rotation
on the right).

5 Conclusion

We proposed an unsupervised generative model that better disentangles object identity as a factor of
variation, without the knowledge of class imbalance. Although there are some limitations (e.g., its
applicability in highly skewed data), we believe that we address an important, unexplored problem
setting. Similar to how the area of supervised machine learning has evolved over time to account for
class imbalance in real world data, our hope with this work is to pave the way for the evolution of
unsupervised learning based methods to work well in class imbalanced data, which is inevitable if
these algorithms have to be deployed in the real world.
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Broader Impact

Image datasets, particularly the ones with human faces, have a potential problem of not being
diverse enough. This conceptualizes in some form of imbalance in the dataset, where, for example,
a dataset of human faces might not represent faces from all ethnical communities in appropriate
proportions. A popular application of GANs is to use synthetic images for data augmentations. With
traditional GANs, however, it is possible that the underrepresented classes might not be modeled
as accurately (mode dropping problem), thus limiting their applicability. The idea presented in this
work is specifically tailored to handle such cases, by discovering both, the over and under-represented
classes. This could then enable data augmentation using generated images, and help increase the
proportions of underrepresented classes.

GANs in general pose some ethical concerns, in terms of creating/altering visual content (e.g.,
deepfakes). Our work, which is a derivative of GAN, is no exception in that regard, as it could
have some malicious applications, such as image fabrication. We do want to point out that such
applications are not that straightforward with the method proposed in its current form, as our method
doesn’t operate directly on real images (the input to the generator is latent vectors).
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